xref: /freebsd/sys/kern/kern_thread.c (revision 5f0216bd883edee71bf81051e3c20505e4820903)
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28 
29 #include "opt_witness.h"
30 #include "opt_hwpmc_hooks.h"
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/rangelock.h>
42 #include <sys/resourcevar.h>
43 #include <sys/sdt.h>
44 #include <sys/smp.h>
45 #include <sys/sched.h>
46 #include <sys/sleepqueue.h>
47 #include <sys/selinfo.h>
48 #include <sys/sysent.h>
49 #include <sys/turnstile.h>
50 #include <sys/ktr.h>
51 #include <sys/rwlock.h>
52 #include <sys/umtx.h>
53 #include <sys/cpuset.h>
54 #ifdef	HWPMC_HOOKS
55 #include <sys/pmckern.h>
56 #endif
57 
58 #include <security/audit/audit.h>
59 
60 #include <vm/vm.h>
61 #include <vm/vm_extern.h>
62 #include <vm/uma.h>
63 #include <sys/eventhandler.h>
64 
65 SDT_PROVIDER_DECLARE(proc);
66 SDT_PROBE_DEFINE(proc, , , lwp__exit);
67 
68 /*
69  * thread related storage.
70  */
71 static uma_zone_t thread_zone;
72 
73 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
74 static struct mtx zombie_lock;
75 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
76 
77 static void thread_zombie(struct thread *);
78 static int thread_unsuspend_one(struct thread *td, struct proc *p,
79     bool boundary);
80 
81 #define TID_BUFFER_SIZE	1024
82 
83 struct mtx tid_lock;
84 static struct unrhdr *tid_unrhdr;
85 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
86 static int tid_head, tid_tail;
87 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
88 
89 struct	tidhashhead *tidhashtbl;
90 u_long	tidhash;
91 struct	rwlock tidhash_lock;
92 
93 static lwpid_t
94 tid_alloc(void)
95 {
96 	lwpid_t	tid;
97 
98 	tid = alloc_unr(tid_unrhdr);
99 	if (tid != -1)
100 		return (tid);
101 	mtx_lock(&tid_lock);
102 	if (tid_head == tid_tail) {
103 		mtx_unlock(&tid_lock);
104 		return (-1);
105 	}
106 	tid = tid_buffer[tid_head];
107 	tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
108 	mtx_unlock(&tid_lock);
109 	return (tid);
110 }
111 
112 static void
113 tid_free(lwpid_t tid)
114 {
115 	lwpid_t tmp_tid = -1;
116 
117 	mtx_lock(&tid_lock);
118 	if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
119 		tmp_tid = tid_buffer[tid_head];
120 		tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
121 	}
122 	tid_buffer[tid_tail] = tid;
123 	tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
124 	mtx_unlock(&tid_lock);
125 	if (tmp_tid != -1)
126 		free_unr(tid_unrhdr, tmp_tid);
127 }
128 
129 /*
130  * Prepare a thread for use.
131  */
132 static int
133 thread_ctor(void *mem, int size, void *arg, int flags)
134 {
135 	struct thread	*td;
136 
137 	td = (struct thread *)mem;
138 	td->td_state = TDS_INACTIVE;
139 	td->td_oncpu = NOCPU;
140 
141 	td->td_tid = tid_alloc();
142 
143 	/*
144 	 * Note that td_critnest begins life as 1 because the thread is not
145 	 * running and is thereby implicitly waiting to be on the receiving
146 	 * end of a context switch.
147 	 */
148 	td->td_critnest = 1;
149 	td->td_lend_user_pri = PRI_MAX;
150 	EVENTHANDLER_INVOKE(thread_ctor, td);
151 #ifdef AUDIT
152 	audit_thread_alloc(td);
153 #endif
154 	umtx_thread_alloc(td);
155 	return (0);
156 }
157 
158 /*
159  * Reclaim a thread after use.
160  */
161 static void
162 thread_dtor(void *mem, int size, void *arg)
163 {
164 	struct thread *td;
165 
166 	td = (struct thread *)mem;
167 
168 #ifdef INVARIANTS
169 	/* Verify that this thread is in a safe state to free. */
170 	switch (td->td_state) {
171 	case TDS_INHIBITED:
172 	case TDS_RUNNING:
173 	case TDS_CAN_RUN:
174 	case TDS_RUNQ:
175 		/*
176 		 * We must never unlink a thread that is in one of
177 		 * these states, because it is currently active.
178 		 */
179 		panic("bad state for thread unlinking");
180 		/* NOTREACHED */
181 	case TDS_INACTIVE:
182 		break;
183 	default:
184 		panic("bad thread state");
185 		/* NOTREACHED */
186 	}
187 #endif
188 #ifdef AUDIT
189 	audit_thread_free(td);
190 #endif
191 	/* Free all OSD associated to this thread. */
192 	osd_thread_exit(td);
193 
194 	EVENTHANDLER_INVOKE(thread_dtor, td);
195 	tid_free(td->td_tid);
196 }
197 
198 /*
199  * Initialize type-stable parts of a thread (when newly created).
200  */
201 static int
202 thread_init(void *mem, int size, int flags)
203 {
204 	struct thread *td;
205 
206 	td = (struct thread *)mem;
207 
208 	td->td_sleepqueue = sleepq_alloc();
209 	td->td_turnstile = turnstile_alloc();
210 	td->td_rlqe = NULL;
211 	EVENTHANDLER_INVOKE(thread_init, td);
212 	td->td_sched = (struct td_sched *)&td[1];
213 	umtx_thread_init(td);
214 	td->td_kstack = 0;
215 	td->td_sel = NULL;
216 	return (0);
217 }
218 
219 /*
220  * Tear down type-stable parts of a thread (just before being discarded).
221  */
222 static void
223 thread_fini(void *mem, int size)
224 {
225 	struct thread *td;
226 
227 	td = (struct thread *)mem;
228 	EVENTHANDLER_INVOKE(thread_fini, td);
229 	rlqentry_free(td->td_rlqe);
230 	turnstile_free(td->td_turnstile);
231 	sleepq_free(td->td_sleepqueue);
232 	umtx_thread_fini(td);
233 	seltdfini(td);
234 }
235 
236 /*
237  * For a newly created process,
238  * link up all the structures and its initial threads etc.
239  * called from:
240  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
241  * proc_dtor() (should go away)
242  * proc_init()
243  */
244 void
245 proc_linkup0(struct proc *p, struct thread *td)
246 {
247 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
248 	proc_linkup(p, td);
249 }
250 
251 void
252 proc_linkup(struct proc *p, struct thread *td)
253 {
254 
255 	sigqueue_init(&p->p_sigqueue, p);
256 	p->p_ksi = ksiginfo_alloc(1);
257 	if (p->p_ksi != NULL) {
258 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
259 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
260 	}
261 	LIST_INIT(&p->p_mqnotifier);
262 	p->p_numthreads = 0;
263 	thread_link(td, p);
264 }
265 
266 /*
267  * Initialize global thread allocation resources.
268  */
269 void
270 threadinit(void)
271 {
272 
273 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
274 
275 	/*
276 	 * pid_max cannot be greater than PID_MAX.
277 	 * leave one number for thread0.
278 	 */
279 	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
280 
281 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
282 	    thread_ctor, thread_dtor, thread_init, thread_fini,
283 	    16 - 1, 0);
284 	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
285 	rw_init(&tidhash_lock, "tidhash");
286 }
287 
288 /*
289  * Place an unused thread on the zombie list.
290  * Use the slpq as that must be unused by now.
291  */
292 void
293 thread_zombie(struct thread *td)
294 {
295 	mtx_lock_spin(&zombie_lock);
296 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
297 	mtx_unlock_spin(&zombie_lock);
298 }
299 
300 /*
301  * Release a thread that has exited after cpu_throw().
302  */
303 void
304 thread_stash(struct thread *td)
305 {
306 	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
307 	thread_zombie(td);
308 }
309 
310 /*
311  * Reap zombie resources.
312  */
313 void
314 thread_reap(void)
315 {
316 	struct thread *td_first, *td_next;
317 
318 	/*
319 	 * Don't even bother to lock if none at this instant,
320 	 * we really don't care about the next instant..
321 	 */
322 	if (!TAILQ_EMPTY(&zombie_threads)) {
323 		mtx_lock_spin(&zombie_lock);
324 		td_first = TAILQ_FIRST(&zombie_threads);
325 		if (td_first)
326 			TAILQ_INIT(&zombie_threads);
327 		mtx_unlock_spin(&zombie_lock);
328 		while (td_first) {
329 			td_next = TAILQ_NEXT(td_first, td_slpq);
330 			thread_cow_free(td_first);
331 			thread_free(td_first);
332 			td_first = td_next;
333 		}
334 	}
335 }
336 
337 /*
338  * Allocate a thread.
339  */
340 struct thread *
341 thread_alloc(int pages)
342 {
343 	struct thread *td;
344 
345 	thread_reap(); /* check if any zombies to get */
346 
347 	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
348 	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
349 	if (!vm_thread_new(td, pages)) {
350 		uma_zfree(thread_zone, td);
351 		return (NULL);
352 	}
353 	cpu_thread_alloc(td);
354 	return (td);
355 }
356 
357 int
358 thread_alloc_stack(struct thread *td, int pages)
359 {
360 
361 	KASSERT(td->td_kstack == 0,
362 	    ("thread_alloc_stack called on a thread with kstack"));
363 	if (!vm_thread_new(td, pages))
364 		return (0);
365 	cpu_thread_alloc(td);
366 	return (1);
367 }
368 
369 /*
370  * Deallocate a thread.
371  */
372 void
373 thread_free(struct thread *td)
374 {
375 
376 	lock_profile_thread_exit(td);
377 	if (td->td_cpuset)
378 		cpuset_rel(td->td_cpuset);
379 	td->td_cpuset = NULL;
380 	cpu_thread_free(td);
381 	if (td->td_kstack != 0)
382 		vm_thread_dispose(td);
383 	uma_zfree(thread_zone, td);
384 }
385 
386 void
387 thread_cow_get_proc(struct thread *newtd, struct proc *p)
388 {
389 
390 	PROC_LOCK_ASSERT(p, MA_OWNED);
391 	newtd->td_ucred = crhold(p->p_ucred);
392 	newtd->td_limit = lim_hold(p->p_limit);
393 	newtd->td_cowgen = p->p_cowgen;
394 }
395 
396 void
397 thread_cow_get(struct thread *newtd, struct thread *td)
398 {
399 
400 	newtd->td_ucred = crhold(td->td_ucred);
401 	newtd->td_limit = lim_hold(td->td_limit);
402 	newtd->td_cowgen = td->td_cowgen;
403 }
404 
405 void
406 thread_cow_free(struct thread *td)
407 {
408 
409 	if (td->td_ucred)
410 		crfree(td->td_ucred);
411 	if (td->td_limit)
412 		lim_free(td->td_limit);
413 }
414 
415 void
416 thread_cow_update(struct thread *td)
417 {
418 	struct proc *p;
419 
420 	p = td->td_proc;
421 	PROC_LOCK(p);
422 	if (td->td_ucred != p->p_ucred)
423 		cred_update_thread(td);
424 	if (td->td_limit != p->p_limit)
425 		lim_update_thread(td);
426 	td->td_cowgen = p->p_cowgen;
427 	PROC_UNLOCK(p);
428 }
429 
430 /*
431  * Discard the current thread and exit from its context.
432  * Always called with scheduler locked.
433  *
434  * Because we can't free a thread while we're operating under its context,
435  * push the current thread into our CPU's deadthread holder. This means
436  * we needn't worry about someone else grabbing our context before we
437  * do a cpu_throw().
438  */
439 void
440 thread_exit(void)
441 {
442 	uint64_t runtime, new_switchtime;
443 	struct thread *td;
444 	struct thread *td2;
445 	struct proc *p;
446 	int wakeup_swapper;
447 
448 	td = curthread;
449 	p = td->td_proc;
450 
451 	PROC_SLOCK_ASSERT(p, MA_OWNED);
452 	mtx_assert(&Giant, MA_NOTOWNED);
453 
454 	PROC_LOCK_ASSERT(p, MA_OWNED);
455 	KASSERT(p != NULL, ("thread exiting without a process"));
456 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
457 	    (long)p->p_pid, td->td_name);
458 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
459 
460 #ifdef AUDIT
461 	AUDIT_SYSCALL_EXIT(0, td);
462 #endif
463 	/*
464 	 * drop FPU & debug register state storage, or any other
465 	 * architecture specific resources that
466 	 * would not be on a new untouched process.
467 	 */
468 	cpu_thread_exit(td);	/* XXXSMP */
469 
470 	/*
471 	 * The last thread is left attached to the process
472 	 * So that the whole bundle gets recycled. Skip
473 	 * all this stuff if we never had threads.
474 	 * EXIT clears all sign of other threads when
475 	 * it goes to single threading, so the last thread always
476 	 * takes the short path.
477 	 */
478 	if (p->p_flag & P_HADTHREADS) {
479 		if (p->p_numthreads > 1) {
480 			atomic_add_int(&td->td_proc->p_exitthreads, 1);
481 			thread_unlink(td);
482 			td2 = FIRST_THREAD_IN_PROC(p);
483 			sched_exit_thread(td2, td);
484 
485 			/*
486 			 * The test below is NOT true if we are the
487 			 * sole exiting thread. P_STOPPED_SINGLE is unset
488 			 * in exit1() after it is the only survivor.
489 			 */
490 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
491 				if (p->p_numthreads == p->p_suspcount) {
492 					thread_lock(p->p_singlethread);
493 					wakeup_swapper = thread_unsuspend_one(
494 						p->p_singlethread, p, false);
495 					thread_unlock(p->p_singlethread);
496 					if (wakeup_swapper)
497 						kick_proc0();
498 				}
499 			}
500 
501 			PCPU_SET(deadthread, td);
502 		} else {
503 			/*
504 			 * The last thread is exiting.. but not through exit()
505 			 */
506 			panic ("thread_exit: Last thread exiting on its own");
507 		}
508 	}
509 #ifdef	HWPMC_HOOKS
510 	/*
511 	 * If this thread is part of a process that is being tracked by hwpmc(4),
512 	 * inform the module of the thread's impending exit.
513 	 */
514 	if (PMC_PROC_IS_USING_PMCS(td->td_proc))
515 		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
516 #endif
517 	PROC_UNLOCK(p);
518 	PROC_STATLOCK(p);
519 	thread_lock(td);
520 	PROC_SUNLOCK(p);
521 
522 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
523 	new_switchtime = cpu_ticks();
524 	runtime = new_switchtime - PCPU_GET(switchtime);
525 	td->td_runtime += runtime;
526 	td->td_incruntime += runtime;
527 	PCPU_SET(switchtime, new_switchtime);
528 	PCPU_SET(switchticks, ticks);
529 	PCPU_INC(cnt.v_swtch);
530 
531 	/* Save our resource usage in our process. */
532 	td->td_ru.ru_nvcsw++;
533 	ruxagg(p, td);
534 	rucollect(&p->p_ru, &td->td_ru);
535 	PROC_STATUNLOCK(p);
536 
537 	td->td_state = TDS_INACTIVE;
538 #ifdef WITNESS
539 	witness_thread_exit(td);
540 #endif
541 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
542 	sched_throw(td);
543 	panic("I'm a teapot!");
544 	/* NOTREACHED */
545 }
546 
547 /*
548  * Do any thread specific cleanups that may be needed in wait()
549  * called with Giant, proc and schedlock not held.
550  */
551 void
552 thread_wait(struct proc *p)
553 {
554 	struct thread *td;
555 
556 	mtx_assert(&Giant, MA_NOTOWNED);
557 	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
558 	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
559 	td = FIRST_THREAD_IN_PROC(p);
560 	/* Lock the last thread so we spin until it exits cpu_throw(). */
561 	thread_lock(td);
562 	thread_unlock(td);
563 	lock_profile_thread_exit(td);
564 	cpuset_rel(td->td_cpuset);
565 	td->td_cpuset = NULL;
566 	cpu_thread_clean(td);
567 	thread_cow_free(td);
568 	thread_reap();	/* check for zombie threads etc. */
569 }
570 
571 /*
572  * Link a thread to a process.
573  * set up anything that needs to be initialized for it to
574  * be used by the process.
575  */
576 void
577 thread_link(struct thread *td, struct proc *p)
578 {
579 
580 	/*
581 	 * XXX This can't be enabled because it's called for proc0 before
582 	 * its lock has been created.
583 	 * PROC_LOCK_ASSERT(p, MA_OWNED);
584 	 */
585 	td->td_state    = TDS_INACTIVE;
586 	td->td_proc     = p;
587 	td->td_flags    = TDF_INMEM;
588 
589 	LIST_INIT(&td->td_contested);
590 	LIST_INIT(&td->td_lprof[0]);
591 	LIST_INIT(&td->td_lprof[1]);
592 	sigqueue_init(&td->td_sigqueue, p);
593 	callout_init(&td->td_slpcallout, 1);
594 	TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
595 	p->p_numthreads++;
596 }
597 
598 /*
599  * Called from:
600  *  thread_exit()
601  */
602 void
603 thread_unlink(struct thread *td)
604 {
605 	struct proc *p = td->td_proc;
606 
607 	PROC_LOCK_ASSERT(p, MA_OWNED);
608 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
609 	p->p_numthreads--;
610 	/* could clear a few other things here */
611 	/* Must  NOT clear links to proc! */
612 }
613 
614 static int
615 calc_remaining(struct proc *p, int mode)
616 {
617 	int remaining;
618 
619 	PROC_LOCK_ASSERT(p, MA_OWNED);
620 	PROC_SLOCK_ASSERT(p, MA_OWNED);
621 	if (mode == SINGLE_EXIT)
622 		remaining = p->p_numthreads;
623 	else if (mode == SINGLE_BOUNDARY)
624 		remaining = p->p_numthreads - p->p_boundary_count;
625 	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
626 		remaining = p->p_numthreads - p->p_suspcount;
627 	else
628 		panic("calc_remaining: wrong mode %d", mode);
629 	return (remaining);
630 }
631 
632 static int
633 remain_for_mode(int mode)
634 {
635 
636 	return (mode == SINGLE_ALLPROC ? 0 : 1);
637 }
638 
639 static int
640 weed_inhib(int mode, struct thread *td2, struct proc *p)
641 {
642 	int wakeup_swapper;
643 
644 	PROC_LOCK_ASSERT(p, MA_OWNED);
645 	PROC_SLOCK_ASSERT(p, MA_OWNED);
646 	THREAD_LOCK_ASSERT(td2, MA_OWNED);
647 
648 	wakeup_swapper = 0;
649 	switch (mode) {
650 	case SINGLE_EXIT:
651 		if (TD_IS_SUSPENDED(td2))
652 			wakeup_swapper |= thread_unsuspend_one(td2, p, true);
653 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
654 			wakeup_swapper |= sleepq_abort(td2, EINTR);
655 		break;
656 	case SINGLE_BOUNDARY:
657 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
658 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
659 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
660 			wakeup_swapper |= sleepq_abort(td2, ERESTART);
661 		break;
662 	case SINGLE_NO_EXIT:
663 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
664 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
665 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
666 			wakeup_swapper |= sleepq_abort(td2, ERESTART);
667 		break;
668 	case SINGLE_ALLPROC:
669 		/*
670 		 * ALLPROC suspend tries to avoid spurious EINTR for
671 		 * threads sleeping interruptable, by suspending the
672 		 * thread directly, similarly to sig_suspend_threads().
673 		 * Since such sleep is not performed at the user
674 		 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
675 		 * is used to avoid immediate un-suspend.
676 		 */
677 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
678 		    TDF_ALLPROCSUSP)) == 0)
679 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
680 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
681 			if ((td2->td_flags & TDF_SBDRY) == 0) {
682 				thread_suspend_one(td2);
683 				td2->td_flags |= TDF_ALLPROCSUSP;
684 			} else {
685 				wakeup_swapper |= sleepq_abort(td2, ERESTART);
686 			}
687 		}
688 		break;
689 	}
690 	return (wakeup_swapper);
691 }
692 
693 /*
694  * Enforce single-threading.
695  *
696  * Returns 1 if the caller must abort (another thread is waiting to
697  * exit the process or similar). Process is locked!
698  * Returns 0 when you are successfully the only thread running.
699  * A process has successfully single threaded in the suspend mode when
700  * There are no threads in user mode. Threads in the kernel must be
701  * allowed to continue until they get to the user boundary. They may even
702  * copy out their return values and data before suspending. They may however be
703  * accelerated in reaching the user boundary as we will wake up
704  * any sleeping threads that are interruptable. (PCATCH).
705  */
706 int
707 thread_single(struct proc *p, int mode)
708 {
709 	struct thread *td;
710 	struct thread *td2;
711 	int remaining, wakeup_swapper;
712 
713 	td = curthread;
714 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
715 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
716 	    ("invalid mode %d", mode));
717 	/*
718 	 * If allowing non-ALLPROC singlethreading for non-curproc
719 	 * callers, calc_remaining() and remain_for_mode() should be
720 	 * adjusted to also account for td->td_proc != p.  For now
721 	 * this is not implemented because it is not used.
722 	 */
723 	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
724 	    (mode != SINGLE_ALLPROC && td->td_proc == p),
725 	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
726 	mtx_assert(&Giant, MA_NOTOWNED);
727 	PROC_LOCK_ASSERT(p, MA_OWNED);
728 
729 	if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
730 		return (0);
731 
732 	/* Is someone already single threading? */
733 	if (p->p_singlethread != NULL && p->p_singlethread != td)
734 		return (1);
735 
736 	if (mode == SINGLE_EXIT) {
737 		p->p_flag |= P_SINGLE_EXIT;
738 		p->p_flag &= ~P_SINGLE_BOUNDARY;
739 	} else {
740 		p->p_flag &= ~P_SINGLE_EXIT;
741 		if (mode == SINGLE_BOUNDARY)
742 			p->p_flag |= P_SINGLE_BOUNDARY;
743 		else
744 			p->p_flag &= ~P_SINGLE_BOUNDARY;
745 	}
746 	if (mode == SINGLE_ALLPROC)
747 		p->p_flag |= P_TOTAL_STOP;
748 	p->p_flag |= P_STOPPED_SINGLE;
749 	PROC_SLOCK(p);
750 	p->p_singlethread = td;
751 	remaining = calc_remaining(p, mode);
752 	while (remaining != remain_for_mode(mode)) {
753 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
754 			goto stopme;
755 		wakeup_swapper = 0;
756 		FOREACH_THREAD_IN_PROC(p, td2) {
757 			if (td2 == td)
758 				continue;
759 			thread_lock(td2);
760 			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
761 			if (TD_IS_INHIBITED(td2)) {
762 				wakeup_swapper |= weed_inhib(mode, td2, p);
763 #ifdef SMP
764 			} else if (TD_IS_RUNNING(td2) && td != td2) {
765 				forward_signal(td2);
766 #endif
767 			}
768 			thread_unlock(td2);
769 		}
770 		if (wakeup_swapper)
771 			kick_proc0();
772 		remaining = calc_remaining(p, mode);
773 
774 		/*
775 		 * Maybe we suspended some threads.. was it enough?
776 		 */
777 		if (remaining == remain_for_mode(mode))
778 			break;
779 
780 stopme:
781 		/*
782 		 * Wake us up when everyone else has suspended.
783 		 * In the mean time we suspend as well.
784 		 */
785 		thread_suspend_switch(td, p);
786 		remaining = calc_remaining(p, mode);
787 	}
788 	if (mode == SINGLE_EXIT) {
789 		/*
790 		 * Convert the process to an unthreaded process.  The
791 		 * SINGLE_EXIT is called by exit1() or execve(), in
792 		 * both cases other threads must be retired.
793 		 */
794 		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
795 		p->p_singlethread = NULL;
796 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
797 
798 		/*
799 		 * Wait for any remaining threads to exit cpu_throw().
800 		 */
801 		while (p->p_exitthreads != 0) {
802 			PROC_SUNLOCK(p);
803 			PROC_UNLOCK(p);
804 			sched_relinquish(td);
805 			PROC_LOCK(p);
806 			PROC_SLOCK(p);
807 		}
808 	} else if (mode == SINGLE_BOUNDARY) {
809 		/*
810 		 * Wait until all suspended threads are removed from
811 		 * the processors.  The thread_suspend_check()
812 		 * increments p_boundary_count while it is still
813 		 * running, which makes it possible for the execve()
814 		 * to destroy vmspace while our other threads are
815 		 * still using the address space.
816 		 *
817 		 * We lock the thread, which is only allowed to
818 		 * succeed after context switch code finished using
819 		 * the address space.
820 		 */
821 		FOREACH_THREAD_IN_PROC(p, td2) {
822 			if (td2 == td)
823 				continue;
824 			thread_lock(td2);
825 			KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
826 			    ("td %p not on boundary", td2));
827 			KASSERT(TD_IS_SUSPENDED(td2),
828 			    ("td %p is not suspended", td2));
829 			thread_unlock(td2);
830 		}
831 	}
832 	PROC_SUNLOCK(p);
833 	return (0);
834 }
835 
836 bool
837 thread_suspend_check_needed(void)
838 {
839 	struct proc *p;
840 	struct thread *td;
841 
842 	td = curthread;
843 	p = td->td_proc;
844 	PROC_LOCK_ASSERT(p, MA_OWNED);
845 	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
846 	    (td->td_dbgflags & TDB_SUSPEND) != 0));
847 }
848 
849 /*
850  * Called in from locations that can safely check to see
851  * whether we have to suspend or at least throttle for a
852  * single-thread event (e.g. fork).
853  *
854  * Such locations include userret().
855  * If the "return_instead" argument is non zero, the thread must be able to
856  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
857  *
858  * The 'return_instead' argument tells the function if it may do a
859  * thread_exit() or suspend, or whether the caller must abort and back
860  * out instead.
861  *
862  * If the thread that set the single_threading request has set the
863  * P_SINGLE_EXIT bit in the process flags then this call will never return
864  * if 'return_instead' is false, but will exit.
865  *
866  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
867  *---------------+--------------------+---------------------
868  *       0       | returns 0          |   returns 0 or 1
869  *               | when ST ends       |   immediately
870  *---------------+--------------------+---------------------
871  *       1       | thread exits       |   returns 1
872  *               |                    |  immediately
873  * 0 = thread_exit() or suspension ok,
874  * other = return error instead of stopping the thread.
875  *
876  * While a full suspension is under effect, even a single threading
877  * thread would be suspended if it made this call (but it shouldn't).
878  * This call should only be made from places where
879  * thread_exit() would be safe as that may be the outcome unless
880  * return_instead is set.
881  */
882 int
883 thread_suspend_check(int return_instead)
884 {
885 	struct thread *td;
886 	struct proc *p;
887 	int wakeup_swapper;
888 
889 	td = curthread;
890 	p = td->td_proc;
891 	mtx_assert(&Giant, MA_NOTOWNED);
892 	PROC_LOCK_ASSERT(p, MA_OWNED);
893 	while (thread_suspend_check_needed()) {
894 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
895 			KASSERT(p->p_singlethread != NULL,
896 			    ("singlethread not set"));
897 			/*
898 			 * The only suspension in action is a
899 			 * single-threading. Single threader need not stop.
900 			 * XXX Should be safe to access unlocked
901 			 * as it can only be set to be true by us.
902 			 */
903 			if (p->p_singlethread == td)
904 				return (0);	/* Exempt from stopping. */
905 		}
906 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
907 			return (EINTR);
908 
909 		/* Should we goto user boundary if we didn't come from there? */
910 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
911 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
912 			return (ERESTART);
913 
914 		/*
915 		 * Ignore suspend requests if they are deferred.
916 		 */
917 		if ((td->td_flags & TDF_SBDRY) != 0) {
918 			KASSERT(return_instead,
919 			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
920 			return (0);
921 		}
922 
923 		/*
924 		 * If the process is waiting for us to exit,
925 		 * this thread should just suicide.
926 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
927 		 */
928 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
929 			PROC_UNLOCK(p);
930 			tidhash_remove(td);
931 
932 			/*
933 			 * Allow Linux emulation layer to do some work
934 			 * before thread suicide.
935 			 */
936 			if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
937 				(p->p_sysent->sv_thread_detach)(td);
938 
939 			PROC_LOCK(p);
940 			tdsigcleanup(td);
941 			umtx_thread_exit(td);
942 			PROC_SLOCK(p);
943 			thread_stopped(p);
944 			thread_exit();
945 		}
946 
947 		PROC_SLOCK(p);
948 		thread_stopped(p);
949 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
950 			if (p->p_numthreads == p->p_suspcount + 1) {
951 				thread_lock(p->p_singlethread);
952 				wakeup_swapper = thread_unsuspend_one(
953 				    p->p_singlethread, p, false);
954 				thread_unlock(p->p_singlethread);
955 				if (wakeup_swapper)
956 					kick_proc0();
957 			}
958 		}
959 		PROC_UNLOCK(p);
960 		thread_lock(td);
961 		/*
962 		 * When a thread suspends, it just
963 		 * gets taken off all queues.
964 		 */
965 		thread_suspend_one(td);
966 		if (return_instead == 0) {
967 			p->p_boundary_count++;
968 			td->td_flags |= TDF_BOUNDARY;
969 		}
970 		PROC_SUNLOCK(p);
971 		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
972 		thread_unlock(td);
973 		PROC_LOCK(p);
974 	}
975 	return (0);
976 }
977 
978 void
979 thread_suspend_switch(struct thread *td, struct proc *p)
980 {
981 
982 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
983 	PROC_LOCK_ASSERT(p, MA_OWNED);
984 	PROC_SLOCK_ASSERT(p, MA_OWNED);
985 	/*
986 	 * We implement thread_suspend_one in stages here to avoid
987 	 * dropping the proc lock while the thread lock is owned.
988 	 */
989 	if (p == td->td_proc) {
990 		thread_stopped(p);
991 		p->p_suspcount++;
992 	}
993 	PROC_UNLOCK(p);
994 	thread_lock(td);
995 	td->td_flags &= ~TDF_NEEDSUSPCHK;
996 	TD_SET_SUSPENDED(td);
997 	sched_sleep(td, 0);
998 	PROC_SUNLOCK(p);
999 	DROP_GIANT();
1000 	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1001 	thread_unlock(td);
1002 	PICKUP_GIANT();
1003 	PROC_LOCK(p);
1004 	PROC_SLOCK(p);
1005 }
1006 
1007 void
1008 thread_suspend_one(struct thread *td)
1009 {
1010 	struct proc *p;
1011 
1012 	p = td->td_proc;
1013 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1014 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1015 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1016 	p->p_suspcount++;
1017 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1018 	TD_SET_SUSPENDED(td);
1019 	sched_sleep(td, 0);
1020 }
1021 
1022 static int
1023 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1024 {
1025 
1026 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1027 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1028 	TD_CLR_SUSPENDED(td);
1029 	td->td_flags &= ~TDF_ALLPROCSUSP;
1030 	if (td->td_proc == p) {
1031 		PROC_SLOCK_ASSERT(p, MA_OWNED);
1032 		p->p_suspcount--;
1033 		if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1034 			td->td_flags &= ~TDF_BOUNDARY;
1035 			p->p_boundary_count--;
1036 		}
1037 	}
1038 	return (setrunnable(td));
1039 }
1040 
1041 /*
1042  * Allow all threads blocked by single threading to continue running.
1043  */
1044 void
1045 thread_unsuspend(struct proc *p)
1046 {
1047 	struct thread *td;
1048 	int wakeup_swapper;
1049 
1050 	PROC_LOCK_ASSERT(p, MA_OWNED);
1051 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1052 	wakeup_swapper = 0;
1053 	if (!P_SHOULDSTOP(p)) {
1054                 FOREACH_THREAD_IN_PROC(p, td) {
1055 			thread_lock(td);
1056 			if (TD_IS_SUSPENDED(td)) {
1057 				wakeup_swapper |= thread_unsuspend_one(td, p,
1058 				    true);
1059 			}
1060 			thread_unlock(td);
1061 		}
1062 	} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1063 	    p->p_numthreads == p->p_suspcount) {
1064 		/*
1065 		 * Stopping everything also did the job for the single
1066 		 * threading request. Now we've downgraded to single-threaded,
1067 		 * let it continue.
1068 		 */
1069 		if (p->p_singlethread->td_proc == p) {
1070 			thread_lock(p->p_singlethread);
1071 			wakeup_swapper = thread_unsuspend_one(
1072 			    p->p_singlethread, p, false);
1073 			thread_unlock(p->p_singlethread);
1074 		}
1075 	}
1076 	if (wakeup_swapper)
1077 		kick_proc0();
1078 }
1079 
1080 /*
1081  * End the single threading mode..
1082  */
1083 void
1084 thread_single_end(struct proc *p, int mode)
1085 {
1086 	struct thread *td;
1087 	int wakeup_swapper;
1088 
1089 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1090 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1091 	    ("invalid mode %d", mode));
1092 	PROC_LOCK_ASSERT(p, MA_OWNED);
1093 	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1094 	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1095 	    ("mode %d does not match P_TOTAL_STOP", mode));
1096 	KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1097 	    ("thread_single_end from other thread %p %p",
1098 	    curthread, p->p_singlethread));
1099 	KASSERT(mode != SINGLE_BOUNDARY ||
1100 	    (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1101 	    ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1102 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1103 	    P_TOTAL_STOP);
1104 	PROC_SLOCK(p);
1105 	p->p_singlethread = NULL;
1106 	wakeup_swapper = 0;
1107 	/*
1108 	 * If there are other threads they may now run,
1109 	 * unless of course there is a blanket 'stop order'
1110 	 * on the process. The single threader must be allowed
1111 	 * to continue however as this is a bad place to stop.
1112 	 */
1113 	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1114                 FOREACH_THREAD_IN_PROC(p, td) {
1115 			thread_lock(td);
1116 			if (TD_IS_SUSPENDED(td)) {
1117 				wakeup_swapper |= thread_unsuspend_one(td, p,
1118 				    mode == SINGLE_BOUNDARY);
1119 			}
1120 			thread_unlock(td);
1121 		}
1122 	}
1123 	KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1124 	    ("inconsistent boundary count %d", p->p_boundary_count));
1125 	PROC_SUNLOCK(p);
1126 	if (wakeup_swapper)
1127 		kick_proc0();
1128 }
1129 
1130 struct thread *
1131 thread_find(struct proc *p, lwpid_t tid)
1132 {
1133 	struct thread *td;
1134 
1135 	PROC_LOCK_ASSERT(p, MA_OWNED);
1136 	FOREACH_THREAD_IN_PROC(p, td) {
1137 		if (td->td_tid == tid)
1138 			break;
1139 	}
1140 	return (td);
1141 }
1142 
1143 /* Locate a thread by number; return with proc lock held. */
1144 struct thread *
1145 tdfind(lwpid_t tid, pid_t pid)
1146 {
1147 #define RUN_THRESH	16
1148 	struct thread *td;
1149 	int run = 0;
1150 
1151 	rw_rlock(&tidhash_lock);
1152 	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1153 		if (td->td_tid == tid) {
1154 			if (pid != -1 && td->td_proc->p_pid != pid) {
1155 				td = NULL;
1156 				break;
1157 			}
1158 			PROC_LOCK(td->td_proc);
1159 			if (td->td_proc->p_state == PRS_NEW) {
1160 				PROC_UNLOCK(td->td_proc);
1161 				td = NULL;
1162 				break;
1163 			}
1164 			if (run > RUN_THRESH) {
1165 				if (rw_try_upgrade(&tidhash_lock)) {
1166 					LIST_REMOVE(td, td_hash);
1167 					LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1168 						td, td_hash);
1169 					rw_wunlock(&tidhash_lock);
1170 					return (td);
1171 				}
1172 			}
1173 			break;
1174 		}
1175 		run++;
1176 	}
1177 	rw_runlock(&tidhash_lock);
1178 	return (td);
1179 }
1180 
1181 void
1182 tidhash_add(struct thread *td)
1183 {
1184 	rw_wlock(&tidhash_lock);
1185 	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1186 	rw_wunlock(&tidhash_lock);
1187 }
1188 
1189 void
1190 tidhash_remove(struct thread *td)
1191 {
1192 	rw_wlock(&tidhash_lock);
1193 	LIST_REMOVE(td, td_hash);
1194 	rw_wunlock(&tidhash_lock);
1195 }
1196