1 /*- 2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice(s), this list of conditions and the following disclaimer as 10 * the first lines of this file unmodified other than the possible 11 * addition of one or more copyright notices. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice(s), this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 19 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 26 * DAMAGE. 27 */ 28 29 #include "opt_witness.h" 30 #include "opt_hwpmc_hooks.h" 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/proc.h> 41 #include <sys/rangelock.h> 42 #include <sys/resourcevar.h> 43 #include <sys/sdt.h> 44 #include <sys/smp.h> 45 #include <sys/sched.h> 46 #include <sys/sleepqueue.h> 47 #include <sys/selinfo.h> 48 #include <sys/sysent.h> 49 #include <sys/turnstile.h> 50 #include <sys/ktr.h> 51 #include <sys/rwlock.h> 52 #include <sys/umtx.h> 53 #include <sys/cpuset.h> 54 #ifdef HWPMC_HOOKS 55 #include <sys/pmckern.h> 56 #endif 57 58 #include <security/audit/audit.h> 59 60 #include <vm/vm.h> 61 #include <vm/vm_extern.h> 62 #include <vm/uma.h> 63 #include <sys/eventhandler.h> 64 65 SDT_PROVIDER_DECLARE(proc); 66 SDT_PROBE_DEFINE(proc, , , lwp__exit); 67 68 /* 69 * thread related storage. 70 */ 71 static uma_zone_t thread_zone; 72 73 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); 74 static struct mtx zombie_lock; 75 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN); 76 77 static void thread_zombie(struct thread *); 78 static int thread_unsuspend_one(struct thread *td, struct proc *p, 79 bool boundary); 80 81 #define TID_BUFFER_SIZE 1024 82 83 struct mtx tid_lock; 84 static struct unrhdr *tid_unrhdr; 85 static lwpid_t tid_buffer[TID_BUFFER_SIZE]; 86 static int tid_head, tid_tail; 87 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash"); 88 89 struct tidhashhead *tidhashtbl; 90 u_long tidhash; 91 struct rwlock tidhash_lock; 92 93 static lwpid_t 94 tid_alloc(void) 95 { 96 lwpid_t tid; 97 98 tid = alloc_unr(tid_unrhdr); 99 if (tid != -1) 100 return (tid); 101 mtx_lock(&tid_lock); 102 if (tid_head == tid_tail) { 103 mtx_unlock(&tid_lock); 104 return (-1); 105 } 106 tid = tid_buffer[tid_head]; 107 tid_head = (tid_head + 1) % TID_BUFFER_SIZE; 108 mtx_unlock(&tid_lock); 109 return (tid); 110 } 111 112 static void 113 tid_free(lwpid_t tid) 114 { 115 lwpid_t tmp_tid = -1; 116 117 mtx_lock(&tid_lock); 118 if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) { 119 tmp_tid = tid_buffer[tid_head]; 120 tid_head = (tid_head + 1) % TID_BUFFER_SIZE; 121 } 122 tid_buffer[tid_tail] = tid; 123 tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE; 124 mtx_unlock(&tid_lock); 125 if (tmp_tid != -1) 126 free_unr(tid_unrhdr, tmp_tid); 127 } 128 129 /* 130 * Prepare a thread for use. 131 */ 132 static int 133 thread_ctor(void *mem, int size, void *arg, int flags) 134 { 135 struct thread *td; 136 137 td = (struct thread *)mem; 138 td->td_state = TDS_INACTIVE; 139 td->td_oncpu = NOCPU; 140 141 td->td_tid = tid_alloc(); 142 143 /* 144 * Note that td_critnest begins life as 1 because the thread is not 145 * running and is thereby implicitly waiting to be on the receiving 146 * end of a context switch. 147 */ 148 td->td_critnest = 1; 149 td->td_lend_user_pri = PRI_MAX; 150 EVENTHANDLER_INVOKE(thread_ctor, td); 151 #ifdef AUDIT 152 audit_thread_alloc(td); 153 #endif 154 umtx_thread_alloc(td); 155 return (0); 156 } 157 158 /* 159 * Reclaim a thread after use. 160 */ 161 static void 162 thread_dtor(void *mem, int size, void *arg) 163 { 164 struct thread *td; 165 166 td = (struct thread *)mem; 167 168 #ifdef INVARIANTS 169 /* Verify that this thread is in a safe state to free. */ 170 switch (td->td_state) { 171 case TDS_INHIBITED: 172 case TDS_RUNNING: 173 case TDS_CAN_RUN: 174 case TDS_RUNQ: 175 /* 176 * We must never unlink a thread that is in one of 177 * these states, because it is currently active. 178 */ 179 panic("bad state for thread unlinking"); 180 /* NOTREACHED */ 181 case TDS_INACTIVE: 182 break; 183 default: 184 panic("bad thread state"); 185 /* NOTREACHED */ 186 } 187 #endif 188 #ifdef AUDIT 189 audit_thread_free(td); 190 #endif 191 /* Free all OSD associated to this thread. */ 192 osd_thread_exit(td); 193 194 EVENTHANDLER_INVOKE(thread_dtor, td); 195 tid_free(td->td_tid); 196 } 197 198 /* 199 * Initialize type-stable parts of a thread (when newly created). 200 */ 201 static int 202 thread_init(void *mem, int size, int flags) 203 { 204 struct thread *td; 205 206 td = (struct thread *)mem; 207 208 td->td_sleepqueue = sleepq_alloc(); 209 td->td_turnstile = turnstile_alloc(); 210 td->td_rlqe = NULL; 211 EVENTHANDLER_INVOKE(thread_init, td); 212 td->td_sched = (struct td_sched *)&td[1]; 213 umtx_thread_init(td); 214 td->td_kstack = 0; 215 td->td_sel = NULL; 216 return (0); 217 } 218 219 /* 220 * Tear down type-stable parts of a thread (just before being discarded). 221 */ 222 static void 223 thread_fini(void *mem, int size) 224 { 225 struct thread *td; 226 227 td = (struct thread *)mem; 228 EVENTHANDLER_INVOKE(thread_fini, td); 229 rlqentry_free(td->td_rlqe); 230 turnstile_free(td->td_turnstile); 231 sleepq_free(td->td_sleepqueue); 232 umtx_thread_fini(td); 233 seltdfini(td); 234 } 235 236 /* 237 * For a newly created process, 238 * link up all the structures and its initial threads etc. 239 * called from: 240 * {arch}/{arch}/machdep.c {arch}_init(), init386() etc. 241 * proc_dtor() (should go away) 242 * proc_init() 243 */ 244 void 245 proc_linkup0(struct proc *p, struct thread *td) 246 { 247 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 248 proc_linkup(p, td); 249 } 250 251 void 252 proc_linkup(struct proc *p, struct thread *td) 253 { 254 255 sigqueue_init(&p->p_sigqueue, p); 256 p->p_ksi = ksiginfo_alloc(1); 257 if (p->p_ksi != NULL) { 258 /* XXX p_ksi may be null if ksiginfo zone is not ready */ 259 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS; 260 } 261 LIST_INIT(&p->p_mqnotifier); 262 p->p_numthreads = 0; 263 thread_link(td, p); 264 } 265 266 /* 267 * Initialize global thread allocation resources. 268 */ 269 void 270 threadinit(void) 271 { 272 273 mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF); 274 275 /* 276 * pid_max cannot be greater than PID_MAX. 277 * leave one number for thread0. 278 */ 279 tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock); 280 281 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 282 thread_ctor, thread_dtor, thread_init, thread_fini, 283 16 - 1, 0); 284 tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash); 285 rw_init(&tidhash_lock, "tidhash"); 286 } 287 288 /* 289 * Place an unused thread on the zombie list. 290 * Use the slpq as that must be unused by now. 291 */ 292 void 293 thread_zombie(struct thread *td) 294 { 295 mtx_lock_spin(&zombie_lock); 296 TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq); 297 mtx_unlock_spin(&zombie_lock); 298 } 299 300 /* 301 * Release a thread that has exited after cpu_throw(). 302 */ 303 void 304 thread_stash(struct thread *td) 305 { 306 atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1); 307 thread_zombie(td); 308 } 309 310 /* 311 * Reap zombie resources. 312 */ 313 void 314 thread_reap(void) 315 { 316 struct thread *td_first, *td_next; 317 318 /* 319 * Don't even bother to lock if none at this instant, 320 * we really don't care about the next instant.. 321 */ 322 if (!TAILQ_EMPTY(&zombie_threads)) { 323 mtx_lock_spin(&zombie_lock); 324 td_first = TAILQ_FIRST(&zombie_threads); 325 if (td_first) 326 TAILQ_INIT(&zombie_threads); 327 mtx_unlock_spin(&zombie_lock); 328 while (td_first) { 329 td_next = TAILQ_NEXT(td_first, td_slpq); 330 thread_cow_free(td_first); 331 thread_free(td_first); 332 td_first = td_next; 333 } 334 } 335 } 336 337 /* 338 * Allocate a thread. 339 */ 340 struct thread * 341 thread_alloc(int pages) 342 { 343 struct thread *td; 344 345 thread_reap(); /* check if any zombies to get */ 346 347 td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK); 348 KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack")); 349 if (!vm_thread_new(td, pages)) { 350 uma_zfree(thread_zone, td); 351 return (NULL); 352 } 353 cpu_thread_alloc(td); 354 return (td); 355 } 356 357 int 358 thread_alloc_stack(struct thread *td, int pages) 359 { 360 361 KASSERT(td->td_kstack == 0, 362 ("thread_alloc_stack called on a thread with kstack")); 363 if (!vm_thread_new(td, pages)) 364 return (0); 365 cpu_thread_alloc(td); 366 return (1); 367 } 368 369 /* 370 * Deallocate a thread. 371 */ 372 void 373 thread_free(struct thread *td) 374 { 375 376 lock_profile_thread_exit(td); 377 if (td->td_cpuset) 378 cpuset_rel(td->td_cpuset); 379 td->td_cpuset = NULL; 380 cpu_thread_free(td); 381 if (td->td_kstack != 0) 382 vm_thread_dispose(td); 383 uma_zfree(thread_zone, td); 384 } 385 386 void 387 thread_cow_get_proc(struct thread *newtd, struct proc *p) 388 { 389 390 PROC_LOCK_ASSERT(p, MA_OWNED); 391 newtd->td_ucred = crhold(p->p_ucred); 392 newtd->td_limit = lim_hold(p->p_limit); 393 newtd->td_cowgen = p->p_cowgen; 394 } 395 396 void 397 thread_cow_get(struct thread *newtd, struct thread *td) 398 { 399 400 newtd->td_ucred = crhold(td->td_ucred); 401 newtd->td_limit = lim_hold(td->td_limit); 402 newtd->td_cowgen = td->td_cowgen; 403 } 404 405 void 406 thread_cow_free(struct thread *td) 407 { 408 409 if (td->td_ucred) 410 crfree(td->td_ucred); 411 if (td->td_limit) 412 lim_free(td->td_limit); 413 } 414 415 void 416 thread_cow_update(struct thread *td) 417 { 418 struct proc *p; 419 420 p = td->td_proc; 421 PROC_LOCK(p); 422 if (td->td_ucred != p->p_ucred) 423 cred_update_thread(td); 424 if (td->td_limit != p->p_limit) 425 lim_update_thread(td); 426 td->td_cowgen = p->p_cowgen; 427 PROC_UNLOCK(p); 428 } 429 430 /* 431 * Discard the current thread and exit from its context. 432 * Always called with scheduler locked. 433 * 434 * Because we can't free a thread while we're operating under its context, 435 * push the current thread into our CPU's deadthread holder. This means 436 * we needn't worry about someone else grabbing our context before we 437 * do a cpu_throw(). 438 */ 439 void 440 thread_exit(void) 441 { 442 uint64_t runtime, new_switchtime; 443 struct thread *td; 444 struct thread *td2; 445 struct proc *p; 446 int wakeup_swapper; 447 448 td = curthread; 449 p = td->td_proc; 450 451 PROC_SLOCK_ASSERT(p, MA_OWNED); 452 mtx_assert(&Giant, MA_NOTOWNED); 453 454 PROC_LOCK_ASSERT(p, MA_OWNED); 455 KASSERT(p != NULL, ("thread exiting without a process")); 456 CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td, 457 (long)p->p_pid, td->td_name); 458 KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending")); 459 460 #ifdef AUDIT 461 AUDIT_SYSCALL_EXIT(0, td); 462 #endif 463 /* 464 * drop FPU & debug register state storage, or any other 465 * architecture specific resources that 466 * would not be on a new untouched process. 467 */ 468 cpu_thread_exit(td); /* XXXSMP */ 469 470 /* 471 * The last thread is left attached to the process 472 * So that the whole bundle gets recycled. Skip 473 * all this stuff if we never had threads. 474 * EXIT clears all sign of other threads when 475 * it goes to single threading, so the last thread always 476 * takes the short path. 477 */ 478 if (p->p_flag & P_HADTHREADS) { 479 if (p->p_numthreads > 1) { 480 atomic_add_int(&td->td_proc->p_exitthreads, 1); 481 thread_unlink(td); 482 td2 = FIRST_THREAD_IN_PROC(p); 483 sched_exit_thread(td2, td); 484 485 /* 486 * The test below is NOT true if we are the 487 * sole exiting thread. P_STOPPED_SINGLE is unset 488 * in exit1() after it is the only survivor. 489 */ 490 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 491 if (p->p_numthreads == p->p_suspcount) { 492 thread_lock(p->p_singlethread); 493 wakeup_swapper = thread_unsuspend_one( 494 p->p_singlethread, p, false); 495 thread_unlock(p->p_singlethread); 496 if (wakeup_swapper) 497 kick_proc0(); 498 } 499 } 500 501 PCPU_SET(deadthread, td); 502 } else { 503 /* 504 * The last thread is exiting.. but not through exit() 505 */ 506 panic ("thread_exit: Last thread exiting on its own"); 507 } 508 } 509 #ifdef HWPMC_HOOKS 510 /* 511 * If this thread is part of a process that is being tracked by hwpmc(4), 512 * inform the module of the thread's impending exit. 513 */ 514 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 515 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); 516 #endif 517 PROC_UNLOCK(p); 518 PROC_STATLOCK(p); 519 thread_lock(td); 520 PROC_SUNLOCK(p); 521 522 /* Do the same timestamp bookkeeping that mi_switch() would do. */ 523 new_switchtime = cpu_ticks(); 524 runtime = new_switchtime - PCPU_GET(switchtime); 525 td->td_runtime += runtime; 526 td->td_incruntime += runtime; 527 PCPU_SET(switchtime, new_switchtime); 528 PCPU_SET(switchticks, ticks); 529 PCPU_INC(cnt.v_swtch); 530 531 /* Save our resource usage in our process. */ 532 td->td_ru.ru_nvcsw++; 533 ruxagg(p, td); 534 rucollect(&p->p_ru, &td->td_ru); 535 PROC_STATUNLOCK(p); 536 537 td->td_state = TDS_INACTIVE; 538 #ifdef WITNESS 539 witness_thread_exit(td); 540 #endif 541 CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td); 542 sched_throw(td); 543 panic("I'm a teapot!"); 544 /* NOTREACHED */ 545 } 546 547 /* 548 * Do any thread specific cleanups that may be needed in wait() 549 * called with Giant, proc and schedlock not held. 550 */ 551 void 552 thread_wait(struct proc *p) 553 { 554 struct thread *td; 555 556 mtx_assert(&Giant, MA_NOTOWNED); 557 KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()")); 558 KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking")); 559 td = FIRST_THREAD_IN_PROC(p); 560 /* Lock the last thread so we spin until it exits cpu_throw(). */ 561 thread_lock(td); 562 thread_unlock(td); 563 lock_profile_thread_exit(td); 564 cpuset_rel(td->td_cpuset); 565 td->td_cpuset = NULL; 566 cpu_thread_clean(td); 567 thread_cow_free(td); 568 thread_reap(); /* check for zombie threads etc. */ 569 } 570 571 /* 572 * Link a thread to a process. 573 * set up anything that needs to be initialized for it to 574 * be used by the process. 575 */ 576 void 577 thread_link(struct thread *td, struct proc *p) 578 { 579 580 /* 581 * XXX This can't be enabled because it's called for proc0 before 582 * its lock has been created. 583 * PROC_LOCK_ASSERT(p, MA_OWNED); 584 */ 585 td->td_state = TDS_INACTIVE; 586 td->td_proc = p; 587 td->td_flags = TDF_INMEM; 588 589 LIST_INIT(&td->td_contested); 590 LIST_INIT(&td->td_lprof[0]); 591 LIST_INIT(&td->td_lprof[1]); 592 sigqueue_init(&td->td_sigqueue, p); 593 callout_init(&td->td_slpcallout, 1); 594 TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist); 595 p->p_numthreads++; 596 } 597 598 /* 599 * Called from: 600 * thread_exit() 601 */ 602 void 603 thread_unlink(struct thread *td) 604 { 605 struct proc *p = td->td_proc; 606 607 PROC_LOCK_ASSERT(p, MA_OWNED); 608 TAILQ_REMOVE(&p->p_threads, td, td_plist); 609 p->p_numthreads--; 610 /* could clear a few other things here */ 611 /* Must NOT clear links to proc! */ 612 } 613 614 static int 615 calc_remaining(struct proc *p, int mode) 616 { 617 int remaining; 618 619 PROC_LOCK_ASSERT(p, MA_OWNED); 620 PROC_SLOCK_ASSERT(p, MA_OWNED); 621 if (mode == SINGLE_EXIT) 622 remaining = p->p_numthreads; 623 else if (mode == SINGLE_BOUNDARY) 624 remaining = p->p_numthreads - p->p_boundary_count; 625 else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC) 626 remaining = p->p_numthreads - p->p_suspcount; 627 else 628 panic("calc_remaining: wrong mode %d", mode); 629 return (remaining); 630 } 631 632 static int 633 remain_for_mode(int mode) 634 { 635 636 return (mode == SINGLE_ALLPROC ? 0 : 1); 637 } 638 639 static int 640 weed_inhib(int mode, struct thread *td2, struct proc *p) 641 { 642 int wakeup_swapper; 643 644 PROC_LOCK_ASSERT(p, MA_OWNED); 645 PROC_SLOCK_ASSERT(p, MA_OWNED); 646 THREAD_LOCK_ASSERT(td2, MA_OWNED); 647 648 wakeup_swapper = 0; 649 switch (mode) { 650 case SINGLE_EXIT: 651 if (TD_IS_SUSPENDED(td2)) 652 wakeup_swapper |= thread_unsuspend_one(td2, p, true); 653 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) 654 wakeup_swapper |= sleepq_abort(td2, EINTR); 655 break; 656 case SINGLE_BOUNDARY: 657 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0) 658 wakeup_swapper |= thread_unsuspend_one(td2, p, false); 659 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) 660 wakeup_swapper |= sleepq_abort(td2, ERESTART); 661 break; 662 case SINGLE_NO_EXIT: 663 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0) 664 wakeup_swapper |= thread_unsuspend_one(td2, p, false); 665 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) 666 wakeup_swapper |= sleepq_abort(td2, ERESTART); 667 break; 668 case SINGLE_ALLPROC: 669 /* 670 * ALLPROC suspend tries to avoid spurious EINTR for 671 * threads sleeping interruptable, by suspending the 672 * thread directly, similarly to sig_suspend_threads(). 673 * Since such sleep is not performed at the user 674 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP 675 * is used to avoid immediate un-suspend. 676 */ 677 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY | 678 TDF_ALLPROCSUSP)) == 0) 679 wakeup_swapper |= thread_unsuspend_one(td2, p, false); 680 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) { 681 if ((td2->td_flags & TDF_SBDRY) == 0) { 682 thread_suspend_one(td2); 683 td2->td_flags |= TDF_ALLPROCSUSP; 684 } else { 685 wakeup_swapper |= sleepq_abort(td2, ERESTART); 686 } 687 } 688 break; 689 } 690 return (wakeup_swapper); 691 } 692 693 /* 694 * Enforce single-threading. 695 * 696 * Returns 1 if the caller must abort (another thread is waiting to 697 * exit the process or similar). Process is locked! 698 * Returns 0 when you are successfully the only thread running. 699 * A process has successfully single threaded in the suspend mode when 700 * There are no threads in user mode. Threads in the kernel must be 701 * allowed to continue until they get to the user boundary. They may even 702 * copy out their return values and data before suspending. They may however be 703 * accelerated in reaching the user boundary as we will wake up 704 * any sleeping threads that are interruptable. (PCATCH). 705 */ 706 int 707 thread_single(struct proc *p, int mode) 708 { 709 struct thread *td; 710 struct thread *td2; 711 int remaining, wakeup_swapper; 712 713 td = curthread; 714 KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY || 715 mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT, 716 ("invalid mode %d", mode)); 717 /* 718 * If allowing non-ALLPROC singlethreading for non-curproc 719 * callers, calc_remaining() and remain_for_mode() should be 720 * adjusted to also account for td->td_proc != p. For now 721 * this is not implemented because it is not used. 722 */ 723 KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) || 724 (mode != SINGLE_ALLPROC && td->td_proc == p), 725 ("mode %d proc %p curproc %p", mode, p, td->td_proc)); 726 mtx_assert(&Giant, MA_NOTOWNED); 727 PROC_LOCK_ASSERT(p, MA_OWNED); 728 729 if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC) 730 return (0); 731 732 /* Is someone already single threading? */ 733 if (p->p_singlethread != NULL && p->p_singlethread != td) 734 return (1); 735 736 if (mode == SINGLE_EXIT) { 737 p->p_flag |= P_SINGLE_EXIT; 738 p->p_flag &= ~P_SINGLE_BOUNDARY; 739 } else { 740 p->p_flag &= ~P_SINGLE_EXIT; 741 if (mode == SINGLE_BOUNDARY) 742 p->p_flag |= P_SINGLE_BOUNDARY; 743 else 744 p->p_flag &= ~P_SINGLE_BOUNDARY; 745 } 746 if (mode == SINGLE_ALLPROC) 747 p->p_flag |= P_TOTAL_STOP; 748 p->p_flag |= P_STOPPED_SINGLE; 749 PROC_SLOCK(p); 750 p->p_singlethread = td; 751 remaining = calc_remaining(p, mode); 752 while (remaining != remain_for_mode(mode)) { 753 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE) 754 goto stopme; 755 wakeup_swapper = 0; 756 FOREACH_THREAD_IN_PROC(p, td2) { 757 if (td2 == td) 758 continue; 759 thread_lock(td2); 760 td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK; 761 if (TD_IS_INHIBITED(td2)) { 762 wakeup_swapper |= weed_inhib(mode, td2, p); 763 #ifdef SMP 764 } else if (TD_IS_RUNNING(td2) && td != td2) { 765 forward_signal(td2); 766 #endif 767 } 768 thread_unlock(td2); 769 } 770 if (wakeup_swapper) 771 kick_proc0(); 772 remaining = calc_remaining(p, mode); 773 774 /* 775 * Maybe we suspended some threads.. was it enough? 776 */ 777 if (remaining == remain_for_mode(mode)) 778 break; 779 780 stopme: 781 /* 782 * Wake us up when everyone else has suspended. 783 * In the mean time we suspend as well. 784 */ 785 thread_suspend_switch(td, p); 786 remaining = calc_remaining(p, mode); 787 } 788 if (mode == SINGLE_EXIT) { 789 /* 790 * Convert the process to an unthreaded process. The 791 * SINGLE_EXIT is called by exit1() or execve(), in 792 * both cases other threads must be retired. 793 */ 794 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads")); 795 p->p_singlethread = NULL; 796 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS); 797 798 /* 799 * Wait for any remaining threads to exit cpu_throw(). 800 */ 801 while (p->p_exitthreads != 0) { 802 PROC_SUNLOCK(p); 803 PROC_UNLOCK(p); 804 sched_relinquish(td); 805 PROC_LOCK(p); 806 PROC_SLOCK(p); 807 } 808 } else if (mode == SINGLE_BOUNDARY) { 809 /* 810 * Wait until all suspended threads are removed from 811 * the processors. The thread_suspend_check() 812 * increments p_boundary_count while it is still 813 * running, which makes it possible for the execve() 814 * to destroy vmspace while our other threads are 815 * still using the address space. 816 * 817 * We lock the thread, which is only allowed to 818 * succeed after context switch code finished using 819 * the address space. 820 */ 821 FOREACH_THREAD_IN_PROC(p, td2) { 822 if (td2 == td) 823 continue; 824 thread_lock(td2); 825 KASSERT((td2->td_flags & TDF_BOUNDARY) != 0, 826 ("td %p not on boundary", td2)); 827 KASSERT(TD_IS_SUSPENDED(td2), 828 ("td %p is not suspended", td2)); 829 thread_unlock(td2); 830 } 831 } 832 PROC_SUNLOCK(p); 833 return (0); 834 } 835 836 bool 837 thread_suspend_check_needed(void) 838 { 839 struct proc *p; 840 struct thread *td; 841 842 td = curthread; 843 p = td->td_proc; 844 PROC_LOCK_ASSERT(p, MA_OWNED); 845 return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 && 846 (td->td_dbgflags & TDB_SUSPEND) != 0)); 847 } 848 849 /* 850 * Called in from locations that can safely check to see 851 * whether we have to suspend or at least throttle for a 852 * single-thread event (e.g. fork). 853 * 854 * Such locations include userret(). 855 * If the "return_instead" argument is non zero, the thread must be able to 856 * accept 0 (caller may continue), or 1 (caller must abort) as a result. 857 * 858 * The 'return_instead' argument tells the function if it may do a 859 * thread_exit() or suspend, or whether the caller must abort and back 860 * out instead. 861 * 862 * If the thread that set the single_threading request has set the 863 * P_SINGLE_EXIT bit in the process flags then this call will never return 864 * if 'return_instead' is false, but will exit. 865 * 866 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 867 *---------------+--------------------+--------------------- 868 * 0 | returns 0 | returns 0 or 1 869 * | when ST ends | immediately 870 *---------------+--------------------+--------------------- 871 * 1 | thread exits | returns 1 872 * | | immediately 873 * 0 = thread_exit() or suspension ok, 874 * other = return error instead of stopping the thread. 875 * 876 * While a full suspension is under effect, even a single threading 877 * thread would be suspended if it made this call (but it shouldn't). 878 * This call should only be made from places where 879 * thread_exit() would be safe as that may be the outcome unless 880 * return_instead is set. 881 */ 882 int 883 thread_suspend_check(int return_instead) 884 { 885 struct thread *td; 886 struct proc *p; 887 int wakeup_swapper; 888 889 td = curthread; 890 p = td->td_proc; 891 mtx_assert(&Giant, MA_NOTOWNED); 892 PROC_LOCK_ASSERT(p, MA_OWNED); 893 while (thread_suspend_check_needed()) { 894 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 895 KASSERT(p->p_singlethread != NULL, 896 ("singlethread not set")); 897 /* 898 * The only suspension in action is a 899 * single-threading. Single threader need not stop. 900 * XXX Should be safe to access unlocked 901 * as it can only be set to be true by us. 902 */ 903 if (p->p_singlethread == td) 904 return (0); /* Exempt from stopping. */ 905 } 906 if ((p->p_flag & P_SINGLE_EXIT) && return_instead) 907 return (EINTR); 908 909 /* Should we goto user boundary if we didn't come from there? */ 910 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && 911 (p->p_flag & P_SINGLE_BOUNDARY) && return_instead) 912 return (ERESTART); 913 914 /* 915 * Ignore suspend requests if they are deferred. 916 */ 917 if ((td->td_flags & TDF_SBDRY) != 0) { 918 KASSERT(return_instead, 919 ("TDF_SBDRY set for unsafe thread_suspend_check")); 920 return (0); 921 } 922 923 /* 924 * If the process is waiting for us to exit, 925 * this thread should just suicide. 926 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. 927 */ 928 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) { 929 PROC_UNLOCK(p); 930 tidhash_remove(td); 931 932 /* 933 * Allow Linux emulation layer to do some work 934 * before thread suicide. 935 */ 936 if (__predict_false(p->p_sysent->sv_thread_detach != NULL)) 937 (p->p_sysent->sv_thread_detach)(td); 938 939 PROC_LOCK(p); 940 tdsigcleanup(td); 941 umtx_thread_exit(td); 942 PROC_SLOCK(p); 943 thread_stopped(p); 944 thread_exit(); 945 } 946 947 PROC_SLOCK(p); 948 thread_stopped(p); 949 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 950 if (p->p_numthreads == p->p_suspcount + 1) { 951 thread_lock(p->p_singlethread); 952 wakeup_swapper = thread_unsuspend_one( 953 p->p_singlethread, p, false); 954 thread_unlock(p->p_singlethread); 955 if (wakeup_swapper) 956 kick_proc0(); 957 } 958 } 959 PROC_UNLOCK(p); 960 thread_lock(td); 961 /* 962 * When a thread suspends, it just 963 * gets taken off all queues. 964 */ 965 thread_suspend_one(td); 966 if (return_instead == 0) { 967 p->p_boundary_count++; 968 td->td_flags |= TDF_BOUNDARY; 969 } 970 PROC_SUNLOCK(p); 971 mi_switch(SW_INVOL | SWT_SUSPEND, NULL); 972 thread_unlock(td); 973 PROC_LOCK(p); 974 } 975 return (0); 976 } 977 978 void 979 thread_suspend_switch(struct thread *td, struct proc *p) 980 { 981 982 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 983 PROC_LOCK_ASSERT(p, MA_OWNED); 984 PROC_SLOCK_ASSERT(p, MA_OWNED); 985 /* 986 * We implement thread_suspend_one in stages here to avoid 987 * dropping the proc lock while the thread lock is owned. 988 */ 989 if (p == td->td_proc) { 990 thread_stopped(p); 991 p->p_suspcount++; 992 } 993 PROC_UNLOCK(p); 994 thread_lock(td); 995 td->td_flags &= ~TDF_NEEDSUSPCHK; 996 TD_SET_SUSPENDED(td); 997 sched_sleep(td, 0); 998 PROC_SUNLOCK(p); 999 DROP_GIANT(); 1000 mi_switch(SW_VOL | SWT_SUSPEND, NULL); 1001 thread_unlock(td); 1002 PICKUP_GIANT(); 1003 PROC_LOCK(p); 1004 PROC_SLOCK(p); 1005 } 1006 1007 void 1008 thread_suspend_one(struct thread *td) 1009 { 1010 struct proc *p; 1011 1012 p = td->td_proc; 1013 PROC_SLOCK_ASSERT(p, MA_OWNED); 1014 THREAD_LOCK_ASSERT(td, MA_OWNED); 1015 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 1016 p->p_suspcount++; 1017 td->td_flags &= ~TDF_NEEDSUSPCHK; 1018 TD_SET_SUSPENDED(td); 1019 sched_sleep(td, 0); 1020 } 1021 1022 static int 1023 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary) 1024 { 1025 1026 THREAD_LOCK_ASSERT(td, MA_OWNED); 1027 KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended")); 1028 TD_CLR_SUSPENDED(td); 1029 td->td_flags &= ~TDF_ALLPROCSUSP; 1030 if (td->td_proc == p) { 1031 PROC_SLOCK_ASSERT(p, MA_OWNED); 1032 p->p_suspcount--; 1033 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) { 1034 td->td_flags &= ~TDF_BOUNDARY; 1035 p->p_boundary_count--; 1036 } 1037 } 1038 return (setrunnable(td)); 1039 } 1040 1041 /* 1042 * Allow all threads blocked by single threading to continue running. 1043 */ 1044 void 1045 thread_unsuspend(struct proc *p) 1046 { 1047 struct thread *td; 1048 int wakeup_swapper; 1049 1050 PROC_LOCK_ASSERT(p, MA_OWNED); 1051 PROC_SLOCK_ASSERT(p, MA_OWNED); 1052 wakeup_swapper = 0; 1053 if (!P_SHOULDSTOP(p)) { 1054 FOREACH_THREAD_IN_PROC(p, td) { 1055 thread_lock(td); 1056 if (TD_IS_SUSPENDED(td)) { 1057 wakeup_swapper |= thread_unsuspend_one(td, p, 1058 true); 1059 } 1060 thread_unlock(td); 1061 } 1062 } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && 1063 p->p_numthreads == p->p_suspcount) { 1064 /* 1065 * Stopping everything also did the job for the single 1066 * threading request. Now we've downgraded to single-threaded, 1067 * let it continue. 1068 */ 1069 if (p->p_singlethread->td_proc == p) { 1070 thread_lock(p->p_singlethread); 1071 wakeup_swapper = thread_unsuspend_one( 1072 p->p_singlethread, p, false); 1073 thread_unlock(p->p_singlethread); 1074 } 1075 } 1076 if (wakeup_swapper) 1077 kick_proc0(); 1078 } 1079 1080 /* 1081 * End the single threading mode.. 1082 */ 1083 void 1084 thread_single_end(struct proc *p, int mode) 1085 { 1086 struct thread *td; 1087 int wakeup_swapper; 1088 1089 KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY || 1090 mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT, 1091 ("invalid mode %d", mode)); 1092 PROC_LOCK_ASSERT(p, MA_OWNED); 1093 KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) || 1094 (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0), 1095 ("mode %d does not match P_TOTAL_STOP", mode)); 1096 KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread, 1097 ("thread_single_end from other thread %p %p", 1098 curthread, p->p_singlethread)); 1099 KASSERT(mode != SINGLE_BOUNDARY || 1100 (p->p_flag & P_SINGLE_BOUNDARY) != 0, 1101 ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag)); 1102 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY | 1103 P_TOTAL_STOP); 1104 PROC_SLOCK(p); 1105 p->p_singlethread = NULL; 1106 wakeup_swapper = 0; 1107 /* 1108 * If there are other threads they may now run, 1109 * unless of course there is a blanket 'stop order' 1110 * on the process. The single threader must be allowed 1111 * to continue however as this is a bad place to stop. 1112 */ 1113 if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) { 1114 FOREACH_THREAD_IN_PROC(p, td) { 1115 thread_lock(td); 1116 if (TD_IS_SUSPENDED(td)) { 1117 wakeup_swapper |= thread_unsuspend_one(td, p, 1118 mode == SINGLE_BOUNDARY); 1119 } 1120 thread_unlock(td); 1121 } 1122 } 1123 KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0, 1124 ("inconsistent boundary count %d", p->p_boundary_count)); 1125 PROC_SUNLOCK(p); 1126 if (wakeup_swapper) 1127 kick_proc0(); 1128 } 1129 1130 struct thread * 1131 thread_find(struct proc *p, lwpid_t tid) 1132 { 1133 struct thread *td; 1134 1135 PROC_LOCK_ASSERT(p, MA_OWNED); 1136 FOREACH_THREAD_IN_PROC(p, td) { 1137 if (td->td_tid == tid) 1138 break; 1139 } 1140 return (td); 1141 } 1142 1143 /* Locate a thread by number; return with proc lock held. */ 1144 struct thread * 1145 tdfind(lwpid_t tid, pid_t pid) 1146 { 1147 #define RUN_THRESH 16 1148 struct thread *td; 1149 int run = 0; 1150 1151 rw_rlock(&tidhash_lock); 1152 LIST_FOREACH(td, TIDHASH(tid), td_hash) { 1153 if (td->td_tid == tid) { 1154 if (pid != -1 && td->td_proc->p_pid != pid) { 1155 td = NULL; 1156 break; 1157 } 1158 PROC_LOCK(td->td_proc); 1159 if (td->td_proc->p_state == PRS_NEW) { 1160 PROC_UNLOCK(td->td_proc); 1161 td = NULL; 1162 break; 1163 } 1164 if (run > RUN_THRESH) { 1165 if (rw_try_upgrade(&tidhash_lock)) { 1166 LIST_REMOVE(td, td_hash); 1167 LIST_INSERT_HEAD(TIDHASH(td->td_tid), 1168 td, td_hash); 1169 rw_wunlock(&tidhash_lock); 1170 return (td); 1171 } 1172 } 1173 break; 1174 } 1175 run++; 1176 } 1177 rw_runlock(&tidhash_lock); 1178 return (td); 1179 } 1180 1181 void 1182 tidhash_add(struct thread *td) 1183 { 1184 rw_wlock(&tidhash_lock); 1185 LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash); 1186 rw_wunlock(&tidhash_lock); 1187 } 1188 1189 void 1190 tidhash_remove(struct thread *td) 1191 { 1192 rw_wlock(&tidhash_lock); 1193 LIST_REMOVE(td, td_hash); 1194 rw_wunlock(&tidhash_lock); 1195 } 1196