xref: /freebsd/sys/kern/kern_thread.c (revision 5215b1872feaad7ecf7cb1234749ecf04071deef)
1 /*
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/lock.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/proc.h>
38 #include <sys/smp.h>
39 #include <sys/sysctl.h>
40 #include <sys/sysproto.h>
41 #include <sys/filedesc.h>
42 #include <sys/sched.h>
43 #include <sys/signalvar.h>
44 #include <sys/sx.h>
45 #include <sys/tty.h>
46 #include <sys/user.h>
47 #include <sys/jail.h>
48 #include <sys/kse.h>
49 #include <sys/ktr.h>
50 #include <sys/ucontext.h>
51 
52 #include <vm/vm.h>
53 #include <vm/vm_object.h>
54 #include <vm/pmap.h>
55 #include <vm/uma.h>
56 #include <vm/vm_map.h>
57 
58 #include <machine/frame.h>
59 
60 /*
61  * KSEGRP related storage.
62  */
63 static uma_zone_t ksegrp_zone;
64 static uma_zone_t kse_zone;
65 static uma_zone_t thread_zone;
66 static uma_zone_t upcall_zone;
67 
68 /* DEBUG ONLY */
69 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
70 static int thread_debug = 0;
71 SYSCTL_INT(_kern_threads, OID_AUTO, debug, CTLFLAG_RW,
72 	&thread_debug, 0, "thread debug");
73 
74 static int max_threads_per_proc = 30;
75 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
76 	&max_threads_per_proc, 0, "Limit on threads per proc");
77 
78 static int max_groups_per_proc = 5;
79 SYSCTL_INT(_kern_threads, OID_AUTO, max_groups_per_proc, CTLFLAG_RW,
80 	&max_groups_per_proc, 0, "Limit on thread groups per proc");
81 
82 static int virtual_cpu;
83 
84 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
85 
86 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
87 TAILQ_HEAD(, kse) zombie_kses = TAILQ_HEAD_INITIALIZER(zombie_kses);
88 TAILQ_HEAD(, ksegrp) zombie_ksegrps = TAILQ_HEAD_INITIALIZER(zombie_ksegrps);
89 TAILQ_HEAD(, kse_upcall) zombie_upcalls =
90 	TAILQ_HEAD_INITIALIZER(zombie_upcalls);
91 struct mtx kse_zombie_lock;
92 MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN);
93 
94 static void kse_purge(struct proc *p, struct thread *td);
95 static void kse_purge_group(struct thread *td);
96 static int thread_update_usr_ticks(struct thread *td);
97 static int thread_update_sys_ticks(struct thread *td);
98 static void thread_alloc_spare(struct thread *td, struct thread *spare);
99 
100 static int
101 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
102 {
103 	int error, new_val;
104 	int def_val;
105 
106 #ifdef SMP
107 	def_val = mp_ncpus;
108 #else
109 	def_val = 1;
110 #endif
111 	if (virtual_cpu == 0)
112 		new_val = def_val;
113 	else
114 		new_val = virtual_cpu;
115 	error = sysctl_handle_int(oidp, &new_val, 0, req);
116         if (error != 0 || req->newptr == NULL)
117 		return (error);
118 	if (new_val < 0)
119 		return (EINVAL);
120 	virtual_cpu = new_val;
121 	return (0);
122 }
123 
124 /* DEBUG ONLY */
125 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
126 	0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
127 	"debug virtual cpus");
128 
129 /*
130  * Prepare a thread for use.
131  */
132 static void
133 thread_ctor(void *mem, int size, void *arg)
134 {
135 	struct thread	*td;
136 
137 	td = (struct thread *)mem;
138 	td->td_state = TDS_INACTIVE;
139 }
140 
141 /*
142  * Reclaim a thread after use.
143  */
144 static void
145 thread_dtor(void *mem, int size, void *arg)
146 {
147 	struct thread	*td;
148 
149 	td = (struct thread *)mem;
150 
151 #ifdef INVARIANTS
152 	/* Verify that this thread is in a safe state to free. */
153 	switch (td->td_state) {
154 	case TDS_INHIBITED:
155 	case TDS_RUNNING:
156 	case TDS_CAN_RUN:
157 	case TDS_RUNQ:
158 		/*
159 		 * We must never unlink a thread that is in one of
160 		 * these states, because it is currently active.
161 		 */
162 		panic("bad state for thread unlinking");
163 		/* NOTREACHED */
164 	case TDS_INACTIVE:
165 		break;
166 	default:
167 		panic("bad thread state");
168 		/* NOTREACHED */
169 	}
170 #endif
171 }
172 
173 /*
174  * Initialize type-stable parts of a thread (when newly created).
175  */
176 static void
177 thread_init(void *mem, int size)
178 {
179 	struct thread	*td;
180 
181 	td = (struct thread *)mem;
182 	mtx_lock(&Giant);
183 	pmap_new_thread(td, 0);
184 	mtx_unlock(&Giant);
185 	cpu_thread_setup(td);
186 	td->td_sched = (struct td_sched *)&td[1];
187 }
188 
189 /*
190  * Tear down type-stable parts of a thread (just before being discarded).
191  */
192 static void
193 thread_fini(void *mem, int size)
194 {
195 	struct thread	*td;
196 
197 	td = (struct thread *)mem;
198 	pmap_dispose_thread(td);
199 }
200 
201 /*
202  * Initialize type-stable parts of a kse (when newly created).
203  */
204 static void
205 kse_init(void *mem, int size)
206 {
207 	struct kse	*ke;
208 
209 	ke = (struct kse *)mem;
210 	ke->ke_sched = (struct ke_sched *)&ke[1];
211 }
212 
213 /*
214  * Initialize type-stable parts of a ksegrp (when newly created).
215  */
216 static void
217 ksegrp_init(void *mem, int size)
218 {
219 	struct ksegrp	*kg;
220 
221 	kg = (struct ksegrp *)mem;
222 	kg->kg_sched = (struct kg_sched *)&kg[1];
223 }
224 
225 /*
226  * KSE is linked into kse group.
227  */
228 void
229 kse_link(struct kse *ke, struct ksegrp *kg)
230 {
231 	struct proc *p = kg->kg_proc;
232 
233 	TAILQ_INSERT_HEAD(&kg->kg_kseq, ke, ke_kglist);
234 	kg->kg_kses++;
235 	ke->ke_state	= KES_UNQUEUED;
236 	ke->ke_proc	= p;
237 	ke->ke_ksegrp	= kg;
238 	ke->ke_thread	= NULL;
239 	ke->ke_oncpu	= NOCPU;
240 	ke->ke_flags	= 0;
241 }
242 
243 void
244 kse_unlink(struct kse *ke)
245 {
246 	struct ksegrp *kg;
247 
248 	mtx_assert(&sched_lock, MA_OWNED);
249 	kg = ke->ke_ksegrp;
250 	TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist);
251 	if (ke->ke_state == KES_IDLE) {
252 		TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
253 		kg->kg_idle_kses--;
254 	}
255 	if (--kg->kg_kses == 0)
256 		ksegrp_unlink(kg);
257 	/*
258 	 * Aggregate stats from the KSE
259 	 */
260 	kse_stash(ke);
261 }
262 
263 void
264 ksegrp_link(struct ksegrp *kg, struct proc *p)
265 {
266 
267 	TAILQ_INIT(&kg->kg_threads);
268 	TAILQ_INIT(&kg->kg_runq);	/* links with td_runq */
269 	TAILQ_INIT(&kg->kg_slpq);	/* links with td_runq */
270 	TAILQ_INIT(&kg->kg_kseq);	/* all kses in ksegrp */
271 	TAILQ_INIT(&kg->kg_iq);		/* all idle kses in ksegrp */
272 	TAILQ_INIT(&kg->kg_upcalls);	/* all upcall structure in ksegrp */
273 	kg->kg_proc = p;
274 	/*
275 	 * the following counters are in the -zero- section
276 	 * and may not need clearing
277 	 */
278 	kg->kg_numthreads = 0;
279 	kg->kg_runnable   = 0;
280 	kg->kg_kses       = 0;
281 	kg->kg_runq_kses  = 0; /* XXXKSE change name */
282 	kg->kg_idle_kses  = 0;
283 	kg->kg_numupcalls = 0;
284 	/* link it in now that it's consistent */
285 	p->p_numksegrps++;
286 	TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp);
287 }
288 
289 void
290 ksegrp_unlink(struct ksegrp *kg)
291 {
292 	struct proc *p;
293 
294 	mtx_assert(&sched_lock, MA_OWNED);
295 	KASSERT((kg->kg_numthreads == 0), ("ksegrp_unlink: residual threads"));
296 	KASSERT((kg->kg_kses == 0), ("ksegrp_unlink: residual kses"));
297 	KASSERT((kg->kg_numupcalls == 0), ("ksegrp_unlink: residual upcalls"));
298 
299 	p = kg->kg_proc;
300 	TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
301 	p->p_numksegrps--;
302 	/*
303 	 * Aggregate stats from the KSE
304 	 */
305 	ksegrp_stash(kg);
306 }
307 
308 struct kse_upcall *
309 upcall_alloc(void)
310 {
311 	struct kse_upcall *ku;
312 
313 	ku = uma_zalloc(upcall_zone, 0);
314 	bzero(ku, sizeof(*ku));
315 	return (ku);
316 }
317 
318 void
319 upcall_free(struct kse_upcall *ku)
320 {
321 
322 	uma_zfree(upcall_zone, ku);
323 }
324 
325 void
326 upcall_link(struct kse_upcall *ku, struct ksegrp *kg)
327 {
328 
329 	mtx_assert(&sched_lock, MA_OWNED);
330 	TAILQ_INSERT_TAIL(&kg->kg_upcalls, ku, ku_link);
331 	ku->ku_ksegrp = kg;
332 	kg->kg_numupcalls++;
333 }
334 
335 void
336 upcall_unlink(struct kse_upcall *ku)
337 {
338 	struct ksegrp *kg = ku->ku_ksegrp;
339 
340 	mtx_assert(&sched_lock, MA_OWNED);
341 	KASSERT(ku->ku_owner == NULL, ("%s: have owner", __func__));
342 	TAILQ_REMOVE(&kg->kg_upcalls, ku, ku_link);
343 	kg->kg_numupcalls--;
344 	upcall_stash(ku);
345 }
346 
347 void
348 upcall_remove(struct thread *td)
349 {
350 
351 	if (td->td_upcall) {
352 		td->td_upcall->ku_owner = NULL;
353 		upcall_unlink(td->td_upcall);
354 		td->td_upcall = 0;
355 	}
356 }
357 
358 /*
359  * For a newly created process,
360  * link up all the structures and its initial threads etc.
361  */
362 void
363 proc_linkup(struct proc *p, struct ksegrp *kg,
364 	    struct kse *ke, struct thread *td)
365 {
366 
367 	TAILQ_INIT(&p->p_ksegrps);	     /* all ksegrps in proc */
368 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
369 	TAILQ_INIT(&p->p_suspended);	     /* Threads suspended */
370 	p->p_numksegrps = 0;
371 	p->p_numthreads = 0;
372 
373 	ksegrp_link(kg, p);
374 	kse_link(ke, kg);
375 	thread_link(td, kg);
376 }
377 
378 /*
379 struct kse_thr_interrupt_args {
380 	struct kse_thr_mailbox * tmbx;
381 };
382 */
383 int
384 kse_thr_interrupt(struct thread *td, struct kse_thr_interrupt_args *uap)
385 {
386 	struct proc *p;
387 	struct thread *td2;
388 
389 	p = td->td_proc;
390 	if (!(p->p_flag & P_KSES) || (uap->tmbx == NULL))
391 		return (EINVAL);
392 	mtx_lock_spin(&sched_lock);
393 	FOREACH_THREAD_IN_PROC(p, td2) {
394 		if (td2->td_mailbox == uap->tmbx) {
395 			td2->td_flags |= TDF_INTERRUPT;
396 			if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR)) {
397 				if (td2->td_flags & TDF_CVWAITQ)
398 					cv_abort(td2);
399 				else
400 					abortsleep(td2);
401 			}
402 			mtx_unlock_spin(&sched_lock);
403 			return (0);
404 		}
405 	}
406 	mtx_unlock_spin(&sched_lock);
407 	return (ESRCH);
408 }
409 
410 /*
411 struct kse_exit_args {
412 	register_t dummy;
413 };
414 */
415 int
416 kse_exit(struct thread *td, struct kse_exit_args *uap)
417 {
418 	struct proc *p;
419 	struct ksegrp *kg;
420 	struct kse *ke;
421 
422 	p = td->td_proc;
423 	/*
424 	 * Only UTS can call the syscall and current group
425 	 * should be a threaded group.
426 	 */
427 	if ((td->td_mailbox != NULL) || (td->td_ksegrp->kg_numupcalls == 0))
428 		return (EINVAL);
429 	KASSERT((td->td_upcall != NULL), ("%s: not own an upcall", __func__));
430 
431 	kg = td->td_ksegrp;
432 	/* Serialize removing upcall */
433 	PROC_LOCK(p);
434 	mtx_lock_spin(&sched_lock);
435 	if ((kg->kg_numupcalls == 1) && (kg->kg_numthreads > 1)) {
436 		mtx_unlock_spin(&sched_lock);
437 		PROC_UNLOCK(p);
438 		return (EDEADLK);
439 	}
440 	ke = td->td_kse;
441 	upcall_remove(td);
442 	if (p->p_numthreads == 1) {
443 		kse_purge(p, td);
444 		p->p_flag &= ~P_KSES;
445 		mtx_unlock_spin(&sched_lock);
446 		PROC_UNLOCK(p);
447 	} else {
448 		if (kg->kg_numthreads == 1) { /* Shutdown a group */
449 			kse_purge_group(td);
450 			ke->ke_flags |= KEF_EXIT;
451 		}
452 		thread_exit();
453 		/* NOTREACHED */
454 	}
455 	return (0);
456 }
457 
458 /*
459  * Either becomes an upcall or waits for an awakening event and
460  * then becomes an upcall. Only error cases return.
461  */
462 /*
463 struct kse_release_args {
464 	register_t dummy;
465 };
466 */
467 int
468 kse_release(struct thread *td, struct kse_release_args *uap)
469 {
470 	struct proc *p;
471 	struct ksegrp *kg;
472 
473 	p = td->td_proc;
474 	kg = td->td_ksegrp;
475 	/*
476 	 * Only UTS can call the syscall and current group
477 	 * should be a threaded group.
478 	 */
479 	if ((td->td_mailbox != NULL) || (td->td_ksegrp->kg_numupcalls == 0))
480 		return (EINVAL);
481 	KASSERT((td->td_upcall != NULL), ("%s: not own an upcall", __func__));
482 
483 	PROC_LOCK(p);
484 	mtx_lock_spin(&sched_lock);
485 	/* Change OURSELF to become an upcall. */
486 	td->td_flags = TDF_UPCALLING;
487 	if ((td->td_upcall->ku_flags & KUF_DOUPCALL) == 0 &&
488 	    (kg->kg_completed == NULL)) {
489 		kg->kg_upsleeps++;
490 		mtx_unlock_spin(&sched_lock);
491 		msleep(&kg->kg_completed, &p->p_mtx, PPAUSE|PCATCH, "ksepause",
492 		       NULL);
493 		kg->kg_upsleeps--;
494 		PROC_UNLOCK(p);
495 	} else {
496 		mtx_unlock_spin(&sched_lock);
497 		PROC_UNLOCK(p);
498 	}
499 	return (0);
500 }
501 
502 /* struct kse_wakeup_args {
503 	struct kse_mailbox *mbx;
504 }; */
505 int
506 kse_wakeup(struct thread *td, struct kse_wakeup_args *uap)
507 {
508 	struct proc *p;
509 	struct ksegrp *kg;
510 	struct kse_upcall *ku;
511 	struct thread *td2;
512 
513 	p = td->td_proc;
514 	td2 = NULL;
515 	ku = NULL;
516 	/* KSE-enabled processes only, please. */
517 	if (!(p->p_flag & P_KSES))
518 		return (EINVAL);
519 
520 	PROC_LOCK(p);
521 	mtx_lock_spin(&sched_lock);
522 	if (uap->mbx) {
523 		FOREACH_KSEGRP_IN_PROC(p, kg) {
524 			FOREACH_UPCALL_IN_GROUP(kg, ku) {
525 				if (ku->ku_mailbox == uap->mbx)
526 					break;
527 			}
528 			if (ku)
529 				break;
530 		}
531 	} else {
532 		kg = td->td_ksegrp;
533 		if (kg->kg_upsleeps) {
534 			wakeup_one(&kg->kg_completed);
535 			mtx_unlock_spin(&sched_lock);
536 			PROC_UNLOCK(p);
537 			return (0);
538 		}
539 		ku = TAILQ_FIRST(&kg->kg_upcalls);
540 	}
541 	if (ku) {
542 		if ((td2 = ku->ku_owner) == NULL) {
543 			panic("%s: no owner", __func__);
544 		} else if (TD_ON_SLEEPQ(td2) &&
545 		           (td2->td_wchan == &kg->kg_completed)) {
546 			abortsleep(td2);
547 		} else {
548 			ku->ku_flags |= KUF_DOUPCALL;
549 		}
550 		mtx_unlock_spin(&sched_lock);
551 		PROC_UNLOCK(p);
552 		return (0);
553 	}
554 	mtx_unlock_spin(&sched_lock);
555 	PROC_UNLOCK(p);
556 	return (ESRCH);
557 }
558 
559 /*
560  * No new KSEG: first call: use current KSE, don't schedule an upcall
561  * All other situations, do allocate max new KSEs and schedule an upcall.
562  */
563 /* struct kse_create_args {
564 	struct kse_mailbox *mbx;
565 	int newgroup;
566 }; */
567 int
568 kse_create(struct thread *td, struct kse_create_args *uap)
569 {
570 	struct kse *newke;
571 	struct ksegrp *newkg;
572 	struct ksegrp *kg;
573 	struct proc *p;
574 	struct kse_mailbox mbx;
575 	struct kse_upcall *newku;
576 	int err, ncpus;
577 
578 	p = td->td_proc;
579 	if ((err = copyin(uap->mbx, &mbx, sizeof(mbx))))
580 		return (err);
581 
582 	/* Too bad, why hasn't kernel always a cpu counter !? */
583 #ifdef SMP
584 	ncpus = mp_ncpus;
585 #else
586 	ncpus = 1;
587 #endif
588 	if (thread_debug && virtual_cpu != 0)
589 		ncpus = virtual_cpu;
590 
591 	/* Easier to just set it than to test and set */
592 	p->p_flag |= P_KSES;
593 	kg = td->td_ksegrp;
594 	if (uap->newgroup) {
595 		/* Have race condition but it is cheap */
596 		if (p->p_numksegrps >= max_groups_per_proc)
597 			return (EPROCLIM);
598 		/*
599 		 * If we want a new KSEGRP it doesn't matter whether
600 		 * we have already fired up KSE mode before or not.
601 		 * We put the process in KSE mode and create a new KSEGRP.
602 		 */
603 		newkg = ksegrp_alloc();
604 		bzero(&newkg->kg_startzero, RANGEOF(struct ksegrp,
605 		      kg_startzero, kg_endzero));
606 		bcopy(&kg->kg_startcopy, &newkg->kg_startcopy,
607 		      RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy));
608 		mtx_lock_spin(&sched_lock);
609 		ksegrp_link(newkg, p);
610 		if (p->p_numksegrps >= max_groups_per_proc) {
611 			ksegrp_unlink(newkg);
612 			mtx_unlock_spin(&sched_lock);
613 			return (EPROCLIM);
614 		}
615 		mtx_unlock_spin(&sched_lock);
616 	} else {
617 		newkg = kg;
618 	}
619 
620 	/*
621 	 * Creating upcalls more than number of physical cpu does
622 	 * not help performance.
623 	 */
624 	if (newkg->kg_numupcalls >= ncpus)
625 		return (EPROCLIM);
626 
627 	if (newkg->kg_numupcalls == 0) {
628 		/*
629 		 * Initialize KSE group, optimized for MP.
630 		 * Create KSEs as many as physical cpus, this increases
631 		 * concurrent even if userland is not MP safe and can only run
632 		 * on single CPU (for early version of libpthread, it is true).
633 		 * In ideal world, every physical cpu should execute a thread.
634 		 * If there is enough KSEs, threads in kernel can be
635 		 * executed parallel on different cpus with full speed,
636 		 * Concurrent in kernel shouldn't be restricted by number of
637 		 * upcalls userland provides.
638 		 * Adding more upcall structures only increases concurrent
639 		 * in userland.
640 		 * Highest performance configuration is:
641 		 * N kses = N upcalls = N phyiscal cpus
642 		 */
643 		while (newkg->kg_kses < ncpus) {
644 			newke = kse_alloc();
645 			bzero(&newke->ke_startzero, RANGEOF(struct kse,
646 			      ke_startzero, ke_endzero));
647 #if 0
648 			mtx_lock_spin(&sched_lock);
649 			bcopy(&ke->ke_startcopy, &newke->ke_startcopy,
650 			      RANGEOF(struct kse, ke_startcopy, ke_endcopy));
651 			mtx_unlock_spin(&sched_lock);
652 #endif
653 			mtx_lock_spin(&sched_lock);
654 			kse_link(newke, newkg);
655 			if (p->p_sflag & PS_NEEDSIGCHK)
656 				newke->ke_flags |= KEF_ASTPENDING;
657 			/* Add engine */
658 			kse_reassign(newke);
659 			mtx_unlock_spin(&sched_lock);
660 		}
661 	}
662 	newku = upcall_alloc();
663 	newku->ku_mailbox = uap->mbx;
664 	newku->ku_func = mbx.km_func;
665 	bcopy(&mbx.km_stack, &newku->ku_stack, sizeof(stack_t));
666 
667 	/* For the first call this may not have been set */
668 	if (td->td_standin == NULL)
669 		thread_alloc_spare(td, NULL);
670 
671 	mtx_lock_spin(&sched_lock);
672 	if (newkg->kg_numupcalls >= ncpus) {
673 		upcall_free(newku);
674 		mtx_unlock_spin(&sched_lock);
675 		return (EPROCLIM);
676 	}
677 	upcall_link(newku, newkg);
678 
679 	/*
680 	 * Each upcall structure has an owner thread, find which
681 	 * one owns it.
682 	 */
683 	if (uap->newgroup) {
684 		/*
685 		 * Because new ksegrp hasn't thread,
686 		 * create an initial upcall thread to own it.
687 		 */
688 		thread_schedule_upcall(td, newku);
689 	} else {
690 		/*
691 		 * If current thread hasn't an upcall structure,
692 		 * just assign the upcall to it.
693 		 */
694 		if (td->td_upcall == NULL) {
695 			newku->ku_owner = td;
696 			td->td_upcall = newku;
697 		} else {
698 			/*
699 			 * Create a new upcall thread to own it.
700 			 */
701 			thread_schedule_upcall(td, newku);
702 		}
703 	}
704 	mtx_unlock_spin(&sched_lock);
705 	return (0);
706 }
707 
708 /*
709  * Fill a ucontext_t with a thread's context information.
710  *
711  * This is an analogue to getcontext(3).
712  */
713 void
714 thread_getcontext(struct thread *td, ucontext_t *uc)
715 {
716 
717 /*
718  * XXX this is declared in a MD include file, i386/include/ucontext.h but
719  * is used in MI code.
720  */
721 #ifdef __i386__
722 	get_mcontext(td, &uc->uc_mcontext);
723 #endif
724 	uc->uc_sigmask = td->td_proc->p_sigmask;
725 }
726 
727 /*
728  * Set a thread's context from a ucontext_t.
729  *
730  * This is an analogue to setcontext(3).
731  */
732 int
733 thread_setcontext(struct thread *td, ucontext_t *uc)
734 {
735 	int ret;
736 
737 /*
738  * XXX this is declared in a MD include file, i386/include/ucontext.h but
739  * is used in MI code.
740  */
741 #ifdef __i386__
742 	ret = set_mcontext(td, &uc->uc_mcontext);
743 #else
744 	ret = ENOSYS;
745 #endif
746 	if (ret == 0) {
747 		SIG_CANTMASK(uc->uc_sigmask);
748 		PROC_LOCK(td->td_proc);
749 		td->td_proc->p_sigmask = uc->uc_sigmask;
750 		PROC_UNLOCK(td->td_proc);
751 	}
752 	return (ret);
753 }
754 
755 /*
756  * Initialize global thread allocation resources.
757  */
758 void
759 threadinit(void)
760 {
761 
762 #ifndef __ia64__
763 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
764 	    thread_ctor, thread_dtor, thread_init, thread_fini,
765 	    UMA_ALIGN_CACHE, 0);
766 #else
767 	/*
768 	 * XXX the ia64 kstack allocator is really lame and is at the mercy
769 	 * of contigmallloc().  This hackery is to pre-construct a whole
770 	 * pile of thread structures with associated kernel stacks early
771 	 * in the system startup while contigmalloc() still works. Once we
772 	 * have them, keep them.  Sigh.
773 	 */
774 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
775 	    thread_ctor, thread_dtor, thread_init, thread_fini,
776 	    UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
777 	uma_prealloc(thread_zone, 512);		/* XXX arbitary */
778 #endif
779 	ksegrp_zone = uma_zcreate("KSEGRP", sched_sizeof_ksegrp(),
780 	    NULL, NULL, ksegrp_init, NULL,
781 	    UMA_ALIGN_CACHE, 0);
782 	kse_zone = uma_zcreate("KSE", sched_sizeof_kse(),
783 	    NULL, NULL, kse_init, NULL,
784 	    UMA_ALIGN_CACHE, 0);
785 	upcall_zone = uma_zcreate("UPCALL", sizeof(struct kse_upcall),
786 	    NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
787 }
788 
789 /*
790  * Stash an embarasingly extra thread into the zombie thread queue.
791  */
792 void
793 thread_stash(struct thread *td)
794 {
795 	mtx_lock_spin(&kse_zombie_lock);
796 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq);
797 	mtx_unlock_spin(&kse_zombie_lock);
798 }
799 
800 /*
801  * Stash an embarasingly extra kse into the zombie kse queue.
802  */
803 void
804 kse_stash(struct kse *ke)
805 {
806 	mtx_lock_spin(&kse_zombie_lock);
807 	TAILQ_INSERT_HEAD(&zombie_kses, ke, ke_procq);
808 	mtx_unlock_spin(&kse_zombie_lock);
809 }
810 
811 /*
812  * Stash an embarasingly extra upcall into the zombie upcall queue.
813  */
814 
815 void
816 upcall_stash(struct kse_upcall *ku)
817 {
818 	mtx_lock_spin(&kse_zombie_lock);
819 	TAILQ_INSERT_HEAD(&zombie_upcalls, ku, ku_link);
820 	mtx_unlock_spin(&kse_zombie_lock);
821 }
822 
823 /*
824  * Stash an embarasingly extra ksegrp into the zombie ksegrp queue.
825  */
826 void
827 ksegrp_stash(struct ksegrp *kg)
828 {
829 	mtx_lock_spin(&kse_zombie_lock);
830 	TAILQ_INSERT_HEAD(&zombie_ksegrps, kg, kg_ksegrp);
831 	mtx_unlock_spin(&kse_zombie_lock);
832 }
833 
834 /*
835  * Reap zombie kse resource.
836  */
837 void
838 thread_reap(void)
839 {
840 	struct thread *td_first, *td_next;
841 	struct kse *ke_first, *ke_next;
842 	struct ksegrp *kg_first, * kg_next;
843 	struct kse_upcall *ku_first, *ku_next;
844 
845 	/*
846 	 * Don't even bother to lock if none at this instant,
847 	 * we really don't care about the next instant..
848 	 */
849 	if ((!TAILQ_EMPTY(&zombie_threads))
850 	    || (!TAILQ_EMPTY(&zombie_kses))
851 	    || (!TAILQ_EMPTY(&zombie_ksegrps))
852 	    || (!TAILQ_EMPTY(&zombie_upcalls))) {
853 		mtx_lock_spin(&kse_zombie_lock);
854 		td_first = TAILQ_FIRST(&zombie_threads);
855 		ke_first = TAILQ_FIRST(&zombie_kses);
856 		kg_first = TAILQ_FIRST(&zombie_ksegrps);
857 		ku_first = TAILQ_FIRST(&zombie_upcalls);
858 		if (td_first)
859 			TAILQ_INIT(&zombie_threads);
860 		if (ke_first)
861 			TAILQ_INIT(&zombie_kses);
862 		if (kg_first)
863 			TAILQ_INIT(&zombie_ksegrps);
864 		if (ku_first)
865 			TAILQ_INIT(&zombie_upcalls);
866 		mtx_unlock_spin(&kse_zombie_lock);
867 		while (td_first) {
868 			td_next = TAILQ_NEXT(td_first, td_runq);
869 			if (td_first->td_ucred)
870 				crfree(td_first->td_ucred);
871 			thread_free(td_first);
872 			td_first = td_next;
873 		}
874 		while (ke_first) {
875 			ke_next = TAILQ_NEXT(ke_first, ke_procq);
876 			kse_free(ke_first);
877 			ke_first = ke_next;
878 		}
879 		while (kg_first) {
880 			kg_next = TAILQ_NEXT(kg_first, kg_ksegrp);
881 			ksegrp_free(kg_first);
882 			kg_first = kg_next;
883 		}
884 		while (ku_first) {
885 			ku_next = TAILQ_NEXT(ku_first, ku_link);
886 			upcall_free(ku_first);
887 			ku_first = ku_next;
888 		}
889 	}
890 }
891 
892 /*
893  * Allocate a ksegrp.
894  */
895 struct ksegrp *
896 ksegrp_alloc(void)
897 {
898 	return (uma_zalloc(ksegrp_zone, 0));
899 }
900 
901 /*
902  * Allocate a kse.
903  */
904 struct kse *
905 kse_alloc(void)
906 {
907 	return (uma_zalloc(kse_zone, 0));
908 }
909 
910 /*
911  * Allocate a thread.
912  */
913 struct thread *
914 thread_alloc(void)
915 {
916 	thread_reap(); /* check if any zombies to get */
917 	return (uma_zalloc(thread_zone, 0));
918 }
919 
920 /*
921  * Deallocate a ksegrp.
922  */
923 void
924 ksegrp_free(struct ksegrp *td)
925 {
926 	uma_zfree(ksegrp_zone, td);
927 }
928 
929 /*
930  * Deallocate a kse.
931  */
932 void
933 kse_free(struct kse *td)
934 {
935 	uma_zfree(kse_zone, td);
936 }
937 
938 /*
939  * Deallocate a thread.
940  */
941 void
942 thread_free(struct thread *td)
943 {
944 
945 	cpu_thread_clean(td);
946 	uma_zfree(thread_zone, td);
947 }
948 
949 /*
950  * Store the thread context in the UTS's mailbox.
951  * then add the mailbox at the head of a list we are building in user space.
952  * The list is anchored in the ksegrp structure.
953  */
954 int
955 thread_export_context(struct thread *td)
956 {
957 	struct proc *p;
958 	struct ksegrp *kg;
959 	uintptr_t mbx;
960 	void *addr;
961 	int error,temp;
962 	ucontext_t uc;
963 
964 	p = td->td_proc;
965 	kg = td->td_ksegrp;
966 
967 	/* Export the user/machine context. */
968 	addr = (void *)(&td->td_mailbox->tm_context);
969 	error = copyin(addr, &uc, sizeof(ucontext_t));
970 	if (error)
971 		goto bad;
972 
973 	thread_getcontext(td, &uc);
974 	error = copyout(&uc, addr, sizeof(ucontext_t));
975 	if (error)
976 		goto bad;
977 
978 	/* Exports clock ticks in kernel mode */
979 	addr = (caddr_t)(&td->td_mailbox->tm_sticks);
980 	temp = fuword(addr) + td->td_usticks;
981 	if (suword(addr, temp))
982 		goto bad;
983 
984 	/* Get address in latest mbox of list pointer */
985 	addr = (void *)(&td->td_mailbox->tm_next);
986 	/*
987 	 * Put the saved address of the previous first
988 	 * entry into this one
989 	 */
990 	for (;;) {
991 		mbx = (uintptr_t)kg->kg_completed;
992 		if (suword(addr, mbx)) {
993 			error = EFAULT;
994 			goto bad;
995 		}
996 		PROC_LOCK(p);
997 		if (mbx == (uintptr_t)kg->kg_completed) {
998 			kg->kg_completed = td->td_mailbox;
999 			/*
1000 			 * The thread context may be taken away by
1001 			 * other upcall threads when we unlock
1002 			 * process lock. it's no longer valid to
1003 			 * use it again in any other places.
1004 			 */
1005 			td->td_mailbox = NULL;
1006 			PROC_UNLOCK(p);
1007 			break;
1008 		}
1009 		PROC_UNLOCK(p);
1010 	}
1011 	td->td_usticks = 0;
1012 	return (0);
1013 
1014 bad:
1015 	PROC_LOCK(p);
1016 	psignal(p, SIGSEGV);
1017 	PROC_UNLOCK(p);
1018 	/* The mailbox is bad, don't use it */
1019 	td->td_mailbox = NULL;
1020 	td->td_usticks = 0;
1021 	return (error);
1022 }
1023 
1024 /*
1025  * Take the list of completed mailboxes for this KSEGRP and put them on this
1026  * upcall's mailbox as it's the next one going up.
1027  */
1028 static int
1029 thread_link_mboxes(struct ksegrp *kg, struct kse_upcall *ku)
1030 {
1031 	struct proc *p = kg->kg_proc;
1032 	void *addr;
1033 	uintptr_t mbx;
1034 
1035 	addr = (void *)(&ku->ku_mailbox->km_completed);
1036 	for (;;) {
1037 		mbx = (uintptr_t)kg->kg_completed;
1038 		if (suword(addr, mbx)) {
1039 			PROC_LOCK(p);
1040 			psignal(p, SIGSEGV);
1041 			PROC_UNLOCK(p);
1042 			return (EFAULT);
1043 		}
1044 		/* XXXKSE could use atomic CMPXCH here */
1045 		PROC_LOCK(p);
1046 		if (mbx == (uintptr_t)kg->kg_completed) {
1047 			kg->kg_completed = NULL;
1048 			PROC_UNLOCK(p);
1049 			break;
1050 		}
1051 		PROC_UNLOCK(p);
1052 	}
1053 	return (0);
1054 }
1055 
1056 /*
1057  * This function should be called at statclock interrupt time
1058  */
1059 int
1060 thread_statclock(int user)
1061 {
1062 	struct thread *td = curthread;
1063 
1064 	if (td->td_ksegrp->kg_numupcalls == 0)
1065 		return (-1);
1066 	if (user) {
1067 		/* Current always do via ast() */
1068 		td->td_kse->ke_flags |= KEF_ASTPENDING;	/* XXX TDF_ASTPENDING */
1069 		td->td_flags |= TDF_USTATCLOCK;
1070 		td->td_uuticks++;
1071 	} else {
1072 		if (td->td_mailbox != NULL)
1073 			td->td_usticks++;
1074 		else {
1075 			/* XXXKSE
1076 		 	 * We will call thread_user_enter() for every
1077 			 * kernel entry in future, so if the thread mailbox
1078 			 * is NULL, it must be a UTS kernel, don't account
1079 			 * clock ticks for it.
1080 			 */
1081 		}
1082 	}
1083 	return (0);
1084 }
1085 
1086 /*
1087  * Export user mode state clock ticks
1088  */
1089 static int
1090 thread_update_usr_ticks(struct thread *td)
1091 {
1092 	struct proc *p = td->td_proc;
1093 	struct kse_thr_mailbox *tmbx;
1094 	struct kse_upcall *ku;
1095 	caddr_t addr;
1096 	uint uticks;
1097 
1098 	if ((ku = td->td_upcall) == NULL)
1099 		return (-1);
1100 
1101 	tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread);
1102 	if ((tmbx == NULL) || (tmbx == (void *)-1))
1103 		return (-1);
1104 	uticks = td->td_uuticks;
1105 	td->td_uuticks = 0;
1106 	if (uticks) {
1107 		addr = (caddr_t)&tmbx->tm_uticks;
1108 		uticks += fuword(addr);
1109 		if (suword(addr, uticks)) {
1110 			PROC_LOCK(p);
1111 			psignal(p, SIGSEGV);
1112 			PROC_UNLOCK(p);
1113 			return (-2);
1114 		}
1115 	}
1116 	return (0);
1117 }
1118 
1119 /*
1120  * Export kernel mode state clock ticks
1121  */
1122 
1123 static int
1124 thread_update_sys_ticks(struct thread *td)
1125 {
1126 	struct proc *p = td->td_proc;
1127 	caddr_t addr;
1128 	int sticks;
1129 
1130 	if (td->td_mailbox == NULL)
1131 		return (-1);
1132 	if (td->td_usticks == 0)
1133 		return (0);
1134 	addr = (caddr_t)&td->td_mailbox->tm_sticks;
1135 	sticks = fuword(addr);
1136 	/* XXXKSE use XCHG instead */
1137 	sticks += td->td_usticks;
1138 	td->td_usticks = 0;
1139 	if (suword(addr, sticks)) {
1140 		PROC_LOCK(p);
1141 		psignal(p, SIGSEGV);
1142 		PROC_UNLOCK(p);
1143 		return (-2);
1144 	}
1145 	return (0);
1146 }
1147 
1148 /*
1149  * Discard the current thread and exit from its context.
1150  *
1151  * Because we can't free a thread while we're operating under its context,
1152  * push the current thread into our CPU's deadthread holder. This means
1153  * we needn't worry about someone else grabbing our context before we
1154  * do a cpu_throw().
1155  */
1156 void
1157 thread_exit(void)
1158 {
1159 	struct thread *td;
1160 	struct kse *ke;
1161 	struct proc *p;
1162 	struct ksegrp	*kg;
1163 
1164 	td = curthread;
1165 	kg = td->td_ksegrp;
1166 	p = td->td_proc;
1167 	ke = td->td_kse;
1168 
1169 	mtx_assert(&sched_lock, MA_OWNED);
1170 	KASSERT(p != NULL, ("thread exiting without a process"));
1171 	KASSERT(ke != NULL, ("thread exiting without a kse"));
1172 	KASSERT(kg != NULL, ("thread exiting without a kse group"));
1173 	PROC_LOCK_ASSERT(p, MA_OWNED);
1174 	CTR1(KTR_PROC, "thread_exit: thread %p", td);
1175 	KASSERT(!mtx_owned(&Giant), ("dying thread owns giant"));
1176 
1177 	if (td->td_standin != NULL) {
1178 		thread_stash(td->td_standin);
1179 		td->td_standin = NULL;
1180 	}
1181 
1182 	cpu_thread_exit(td);	/* XXXSMP */
1183 
1184 	/*
1185 	 * The last thread is left attached to the process
1186 	 * So that the whole bundle gets recycled. Skip
1187 	 * all this stuff.
1188 	 */
1189 	if (p->p_numthreads > 1) {
1190 		/*
1191 		 * Unlink this thread from its proc and the kseg.
1192 		 * In keeping with the other structs we probably should
1193 		 * have a thread_unlink() that does some of this but it
1194 		 * would only be called from here (I think) so it would
1195 		 * be a waste. (might be useful for proc_fini() as well.)
1196  		 */
1197 		TAILQ_REMOVE(&p->p_threads, td, td_plist);
1198 		p->p_numthreads--;
1199 		TAILQ_REMOVE(&kg->kg_threads, td, td_kglist);
1200 		kg->kg_numthreads--;
1201 
1202 		/*
1203 		 * The test below is NOT true if we are the
1204 		 * sole exiting thread. P_STOPPED_SNGL is unset
1205 		 * in exit1() after it is the only survivor.
1206 		 */
1207 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1208 			if (p->p_numthreads == p->p_suspcount) {
1209 				thread_unsuspend_one(p->p_singlethread);
1210 			}
1211 		}
1212 
1213 		/*
1214 		 * Because each upcall structure has an owner thread,
1215 		 * owner thread exits only when process is in exiting
1216 		 * state, so upcall to userland is no longer needed,
1217 		 * deleting upcall structure is safe here.
1218 		 * So when all threads in a group is exited, all upcalls
1219 		 * in the group should be automatically freed.
1220 		 */
1221 		if (td->td_upcall)
1222 			upcall_remove(td);
1223 
1224 		ke->ke_state = KES_UNQUEUED;
1225 		ke->ke_thread = NULL;
1226 		/*
1227 		 * Decide what to do with the KSE attached to this thread.
1228 		 */
1229 		if (ke->ke_flags & KEF_EXIT)
1230 			kse_unlink(ke);
1231 		else
1232 			kse_reassign(ke);
1233 		PROC_UNLOCK(p);
1234 		td->td_kse	= NULL;
1235 		td->td_state	= TDS_INACTIVE;
1236 		td->td_proc	= NULL;
1237 		td->td_ksegrp	= NULL;
1238 		td->td_last_kse	= NULL;
1239 		PCPU_SET(deadthread, td);
1240 	} else {
1241 		PROC_UNLOCK(p);
1242 	}
1243 	cpu_throw();
1244 	/* NOTREACHED */
1245 }
1246 
1247 /*
1248  * Do any thread specific cleanups that may be needed in wait()
1249  * called with Giant held, proc and schedlock not held.
1250  */
1251 void
1252 thread_wait(struct proc *p)
1253 {
1254 	struct thread *td;
1255 
1256 	KASSERT((p->p_numthreads == 1), ("Muliple threads in wait1()"));
1257 	KASSERT((p->p_numksegrps == 1), ("Muliple ksegrps in wait1()"));
1258 	FOREACH_THREAD_IN_PROC(p, td) {
1259 		if (td->td_standin != NULL) {
1260 			thread_free(td->td_standin);
1261 			td->td_standin = NULL;
1262 		}
1263 		cpu_thread_clean(td);
1264 	}
1265 	thread_reap();	/* check for zombie threads etc. */
1266 }
1267 
1268 /*
1269  * Link a thread to a process.
1270  * set up anything that needs to be initialized for it to
1271  * be used by the process.
1272  *
1273  * Note that we do not link to the proc's ucred here.
1274  * The thread is linked as if running but no KSE assigned.
1275  */
1276 void
1277 thread_link(struct thread *td, struct ksegrp *kg)
1278 {
1279 	struct proc *p;
1280 
1281 	p = kg->kg_proc;
1282 	td->td_state    = TDS_INACTIVE;
1283 	td->td_proc     = p;
1284 	td->td_ksegrp   = kg;
1285 	td->td_last_kse = NULL;
1286 	td->td_flags    = 0;
1287 	td->td_kse      = NULL;
1288 
1289 	LIST_INIT(&td->td_contested);
1290 	callout_init(&td->td_slpcallout, 1);
1291 	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
1292 	TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist);
1293 	p->p_numthreads++;
1294 	kg->kg_numthreads++;
1295 }
1296 
1297 /*
1298  * Purge a ksegrp resource. When a ksegrp is preparing to
1299  * exit, it calls this function.
1300  */
1301 void
1302 kse_purge_group(struct thread *td)
1303 {
1304 	struct ksegrp *kg;
1305 	struct kse *ke;
1306 
1307 	kg = td->td_ksegrp;
1308  	KASSERT(kg->kg_numthreads == 1, ("%s: bad thread number", __func__));
1309 	while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) {
1310 		KASSERT(ke->ke_state == KES_IDLE,
1311 			("%s: wrong idle KSE state", __func__));
1312 		kse_unlink(ke);
1313 	}
1314 	KASSERT((kg->kg_kses == 1),
1315 		("%s: ksegrp still has %d KSEs", __func__, kg->kg_kses));
1316 	KASSERT((kg->kg_numupcalls == 0),
1317 	        ("%s: ksegrp still has %d upcall datas",
1318 		__func__, kg->kg_numupcalls));
1319 }
1320 
1321 /*
1322  * Purge a process's KSE resource. When a process is preparing to
1323  * exit, it calls kse_purge to release any extra KSE resources in
1324  * the process.
1325  */
1326 void
1327 kse_purge(struct proc *p, struct thread *td)
1328 {
1329 	struct ksegrp *kg;
1330 	struct kse *ke;
1331 
1332  	KASSERT(p->p_numthreads == 1, ("bad thread number"));
1333 	mtx_lock_spin(&sched_lock);
1334 	while ((kg = TAILQ_FIRST(&p->p_ksegrps)) != NULL) {
1335 		TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
1336 		p->p_numksegrps--;
1337 		/*
1338 		 * There is no ownership for KSE, after all threads
1339 		 * in the group exited, it is possible that some KSEs
1340 		 * were left in idle queue, gc them now.
1341 		 */
1342 		while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) {
1343 			KASSERT(ke->ke_state == KES_IDLE,
1344 			   ("%s: wrong idle KSE state", __func__));
1345 			TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
1346 			kg->kg_idle_kses--;
1347 			TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist);
1348 			kg->kg_kses--;
1349 			kse_stash(ke);
1350 		}
1351 		KASSERT(((kg->kg_kses == 0) && (kg != td->td_ksegrp)) ||
1352 		        ((kg->kg_kses == 1) && (kg == td->td_ksegrp)),
1353 		        ("ksegrp has wrong kg_kses: %d", kg->kg_kses));
1354 		KASSERT((kg->kg_numupcalls == 0),
1355 		        ("%s: ksegrp still has %d upcall datas",
1356 			__func__, kg->kg_numupcalls));
1357 
1358 		if (kg != td->td_ksegrp)
1359 			ksegrp_stash(kg);
1360 	}
1361 	TAILQ_INSERT_HEAD(&p->p_ksegrps, td->td_ksegrp, kg_ksegrp);
1362 	p->p_numksegrps++;
1363 	mtx_unlock_spin(&sched_lock);
1364 }
1365 
1366 /*
1367  * This function is intended to be used to initialize a spare thread
1368  * for upcall. Initialize thread's large data area outside sched_lock
1369  * for thread_schedule_upcall().
1370  */
1371 void
1372 thread_alloc_spare(struct thread *td, struct thread *spare)
1373 {
1374 	if (td->td_standin)
1375 		return;
1376 	if (spare == NULL)
1377 		spare = thread_alloc();
1378 	td->td_standin = spare;
1379 	bzero(&spare->td_startzero,
1380 	    (unsigned)RANGEOF(struct thread, td_startzero, td_endzero));
1381 	spare->td_proc = td->td_proc;
1382 	/* Setup PCB and fork address */
1383 	cpu_set_upcall(spare, td->td_pcb);
1384 	/*
1385 	 * XXXKSE do we really need this? (default values for the
1386 	 * frame).
1387 	 */
1388 	bcopy(td->td_frame, spare->td_frame, sizeof(struct trapframe));
1389 	spare->td_ucred = crhold(td->td_ucred);
1390 }
1391 
1392 /*
1393  * Create a thread and schedule it for upcall on the KSE given.
1394  * Use our thread's standin so that we don't have to allocate one.
1395  */
1396 struct thread *
1397 thread_schedule_upcall(struct thread *td, struct kse_upcall *ku)
1398 {
1399 	struct thread *td2;
1400 
1401 	mtx_assert(&sched_lock, MA_OWNED);
1402 
1403 	/*
1404 	 * Schedule an upcall thread on specified kse_upcall,
1405 	 * the kse_upcall must be free.
1406 	 * td must have a spare thread.
1407 	 */
1408 	KASSERT(ku->ku_owner == NULL, ("%s: upcall has owner", __func__));
1409 	if ((td2 = td->td_standin) != NULL) {
1410 		td->td_standin = NULL;
1411 	} else {
1412 		panic("no reserve thread when scheduling an upcall");
1413 		return (NULL);
1414 	}
1415 	CTR3(KTR_PROC, "thread_schedule_upcall: thread %p (pid %d, %s)",
1416 	     td2, td->td_proc->p_pid, td->td_proc->p_comm);
1417 	bcopy(&td->td_startcopy, &td2->td_startcopy,
1418 	    (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
1419 	thread_link(td2, ku->ku_ksegrp);
1420 	/* Let the new thread become owner of the upcall */
1421 	ku->ku_owner   = td2;
1422 	td2->td_upcall = ku;
1423 	td2->td_flags  = TDF_UPCALLING;
1424 	td2->td_kse    = NULL;
1425 	td2->td_state  = TDS_CAN_RUN;
1426 	td2->td_inhibitors = 0;
1427 	setrunqueue(td2);
1428 	return (td2);	/* bogus.. should be a void function */
1429 }
1430 
1431 /*
1432  * Schedule an upcall to notify a KSE process recieved signals.
1433  *
1434  * XXX - Modifying a sigset_t like this is totally bogus.
1435  */
1436 struct thread *
1437 signal_upcall(struct proc *p, int sig)
1438 {
1439 #if 0
1440 	struct thread *td, *td2;
1441 	struct kse *ke;
1442 	sigset_t ss;
1443 	int error;
1444 
1445 #endif
1446 	PROC_LOCK_ASSERT(p, MA_OWNED);
1447 return (NULL);
1448 #if 0
1449 	td = FIRST_THREAD_IN_PROC(p);
1450 	ke = td->td_kse;
1451 	PROC_UNLOCK(p);
1452 	error = copyin(&ke->ke_mailbox->km_sigscaught, &ss, sizeof(sigset_t));
1453 	PROC_LOCK(p);
1454 	if (error)
1455 		return (NULL);
1456 	SIGADDSET(ss, sig);
1457 	PROC_UNLOCK(p);
1458 	error = copyout(&ss, &ke->ke_mailbox->km_sigscaught, sizeof(sigset_t));
1459 	PROC_LOCK(p);
1460 	if (error)
1461 		return (NULL);
1462 	if (td->td_standin == NULL)
1463 		thread_alloc_spare(td, NULL);
1464 	mtx_lock_spin(&sched_lock);
1465 	td2 = thread_schedule_upcall(td, ke); /* Bogus JRE */
1466 	mtx_unlock_spin(&sched_lock);
1467 	return (td2);
1468 #endif
1469 }
1470 
1471 /*
1472  * Setup done on the thread when it enters the kernel.
1473  * XXXKSE Presently only for syscalls but eventually all kernel entries.
1474  */
1475 void
1476 thread_user_enter(struct proc *p, struct thread *td)
1477 {
1478 	struct ksegrp *kg;
1479 	struct kse_upcall *ku;
1480 
1481 	kg = td->td_ksegrp;
1482 	/*
1483 	 * First check that we shouldn't just abort.
1484 	 * But check if we are the single thread first!
1485 	 * XXX p_singlethread not locked, but should be safe.
1486 	 */
1487 	if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1488 		PROC_LOCK(p);
1489 		mtx_lock_spin(&sched_lock);
1490 		thread_exit();
1491 		/* NOTREACHED */
1492 	}
1493 
1494 	/*
1495 	 * If we are doing a syscall in a KSE environment,
1496 	 * note where our mailbox is. There is always the
1497 	 * possibility that we could do this lazily (in kse_reassign()),
1498 	 * but for now do it every time.
1499 	 */
1500 	kg = td->td_ksegrp;
1501 	if (kg->kg_numupcalls) {
1502 		ku = td->td_upcall;
1503 		KASSERT(ku, ("%s: no upcall owned", __func__));
1504 		KASSERT((ku->ku_owner == td), ("%s: wrong owner", __func__));
1505 		td->td_mailbox =
1506 		    (void *)fuword((void *)&ku->ku_mailbox->km_curthread);
1507 		if ((td->td_mailbox == NULL) ||
1508 		    (td->td_mailbox == (void *)-1)) {
1509 		    	/* Don't schedule upcall when blocked */
1510 			td->td_mailbox = NULL;
1511 			mtx_lock_spin(&sched_lock);
1512 			td->td_flags &= ~TDF_CAN_UNBIND;
1513 			mtx_unlock_spin(&sched_lock);
1514 		} else {
1515 			if (p->p_numthreads > max_threads_per_proc) {
1516 				/*
1517 			 	 * Since kernel thread limit reached,
1518 				 * don't schedule upcall anymore.
1519 				 * XXXKSE These code in fact needn't.
1520 				 */
1521 				mtx_lock_spin(&sched_lock);
1522 				td->td_flags &= ~TDF_CAN_UNBIND;
1523 				mtx_unlock_spin(&sched_lock);
1524 			} else {
1525 				if (td->td_standin == NULL)
1526 					thread_alloc_spare(td, NULL);
1527 				mtx_lock_spin(&sched_lock);
1528 				td->td_flags |= TDF_CAN_UNBIND;
1529 				mtx_unlock_spin(&sched_lock);
1530 			}
1531 		}
1532 	}
1533 }
1534 
1535 /*
1536  * The extra work we go through if we are a threaded process when we
1537  * return to userland.
1538  *
1539  * If we are a KSE process and returning to user mode, check for
1540  * extra work to do before we return (e.g. for more syscalls
1541  * to complete first).  If we were in a critical section, we should
1542  * just return to let it finish. Same if we were in the UTS (in
1543  * which case the mailbox's context's busy indicator will be set).
1544  * The only traps we suport will have set the mailbox.
1545  * We will clear it here.
1546  */
1547 int
1548 thread_userret(struct thread *td, struct trapframe *frame)
1549 {
1550 	int error;
1551 	struct kse_upcall *ku;
1552 	struct ksegrp *kg;
1553 	struct proc *p;
1554 	struct timespec ts;
1555 
1556 	p = td->td_proc;
1557 	kg = td->td_ksegrp;
1558 
1559 	/* Nothing to do with non-threaded group/process */
1560 	if (td->td_ksegrp->kg_numupcalls == 0)
1561 		return (0);
1562 
1563 	/*
1564 	 * Stat clock interrupt hit in userland, it
1565 	 * is returning from interrupt, charge thread's
1566 	 * userland time for UTS.
1567 	 */
1568 	if (td->td_flags & TDF_USTATCLOCK) {
1569 		thread_update_usr_ticks(td);
1570 		mtx_lock_spin(&sched_lock);
1571 		td->td_flags &= ~TDF_USTATCLOCK;
1572 		mtx_unlock_spin(&sched_lock);
1573 	}
1574 
1575 	/*
1576 	 * Optimisation:
1577 	 * This thread has not started any upcall.
1578 	 * If there is no work to report other than ourself,
1579 	 * then it can return direct to userland.
1580 	 */
1581 	if (TD_CAN_UNBIND(td)) {
1582 		mtx_lock_spin(&sched_lock);
1583 		td->td_flags &= ~TDF_CAN_UNBIND;
1584 		mtx_unlock_spin(&sched_lock);
1585 		if ((kg->kg_completed == NULL) &&
1586 		    (td->td_upcall->ku_flags & KUF_DOUPCALL) == 0) {
1587 			thread_update_sys_ticks(td);
1588 			td->td_mailbox = NULL;
1589 			return (0);
1590 		}
1591 		error = thread_export_context(td);
1592 		if (error) {
1593 			/*
1594 			 * Failing to do the KSE operation just defaults
1595 			 * back to synchonous operation, so just return from
1596 			 * the syscall.
1597 			 */
1598 			return (0);
1599 		}
1600 		/*
1601 		 * There is something to report, and we own an upcall
1602 		 * strucuture, we can go to userland.
1603 		 * Turn ourself into an upcall thread.
1604 		 */
1605 		mtx_lock_spin(&sched_lock);
1606 		td->td_flags |= TDF_UPCALLING;
1607 		mtx_unlock_spin(&sched_lock);
1608 	} else if (td->td_mailbox) {
1609 		error = thread_export_context(td);
1610 		if (error) {
1611 			PROC_LOCK(td->td_proc);
1612 			mtx_lock_spin(&sched_lock);
1613 			/* possibly upcall with error? */
1614 		} else {
1615 			PROC_LOCK(td->td_proc);
1616 			mtx_lock_spin(&sched_lock);
1617 			/*
1618 			 * There are upcall threads waiting for
1619 			 * work to do, wake one of them up.
1620 			 * XXXKSE Maybe wake all of them up.
1621 			 */
1622 			if (kg->kg_upsleeps)
1623 				wakeup_one(&kg->kg_completed);
1624 		}
1625 		thread_exit();
1626 		/* NOTREACHED */
1627 	}
1628 
1629 	if (td->td_flags & TDF_UPCALLING) {
1630 		KASSERT(TD_CAN_UNBIND(td) == 0, ("upcall thread can unbind"));
1631 		ku = td->td_upcall;
1632 		/*
1633 		 * There is no more work to do and we are going to ride
1634 		 * this thread up to userland as an upcall.
1635 		 * Do the last parts of the setup needed for the upcall.
1636 		 */
1637 		CTR3(KTR_PROC, "userret: upcall thread %p (pid %d, %s)",
1638 		    td, td->td_proc->p_pid, td->td_proc->p_comm);
1639 
1640 		/*
1641 		 * Set user context to the UTS.
1642 		 * Will use Giant in cpu_thread_clean() because it uses
1643 		 * kmem_free(kernel_map, ...)
1644 		 */
1645 		cpu_set_upcall_kse(td, ku);
1646 
1647 		/*
1648 		 * Clear TDF_UPCALLING after set upcall context,
1649 		 * profiling code looks TDF_UPCALLING to avoid account
1650 		 * a wrong user %EIP
1651 		 */
1652 		mtx_lock_spin(&sched_lock);
1653 		td->td_flags &= ~TDF_UPCALLING;
1654 		if (ku->ku_flags & KUF_DOUPCALL)
1655 			ku->ku_flags &= ~KUF_DOUPCALL;
1656 		mtx_unlock_spin(&sched_lock);
1657 
1658 		/*
1659 		 * Unhook the list of completed threads.
1660 		 * anything that completes after this gets to
1661 		 * come in next time.
1662 		 * Put the list of completed thread mailboxes on
1663 		 * this KSE's mailbox.
1664 		 */
1665 		error = thread_link_mboxes(kg, ku);
1666 		if (error)
1667 			goto bad;
1668 
1669 		/*
1670 		 * Set state and clear the  thread mailbox pointer.
1671 		 * From now on we are just a bound outgoing process.
1672 		 * **Problem** userret is often called several times.
1673 		 * it would be nice if this all happenned only on the first
1674 		 * time through. (the scan for extra work etc.)
1675 		 */
1676 		error = suword((caddr_t)&ku->ku_mailbox->km_curthread, 0);
1677 		if (error)
1678 			goto bad;
1679 
1680 		/* Export current system time */
1681 		nanotime(&ts);
1682 		if (copyout(&ts,
1683 		    (caddr_t)&ku->ku_mailbox->km_timeofday, sizeof(ts))) {
1684 			goto bad;
1685 		}
1686 	}
1687 	/*
1688 	 * Optimisation:
1689 	 * Ensure that we have a spare thread available,
1690 	 * for when we re-enter the kernel.
1691 	 */
1692 	if (td->td_standin == NULL)
1693 		thread_alloc_spare(td, NULL);
1694 
1695 	/*
1696 	 * Clear thread mailbox first, then clear system tick count.
1697 	 * The order is important because thread_statclock() use
1698 	 * mailbox pointer to see if it is an userland thread or
1699 	 * an UTS kernel thread.
1700 	 */
1701 	td->td_mailbox = NULL;
1702 	td->td_usticks = 0;
1703 	return (0);
1704 
1705 bad:
1706 	/*
1707 	 * Things are going to be so screwed we should just kill the process.
1708 	 * how do we do that?
1709 	 */
1710 	PROC_LOCK(td->td_proc);
1711 	psignal(td->td_proc, SIGSEGV);
1712 	PROC_UNLOCK(td->td_proc);
1713 	td->td_mailbox = NULL;
1714 	td->td_usticks = 0;
1715 	return (error);	/* go sync */
1716 }
1717 
1718 /*
1719  * Enforce single-threading.
1720  *
1721  * Returns 1 if the caller must abort (another thread is waiting to
1722  * exit the process or similar). Process is locked!
1723  * Returns 0 when you are successfully the only thread running.
1724  * A process has successfully single threaded in the suspend mode when
1725  * There are no threads in user mode. Threads in the kernel must be
1726  * allowed to continue until they get to the user boundary. They may even
1727  * copy out their return values and data before suspending. They may however be
1728  * accellerated in reaching the user boundary as we will wake up
1729  * any sleeping threads that are interruptable. (PCATCH).
1730  */
1731 int
1732 thread_single(int force_exit)
1733 {
1734 	struct thread *td;
1735 	struct thread *td2;
1736 	struct proc *p;
1737 
1738 	td = curthread;
1739 	p = td->td_proc;
1740 	mtx_assert(&Giant, MA_OWNED);
1741 	PROC_LOCK_ASSERT(p, MA_OWNED);
1742 	KASSERT((td != NULL), ("curthread is NULL"));
1743 
1744 	if ((p->p_flag & P_KSES) == 0)
1745 		return (0);
1746 
1747 	/* Is someone already single threading? */
1748 	if (p->p_singlethread)
1749 		return (1);
1750 
1751 	if (force_exit == SINGLE_EXIT) {
1752 		p->p_flag |= P_SINGLE_EXIT;
1753 	} else
1754 		p->p_flag &= ~P_SINGLE_EXIT;
1755 	p->p_flag |= P_STOPPED_SINGLE;
1756 	p->p_singlethread = td;
1757 	/* XXXKSE Which lock protects the below values? */
1758 	while ((p->p_numthreads - p->p_suspcount) != 1) {
1759 		mtx_lock_spin(&sched_lock);
1760 		FOREACH_THREAD_IN_PROC(p, td2) {
1761 			if (td2 == td)
1762 				continue;
1763 			if (TD_IS_INHIBITED(td2)) {
1764 				if (force_exit == SINGLE_EXIT) {
1765 					if (TD_IS_SUSPENDED(td2)) {
1766 						thread_unsuspend_one(td2);
1767 					}
1768 					if (TD_ON_SLEEPQ(td2) &&
1769 					    (td2->td_flags & TDF_SINTR)) {
1770 						if (td2->td_flags & TDF_CVWAITQ)
1771 							cv_abort(td2);
1772 						else
1773 							abortsleep(td2);
1774 					}
1775 				} else {
1776 					if (TD_IS_SUSPENDED(td2))
1777 						continue;
1778 					/*
1779 					 * maybe other inhibitted states too?
1780 					 * XXXKSE Is it totally safe to
1781 					 * suspend a non-interruptable thread?
1782 					 */
1783 					if (td2->td_inhibitors &
1784 					    (TDI_SLEEPING | TDI_SWAPPED))
1785 						thread_suspend_one(td2);
1786 				}
1787 			}
1788 		}
1789 		/*
1790 		 * Maybe we suspended some threads.. was it enough?
1791 		 */
1792 		if ((p->p_numthreads - p->p_suspcount) == 1) {
1793 			mtx_unlock_spin(&sched_lock);
1794 			break;
1795 		}
1796 
1797 		/*
1798 		 * Wake us up when everyone else has suspended.
1799 		 * In the mean time we suspend as well.
1800 		 */
1801 		thread_suspend_one(td);
1802 		mtx_unlock(&Giant);
1803 		PROC_UNLOCK(p);
1804 		p->p_stats->p_ru.ru_nvcsw++;
1805 		mi_switch();
1806 		mtx_unlock_spin(&sched_lock);
1807 		mtx_lock(&Giant);
1808 		PROC_LOCK(p);
1809 	}
1810 	if (force_exit == SINGLE_EXIT) {
1811 		if (td->td_upcall) {
1812 			mtx_lock_spin(&sched_lock);
1813 			upcall_remove(td);
1814 			mtx_unlock_spin(&sched_lock);
1815 		}
1816 		kse_purge(p, td);
1817 	}
1818 	return (0);
1819 }
1820 
1821 /*
1822  * Called in from locations that can safely check to see
1823  * whether we have to suspend or at least throttle for a
1824  * single-thread event (e.g. fork).
1825  *
1826  * Such locations include userret().
1827  * If the "return_instead" argument is non zero, the thread must be able to
1828  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
1829  *
1830  * The 'return_instead' argument tells the function if it may do a
1831  * thread_exit() or suspend, or whether the caller must abort and back
1832  * out instead.
1833  *
1834  * If the thread that set the single_threading request has set the
1835  * P_SINGLE_EXIT bit in the process flags then this call will never return
1836  * if 'return_instead' is false, but will exit.
1837  *
1838  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
1839  *---------------+--------------------+---------------------
1840  *       0       | returns 0          |   returns 0 or 1
1841  *               | when ST ends       |   immediatly
1842  *---------------+--------------------+---------------------
1843  *       1       | thread exits       |   returns 1
1844  *               |                    |  immediatly
1845  * 0 = thread_exit() or suspension ok,
1846  * other = return error instead of stopping the thread.
1847  *
1848  * While a full suspension is under effect, even a single threading
1849  * thread would be suspended if it made this call (but it shouldn't).
1850  * This call should only be made from places where
1851  * thread_exit() would be safe as that may be the outcome unless
1852  * return_instead is set.
1853  */
1854 int
1855 thread_suspend_check(int return_instead)
1856 {
1857 	struct thread *td;
1858 	struct proc *p;
1859 	struct ksegrp *kg;
1860 
1861 	td = curthread;
1862 	p = td->td_proc;
1863 	kg = td->td_ksegrp;
1864 	PROC_LOCK_ASSERT(p, MA_OWNED);
1865 	while (P_SHOULDSTOP(p)) {
1866 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1867 			KASSERT(p->p_singlethread != NULL,
1868 			    ("singlethread not set"));
1869 			/*
1870 			 * The only suspension in action is a
1871 			 * single-threading. Single threader need not stop.
1872 			 * XXX Should be safe to access unlocked
1873 			 * as it can only be set to be true by us.
1874 			 */
1875 			if (p->p_singlethread == td)
1876 				return (0);	/* Exempt from stopping. */
1877 		}
1878 		if (return_instead)
1879 			return (1);
1880 
1881 		/*
1882 		 * If the process is waiting for us to exit,
1883 		 * this thread should just suicide.
1884 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1885 		 */
1886 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1887 			mtx_lock_spin(&sched_lock);
1888 			while (mtx_owned(&Giant))
1889 				mtx_unlock(&Giant);
1890 			thread_exit();
1891 		}
1892 
1893 		/*
1894 		 * When a thread suspends, it just
1895 		 * moves to the processes's suspend queue
1896 		 * and stays there.
1897 		 */
1898 		mtx_lock_spin(&sched_lock);
1899 		if ((p->p_flag & P_STOPPED_SIG) &&
1900 		    (p->p_suspcount+1 == p->p_numthreads)) {
1901 			mtx_unlock_spin(&sched_lock);
1902 			PROC_LOCK(p->p_pptr);
1903 			if ((p->p_pptr->p_procsig->ps_flag &
1904 				PS_NOCLDSTOP) == 0) {
1905 				psignal(p->p_pptr, SIGCHLD);
1906 			}
1907 			PROC_UNLOCK(p->p_pptr);
1908 			mtx_lock_spin(&sched_lock);
1909 		}
1910 		mtx_assert(&Giant, MA_NOTOWNED);
1911 		thread_suspend_one(td);
1912 		PROC_UNLOCK(p);
1913 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1914 			if (p->p_numthreads == p->p_suspcount) {
1915 				thread_unsuspend_one(p->p_singlethread);
1916 			}
1917 		}
1918 		p->p_stats->p_ru.ru_nivcsw++;
1919 		mi_switch();
1920 		mtx_unlock_spin(&sched_lock);
1921 		PROC_LOCK(p);
1922 	}
1923 	return (0);
1924 }
1925 
1926 void
1927 thread_suspend_one(struct thread *td)
1928 {
1929 	struct proc *p = td->td_proc;
1930 
1931 	mtx_assert(&sched_lock, MA_OWNED);
1932 	p->p_suspcount++;
1933 	TD_SET_SUSPENDED(td);
1934 	TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq);
1935 	/*
1936 	 * Hack: If we are suspending but are on the sleep queue
1937 	 * then we are in msleep or the cv equivalent. We
1938 	 * want to look like we have two Inhibitors.
1939 	 * May already be set.. doesn't matter.
1940 	 */
1941 	if (TD_ON_SLEEPQ(td))
1942 		TD_SET_SLEEPING(td);
1943 }
1944 
1945 void
1946 thread_unsuspend_one(struct thread *td)
1947 {
1948 	struct proc *p = td->td_proc;
1949 
1950 	mtx_assert(&sched_lock, MA_OWNED);
1951 	TAILQ_REMOVE(&p->p_suspended, td, td_runq);
1952 	TD_CLR_SUSPENDED(td);
1953 	p->p_suspcount--;
1954 	setrunnable(td);
1955 }
1956 
1957 /*
1958  * Allow all threads blocked by single threading to continue running.
1959  */
1960 void
1961 thread_unsuspend(struct proc *p)
1962 {
1963 	struct thread *td;
1964 
1965 	mtx_assert(&sched_lock, MA_OWNED);
1966 	PROC_LOCK_ASSERT(p, MA_OWNED);
1967 	if (!P_SHOULDSTOP(p)) {
1968 		while (( td = TAILQ_FIRST(&p->p_suspended))) {
1969 			thread_unsuspend_one(td);
1970 		}
1971 	} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
1972 	    (p->p_numthreads == p->p_suspcount)) {
1973 		/*
1974 		 * Stopping everything also did the job for the single
1975 		 * threading request. Now we've downgraded to single-threaded,
1976 		 * let it continue.
1977 		 */
1978 		thread_unsuspend_one(p->p_singlethread);
1979 	}
1980 }
1981 
1982 void
1983 thread_single_end(void)
1984 {
1985 	struct thread *td;
1986 	struct proc *p;
1987 
1988 	td = curthread;
1989 	p = td->td_proc;
1990 	PROC_LOCK_ASSERT(p, MA_OWNED);
1991 	p->p_flag &= ~P_STOPPED_SINGLE;
1992 	p->p_singlethread = NULL;
1993 	/*
1994 	 * If there are other threads they mey now run,
1995 	 * unless of course there is a blanket 'stop order'
1996 	 * on the process. The single threader must be allowed
1997 	 * to continue however as this is a bad place to stop.
1998 	 */
1999 	if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
2000 		mtx_lock_spin(&sched_lock);
2001 		while (( td = TAILQ_FIRST(&p->p_suspended))) {
2002 			thread_unsuspend_one(td);
2003 		}
2004 		mtx_unlock_spin(&sched_lock);
2005 	}
2006 }
2007 
2008 
2009