1 /* 2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice(s), this list of conditions and the following disclaimer as 10 * the first lines of this file unmodified other than the possible 11 * addition of one or more copyright notices. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice(s), this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 19 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 26 * DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/kernel.h> 34 #include <sys/lock.h> 35 #include <sys/malloc.h> 36 #include <sys/mutex.h> 37 #include <sys/proc.h> 38 #include <sys/smp.h> 39 #include <sys/sysctl.h> 40 #include <sys/sysproto.h> 41 #include <sys/filedesc.h> 42 #include <sys/sched.h> 43 #include <sys/signalvar.h> 44 #include <sys/sx.h> 45 #include <sys/tty.h> 46 #include <sys/user.h> 47 #include <sys/jail.h> 48 #include <sys/kse.h> 49 #include <sys/ktr.h> 50 #include <sys/ucontext.h> 51 52 #include <vm/vm.h> 53 #include <vm/vm_object.h> 54 #include <vm/pmap.h> 55 #include <vm/uma.h> 56 #include <vm/vm_map.h> 57 58 #include <machine/frame.h> 59 60 /* 61 * KSEGRP related storage. 62 */ 63 static uma_zone_t ksegrp_zone; 64 static uma_zone_t kse_zone; 65 static uma_zone_t thread_zone; 66 static uma_zone_t upcall_zone; 67 68 /* DEBUG ONLY */ 69 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation"); 70 static int thread_debug = 0; 71 SYSCTL_INT(_kern_threads, OID_AUTO, debug, CTLFLAG_RW, 72 &thread_debug, 0, "thread debug"); 73 74 static int max_threads_per_proc = 30; 75 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW, 76 &max_threads_per_proc, 0, "Limit on threads per proc"); 77 78 static int max_groups_per_proc = 5; 79 SYSCTL_INT(_kern_threads, OID_AUTO, max_groups_per_proc, CTLFLAG_RW, 80 &max_groups_per_proc, 0, "Limit on thread groups per proc"); 81 82 static int virtual_cpu; 83 84 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start)) 85 86 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); 87 TAILQ_HEAD(, kse) zombie_kses = TAILQ_HEAD_INITIALIZER(zombie_kses); 88 TAILQ_HEAD(, ksegrp) zombie_ksegrps = TAILQ_HEAD_INITIALIZER(zombie_ksegrps); 89 TAILQ_HEAD(, kse_upcall) zombie_upcalls = 90 TAILQ_HEAD_INITIALIZER(zombie_upcalls); 91 struct mtx kse_zombie_lock; 92 MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN); 93 94 static void kse_purge(struct proc *p, struct thread *td); 95 static void kse_purge_group(struct thread *td); 96 static int thread_update_usr_ticks(struct thread *td); 97 static int thread_update_sys_ticks(struct thread *td); 98 static void thread_alloc_spare(struct thread *td, struct thread *spare); 99 100 static int 101 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS) 102 { 103 int error, new_val; 104 int def_val; 105 106 #ifdef SMP 107 def_val = mp_ncpus; 108 #else 109 def_val = 1; 110 #endif 111 if (virtual_cpu == 0) 112 new_val = def_val; 113 else 114 new_val = virtual_cpu; 115 error = sysctl_handle_int(oidp, &new_val, 0, req); 116 if (error != 0 || req->newptr == NULL) 117 return (error); 118 if (new_val < 0) 119 return (EINVAL); 120 virtual_cpu = new_val; 121 return (0); 122 } 123 124 /* DEBUG ONLY */ 125 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW, 126 0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I", 127 "debug virtual cpus"); 128 129 /* 130 * Prepare a thread for use. 131 */ 132 static void 133 thread_ctor(void *mem, int size, void *arg) 134 { 135 struct thread *td; 136 137 td = (struct thread *)mem; 138 td->td_state = TDS_INACTIVE; 139 } 140 141 /* 142 * Reclaim a thread after use. 143 */ 144 static void 145 thread_dtor(void *mem, int size, void *arg) 146 { 147 struct thread *td; 148 149 td = (struct thread *)mem; 150 151 #ifdef INVARIANTS 152 /* Verify that this thread is in a safe state to free. */ 153 switch (td->td_state) { 154 case TDS_INHIBITED: 155 case TDS_RUNNING: 156 case TDS_CAN_RUN: 157 case TDS_RUNQ: 158 /* 159 * We must never unlink a thread that is in one of 160 * these states, because it is currently active. 161 */ 162 panic("bad state for thread unlinking"); 163 /* NOTREACHED */ 164 case TDS_INACTIVE: 165 break; 166 default: 167 panic("bad thread state"); 168 /* NOTREACHED */ 169 } 170 #endif 171 } 172 173 /* 174 * Initialize type-stable parts of a thread (when newly created). 175 */ 176 static void 177 thread_init(void *mem, int size) 178 { 179 struct thread *td; 180 181 td = (struct thread *)mem; 182 mtx_lock(&Giant); 183 pmap_new_thread(td, 0); 184 mtx_unlock(&Giant); 185 cpu_thread_setup(td); 186 td->td_sched = (struct td_sched *)&td[1]; 187 } 188 189 /* 190 * Tear down type-stable parts of a thread (just before being discarded). 191 */ 192 static void 193 thread_fini(void *mem, int size) 194 { 195 struct thread *td; 196 197 td = (struct thread *)mem; 198 pmap_dispose_thread(td); 199 } 200 201 /* 202 * Initialize type-stable parts of a kse (when newly created). 203 */ 204 static void 205 kse_init(void *mem, int size) 206 { 207 struct kse *ke; 208 209 ke = (struct kse *)mem; 210 ke->ke_sched = (struct ke_sched *)&ke[1]; 211 } 212 213 /* 214 * Initialize type-stable parts of a ksegrp (when newly created). 215 */ 216 static void 217 ksegrp_init(void *mem, int size) 218 { 219 struct ksegrp *kg; 220 221 kg = (struct ksegrp *)mem; 222 kg->kg_sched = (struct kg_sched *)&kg[1]; 223 } 224 225 /* 226 * KSE is linked into kse group. 227 */ 228 void 229 kse_link(struct kse *ke, struct ksegrp *kg) 230 { 231 struct proc *p = kg->kg_proc; 232 233 TAILQ_INSERT_HEAD(&kg->kg_kseq, ke, ke_kglist); 234 kg->kg_kses++; 235 ke->ke_state = KES_UNQUEUED; 236 ke->ke_proc = p; 237 ke->ke_ksegrp = kg; 238 ke->ke_thread = NULL; 239 ke->ke_oncpu = NOCPU; 240 ke->ke_flags = 0; 241 } 242 243 void 244 kse_unlink(struct kse *ke) 245 { 246 struct ksegrp *kg; 247 248 mtx_assert(&sched_lock, MA_OWNED); 249 kg = ke->ke_ksegrp; 250 TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist); 251 if (ke->ke_state == KES_IDLE) { 252 TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist); 253 kg->kg_idle_kses--; 254 } 255 if (--kg->kg_kses == 0) 256 ksegrp_unlink(kg); 257 /* 258 * Aggregate stats from the KSE 259 */ 260 kse_stash(ke); 261 } 262 263 void 264 ksegrp_link(struct ksegrp *kg, struct proc *p) 265 { 266 267 TAILQ_INIT(&kg->kg_threads); 268 TAILQ_INIT(&kg->kg_runq); /* links with td_runq */ 269 TAILQ_INIT(&kg->kg_slpq); /* links with td_runq */ 270 TAILQ_INIT(&kg->kg_kseq); /* all kses in ksegrp */ 271 TAILQ_INIT(&kg->kg_iq); /* all idle kses in ksegrp */ 272 TAILQ_INIT(&kg->kg_upcalls); /* all upcall structure in ksegrp */ 273 kg->kg_proc = p; 274 /* 275 * the following counters are in the -zero- section 276 * and may not need clearing 277 */ 278 kg->kg_numthreads = 0; 279 kg->kg_runnable = 0; 280 kg->kg_kses = 0; 281 kg->kg_runq_kses = 0; /* XXXKSE change name */ 282 kg->kg_idle_kses = 0; 283 kg->kg_numupcalls = 0; 284 /* link it in now that it's consistent */ 285 p->p_numksegrps++; 286 TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp); 287 } 288 289 void 290 ksegrp_unlink(struct ksegrp *kg) 291 { 292 struct proc *p; 293 294 mtx_assert(&sched_lock, MA_OWNED); 295 KASSERT((kg->kg_numthreads == 0), ("ksegrp_unlink: residual threads")); 296 KASSERT((kg->kg_kses == 0), ("ksegrp_unlink: residual kses")); 297 KASSERT((kg->kg_numupcalls == 0), ("ksegrp_unlink: residual upcalls")); 298 299 p = kg->kg_proc; 300 TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp); 301 p->p_numksegrps--; 302 /* 303 * Aggregate stats from the KSE 304 */ 305 ksegrp_stash(kg); 306 } 307 308 struct kse_upcall * 309 upcall_alloc(void) 310 { 311 struct kse_upcall *ku; 312 313 ku = uma_zalloc(upcall_zone, 0); 314 bzero(ku, sizeof(*ku)); 315 return (ku); 316 } 317 318 void 319 upcall_free(struct kse_upcall *ku) 320 { 321 322 uma_zfree(upcall_zone, ku); 323 } 324 325 void 326 upcall_link(struct kse_upcall *ku, struct ksegrp *kg) 327 { 328 329 mtx_assert(&sched_lock, MA_OWNED); 330 TAILQ_INSERT_TAIL(&kg->kg_upcalls, ku, ku_link); 331 ku->ku_ksegrp = kg; 332 kg->kg_numupcalls++; 333 } 334 335 void 336 upcall_unlink(struct kse_upcall *ku) 337 { 338 struct ksegrp *kg = ku->ku_ksegrp; 339 340 mtx_assert(&sched_lock, MA_OWNED); 341 KASSERT(ku->ku_owner == NULL, ("%s: have owner", __func__)); 342 TAILQ_REMOVE(&kg->kg_upcalls, ku, ku_link); 343 kg->kg_numupcalls--; 344 upcall_stash(ku); 345 } 346 347 void 348 upcall_remove(struct thread *td) 349 { 350 351 if (td->td_upcall) { 352 td->td_upcall->ku_owner = NULL; 353 upcall_unlink(td->td_upcall); 354 td->td_upcall = 0; 355 } 356 } 357 358 /* 359 * For a newly created process, 360 * link up all the structures and its initial threads etc. 361 */ 362 void 363 proc_linkup(struct proc *p, struct ksegrp *kg, 364 struct kse *ke, struct thread *td) 365 { 366 367 TAILQ_INIT(&p->p_ksegrps); /* all ksegrps in proc */ 368 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 369 TAILQ_INIT(&p->p_suspended); /* Threads suspended */ 370 p->p_numksegrps = 0; 371 p->p_numthreads = 0; 372 373 ksegrp_link(kg, p); 374 kse_link(ke, kg); 375 thread_link(td, kg); 376 } 377 378 /* 379 struct kse_thr_interrupt_args { 380 struct kse_thr_mailbox * tmbx; 381 }; 382 */ 383 int 384 kse_thr_interrupt(struct thread *td, struct kse_thr_interrupt_args *uap) 385 { 386 struct proc *p; 387 struct thread *td2; 388 389 p = td->td_proc; 390 if (!(p->p_flag & P_KSES) || (uap->tmbx == NULL)) 391 return (EINVAL); 392 mtx_lock_spin(&sched_lock); 393 FOREACH_THREAD_IN_PROC(p, td2) { 394 if (td2->td_mailbox == uap->tmbx) { 395 td2->td_flags |= TDF_INTERRUPT; 396 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR)) { 397 if (td2->td_flags & TDF_CVWAITQ) 398 cv_abort(td2); 399 else 400 abortsleep(td2); 401 } 402 mtx_unlock_spin(&sched_lock); 403 return (0); 404 } 405 } 406 mtx_unlock_spin(&sched_lock); 407 return (ESRCH); 408 } 409 410 /* 411 struct kse_exit_args { 412 register_t dummy; 413 }; 414 */ 415 int 416 kse_exit(struct thread *td, struct kse_exit_args *uap) 417 { 418 struct proc *p; 419 struct ksegrp *kg; 420 struct kse *ke; 421 422 p = td->td_proc; 423 /* 424 * Only UTS can call the syscall and current group 425 * should be a threaded group. 426 */ 427 if ((td->td_mailbox != NULL) || (td->td_ksegrp->kg_numupcalls == 0)) 428 return (EINVAL); 429 KASSERT((td->td_upcall != NULL), ("%s: not own an upcall", __func__)); 430 431 kg = td->td_ksegrp; 432 /* Serialize removing upcall */ 433 PROC_LOCK(p); 434 mtx_lock_spin(&sched_lock); 435 if ((kg->kg_numupcalls == 1) && (kg->kg_numthreads > 1)) { 436 mtx_unlock_spin(&sched_lock); 437 PROC_UNLOCK(p); 438 return (EDEADLK); 439 } 440 ke = td->td_kse; 441 upcall_remove(td); 442 if (p->p_numthreads == 1) { 443 kse_purge(p, td); 444 p->p_flag &= ~P_KSES; 445 mtx_unlock_spin(&sched_lock); 446 PROC_UNLOCK(p); 447 } else { 448 if (kg->kg_numthreads == 1) { /* Shutdown a group */ 449 kse_purge_group(td); 450 ke->ke_flags |= KEF_EXIT; 451 } 452 thread_exit(); 453 /* NOTREACHED */ 454 } 455 return (0); 456 } 457 458 /* 459 * Either becomes an upcall or waits for an awakening event and 460 * then becomes an upcall. Only error cases return. 461 */ 462 /* 463 struct kse_release_args { 464 register_t dummy; 465 }; 466 */ 467 int 468 kse_release(struct thread *td, struct kse_release_args *uap) 469 { 470 struct proc *p; 471 struct ksegrp *kg; 472 473 p = td->td_proc; 474 kg = td->td_ksegrp; 475 /* 476 * Only UTS can call the syscall and current group 477 * should be a threaded group. 478 */ 479 if ((td->td_mailbox != NULL) || (td->td_ksegrp->kg_numupcalls == 0)) 480 return (EINVAL); 481 KASSERT((td->td_upcall != NULL), ("%s: not own an upcall", __func__)); 482 483 PROC_LOCK(p); 484 mtx_lock_spin(&sched_lock); 485 /* Change OURSELF to become an upcall. */ 486 td->td_flags = TDF_UPCALLING; 487 if ((td->td_upcall->ku_flags & KUF_DOUPCALL) == 0 && 488 (kg->kg_completed == NULL)) { 489 kg->kg_upsleeps++; 490 mtx_unlock_spin(&sched_lock); 491 msleep(&kg->kg_completed, &p->p_mtx, PPAUSE|PCATCH, "ksepause", 492 NULL); 493 kg->kg_upsleeps--; 494 PROC_UNLOCK(p); 495 } else { 496 mtx_unlock_spin(&sched_lock); 497 PROC_UNLOCK(p); 498 } 499 return (0); 500 } 501 502 /* struct kse_wakeup_args { 503 struct kse_mailbox *mbx; 504 }; */ 505 int 506 kse_wakeup(struct thread *td, struct kse_wakeup_args *uap) 507 { 508 struct proc *p; 509 struct ksegrp *kg; 510 struct kse_upcall *ku; 511 struct thread *td2; 512 513 p = td->td_proc; 514 td2 = NULL; 515 ku = NULL; 516 /* KSE-enabled processes only, please. */ 517 if (!(p->p_flag & P_KSES)) 518 return (EINVAL); 519 520 PROC_LOCK(p); 521 mtx_lock_spin(&sched_lock); 522 if (uap->mbx) { 523 FOREACH_KSEGRP_IN_PROC(p, kg) { 524 FOREACH_UPCALL_IN_GROUP(kg, ku) { 525 if (ku->ku_mailbox == uap->mbx) 526 break; 527 } 528 if (ku) 529 break; 530 } 531 } else { 532 kg = td->td_ksegrp; 533 if (kg->kg_upsleeps) { 534 wakeup_one(&kg->kg_completed); 535 mtx_unlock_spin(&sched_lock); 536 PROC_UNLOCK(p); 537 return (0); 538 } 539 ku = TAILQ_FIRST(&kg->kg_upcalls); 540 } 541 if (ku) { 542 if ((td2 = ku->ku_owner) == NULL) { 543 panic("%s: no owner", __func__); 544 } else if (TD_ON_SLEEPQ(td2) && 545 (td2->td_wchan == &kg->kg_completed)) { 546 abortsleep(td2); 547 } else { 548 ku->ku_flags |= KUF_DOUPCALL; 549 } 550 mtx_unlock_spin(&sched_lock); 551 PROC_UNLOCK(p); 552 return (0); 553 } 554 mtx_unlock_spin(&sched_lock); 555 PROC_UNLOCK(p); 556 return (ESRCH); 557 } 558 559 /* 560 * No new KSEG: first call: use current KSE, don't schedule an upcall 561 * All other situations, do allocate max new KSEs and schedule an upcall. 562 */ 563 /* struct kse_create_args { 564 struct kse_mailbox *mbx; 565 int newgroup; 566 }; */ 567 int 568 kse_create(struct thread *td, struct kse_create_args *uap) 569 { 570 struct kse *newke; 571 struct ksegrp *newkg; 572 struct ksegrp *kg; 573 struct proc *p; 574 struct kse_mailbox mbx; 575 struct kse_upcall *newku; 576 int err, ncpus; 577 578 p = td->td_proc; 579 if ((err = copyin(uap->mbx, &mbx, sizeof(mbx)))) 580 return (err); 581 582 /* Too bad, why hasn't kernel always a cpu counter !? */ 583 #ifdef SMP 584 ncpus = mp_ncpus; 585 #else 586 ncpus = 1; 587 #endif 588 if (thread_debug && virtual_cpu != 0) 589 ncpus = virtual_cpu; 590 591 /* Easier to just set it than to test and set */ 592 p->p_flag |= P_KSES; 593 kg = td->td_ksegrp; 594 if (uap->newgroup) { 595 /* Have race condition but it is cheap */ 596 if (p->p_numksegrps >= max_groups_per_proc) 597 return (EPROCLIM); 598 /* 599 * If we want a new KSEGRP it doesn't matter whether 600 * we have already fired up KSE mode before or not. 601 * We put the process in KSE mode and create a new KSEGRP. 602 */ 603 newkg = ksegrp_alloc(); 604 bzero(&newkg->kg_startzero, RANGEOF(struct ksegrp, 605 kg_startzero, kg_endzero)); 606 bcopy(&kg->kg_startcopy, &newkg->kg_startcopy, 607 RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy)); 608 mtx_lock_spin(&sched_lock); 609 ksegrp_link(newkg, p); 610 if (p->p_numksegrps >= max_groups_per_proc) { 611 ksegrp_unlink(newkg); 612 mtx_unlock_spin(&sched_lock); 613 return (EPROCLIM); 614 } 615 mtx_unlock_spin(&sched_lock); 616 } else { 617 newkg = kg; 618 } 619 620 /* 621 * Creating upcalls more than number of physical cpu does 622 * not help performance. 623 */ 624 if (newkg->kg_numupcalls >= ncpus) 625 return (EPROCLIM); 626 627 if (newkg->kg_numupcalls == 0) { 628 /* 629 * Initialize KSE group, optimized for MP. 630 * Create KSEs as many as physical cpus, this increases 631 * concurrent even if userland is not MP safe and can only run 632 * on single CPU (for early version of libpthread, it is true). 633 * In ideal world, every physical cpu should execute a thread. 634 * If there is enough KSEs, threads in kernel can be 635 * executed parallel on different cpus with full speed, 636 * Concurrent in kernel shouldn't be restricted by number of 637 * upcalls userland provides. 638 * Adding more upcall structures only increases concurrent 639 * in userland. 640 * Highest performance configuration is: 641 * N kses = N upcalls = N phyiscal cpus 642 */ 643 while (newkg->kg_kses < ncpus) { 644 newke = kse_alloc(); 645 bzero(&newke->ke_startzero, RANGEOF(struct kse, 646 ke_startzero, ke_endzero)); 647 #if 0 648 mtx_lock_spin(&sched_lock); 649 bcopy(&ke->ke_startcopy, &newke->ke_startcopy, 650 RANGEOF(struct kse, ke_startcopy, ke_endcopy)); 651 mtx_unlock_spin(&sched_lock); 652 #endif 653 mtx_lock_spin(&sched_lock); 654 kse_link(newke, newkg); 655 if (p->p_sflag & PS_NEEDSIGCHK) 656 newke->ke_flags |= KEF_ASTPENDING; 657 /* Add engine */ 658 kse_reassign(newke); 659 mtx_unlock_spin(&sched_lock); 660 } 661 } 662 newku = upcall_alloc(); 663 newku->ku_mailbox = uap->mbx; 664 newku->ku_func = mbx.km_func; 665 bcopy(&mbx.km_stack, &newku->ku_stack, sizeof(stack_t)); 666 667 /* For the first call this may not have been set */ 668 if (td->td_standin == NULL) 669 thread_alloc_spare(td, NULL); 670 671 mtx_lock_spin(&sched_lock); 672 if (newkg->kg_numupcalls >= ncpus) { 673 upcall_free(newku); 674 mtx_unlock_spin(&sched_lock); 675 return (EPROCLIM); 676 } 677 upcall_link(newku, newkg); 678 679 /* 680 * Each upcall structure has an owner thread, find which 681 * one owns it. 682 */ 683 if (uap->newgroup) { 684 /* 685 * Because new ksegrp hasn't thread, 686 * create an initial upcall thread to own it. 687 */ 688 thread_schedule_upcall(td, newku); 689 } else { 690 /* 691 * If current thread hasn't an upcall structure, 692 * just assign the upcall to it. 693 */ 694 if (td->td_upcall == NULL) { 695 newku->ku_owner = td; 696 td->td_upcall = newku; 697 } else { 698 /* 699 * Create a new upcall thread to own it. 700 */ 701 thread_schedule_upcall(td, newku); 702 } 703 } 704 mtx_unlock_spin(&sched_lock); 705 return (0); 706 } 707 708 /* 709 * Fill a ucontext_t with a thread's context information. 710 * 711 * This is an analogue to getcontext(3). 712 */ 713 void 714 thread_getcontext(struct thread *td, ucontext_t *uc) 715 { 716 717 /* 718 * XXX this is declared in a MD include file, i386/include/ucontext.h but 719 * is used in MI code. 720 */ 721 #ifdef __i386__ 722 get_mcontext(td, &uc->uc_mcontext); 723 #endif 724 uc->uc_sigmask = td->td_proc->p_sigmask; 725 } 726 727 /* 728 * Set a thread's context from a ucontext_t. 729 * 730 * This is an analogue to setcontext(3). 731 */ 732 int 733 thread_setcontext(struct thread *td, ucontext_t *uc) 734 { 735 int ret; 736 737 /* 738 * XXX this is declared in a MD include file, i386/include/ucontext.h but 739 * is used in MI code. 740 */ 741 #ifdef __i386__ 742 ret = set_mcontext(td, &uc->uc_mcontext); 743 #else 744 ret = ENOSYS; 745 #endif 746 if (ret == 0) { 747 SIG_CANTMASK(uc->uc_sigmask); 748 PROC_LOCK(td->td_proc); 749 td->td_proc->p_sigmask = uc->uc_sigmask; 750 PROC_UNLOCK(td->td_proc); 751 } 752 return (ret); 753 } 754 755 /* 756 * Initialize global thread allocation resources. 757 */ 758 void 759 threadinit(void) 760 { 761 762 #ifndef __ia64__ 763 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 764 thread_ctor, thread_dtor, thread_init, thread_fini, 765 UMA_ALIGN_CACHE, 0); 766 #else 767 /* 768 * XXX the ia64 kstack allocator is really lame and is at the mercy 769 * of contigmallloc(). This hackery is to pre-construct a whole 770 * pile of thread structures with associated kernel stacks early 771 * in the system startup while contigmalloc() still works. Once we 772 * have them, keep them. Sigh. 773 */ 774 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 775 thread_ctor, thread_dtor, thread_init, thread_fini, 776 UMA_ALIGN_CACHE, UMA_ZONE_NOFREE); 777 uma_prealloc(thread_zone, 512); /* XXX arbitary */ 778 #endif 779 ksegrp_zone = uma_zcreate("KSEGRP", sched_sizeof_ksegrp(), 780 NULL, NULL, ksegrp_init, NULL, 781 UMA_ALIGN_CACHE, 0); 782 kse_zone = uma_zcreate("KSE", sched_sizeof_kse(), 783 NULL, NULL, kse_init, NULL, 784 UMA_ALIGN_CACHE, 0); 785 upcall_zone = uma_zcreate("UPCALL", sizeof(struct kse_upcall), 786 NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); 787 } 788 789 /* 790 * Stash an embarasingly extra thread into the zombie thread queue. 791 */ 792 void 793 thread_stash(struct thread *td) 794 { 795 mtx_lock_spin(&kse_zombie_lock); 796 TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq); 797 mtx_unlock_spin(&kse_zombie_lock); 798 } 799 800 /* 801 * Stash an embarasingly extra kse into the zombie kse queue. 802 */ 803 void 804 kse_stash(struct kse *ke) 805 { 806 mtx_lock_spin(&kse_zombie_lock); 807 TAILQ_INSERT_HEAD(&zombie_kses, ke, ke_procq); 808 mtx_unlock_spin(&kse_zombie_lock); 809 } 810 811 /* 812 * Stash an embarasingly extra upcall into the zombie upcall queue. 813 */ 814 815 void 816 upcall_stash(struct kse_upcall *ku) 817 { 818 mtx_lock_spin(&kse_zombie_lock); 819 TAILQ_INSERT_HEAD(&zombie_upcalls, ku, ku_link); 820 mtx_unlock_spin(&kse_zombie_lock); 821 } 822 823 /* 824 * Stash an embarasingly extra ksegrp into the zombie ksegrp queue. 825 */ 826 void 827 ksegrp_stash(struct ksegrp *kg) 828 { 829 mtx_lock_spin(&kse_zombie_lock); 830 TAILQ_INSERT_HEAD(&zombie_ksegrps, kg, kg_ksegrp); 831 mtx_unlock_spin(&kse_zombie_lock); 832 } 833 834 /* 835 * Reap zombie kse resource. 836 */ 837 void 838 thread_reap(void) 839 { 840 struct thread *td_first, *td_next; 841 struct kse *ke_first, *ke_next; 842 struct ksegrp *kg_first, * kg_next; 843 struct kse_upcall *ku_first, *ku_next; 844 845 /* 846 * Don't even bother to lock if none at this instant, 847 * we really don't care about the next instant.. 848 */ 849 if ((!TAILQ_EMPTY(&zombie_threads)) 850 || (!TAILQ_EMPTY(&zombie_kses)) 851 || (!TAILQ_EMPTY(&zombie_ksegrps)) 852 || (!TAILQ_EMPTY(&zombie_upcalls))) { 853 mtx_lock_spin(&kse_zombie_lock); 854 td_first = TAILQ_FIRST(&zombie_threads); 855 ke_first = TAILQ_FIRST(&zombie_kses); 856 kg_first = TAILQ_FIRST(&zombie_ksegrps); 857 ku_first = TAILQ_FIRST(&zombie_upcalls); 858 if (td_first) 859 TAILQ_INIT(&zombie_threads); 860 if (ke_first) 861 TAILQ_INIT(&zombie_kses); 862 if (kg_first) 863 TAILQ_INIT(&zombie_ksegrps); 864 if (ku_first) 865 TAILQ_INIT(&zombie_upcalls); 866 mtx_unlock_spin(&kse_zombie_lock); 867 while (td_first) { 868 td_next = TAILQ_NEXT(td_first, td_runq); 869 if (td_first->td_ucred) 870 crfree(td_first->td_ucred); 871 thread_free(td_first); 872 td_first = td_next; 873 } 874 while (ke_first) { 875 ke_next = TAILQ_NEXT(ke_first, ke_procq); 876 kse_free(ke_first); 877 ke_first = ke_next; 878 } 879 while (kg_first) { 880 kg_next = TAILQ_NEXT(kg_first, kg_ksegrp); 881 ksegrp_free(kg_first); 882 kg_first = kg_next; 883 } 884 while (ku_first) { 885 ku_next = TAILQ_NEXT(ku_first, ku_link); 886 upcall_free(ku_first); 887 ku_first = ku_next; 888 } 889 } 890 } 891 892 /* 893 * Allocate a ksegrp. 894 */ 895 struct ksegrp * 896 ksegrp_alloc(void) 897 { 898 return (uma_zalloc(ksegrp_zone, 0)); 899 } 900 901 /* 902 * Allocate a kse. 903 */ 904 struct kse * 905 kse_alloc(void) 906 { 907 return (uma_zalloc(kse_zone, 0)); 908 } 909 910 /* 911 * Allocate a thread. 912 */ 913 struct thread * 914 thread_alloc(void) 915 { 916 thread_reap(); /* check if any zombies to get */ 917 return (uma_zalloc(thread_zone, 0)); 918 } 919 920 /* 921 * Deallocate a ksegrp. 922 */ 923 void 924 ksegrp_free(struct ksegrp *td) 925 { 926 uma_zfree(ksegrp_zone, td); 927 } 928 929 /* 930 * Deallocate a kse. 931 */ 932 void 933 kse_free(struct kse *td) 934 { 935 uma_zfree(kse_zone, td); 936 } 937 938 /* 939 * Deallocate a thread. 940 */ 941 void 942 thread_free(struct thread *td) 943 { 944 945 cpu_thread_clean(td); 946 uma_zfree(thread_zone, td); 947 } 948 949 /* 950 * Store the thread context in the UTS's mailbox. 951 * then add the mailbox at the head of a list we are building in user space. 952 * The list is anchored in the ksegrp structure. 953 */ 954 int 955 thread_export_context(struct thread *td) 956 { 957 struct proc *p; 958 struct ksegrp *kg; 959 uintptr_t mbx; 960 void *addr; 961 int error,temp; 962 ucontext_t uc; 963 964 p = td->td_proc; 965 kg = td->td_ksegrp; 966 967 /* Export the user/machine context. */ 968 addr = (void *)(&td->td_mailbox->tm_context); 969 error = copyin(addr, &uc, sizeof(ucontext_t)); 970 if (error) 971 goto bad; 972 973 thread_getcontext(td, &uc); 974 error = copyout(&uc, addr, sizeof(ucontext_t)); 975 if (error) 976 goto bad; 977 978 /* Exports clock ticks in kernel mode */ 979 addr = (caddr_t)(&td->td_mailbox->tm_sticks); 980 temp = fuword(addr) + td->td_usticks; 981 if (suword(addr, temp)) 982 goto bad; 983 984 /* Get address in latest mbox of list pointer */ 985 addr = (void *)(&td->td_mailbox->tm_next); 986 /* 987 * Put the saved address of the previous first 988 * entry into this one 989 */ 990 for (;;) { 991 mbx = (uintptr_t)kg->kg_completed; 992 if (suword(addr, mbx)) { 993 error = EFAULT; 994 goto bad; 995 } 996 PROC_LOCK(p); 997 if (mbx == (uintptr_t)kg->kg_completed) { 998 kg->kg_completed = td->td_mailbox; 999 /* 1000 * The thread context may be taken away by 1001 * other upcall threads when we unlock 1002 * process lock. it's no longer valid to 1003 * use it again in any other places. 1004 */ 1005 td->td_mailbox = NULL; 1006 PROC_UNLOCK(p); 1007 break; 1008 } 1009 PROC_UNLOCK(p); 1010 } 1011 td->td_usticks = 0; 1012 return (0); 1013 1014 bad: 1015 PROC_LOCK(p); 1016 psignal(p, SIGSEGV); 1017 PROC_UNLOCK(p); 1018 /* The mailbox is bad, don't use it */ 1019 td->td_mailbox = NULL; 1020 td->td_usticks = 0; 1021 return (error); 1022 } 1023 1024 /* 1025 * Take the list of completed mailboxes for this KSEGRP and put them on this 1026 * upcall's mailbox as it's the next one going up. 1027 */ 1028 static int 1029 thread_link_mboxes(struct ksegrp *kg, struct kse_upcall *ku) 1030 { 1031 struct proc *p = kg->kg_proc; 1032 void *addr; 1033 uintptr_t mbx; 1034 1035 addr = (void *)(&ku->ku_mailbox->km_completed); 1036 for (;;) { 1037 mbx = (uintptr_t)kg->kg_completed; 1038 if (suword(addr, mbx)) { 1039 PROC_LOCK(p); 1040 psignal(p, SIGSEGV); 1041 PROC_UNLOCK(p); 1042 return (EFAULT); 1043 } 1044 /* XXXKSE could use atomic CMPXCH here */ 1045 PROC_LOCK(p); 1046 if (mbx == (uintptr_t)kg->kg_completed) { 1047 kg->kg_completed = NULL; 1048 PROC_UNLOCK(p); 1049 break; 1050 } 1051 PROC_UNLOCK(p); 1052 } 1053 return (0); 1054 } 1055 1056 /* 1057 * This function should be called at statclock interrupt time 1058 */ 1059 int 1060 thread_statclock(int user) 1061 { 1062 struct thread *td = curthread; 1063 1064 if (td->td_ksegrp->kg_numupcalls == 0) 1065 return (-1); 1066 if (user) { 1067 /* Current always do via ast() */ 1068 td->td_flags |= (TDF_ASTPENDING|TDF_USTATCLOCK); 1069 td->td_uuticks += ticks; 1070 } else { 1071 if (td->td_mailbox != NULL) 1072 td->td_usticks += ticks; 1073 else { 1074 /* XXXKSE 1075 * We will call thread_user_enter() for every 1076 * kernel entry in future, so if the thread mailbox 1077 * is NULL, it must be a UTS kernel, don't account 1078 * clock ticks for it. 1079 */ 1080 } 1081 } 1082 return (0); 1083 } 1084 1085 /* 1086 * Export user mode state clock ticks 1087 */ 1088 static int 1089 thread_update_usr_ticks(struct thread *td) 1090 { 1091 struct proc *p = td->td_proc; 1092 struct kse_thr_mailbox *tmbx; 1093 struct kse_upcall *ku; 1094 caddr_t addr; 1095 uint uticks; 1096 1097 if ((ku = td->td_upcall) == NULL) 1098 return (-1); 1099 1100 tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread); 1101 if ((tmbx == NULL) || (tmbx == (void *)-1)) 1102 return (-1); 1103 uticks = td->td_uuticks; 1104 td->td_uuticks = 0; 1105 if (uticks) { 1106 addr = (caddr_t)&tmbx->tm_uticks; 1107 uticks += fuword(addr); 1108 if (suword(addr, uticks)) { 1109 PROC_LOCK(p); 1110 psignal(p, SIGSEGV); 1111 PROC_UNLOCK(p); 1112 return (-2); 1113 } 1114 } 1115 return (0); 1116 } 1117 1118 /* 1119 * Export kernel mode state clock ticks 1120 */ 1121 1122 static int 1123 thread_update_sys_ticks(struct thread *td) 1124 { 1125 struct proc *p = td->td_proc; 1126 caddr_t addr; 1127 int sticks; 1128 1129 if (td->td_mailbox == NULL) 1130 return (-1); 1131 if (td->td_usticks == 0) 1132 return (0); 1133 addr = (caddr_t)&td->td_mailbox->tm_sticks; 1134 sticks = fuword(addr); 1135 /* XXXKSE use XCHG instead */ 1136 sticks += td->td_usticks; 1137 td->td_usticks = 0; 1138 if (suword(addr, sticks)) { 1139 PROC_LOCK(p); 1140 psignal(p, SIGSEGV); 1141 PROC_UNLOCK(p); 1142 return (-2); 1143 } 1144 return (0); 1145 } 1146 1147 /* 1148 * Discard the current thread and exit from its context. 1149 * 1150 * Because we can't free a thread while we're operating under its context, 1151 * push the current thread into our CPU's deadthread holder. This means 1152 * we needn't worry about someone else grabbing our context before we 1153 * do a cpu_throw(). 1154 */ 1155 void 1156 thread_exit(void) 1157 { 1158 struct thread *td; 1159 struct kse *ke; 1160 struct proc *p; 1161 struct ksegrp *kg; 1162 1163 td = curthread; 1164 kg = td->td_ksegrp; 1165 p = td->td_proc; 1166 ke = td->td_kse; 1167 1168 mtx_assert(&sched_lock, MA_OWNED); 1169 KASSERT(p != NULL, ("thread exiting without a process")); 1170 KASSERT(ke != NULL, ("thread exiting without a kse")); 1171 KASSERT(kg != NULL, ("thread exiting without a kse group")); 1172 PROC_LOCK_ASSERT(p, MA_OWNED); 1173 CTR1(KTR_PROC, "thread_exit: thread %p", td); 1174 KASSERT(!mtx_owned(&Giant), ("dying thread owns giant")); 1175 1176 if (td->td_standin != NULL) { 1177 thread_stash(td->td_standin); 1178 td->td_standin = NULL; 1179 } 1180 1181 cpu_thread_exit(td); /* XXXSMP */ 1182 1183 /* 1184 * The last thread is left attached to the process 1185 * So that the whole bundle gets recycled. Skip 1186 * all this stuff. 1187 */ 1188 if (p->p_numthreads > 1) { 1189 /* 1190 * Unlink this thread from its proc and the kseg. 1191 * In keeping with the other structs we probably should 1192 * have a thread_unlink() that does some of this but it 1193 * would only be called from here (I think) so it would 1194 * be a waste. (might be useful for proc_fini() as well.) 1195 */ 1196 TAILQ_REMOVE(&p->p_threads, td, td_plist); 1197 p->p_numthreads--; 1198 TAILQ_REMOVE(&kg->kg_threads, td, td_kglist); 1199 kg->kg_numthreads--; 1200 1201 /* 1202 * The test below is NOT true if we are the 1203 * sole exiting thread. P_STOPPED_SNGL is unset 1204 * in exit1() after it is the only survivor. 1205 */ 1206 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 1207 if (p->p_numthreads == p->p_suspcount) { 1208 thread_unsuspend_one(p->p_singlethread); 1209 } 1210 } 1211 1212 /* 1213 * Because each upcall structure has an owner thread, 1214 * owner thread exits only when process is in exiting 1215 * state, so upcall to userland is no longer needed, 1216 * deleting upcall structure is safe here. 1217 * So when all threads in a group is exited, all upcalls 1218 * in the group should be automatically freed. 1219 */ 1220 if (td->td_upcall) 1221 upcall_remove(td); 1222 1223 ke->ke_state = KES_UNQUEUED; 1224 ke->ke_thread = NULL; 1225 /* 1226 * Decide what to do with the KSE attached to this thread. 1227 */ 1228 if (ke->ke_flags & KEF_EXIT) 1229 kse_unlink(ke); 1230 else 1231 kse_reassign(ke); 1232 PROC_UNLOCK(p); 1233 td->td_kse = NULL; 1234 td->td_state = TDS_INACTIVE; 1235 td->td_proc = NULL; 1236 td->td_ksegrp = NULL; 1237 td->td_last_kse = NULL; 1238 PCPU_SET(deadthread, td); 1239 } else { 1240 PROC_UNLOCK(p); 1241 } 1242 cpu_throw(); 1243 /* NOTREACHED */ 1244 } 1245 1246 /* 1247 * Do any thread specific cleanups that may be needed in wait() 1248 * called with Giant held, proc and schedlock not held. 1249 */ 1250 void 1251 thread_wait(struct proc *p) 1252 { 1253 struct thread *td; 1254 1255 KASSERT((p->p_numthreads == 1), ("Muliple threads in wait1()")); 1256 KASSERT((p->p_numksegrps == 1), ("Muliple ksegrps in wait1()")); 1257 FOREACH_THREAD_IN_PROC(p, td) { 1258 if (td->td_standin != NULL) { 1259 thread_free(td->td_standin); 1260 td->td_standin = NULL; 1261 } 1262 cpu_thread_clean(td); 1263 } 1264 thread_reap(); /* check for zombie threads etc. */ 1265 } 1266 1267 /* 1268 * Link a thread to a process. 1269 * set up anything that needs to be initialized for it to 1270 * be used by the process. 1271 * 1272 * Note that we do not link to the proc's ucred here. 1273 * The thread is linked as if running but no KSE assigned. 1274 */ 1275 void 1276 thread_link(struct thread *td, struct ksegrp *kg) 1277 { 1278 struct proc *p; 1279 1280 p = kg->kg_proc; 1281 td->td_state = TDS_INACTIVE; 1282 td->td_proc = p; 1283 td->td_ksegrp = kg; 1284 td->td_last_kse = NULL; 1285 td->td_flags = 0; 1286 td->td_kse = NULL; 1287 1288 LIST_INIT(&td->td_contested); 1289 callout_init(&td->td_slpcallout, 1); 1290 TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist); 1291 TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist); 1292 p->p_numthreads++; 1293 kg->kg_numthreads++; 1294 } 1295 1296 /* 1297 * Purge a ksegrp resource. When a ksegrp is preparing to 1298 * exit, it calls this function. 1299 */ 1300 void 1301 kse_purge_group(struct thread *td) 1302 { 1303 struct ksegrp *kg; 1304 struct kse *ke; 1305 1306 kg = td->td_ksegrp; 1307 KASSERT(kg->kg_numthreads == 1, ("%s: bad thread number", __func__)); 1308 while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) { 1309 KASSERT(ke->ke_state == KES_IDLE, 1310 ("%s: wrong idle KSE state", __func__)); 1311 kse_unlink(ke); 1312 } 1313 KASSERT((kg->kg_kses == 1), 1314 ("%s: ksegrp still has %d KSEs", __func__, kg->kg_kses)); 1315 KASSERT((kg->kg_numupcalls == 0), 1316 ("%s: ksegrp still has %d upcall datas", 1317 __func__, kg->kg_numupcalls)); 1318 } 1319 1320 /* 1321 * Purge a process's KSE resource. When a process is preparing to 1322 * exit, it calls kse_purge to release any extra KSE resources in 1323 * the process. 1324 */ 1325 void 1326 kse_purge(struct proc *p, struct thread *td) 1327 { 1328 struct ksegrp *kg; 1329 struct kse *ke; 1330 1331 KASSERT(p->p_numthreads == 1, ("bad thread number")); 1332 mtx_lock_spin(&sched_lock); 1333 while ((kg = TAILQ_FIRST(&p->p_ksegrps)) != NULL) { 1334 TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp); 1335 p->p_numksegrps--; 1336 /* 1337 * There is no ownership for KSE, after all threads 1338 * in the group exited, it is possible that some KSEs 1339 * were left in idle queue, gc them now. 1340 */ 1341 while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) { 1342 KASSERT(ke->ke_state == KES_IDLE, 1343 ("%s: wrong idle KSE state", __func__)); 1344 TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist); 1345 kg->kg_idle_kses--; 1346 TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist); 1347 kg->kg_kses--; 1348 kse_stash(ke); 1349 } 1350 KASSERT(((kg->kg_kses == 0) && (kg != td->td_ksegrp)) || 1351 ((kg->kg_kses == 1) && (kg == td->td_ksegrp)), 1352 ("ksegrp has wrong kg_kses: %d", kg->kg_kses)); 1353 KASSERT((kg->kg_numupcalls == 0), 1354 ("%s: ksegrp still has %d upcall datas", 1355 __func__, kg->kg_numupcalls)); 1356 1357 if (kg != td->td_ksegrp) 1358 ksegrp_stash(kg); 1359 } 1360 TAILQ_INSERT_HEAD(&p->p_ksegrps, td->td_ksegrp, kg_ksegrp); 1361 p->p_numksegrps++; 1362 mtx_unlock_spin(&sched_lock); 1363 } 1364 1365 /* 1366 * This function is intended to be used to initialize a spare thread 1367 * for upcall. Initialize thread's large data area outside sched_lock 1368 * for thread_schedule_upcall(). 1369 */ 1370 void 1371 thread_alloc_spare(struct thread *td, struct thread *spare) 1372 { 1373 if (td->td_standin) 1374 return; 1375 if (spare == NULL) 1376 spare = thread_alloc(); 1377 td->td_standin = spare; 1378 bzero(&spare->td_startzero, 1379 (unsigned)RANGEOF(struct thread, td_startzero, td_endzero)); 1380 spare->td_proc = td->td_proc; 1381 /* Setup PCB and fork address */ 1382 cpu_set_upcall(spare, td->td_pcb); 1383 /* 1384 * XXXKSE do we really need this? (default values for the 1385 * frame). 1386 */ 1387 bcopy(td->td_frame, spare->td_frame, sizeof(struct trapframe)); 1388 spare->td_ucred = crhold(td->td_ucred); 1389 } 1390 1391 /* 1392 * Create a thread and schedule it for upcall on the KSE given. 1393 * Use our thread's standin so that we don't have to allocate one. 1394 */ 1395 struct thread * 1396 thread_schedule_upcall(struct thread *td, struct kse_upcall *ku) 1397 { 1398 struct thread *td2; 1399 1400 mtx_assert(&sched_lock, MA_OWNED); 1401 1402 /* 1403 * Schedule an upcall thread on specified kse_upcall, 1404 * the kse_upcall must be free. 1405 * td must have a spare thread. 1406 */ 1407 KASSERT(ku->ku_owner == NULL, ("%s: upcall has owner", __func__)); 1408 if ((td2 = td->td_standin) != NULL) { 1409 td->td_standin = NULL; 1410 } else { 1411 panic("no reserve thread when scheduling an upcall"); 1412 return (NULL); 1413 } 1414 CTR3(KTR_PROC, "thread_schedule_upcall: thread %p (pid %d, %s)", 1415 td2, td->td_proc->p_pid, td->td_proc->p_comm); 1416 bcopy(&td->td_startcopy, &td2->td_startcopy, 1417 (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy)); 1418 thread_link(td2, ku->ku_ksegrp); 1419 /* Let the new thread become owner of the upcall */ 1420 ku->ku_owner = td2; 1421 td2->td_upcall = ku; 1422 td2->td_flags = TDF_UPCALLING; 1423 td2->td_kse = NULL; 1424 td2->td_state = TDS_CAN_RUN; 1425 td2->td_inhibitors = 0; 1426 setrunqueue(td2); 1427 return (td2); /* bogus.. should be a void function */ 1428 } 1429 1430 /* 1431 * Schedule an upcall to notify a KSE process recieved signals. 1432 * 1433 * XXX - Modifying a sigset_t like this is totally bogus. 1434 */ 1435 struct thread * 1436 signal_upcall(struct proc *p, int sig) 1437 { 1438 #if 0 1439 struct thread *td, *td2; 1440 struct kse *ke; 1441 sigset_t ss; 1442 int error; 1443 1444 #endif 1445 PROC_LOCK_ASSERT(p, MA_OWNED); 1446 return (NULL); 1447 #if 0 1448 td = FIRST_THREAD_IN_PROC(p); 1449 ke = td->td_kse; 1450 PROC_UNLOCK(p); 1451 error = copyin(&ke->ke_mailbox->km_sigscaught, &ss, sizeof(sigset_t)); 1452 PROC_LOCK(p); 1453 if (error) 1454 return (NULL); 1455 SIGADDSET(ss, sig); 1456 PROC_UNLOCK(p); 1457 error = copyout(&ss, &ke->ke_mailbox->km_sigscaught, sizeof(sigset_t)); 1458 PROC_LOCK(p); 1459 if (error) 1460 return (NULL); 1461 if (td->td_standin == NULL) 1462 thread_alloc_spare(td, NULL); 1463 mtx_lock_spin(&sched_lock); 1464 td2 = thread_schedule_upcall(td, ke); /* Bogus JRE */ 1465 mtx_unlock_spin(&sched_lock); 1466 return (td2); 1467 #endif 1468 } 1469 1470 /* 1471 * Setup done on the thread when it enters the kernel. 1472 * XXXKSE Presently only for syscalls but eventually all kernel entries. 1473 */ 1474 void 1475 thread_user_enter(struct proc *p, struct thread *td) 1476 { 1477 struct ksegrp *kg; 1478 struct kse_upcall *ku; 1479 1480 kg = td->td_ksegrp; 1481 /* 1482 * First check that we shouldn't just abort. 1483 * But check if we are the single thread first! 1484 * XXX p_singlethread not locked, but should be safe. 1485 */ 1486 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) { 1487 PROC_LOCK(p); 1488 mtx_lock_spin(&sched_lock); 1489 thread_exit(); 1490 /* NOTREACHED */ 1491 } 1492 1493 /* 1494 * If we are doing a syscall in a KSE environment, 1495 * note where our mailbox is. There is always the 1496 * possibility that we could do this lazily (in kse_reassign()), 1497 * but for now do it every time. 1498 */ 1499 kg = td->td_ksegrp; 1500 if (kg->kg_numupcalls) { 1501 ku = td->td_upcall; 1502 KASSERT(ku, ("%s: no upcall owned", __func__)); 1503 KASSERT((ku->ku_owner == td), ("%s: wrong owner", __func__)); 1504 td->td_mailbox = 1505 (void *)fuword((void *)&ku->ku_mailbox->km_curthread); 1506 if ((td->td_mailbox == NULL) || 1507 (td->td_mailbox == (void *)-1)) { 1508 /* Don't schedule upcall when blocked */ 1509 td->td_mailbox = NULL; 1510 mtx_lock_spin(&sched_lock); 1511 td->td_flags &= ~TDF_CAN_UNBIND; 1512 mtx_unlock_spin(&sched_lock); 1513 } else { 1514 if (p->p_numthreads > max_threads_per_proc) { 1515 /* 1516 * Since kernel thread limit reached, 1517 * don't schedule upcall anymore. 1518 * XXXKSE These code in fact needn't. 1519 */ 1520 mtx_lock_spin(&sched_lock); 1521 td->td_flags &= ~TDF_CAN_UNBIND; 1522 mtx_unlock_spin(&sched_lock); 1523 } else { 1524 if (td->td_standin == NULL) 1525 thread_alloc_spare(td, NULL); 1526 mtx_lock_spin(&sched_lock); 1527 td->td_flags |= TDF_CAN_UNBIND; 1528 mtx_unlock_spin(&sched_lock); 1529 } 1530 } 1531 } 1532 } 1533 1534 /* 1535 * The extra work we go through if we are a threaded process when we 1536 * return to userland. 1537 * 1538 * If we are a KSE process and returning to user mode, check for 1539 * extra work to do before we return (e.g. for more syscalls 1540 * to complete first). If we were in a critical section, we should 1541 * just return to let it finish. Same if we were in the UTS (in 1542 * which case the mailbox's context's busy indicator will be set). 1543 * The only traps we suport will have set the mailbox. 1544 * We will clear it here. 1545 */ 1546 int 1547 thread_userret(struct thread *td, struct trapframe *frame) 1548 { 1549 int error; 1550 struct kse_upcall *ku; 1551 struct ksegrp *kg; 1552 struct proc *p; 1553 struct timespec ts; 1554 1555 p = td->td_proc; 1556 kg = td->td_ksegrp; 1557 1558 /* Nothing to do with non-threaded group/process */ 1559 if (td->td_ksegrp->kg_numupcalls == 0) 1560 return (0); 1561 1562 /* 1563 * State clock interrupt hit in userland, it 1564 * is returning from interrupt, charge thread's 1565 * userland time for UTS. 1566 */ 1567 if (td->td_flags & TDF_USTATCLOCK) { 1568 thread_update_usr_ticks(td); 1569 mtx_lock_spin(&sched_lock); 1570 td->td_flags &= ~TDF_USTATCLOCK; 1571 mtx_unlock_spin(&sched_lock); 1572 } 1573 1574 /* 1575 * Optimisation: 1576 * This thread has not started any upcall. 1577 * If there is no work to report other than ourself, 1578 * then it can return direct to userland. 1579 */ 1580 if (TD_CAN_UNBIND(td)) { 1581 mtx_lock_spin(&sched_lock); 1582 td->td_flags &= ~TDF_CAN_UNBIND; 1583 mtx_unlock_spin(&sched_lock); 1584 if ((kg->kg_completed == NULL) && 1585 (td->td_upcall->ku_flags & KUF_DOUPCALL) == 0) { 1586 thread_update_sys_ticks(td); 1587 td->td_mailbox = NULL; 1588 return (0); 1589 } 1590 error = thread_export_context(td); 1591 if (error) { 1592 /* 1593 * Failing to do the KSE operation just defaults 1594 * back to synchonous operation, so just return from 1595 * the syscall. 1596 */ 1597 return (0); 1598 } 1599 /* 1600 * There is something to report, and we own an upcall 1601 * strucuture, we can go to userland. 1602 * Turn ourself into an upcall thread. 1603 */ 1604 mtx_lock_spin(&sched_lock); 1605 td->td_flags |= TDF_UPCALLING; 1606 mtx_unlock_spin(&sched_lock); 1607 } else if (td->td_mailbox) { 1608 error = thread_export_context(td); 1609 if (error) { 1610 PROC_LOCK(td->td_proc); 1611 mtx_lock_spin(&sched_lock); 1612 /* possibly upcall with error? */ 1613 } else { 1614 PROC_LOCK(td->td_proc); 1615 mtx_lock_spin(&sched_lock); 1616 /* 1617 * There are upcall threads waiting for 1618 * work to do, wake one of them up. 1619 * XXXKSE Maybe wake all of them up. 1620 */ 1621 if (kg->kg_upsleeps) 1622 wakeup_one(&kg->kg_completed); 1623 } 1624 thread_exit(); 1625 /* NOTREACHED */ 1626 } 1627 1628 if (td->td_flags & TDF_UPCALLING) { 1629 KASSERT(TD_CAN_UNBIND(td) == 0, ("upcall thread can unbind")); 1630 ku = td->td_upcall; 1631 /* 1632 * There is no more work to do and we are going to ride 1633 * this thread up to userland as an upcall. 1634 * Do the last parts of the setup needed for the upcall. 1635 */ 1636 CTR3(KTR_PROC, "userret: upcall thread %p (pid %d, %s)", 1637 td, td->td_proc->p_pid, td->td_proc->p_comm); 1638 1639 /* 1640 * Set user context to the UTS. 1641 * Will use Giant in cpu_thread_clean() because it uses 1642 * kmem_free(kernel_map, ...) 1643 */ 1644 cpu_set_upcall_kse(td, ku); 1645 1646 /* 1647 * Clear TDF_UPCALLING after set upcall context, 1648 * profiling code looks TDF_UPCALLING to avoid account 1649 * a wrong user %EIP 1650 */ 1651 mtx_lock_spin(&sched_lock); 1652 td->td_flags &= ~TDF_UPCALLING; 1653 if (ku->ku_flags & KUF_DOUPCALL) 1654 ku->ku_flags &= ~KUF_DOUPCALL; 1655 mtx_unlock_spin(&sched_lock); 1656 1657 /* 1658 * Unhook the list of completed threads. 1659 * anything that completes after this gets to 1660 * come in next time. 1661 * Put the list of completed thread mailboxes on 1662 * this KSE's mailbox. 1663 */ 1664 error = thread_link_mboxes(kg, ku); 1665 if (error) 1666 goto bad; 1667 1668 /* 1669 * Set state and clear the thread mailbox pointer. 1670 * From now on we are just a bound outgoing process. 1671 * **Problem** userret is often called several times. 1672 * it would be nice if this all happenned only on the first 1673 * time through. (the scan for extra work etc.) 1674 */ 1675 error = suword((caddr_t)&ku->ku_mailbox->km_curthread, 0); 1676 if (error) 1677 goto bad; 1678 1679 /* Export current system time */ 1680 nanotime(&ts); 1681 if (copyout(&ts, 1682 (caddr_t)&ku->ku_mailbox->km_timeofday, sizeof(ts))) { 1683 goto bad; 1684 } 1685 } 1686 /* 1687 * Optimisation: 1688 * Ensure that we have a spare thread available, 1689 * for when we re-enter the kernel. 1690 */ 1691 if (td->td_standin == NULL) 1692 thread_alloc_spare(td, NULL); 1693 1694 /* 1695 * Clear thread mailbox first, then clear system tick count. 1696 * The order is important because thread_statclock() use 1697 * mailbox pointer to see if it is an userland thread or 1698 * an UTS kernel thread. 1699 */ 1700 td->td_mailbox = NULL; 1701 td->td_usticks = 0; 1702 return (0); 1703 1704 bad: 1705 /* 1706 * Things are going to be so screwed we should just kill the process. 1707 * how do we do that? 1708 */ 1709 PROC_LOCK(td->td_proc); 1710 psignal(td->td_proc, SIGSEGV); 1711 PROC_UNLOCK(td->td_proc); 1712 td->td_mailbox = NULL; 1713 td->td_usticks = 0; 1714 return (error); /* go sync */ 1715 } 1716 1717 /* 1718 * Enforce single-threading. 1719 * 1720 * Returns 1 if the caller must abort (another thread is waiting to 1721 * exit the process or similar). Process is locked! 1722 * Returns 0 when you are successfully the only thread running. 1723 * A process has successfully single threaded in the suspend mode when 1724 * There are no threads in user mode. Threads in the kernel must be 1725 * allowed to continue until they get to the user boundary. They may even 1726 * copy out their return values and data before suspending. They may however be 1727 * accellerated in reaching the user boundary as we will wake up 1728 * any sleeping threads that are interruptable. (PCATCH). 1729 */ 1730 int 1731 thread_single(int force_exit) 1732 { 1733 struct thread *td; 1734 struct thread *td2; 1735 struct proc *p; 1736 1737 td = curthread; 1738 p = td->td_proc; 1739 mtx_assert(&Giant, MA_OWNED); 1740 PROC_LOCK_ASSERT(p, MA_OWNED); 1741 KASSERT((td != NULL), ("curthread is NULL")); 1742 1743 if ((p->p_flag & P_KSES) == 0) 1744 return (0); 1745 1746 /* Is someone already single threading? */ 1747 if (p->p_singlethread) 1748 return (1); 1749 1750 if (force_exit == SINGLE_EXIT) { 1751 p->p_flag |= P_SINGLE_EXIT; 1752 } else 1753 p->p_flag &= ~P_SINGLE_EXIT; 1754 p->p_flag |= P_STOPPED_SINGLE; 1755 p->p_singlethread = td; 1756 /* XXXKSE Which lock protects the below values? */ 1757 while ((p->p_numthreads - p->p_suspcount) != 1) { 1758 mtx_lock_spin(&sched_lock); 1759 FOREACH_THREAD_IN_PROC(p, td2) { 1760 if (td2 == td) 1761 continue; 1762 if (TD_IS_INHIBITED(td2)) { 1763 if (force_exit == SINGLE_EXIT) { 1764 if (TD_IS_SUSPENDED(td2)) { 1765 thread_unsuspend_one(td2); 1766 } 1767 if (TD_ON_SLEEPQ(td2) && 1768 (td2->td_flags & TDF_SINTR)) { 1769 if (td2->td_flags & TDF_CVWAITQ) 1770 cv_abort(td2); 1771 else 1772 abortsleep(td2); 1773 } 1774 } else { 1775 if (TD_IS_SUSPENDED(td2)) 1776 continue; 1777 /* 1778 * maybe other inhibitted states too? 1779 * XXXKSE Is it totally safe to 1780 * suspend a non-interruptable thread? 1781 */ 1782 if (td2->td_inhibitors & 1783 (TDI_SLEEPING | TDI_SWAPPED)) 1784 thread_suspend_one(td2); 1785 } 1786 } 1787 } 1788 /* 1789 * Maybe we suspended some threads.. was it enough? 1790 */ 1791 if ((p->p_numthreads - p->p_suspcount) == 1) { 1792 mtx_unlock_spin(&sched_lock); 1793 break; 1794 } 1795 1796 /* 1797 * Wake us up when everyone else has suspended. 1798 * In the mean time we suspend as well. 1799 */ 1800 thread_suspend_one(td); 1801 mtx_unlock(&Giant); 1802 PROC_UNLOCK(p); 1803 p->p_stats->p_ru.ru_nvcsw++; 1804 mi_switch(); 1805 mtx_unlock_spin(&sched_lock); 1806 mtx_lock(&Giant); 1807 PROC_LOCK(p); 1808 } 1809 if (force_exit == SINGLE_EXIT) { 1810 if (td->td_upcall) { 1811 mtx_lock_spin(&sched_lock); 1812 upcall_remove(td); 1813 mtx_unlock_spin(&sched_lock); 1814 } 1815 kse_purge(p, td); 1816 } 1817 return (0); 1818 } 1819 1820 /* 1821 * Called in from locations that can safely check to see 1822 * whether we have to suspend or at least throttle for a 1823 * single-thread event (e.g. fork). 1824 * 1825 * Such locations include userret(). 1826 * If the "return_instead" argument is non zero, the thread must be able to 1827 * accept 0 (caller may continue), or 1 (caller must abort) as a result. 1828 * 1829 * The 'return_instead' argument tells the function if it may do a 1830 * thread_exit() or suspend, or whether the caller must abort and back 1831 * out instead. 1832 * 1833 * If the thread that set the single_threading request has set the 1834 * P_SINGLE_EXIT bit in the process flags then this call will never return 1835 * if 'return_instead' is false, but will exit. 1836 * 1837 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 1838 *---------------+--------------------+--------------------- 1839 * 0 | returns 0 | returns 0 or 1 1840 * | when ST ends | immediatly 1841 *---------------+--------------------+--------------------- 1842 * 1 | thread exits | returns 1 1843 * | | immediatly 1844 * 0 = thread_exit() or suspension ok, 1845 * other = return error instead of stopping the thread. 1846 * 1847 * While a full suspension is under effect, even a single threading 1848 * thread would be suspended if it made this call (but it shouldn't). 1849 * This call should only be made from places where 1850 * thread_exit() would be safe as that may be the outcome unless 1851 * return_instead is set. 1852 */ 1853 int 1854 thread_suspend_check(int return_instead) 1855 { 1856 struct thread *td; 1857 struct proc *p; 1858 struct ksegrp *kg; 1859 1860 td = curthread; 1861 p = td->td_proc; 1862 kg = td->td_ksegrp; 1863 PROC_LOCK_ASSERT(p, MA_OWNED); 1864 while (P_SHOULDSTOP(p)) { 1865 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 1866 KASSERT(p->p_singlethread != NULL, 1867 ("singlethread not set")); 1868 /* 1869 * The only suspension in action is a 1870 * single-threading. Single threader need not stop. 1871 * XXX Should be safe to access unlocked 1872 * as it can only be set to be true by us. 1873 */ 1874 if (p->p_singlethread == td) 1875 return (0); /* Exempt from stopping. */ 1876 } 1877 if (return_instead) 1878 return (1); 1879 1880 /* 1881 * If the process is waiting for us to exit, 1882 * this thread should just suicide. 1883 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. 1884 */ 1885 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) { 1886 mtx_lock_spin(&sched_lock); 1887 while (mtx_owned(&Giant)) 1888 mtx_unlock(&Giant); 1889 thread_exit(); 1890 } 1891 1892 /* 1893 * When a thread suspends, it just 1894 * moves to the processes's suspend queue 1895 * and stays there. 1896 */ 1897 mtx_lock_spin(&sched_lock); 1898 if ((p->p_flag & P_STOPPED_SIG) && 1899 (p->p_suspcount+1 == p->p_numthreads)) { 1900 mtx_unlock_spin(&sched_lock); 1901 PROC_LOCK(p->p_pptr); 1902 if ((p->p_pptr->p_procsig->ps_flag & 1903 PS_NOCLDSTOP) == 0) { 1904 psignal(p->p_pptr, SIGCHLD); 1905 } 1906 PROC_UNLOCK(p->p_pptr); 1907 mtx_lock_spin(&sched_lock); 1908 } 1909 mtx_assert(&Giant, MA_NOTOWNED); 1910 thread_suspend_one(td); 1911 PROC_UNLOCK(p); 1912 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 1913 if (p->p_numthreads == p->p_suspcount) { 1914 thread_unsuspend_one(p->p_singlethread); 1915 } 1916 } 1917 p->p_stats->p_ru.ru_nivcsw++; 1918 mi_switch(); 1919 mtx_unlock_spin(&sched_lock); 1920 PROC_LOCK(p); 1921 } 1922 return (0); 1923 } 1924 1925 void 1926 thread_suspend_one(struct thread *td) 1927 { 1928 struct proc *p = td->td_proc; 1929 1930 mtx_assert(&sched_lock, MA_OWNED); 1931 p->p_suspcount++; 1932 TD_SET_SUSPENDED(td); 1933 TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq); 1934 /* 1935 * Hack: If we are suspending but are on the sleep queue 1936 * then we are in msleep or the cv equivalent. We 1937 * want to look like we have two Inhibitors. 1938 * May already be set.. doesn't matter. 1939 */ 1940 if (TD_ON_SLEEPQ(td)) 1941 TD_SET_SLEEPING(td); 1942 } 1943 1944 void 1945 thread_unsuspend_one(struct thread *td) 1946 { 1947 struct proc *p = td->td_proc; 1948 1949 mtx_assert(&sched_lock, MA_OWNED); 1950 TAILQ_REMOVE(&p->p_suspended, td, td_runq); 1951 TD_CLR_SUSPENDED(td); 1952 p->p_suspcount--; 1953 setrunnable(td); 1954 } 1955 1956 /* 1957 * Allow all threads blocked by single threading to continue running. 1958 */ 1959 void 1960 thread_unsuspend(struct proc *p) 1961 { 1962 struct thread *td; 1963 1964 mtx_assert(&sched_lock, MA_OWNED); 1965 PROC_LOCK_ASSERT(p, MA_OWNED); 1966 if (!P_SHOULDSTOP(p)) { 1967 while (( td = TAILQ_FIRST(&p->p_suspended))) { 1968 thread_unsuspend_one(td); 1969 } 1970 } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) && 1971 (p->p_numthreads == p->p_suspcount)) { 1972 /* 1973 * Stopping everything also did the job for the single 1974 * threading request. Now we've downgraded to single-threaded, 1975 * let it continue. 1976 */ 1977 thread_unsuspend_one(p->p_singlethread); 1978 } 1979 } 1980 1981 void 1982 thread_single_end(void) 1983 { 1984 struct thread *td; 1985 struct proc *p; 1986 1987 td = curthread; 1988 p = td->td_proc; 1989 PROC_LOCK_ASSERT(p, MA_OWNED); 1990 p->p_flag &= ~P_STOPPED_SINGLE; 1991 p->p_singlethread = NULL; 1992 /* 1993 * If there are other threads they mey now run, 1994 * unless of course there is a blanket 'stop order' 1995 * on the process. The single threader must be allowed 1996 * to continue however as this is a bad place to stop. 1997 */ 1998 if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) { 1999 mtx_lock_spin(&sched_lock); 2000 while (( td = TAILQ_FIRST(&p->p_suspended))) { 2001 thread_unsuspend_one(td); 2002 } 2003 mtx_unlock_spin(&sched_lock); 2004 } 2005 } 2006 2007 2008