1 /*- 2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice(s), this list of conditions and the following disclaimer as 10 * the first lines of this file unmodified other than the possible 11 * addition of one or more copyright notices. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice(s), this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 19 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 26 * DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/proc.h> 38 #include <sys/resourcevar.h> 39 #include <sys/smp.h> 40 #include <sys/sysctl.h> 41 #include <sys/sched.h> 42 #include <sys/sleepqueue.h> 43 #include <sys/turnstile.h> 44 #include <sys/ktr.h> 45 #include <sys/umtx.h> 46 47 #include <security/audit/audit.h> 48 49 #include <vm/vm.h> 50 #include <vm/vm_extern.h> 51 #include <vm/uma.h> 52 53 /* 54 * thread related storage. 55 */ 56 static uma_zone_t thread_zone; 57 58 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation"); 59 60 int max_threads_per_proc = 1500; 61 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW, 62 &max_threads_per_proc, 0, "Limit on threads per proc"); 63 64 int max_threads_hits; 65 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD, 66 &max_threads_hits, 0, ""); 67 68 #ifdef KSE 69 int virtual_cpu; 70 71 #endif 72 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); 73 static struct mtx zombie_lock; 74 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN); 75 76 static void thread_zombie(struct thread *); 77 78 #ifdef KSE 79 static int 80 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS) 81 { 82 int error, new_val; 83 int def_val; 84 85 def_val = mp_ncpus; 86 if (virtual_cpu == 0) 87 new_val = def_val; 88 else 89 new_val = virtual_cpu; 90 error = sysctl_handle_int(oidp, &new_val, 0, req); 91 if (error != 0 || req->newptr == NULL) 92 return (error); 93 if (new_val < 0) 94 return (EINVAL); 95 virtual_cpu = new_val; 96 return (0); 97 } 98 99 /* DEBUG ONLY */ 100 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW, 101 0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I", 102 "debug virtual cpus"); 103 #endif 104 105 struct mtx tid_lock; 106 static struct unrhdr *tid_unrhdr; 107 108 /* 109 * Prepare a thread for use. 110 */ 111 static int 112 thread_ctor(void *mem, int size, void *arg, int flags) 113 { 114 struct thread *td; 115 116 td = (struct thread *)mem; 117 td->td_state = TDS_INACTIVE; 118 td->td_oncpu = NOCPU; 119 120 td->td_tid = alloc_unr(tid_unrhdr); 121 td->td_syscalls = 0; 122 123 /* 124 * Note that td_critnest begins life as 1 because the thread is not 125 * running and is thereby implicitly waiting to be on the receiving 126 * end of a context switch. 127 */ 128 td->td_critnest = 1; 129 130 #ifdef AUDIT 131 audit_thread_alloc(td); 132 #endif 133 umtx_thread_alloc(td); 134 return (0); 135 } 136 137 /* 138 * Reclaim a thread after use. 139 */ 140 static void 141 thread_dtor(void *mem, int size, void *arg) 142 { 143 struct thread *td; 144 145 td = (struct thread *)mem; 146 147 #ifdef INVARIANTS 148 /* Verify that this thread is in a safe state to free. */ 149 switch (td->td_state) { 150 case TDS_INHIBITED: 151 case TDS_RUNNING: 152 case TDS_CAN_RUN: 153 case TDS_RUNQ: 154 /* 155 * We must never unlink a thread that is in one of 156 * these states, because it is currently active. 157 */ 158 panic("bad state for thread unlinking"); 159 /* NOTREACHED */ 160 case TDS_INACTIVE: 161 break; 162 default: 163 panic("bad thread state"); 164 /* NOTREACHED */ 165 } 166 #endif 167 #ifdef AUDIT 168 audit_thread_free(td); 169 #endif 170 free_unr(tid_unrhdr, td->td_tid); 171 sched_newthread(td); 172 } 173 174 /* 175 * Initialize type-stable parts of a thread (when newly created). 176 */ 177 static int 178 thread_init(void *mem, int size, int flags) 179 { 180 struct thread *td; 181 182 td = (struct thread *)mem; 183 184 vm_thread_new(td, 0); 185 cpu_thread_setup(td); 186 td->td_sleepqueue = sleepq_alloc(); 187 td->td_turnstile = turnstile_alloc(); 188 td->td_sched = (struct td_sched *)&td[1]; 189 sched_newthread(td); 190 umtx_thread_init(td); 191 return (0); 192 } 193 194 /* 195 * Tear down type-stable parts of a thread (just before being discarded). 196 */ 197 static void 198 thread_fini(void *mem, int size) 199 { 200 struct thread *td; 201 202 td = (struct thread *)mem; 203 turnstile_free(td->td_turnstile); 204 sleepq_free(td->td_sleepqueue); 205 umtx_thread_fini(td); 206 vm_thread_dispose(td); 207 } 208 209 /* 210 * For a newly created process, 211 * link up all the structures and its initial threads etc. 212 * called from: 213 * {arch}/{arch}/machdep.c ia64_init(), init386() etc. 214 * proc_dtor() (should go away) 215 * proc_init() 216 */ 217 void 218 proc_linkup(struct proc *p, struct thread *td) 219 { 220 221 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 222 #ifdef KSE 223 TAILQ_INIT(&p->p_upcalls); /* upcall list */ 224 #endif 225 sigqueue_init(&p->p_sigqueue, p); 226 p->p_ksi = ksiginfo_alloc(1); 227 if (p->p_ksi != NULL) { 228 /* XXX p_ksi may be null if ksiginfo zone is not ready */ 229 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS; 230 } 231 LIST_INIT(&p->p_mqnotifier); 232 p->p_numthreads = 0; 233 thread_link(td, p); 234 } 235 236 /* 237 * Initialize global thread allocation resources. 238 */ 239 void 240 threadinit(void) 241 { 242 243 mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF); 244 tid_unrhdr = new_unrhdr(PID_MAX + 1, INT_MAX, &tid_lock); 245 246 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 247 thread_ctor, thread_dtor, thread_init, thread_fini, 248 16 - 1, 0); 249 #ifdef KSE 250 kseinit(); /* set up kse specific stuff e.g. upcall zone*/ 251 #endif 252 } 253 254 /* 255 * Place an unused thread on the zombie list. 256 * Use the slpq as that must be unused by now. 257 */ 258 void 259 thread_zombie(struct thread *td) 260 { 261 mtx_lock_spin(&zombie_lock); 262 TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq); 263 mtx_unlock_spin(&zombie_lock); 264 } 265 266 /* 267 * Release a thread that has exited after cpu_throw(). 268 */ 269 void 270 thread_stash(struct thread *td) 271 { 272 atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1); 273 thread_zombie(td); 274 } 275 276 /* 277 * Reap zombie kse resource. 278 */ 279 void 280 thread_reap(void) 281 { 282 struct thread *td_first, *td_next; 283 284 /* 285 * Don't even bother to lock if none at this instant, 286 * we really don't care about the next instant.. 287 */ 288 if (!TAILQ_EMPTY(&zombie_threads)) { 289 mtx_lock_spin(&zombie_lock); 290 td_first = TAILQ_FIRST(&zombie_threads); 291 if (td_first) 292 TAILQ_INIT(&zombie_threads); 293 mtx_unlock_spin(&zombie_lock); 294 while (td_first) { 295 td_next = TAILQ_NEXT(td_first, td_slpq); 296 if (td_first->td_ucred) 297 crfree(td_first->td_ucred); 298 thread_free(td_first); 299 td_first = td_next; 300 } 301 } 302 #ifdef KSE 303 upcall_reap(); 304 #endif 305 } 306 307 /* 308 * Allocate a thread. 309 */ 310 struct thread * 311 thread_alloc(void) 312 { 313 314 thread_reap(); /* check if any zombies to get */ 315 return (uma_zalloc(thread_zone, M_WAITOK)); 316 } 317 318 319 /* 320 * Deallocate a thread. 321 */ 322 void 323 thread_free(struct thread *td) 324 { 325 326 cpu_thread_clean(td); 327 uma_zfree(thread_zone, td); 328 } 329 330 /* 331 * Discard the current thread and exit from its context. 332 * Always called with scheduler locked. 333 * 334 * Because we can't free a thread while we're operating under its context, 335 * push the current thread into our CPU's deadthread holder. This means 336 * we needn't worry about someone else grabbing our context before we 337 * do a cpu_throw(). This may not be needed now as we are under schedlock. 338 * Maybe we can just do a thread_stash() as thr_exit1 does. 339 */ 340 /* XXX 341 * libthr expects its thread exit to return for the last 342 * thread, meaning that the program is back to non-threaded 343 * mode I guess. Because we do this (cpu_throw) unconditionally 344 * here, they have their own version of it. (thr_exit1()) 345 * that doesn't do it all if this was the last thread. 346 * It is also called from thread_suspend_check(). 347 * Of course in the end, they end up coming here through exit1 348 * anyhow.. After fixing 'thr' to play by the rules we should be able 349 * to merge these two functions together. 350 * 351 * called from: 352 * exit1() 353 * kse_exit() 354 * thr_exit() 355 * ifdef KSE 356 * thread_user_enter() 357 * thread_userret() 358 * endif 359 * thread_suspend_check() 360 */ 361 void 362 thread_exit(void) 363 { 364 uint64_t new_switchtime; 365 struct thread *td; 366 struct thread *td2; 367 struct proc *p; 368 369 td = curthread; 370 p = td->td_proc; 371 372 PROC_SLOCK_ASSERT(p, MA_OWNED); 373 mtx_assert(&Giant, MA_NOTOWNED); 374 375 PROC_LOCK_ASSERT(p, MA_OWNED); 376 KASSERT(p != NULL, ("thread exiting without a process")); 377 CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td, 378 (long)p->p_pid, p->p_comm); 379 KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending")); 380 381 #ifdef AUDIT 382 AUDIT_SYSCALL_EXIT(0, td); 383 #endif 384 385 #ifdef KSE 386 if (td->td_standin != NULL) { 387 /* 388 * Note that we don't need to free the cred here as it 389 * is done in thread_reap(). 390 */ 391 thread_zombie(td->td_standin); 392 td->td_standin = NULL; 393 } 394 #endif 395 396 umtx_thread_exit(td); 397 398 /* 399 * drop FPU & debug register state storage, or any other 400 * architecture specific resources that 401 * would not be on a new untouched process. 402 */ 403 cpu_thread_exit(td); /* XXXSMP */ 404 405 /* Do the same timestamp bookkeeping that mi_switch() would do. */ 406 new_switchtime = cpu_ticks(); 407 p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime)); 408 PCPU_SET(switchtime, new_switchtime); 409 PCPU_SET(switchticks, ticks); 410 PCPU_INC(cnt.v_swtch); 411 /* Save our resource usage in our process. */ 412 td->td_ru.ru_nvcsw++; 413 rucollect(&p->p_ru, &td->td_ru); 414 /* 415 * The last thread is left attached to the process 416 * So that the whole bundle gets recycled. Skip 417 * all this stuff if we never had threads. 418 * EXIT clears all sign of other threads when 419 * it goes to single threading, so the last thread always 420 * takes the short path. 421 */ 422 if (p->p_flag & P_HADTHREADS) { 423 if (p->p_numthreads > 1) { 424 thread_lock(td); 425 #ifdef KSE 426 kse_unlink(td); 427 #else 428 thread_unlink(td); 429 #endif 430 thread_unlock(td); 431 td2 = FIRST_THREAD_IN_PROC(p); 432 sched_exit_thread(td2, td); 433 434 /* 435 * The test below is NOT true if we are the 436 * sole exiting thread. P_STOPPED_SNGL is unset 437 * in exit1() after it is the only survivor. 438 */ 439 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 440 if (p->p_numthreads == p->p_suspcount) { 441 thread_lock(p->p_singlethread); 442 thread_unsuspend_one(p->p_singlethread); 443 thread_unlock(p->p_singlethread); 444 } 445 } 446 447 atomic_add_int(&td->td_proc->p_exitthreads, 1); 448 PCPU_SET(deadthread, td); 449 } else { 450 /* 451 * The last thread is exiting.. but not through exit() 452 * what should we do? 453 * Theoretically this can't happen 454 * exit1() - clears threading flags before coming here 455 * kse_exit() - treats last thread specially 456 * thr_exit() - treats last thread specially 457 * ifdef KSE 458 * thread_user_enter() - only if more exist 459 * thread_userret() - only if more exist 460 * endif 461 * thread_suspend_check() - only if more exist 462 */ 463 panic ("thread_exit: Last thread exiting on its own"); 464 } 465 } 466 PROC_UNLOCK(p); 467 thread_lock(td); 468 /* Save our tick information with both the thread and proc locked */ 469 ruxagg(&p->p_rux, td); 470 PROC_SUNLOCK(p); 471 td->td_state = TDS_INACTIVE; 472 CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td); 473 sched_throw(td); 474 panic("I'm a teapot!"); 475 /* NOTREACHED */ 476 } 477 478 /* 479 * Do any thread specific cleanups that may be needed in wait() 480 * called with Giant, proc and schedlock not held. 481 */ 482 void 483 thread_wait(struct proc *p) 484 { 485 struct thread *td; 486 487 mtx_assert(&Giant, MA_NOTOWNED); 488 KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()")); 489 td = FIRST_THREAD_IN_PROC(p); 490 #ifdef KSE 491 if (td->td_standin != NULL) { 492 if (td->td_standin->td_ucred != NULL) { 493 crfree(td->td_standin->td_ucred); 494 td->td_standin->td_ucred = NULL; 495 } 496 thread_free(td->td_standin); 497 td->td_standin = NULL; 498 } 499 #endif 500 /* Lock the last thread so we spin until it exits cpu_throw(). */ 501 thread_lock(td); 502 thread_unlock(td); 503 /* Wait for any remaining threads to exit cpu_throw(). */ 504 while (p->p_exitthreads) 505 sched_relinquish(curthread); 506 cpu_thread_clean(td); 507 crfree(td->td_ucred); 508 thread_reap(); /* check for zombie threads etc. */ 509 } 510 511 /* 512 * Link a thread to a process. 513 * set up anything that needs to be initialized for it to 514 * be used by the process. 515 * 516 * Note that we do not link to the proc's ucred here. 517 * The thread is linked as if running but no KSE assigned. 518 * Called from: 519 * proc_linkup() 520 * thread_schedule_upcall() 521 * thr_create() 522 */ 523 void 524 thread_link(struct thread *td, struct proc *p) 525 { 526 527 /* 528 * XXX This can't be enabled because it's called for proc0 before 529 * it's spinlock has been created. 530 * PROC_SLOCK_ASSERT(p, MA_OWNED); 531 */ 532 td->td_state = TDS_INACTIVE; 533 td->td_proc = p; 534 td->td_flags = TDF_INMEM; 535 536 LIST_INIT(&td->td_contested); 537 sigqueue_init(&td->td_sigqueue, p); 538 callout_init(&td->td_slpcallout, CALLOUT_MPSAFE); 539 TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist); 540 p->p_numthreads++; 541 } 542 543 /* 544 * Convert a process with one thread to an unthreaded process. 545 * Called from: 546 * thread_single(exit) (called from execve and exit) 547 * kse_exit() XXX may need cleaning up wrt KSE stuff 548 */ 549 void 550 thread_unthread(struct thread *td) 551 { 552 struct proc *p = td->td_proc; 553 554 KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads")); 555 #ifdef KSE 556 thread_lock(td); 557 upcall_remove(td); 558 thread_unlock(td); 559 p->p_flag &= ~(P_SA|P_HADTHREADS); 560 td->td_mailbox = NULL; 561 td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND); 562 if (td->td_standin != NULL) { 563 thread_zombie(td->td_standin); 564 td->td_standin = NULL; 565 } 566 #else 567 p->p_flag &= ~P_HADTHREADS; 568 #endif 569 } 570 571 /* 572 * Called from: 573 * thread_exit() 574 */ 575 void 576 thread_unlink(struct thread *td) 577 { 578 struct proc *p = td->td_proc; 579 580 PROC_SLOCK_ASSERT(p, MA_OWNED); 581 TAILQ_REMOVE(&p->p_threads, td, td_plist); 582 p->p_numthreads--; 583 /* could clear a few other things here */ 584 /* Must NOT clear links to proc! */ 585 } 586 587 /* 588 * Enforce single-threading. 589 * 590 * Returns 1 if the caller must abort (another thread is waiting to 591 * exit the process or similar). Process is locked! 592 * Returns 0 when you are successfully the only thread running. 593 * A process has successfully single threaded in the suspend mode when 594 * There are no threads in user mode. Threads in the kernel must be 595 * allowed to continue until they get to the user boundary. They may even 596 * copy out their return values and data before suspending. They may however be 597 * accelerated in reaching the user boundary as we will wake up 598 * any sleeping threads that are interruptable. (PCATCH). 599 */ 600 int 601 thread_single(int mode) 602 { 603 struct thread *td; 604 struct thread *td2; 605 struct proc *p; 606 int remaining; 607 608 td = curthread; 609 p = td->td_proc; 610 mtx_assert(&Giant, MA_NOTOWNED); 611 PROC_LOCK_ASSERT(p, MA_OWNED); 612 KASSERT((td != NULL), ("curthread is NULL")); 613 614 if ((p->p_flag & P_HADTHREADS) == 0) 615 return (0); 616 617 /* Is someone already single threading? */ 618 if (p->p_singlethread != NULL && p->p_singlethread != td) 619 return (1); 620 621 if (mode == SINGLE_EXIT) { 622 p->p_flag |= P_SINGLE_EXIT; 623 p->p_flag &= ~P_SINGLE_BOUNDARY; 624 } else { 625 p->p_flag &= ~P_SINGLE_EXIT; 626 if (mode == SINGLE_BOUNDARY) 627 p->p_flag |= P_SINGLE_BOUNDARY; 628 else 629 p->p_flag &= ~P_SINGLE_BOUNDARY; 630 } 631 p->p_flag |= P_STOPPED_SINGLE; 632 PROC_SLOCK(p); 633 p->p_singlethread = td; 634 if (mode == SINGLE_EXIT) 635 remaining = p->p_numthreads; 636 else if (mode == SINGLE_BOUNDARY) 637 remaining = p->p_numthreads - p->p_boundary_count; 638 else 639 remaining = p->p_numthreads - p->p_suspcount; 640 while (remaining != 1) { 641 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE) 642 goto stopme; 643 FOREACH_THREAD_IN_PROC(p, td2) { 644 if (td2 == td) 645 continue; 646 thread_lock(td2); 647 td2->td_flags |= TDF_ASTPENDING; 648 if (TD_IS_INHIBITED(td2)) { 649 switch (mode) { 650 case SINGLE_EXIT: 651 if (td->td_flags & TDF_DBSUSPEND) 652 td->td_flags &= ~TDF_DBSUSPEND; 653 if (TD_IS_SUSPENDED(td2)) 654 thread_unsuspend_one(td2); 655 if (TD_ON_SLEEPQ(td2) && 656 (td2->td_flags & TDF_SINTR)) 657 sleepq_abort(td2, EINTR); 658 break; 659 case SINGLE_BOUNDARY: 660 if (TD_IS_SUSPENDED(td2) && 661 !(td2->td_flags & TDF_BOUNDARY)) 662 thread_unsuspend_one(td2); 663 if (TD_ON_SLEEPQ(td2) && 664 (td2->td_flags & TDF_SINTR)) 665 sleepq_abort(td2, ERESTART); 666 break; 667 default: 668 if (TD_IS_SUSPENDED(td2)) { 669 thread_unlock(td2); 670 continue; 671 } 672 /* 673 * maybe other inhibited states too? 674 */ 675 if ((td2->td_flags & TDF_SINTR) && 676 (td2->td_inhibitors & 677 (TDI_SLEEPING | TDI_SWAPPED))) 678 thread_suspend_one(td2); 679 break; 680 } 681 } 682 #ifdef SMP 683 else if (TD_IS_RUNNING(td2) && td != td2) { 684 forward_signal(td2); 685 } 686 #endif 687 thread_unlock(td2); 688 } 689 if (mode == SINGLE_EXIT) 690 remaining = p->p_numthreads; 691 else if (mode == SINGLE_BOUNDARY) 692 remaining = p->p_numthreads - p->p_boundary_count; 693 else 694 remaining = p->p_numthreads - p->p_suspcount; 695 696 /* 697 * Maybe we suspended some threads.. was it enough? 698 */ 699 if (remaining == 1) 700 break; 701 702 stopme: 703 /* 704 * Wake us up when everyone else has suspended. 705 * In the mean time we suspend as well. 706 */ 707 thread_suspend_switch(td); 708 if (mode == SINGLE_EXIT) 709 remaining = p->p_numthreads; 710 else if (mode == SINGLE_BOUNDARY) 711 remaining = p->p_numthreads - p->p_boundary_count; 712 else 713 remaining = p->p_numthreads - p->p_suspcount; 714 } 715 if (mode == SINGLE_EXIT) { 716 /* 717 * We have gotten rid of all the other threads and we 718 * are about to either exit or exec. In either case, 719 * we try our utmost to revert to being a non-threaded 720 * process. 721 */ 722 p->p_singlethread = NULL; 723 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT); 724 thread_unthread(td); 725 } 726 PROC_SUNLOCK(p); 727 return (0); 728 } 729 730 /* 731 * Called in from locations that can safely check to see 732 * whether we have to suspend or at least throttle for a 733 * single-thread event (e.g. fork). 734 * 735 * Such locations include userret(). 736 * If the "return_instead" argument is non zero, the thread must be able to 737 * accept 0 (caller may continue), or 1 (caller must abort) as a result. 738 * 739 * The 'return_instead' argument tells the function if it may do a 740 * thread_exit() or suspend, or whether the caller must abort and back 741 * out instead. 742 * 743 * If the thread that set the single_threading request has set the 744 * P_SINGLE_EXIT bit in the process flags then this call will never return 745 * if 'return_instead' is false, but will exit. 746 * 747 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 748 *---------------+--------------------+--------------------- 749 * 0 | returns 0 | returns 0 or 1 750 * | when ST ends | immediatly 751 *---------------+--------------------+--------------------- 752 * 1 | thread exits | returns 1 753 * | | immediatly 754 * 0 = thread_exit() or suspension ok, 755 * other = return error instead of stopping the thread. 756 * 757 * While a full suspension is under effect, even a single threading 758 * thread would be suspended if it made this call (but it shouldn't). 759 * This call should only be made from places where 760 * thread_exit() would be safe as that may be the outcome unless 761 * return_instead is set. 762 */ 763 int 764 thread_suspend_check(int return_instead) 765 { 766 struct thread *td; 767 struct proc *p; 768 769 td = curthread; 770 p = td->td_proc; 771 mtx_assert(&Giant, MA_NOTOWNED); 772 PROC_LOCK_ASSERT(p, MA_OWNED); 773 while (P_SHOULDSTOP(p) || 774 ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) { 775 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 776 KASSERT(p->p_singlethread != NULL, 777 ("singlethread not set")); 778 /* 779 * The only suspension in action is a 780 * single-threading. Single threader need not stop. 781 * XXX Should be safe to access unlocked 782 * as it can only be set to be true by us. 783 */ 784 if (p->p_singlethread == td) 785 return (0); /* Exempt from stopping. */ 786 } 787 if ((p->p_flag & P_SINGLE_EXIT) && return_instead) 788 return (EINTR); 789 790 /* Should we goto user boundary if we didn't come from there? */ 791 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && 792 (p->p_flag & P_SINGLE_BOUNDARY) && return_instead) 793 return (ERESTART); 794 795 /* If thread will exit, flush its pending signals */ 796 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) 797 sigqueue_flush(&td->td_sigqueue); 798 799 PROC_SLOCK(p); 800 thread_stopped(p); 801 /* 802 * If the process is waiting for us to exit, 803 * this thread should just suicide. 804 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. 805 */ 806 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) 807 thread_exit(); 808 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 809 if (p->p_numthreads == p->p_suspcount + 1) { 810 thread_lock(p->p_singlethread); 811 thread_unsuspend_one(p->p_singlethread); 812 thread_unlock(p->p_singlethread); 813 } 814 } 815 PROC_UNLOCK(p); 816 thread_lock(td); 817 /* 818 * When a thread suspends, it just 819 * gets taken off all queues. 820 */ 821 thread_suspend_one(td); 822 if (return_instead == 0) { 823 p->p_boundary_count++; 824 td->td_flags |= TDF_BOUNDARY; 825 } 826 PROC_SUNLOCK(p); 827 mi_switch(SW_INVOL, NULL); 828 if (return_instead == 0) 829 td->td_flags &= ~TDF_BOUNDARY; 830 thread_unlock(td); 831 PROC_LOCK(p); 832 if (return_instead == 0) 833 p->p_boundary_count--; 834 } 835 return (0); 836 } 837 838 void 839 thread_suspend_switch(struct thread *td) 840 { 841 struct proc *p; 842 843 p = td->td_proc; 844 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 845 PROC_LOCK_ASSERT(p, MA_OWNED); 846 PROC_SLOCK_ASSERT(p, MA_OWNED); 847 /* 848 * We implement thread_suspend_one in stages here to avoid 849 * dropping the proc lock while the thread lock is owned. 850 */ 851 thread_stopped(p); 852 p->p_suspcount++; 853 PROC_UNLOCK(p); 854 thread_lock(td); 855 sched_sleep(td); 856 TD_SET_SUSPENDED(td); 857 PROC_SUNLOCK(p); 858 DROP_GIANT(); 859 mi_switch(SW_VOL, NULL); 860 thread_unlock(td); 861 PICKUP_GIANT(); 862 PROC_LOCK(p); 863 PROC_SLOCK(p); 864 } 865 866 void 867 thread_suspend_one(struct thread *td) 868 { 869 struct proc *p = td->td_proc; 870 871 PROC_SLOCK_ASSERT(p, MA_OWNED); 872 THREAD_LOCK_ASSERT(td, MA_OWNED); 873 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 874 p->p_suspcount++; 875 sched_sleep(td); 876 TD_SET_SUSPENDED(td); 877 } 878 879 void 880 thread_unsuspend_one(struct thread *td) 881 { 882 struct proc *p = td->td_proc; 883 884 PROC_SLOCK_ASSERT(p, MA_OWNED); 885 THREAD_LOCK_ASSERT(td, MA_OWNED); 886 KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended")); 887 TD_CLR_SUSPENDED(td); 888 p->p_suspcount--; 889 setrunnable(td); 890 } 891 892 /* 893 * Allow all threads blocked by single threading to continue running. 894 */ 895 void 896 thread_unsuspend(struct proc *p) 897 { 898 struct thread *td; 899 900 PROC_LOCK_ASSERT(p, MA_OWNED); 901 PROC_SLOCK_ASSERT(p, MA_OWNED); 902 if (!P_SHOULDSTOP(p)) { 903 FOREACH_THREAD_IN_PROC(p, td) { 904 thread_lock(td); 905 if (TD_IS_SUSPENDED(td)) { 906 thread_unsuspend_one(td); 907 } 908 thread_unlock(td); 909 } 910 } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) && 911 (p->p_numthreads == p->p_suspcount)) { 912 /* 913 * Stopping everything also did the job for the single 914 * threading request. Now we've downgraded to single-threaded, 915 * let it continue. 916 */ 917 thread_lock(p->p_singlethread); 918 thread_unsuspend_one(p->p_singlethread); 919 thread_unlock(p->p_singlethread); 920 } 921 } 922 923 /* 924 * End the single threading mode.. 925 */ 926 void 927 thread_single_end(void) 928 { 929 struct thread *td; 930 struct proc *p; 931 932 td = curthread; 933 p = td->td_proc; 934 PROC_LOCK_ASSERT(p, MA_OWNED); 935 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY); 936 PROC_SLOCK(p); 937 p->p_singlethread = NULL; 938 /* 939 * If there are other threads they mey now run, 940 * unless of course there is a blanket 'stop order' 941 * on the process. The single threader must be allowed 942 * to continue however as this is a bad place to stop. 943 */ 944 if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) { 945 FOREACH_THREAD_IN_PROC(p, td) { 946 thread_lock(td); 947 if (TD_IS_SUSPENDED(td)) { 948 thread_unsuspend_one(td); 949 } 950 thread_unlock(td); 951 } 952 } 953 PROC_SUNLOCK(p); 954 } 955 956 struct thread * 957 thread_find(struct proc *p, lwpid_t tid) 958 { 959 struct thread *td; 960 961 PROC_LOCK_ASSERT(p, MA_OWNED); 962 PROC_SLOCK(p); 963 FOREACH_THREAD_IN_PROC(p, td) { 964 if (td->td_tid == tid) 965 break; 966 } 967 PROC_SUNLOCK(p); 968 return (td); 969 } 970