1 /*- 2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice(s), this list of conditions and the following disclaimer as 10 * the first lines of this file unmodified other than the possible 11 * addition of one or more copyright notices. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice(s), this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 19 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 26 * DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/proc.h> 38 #include <sys/resourcevar.h> 39 #include <sys/smp.h> 40 #include <sys/sysctl.h> 41 #include <sys/sched.h> 42 #include <sys/sleepqueue.h> 43 #include <sys/selinfo.h> 44 #include <sys/turnstile.h> 45 #include <sys/ktr.h> 46 #include <sys/umtx.h> 47 48 #include <security/audit/audit.h> 49 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 #include <vm/uma.h> 53 #include <sys/eventhandler.h> 54 55 /* 56 * thread related storage. 57 */ 58 static uma_zone_t thread_zone; 59 60 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation"); 61 62 int max_threads_per_proc = 1500; 63 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW, 64 &max_threads_per_proc, 0, "Limit on threads per proc"); 65 66 int max_threads_hits; 67 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD, 68 &max_threads_hits, 0, ""); 69 70 #ifdef KSE 71 int virtual_cpu; 72 73 #endif 74 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); 75 static struct mtx zombie_lock; 76 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN); 77 78 static void thread_zombie(struct thread *); 79 80 #ifdef KSE 81 static int 82 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS) 83 { 84 int error, new_val; 85 int def_val; 86 87 def_val = mp_ncpus; 88 if (virtual_cpu == 0) 89 new_val = def_val; 90 else 91 new_val = virtual_cpu; 92 error = sysctl_handle_int(oidp, &new_val, 0, req); 93 if (error != 0 || req->newptr == NULL) 94 return (error); 95 if (new_val < 0) 96 return (EINVAL); 97 virtual_cpu = new_val; 98 return (0); 99 } 100 101 /* DEBUG ONLY */ 102 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW, 103 0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I", 104 "debug virtual cpus"); 105 #endif 106 107 struct mtx tid_lock; 108 static struct unrhdr *tid_unrhdr; 109 110 /* 111 * Prepare a thread for use. 112 */ 113 static int 114 thread_ctor(void *mem, int size, void *arg, int flags) 115 { 116 struct thread *td; 117 118 td = (struct thread *)mem; 119 td->td_state = TDS_INACTIVE; 120 td->td_oncpu = NOCPU; 121 122 td->td_tid = alloc_unr(tid_unrhdr); 123 td->td_syscalls = 0; 124 125 /* 126 * Note that td_critnest begins life as 1 because the thread is not 127 * running and is thereby implicitly waiting to be on the receiving 128 * end of a context switch. 129 */ 130 td->td_critnest = 1; 131 EVENTHANDLER_INVOKE(thread_ctor, td); 132 #ifdef AUDIT 133 audit_thread_alloc(td); 134 #endif 135 umtx_thread_alloc(td); 136 return (0); 137 } 138 139 /* 140 * Reclaim a thread after use. 141 */ 142 static void 143 thread_dtor(void *mem, int size, void *arg) 144 { 145 struct thread *td; 146 147 td = (struct thread *)mem; 148 149 #ifdef INVARIANTS 150 /* Verify that this thread is in a safe state to free. */ 151 switch (td->td_state) { 152 case TDS_INHIBITED: 153 case TDS_RUNNING: 154 case TDS_CAN_RUN: 155 case TDS_RUNQ: 156 /* 157 * We must never unlink a thread that is in one of 158 * these states, because it is currently active. 159 */ 160 panic("bad state for thread unlinking"); 161 /* NOTREACHED */ 162 case TDS_INACTIVE: 163 break; 164 default: 165 panic("bad thread state"); 166 /* NOTREACHED */ 167 } 168 #endif 169 #ifdef AUDIT 170 audit_thread_free(td); 171 #endif 172 EVENTHANDLER_INVOKE(thread_dtor, td); 173 free_unr(tid_unrhdr, td->td_tid); 174 sched_newthread(td); 175 } 176 177 /* 178 * Initialize type-stable parts of a thread (when newly created). 179 */ 180 static int 181 thread_init(void *mem, int size, int flags) 182 { 183 struct thread *td; 184 185 td = (struct thread *)mem; 186 187 td->td_sleepqueue = sleepq_alloc(); 188 td->td_turnstile = turnstile_alloc(); 189 EVENTHANDLER_INVOKE(thread_init, td); 190 td->td_sched = (struct td_sched *)&td[1]; 191 sched_newthread(td); 192 umtx_thread_init(td); 193 td->td_kstack = 0; 194 return (0); 195 } 196 197 /* 198 * Tear down type-stable parts of a thread (just before being discarded). 199 */ 200 static void 201 thread_fini(void *mem, int size) 202 { 203 struct thread *td; 204 205 td = (struct thread *)mem; 206 EVENTHANDLER_INVOKE(thread_fini, td); 207 turnstile_free(td->td_turnstile); 208 sleepq_free(td->td_sleepqueue); 209 umtx_thread_fini(td); 210 seltdfini(td); 211 } 212 213 /* 214 * For a newly created process, 215 * link up all the structures and its initial threads etc. 216 * called from: 217 * {arch}/{arch}/machdep.c ia64_init(), init386() etc. 218 * proc_dtor() (should go away) 219 * proc_init() 220 */ 221 void 222 proc_linkup0(struct proc *p, struct thread *td) 223 { 224 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 225 proc_linkup(p, td); 226 } 227 228 void 229 proc_linkup(struct proc *p, struct thread *td) 230 { 231 232 #ifdef KSE 233 TAILQ_INIT(&p->p_upcalls); /* upcall list */ 234 #endif 235 sigqueue_init(&p->p_sigqueue, p); 236 p->p_ksi = ksiginfo_alloc(1); 237 if (p->p_ksi != NULL) { 238 /* XXX p_ksi may be null if ksiginfo zone is not ready */ 239 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS; 240 } 241 LIST_INIT(&p->p_mqnotifier); 242 p->p_numthreads = 0; 243 thread_link(td, p); 244 } 245 246 /* 247 * Initialize global thread allocation resources. 248 */ 249 void 250 threadinit(void) 251 { 252 253 mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF); 254 tid_unrhdr = new_unrhdr(PID_MAX + 1, INT_MAX, &tid_lock); 255 256 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 257 thread_ctor, thread_dtor, thread_init, thread_fini, 258 16 - 1, 0); 259 #ifdef KSE 260 kseinit(); /* set up kse specific stuff e.g. upcall zone*/ 261 #endif 262 } 263 264 /* 265 * Place an unused thread on the zombie list. 266 * Use the slpq as that must be unused by now. 267 */ 268 void 269 thread_zombie(struct thread *td) 270 { 271 mtx_lock_spin(&zombie_lock); 272 TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq); 273 mtx_unlock_spin(&zombie_lock); 274 } 275 276 /* 277 * Release a thread that has exited after cpu_throw(). 278 */ 279 void 280 thread_stash(struct thread *td) 281 { 282 atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1); 283 thread_zombie(td); 284 } 285 286 /* 287 * Reap zombie kse resource. 288 */ 289 void 290 thread_reap(void) 291 { 292 struct thread *td_first, *td_next; 293 294 /* 295 * Don't even bother to lock if none at this instant, 296 * we really don't care about the next instant.. 297 */ 298 if (!TAILQ_EMPTY(&zombie_threads)) { 299 mtx_lock_spin(&zombie_lock); 300 td_first = TAILQ_FIRST(&zombie_threads); 301 if (td_first) 302 TAILQ_INIT(&zombie_threads); 303 mtx_unlock_spin(&zombie_lock); 304 while (td_first) { 305 td_next = TAILQ_NEXT(td_first, td_slpq); 306 if (td_first->td_ucred) 307 crfree(td_first->td_ucred); 308 thread_free(td_first); 309 td_first = td_next; 310 } 311 } 312 #ifdef KSE 313 upcall_reap(); 314 #endif 315 } 316 317 /* 318 * Allocate a thread. 319 */ 320 struct thread * 321 thread_alloc(void) 322 { 323 struct thread *td; 324 325 thread_reap(); /* check if any zombies to get */ 326 327 td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK); 328 KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack")); 329 if (!vm_thread_new(td, 0)) { 330 uma_zfree(thread_zone, td); 331 return (NULL); 332 } 333 cpu_thread_alloc(td); 334 return (td); 335 } 336 337 338 /* 339 * Deallocate a thread. 340 */ 341 void 342 thread_free(struct thread *td) 343 { 344 345 cpu_thread_free(td); 346 if (td->td_altkstack != 0) 347 vm_thread_dispose_altkstack(td); 348 if (td->td_kstack != 0) 349 vm_thread_dispose(td); 350 uma_zfree(thread_zone, td); 351 } 352 353 /* 354 * Discard the current thread and exit from its context. 355 * Always called with scheduler locked. 356 * 357 * Because we can't free a thread while we're operating under its context, 358 * push the current thread into our CPU's deadthread holder. This means 359 * we needn't worry about someone else grabbing our context before we 360 * do a cpu_throw(). This may not be needed now as we are under schedlock. 361 * Maybe we can just do a thread_stash() as thr_exit1 does. 362 */ 363 /* XXX 364 * libthr expects its thread exit to return for the last 365 * thread, meaning that the program is back to non-threaded 366 * mode I guess. Because we do this (cpu_throw) unconditionally 367 * here, they have their own version of it. (thr_exit1()) 368 * that doesn't do it all if this was the last thread. 369 * It is also called from thread_suspend_check(). 370 * Of course in the end, they end up coming here through exit1 371 * anyhow.. After fixing 'thr' to play by the rules we should be able 372 * to merge these two functions together. 373 * 374 * called from: 375 * exit1() 376 * kse_exit() 377 * thr_exit() 378 * ifdef KSE 379 * thread_user_enter() 380 * thread_userret() 381 * endif 382 * thread_suspend_check() 383 */ 384 void 385 thread_exit(void) 386 { 387 uint64_t new_switchtime; 388 struct thread *td; 389 struct thread *td2; 390 struct proc *p; 391 392 td = curthread; 393 p = td->td_proc; 394 395 PROC_SLOCK_ASSERT(p, MA_OWNED); 396 mtx_assert(&Giant, MA_NOTOWNED); 397 398 PROC_LOCK_ASSERT(p, MA_OWNED); 399 KASSERT(p != NULL, ("thread exiting without a process")); 400 CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td, 401 (long)p->p_pid, td->td_name); 402 KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending")); 403 404 #ifdef AUDIT 405 AUDIT_SYSCALL_EXIT(0, td); 406 #endif 407 408 #ifdef KSE 409 if (td->td_standin != NULL) { 410 /* 411 * Note that we don't need to free the cred here as it 412 * is done in thread_reap(). 413 */ 414 thread_zombie(td->td_standin); 415 td->td_standin = NULL; 416 } 417 #endif 418 419 umtx_thread_exit(td); 420 421 /* 422 * drop FPU & debug register state storage, or any other 423 * architecture specific resources that 424 * would not be on a new untouched process. 425 */ 426 cpu_thread_exit(td); /* XXXSMP */ 427 428 /* Do the same timestamp bookkeeping that mi_switch() would do. */ 429 new_switchtime = cpu_ticks(); 430 p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime)); 431 PCPU_SET(switchtime, new_switchtime); 432 PCPU_SET(switchticks, ticks); 433 PCPU_INC(cnt.v_swtch); 434 /* Save our resource usage in our process. */ 435 td->td_ru.ru_nvcsw++; 436 rucollect(&p->p_ru, &td->td_ru); 437 /* 438 * The last thread is left attached to the process 439 * So that the whole bundle gets recycled. Skip 440 * all this stuff if we never had threads. 441 * EXIT clears all sign of other threads when 442 * it goes to single threading, so the last thread always 443 * takes the short path. 444 */ 445 if (p->p_flag & P_HADTHREADS) { 446 if (p->p_numthreads > 1) { 447 thread_lock(td); 448 #ifdef KSE 449 kse_unlink(td); 450 #else 451 thread_unlink(td); 452 #endif 453 thread_unlock(td); 454 td2 = FIRST_THREAD_IN_PROC(p); 455 sched_exit_thread(td2, td); 456 457 /* 458 * The test below is NOT true if we are the 459 * sole exiting thread. P_STOPPED_SNGL is unset 460 * in exit1() after it is the only survivor. 461 */ 462 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 463 if (p->p_numthreads == p->p_suspcount) { 464 thread_lock(p->p_singlethread); 465 thread_unsuspend_one(p->p_singlethread); 466 thread_unlock(p->p_singlethread); 467 } 468 } 469 470 atomic_add_int(&td->td_proc->p_exitthreads, 1); 471 PCPU_SET(deadthread, td); 472 } else { 473 /* 474 * The last thread is exiting.. but not through exit() 475 * what should we do? 476 * Theoretically this can't happen 477 * exit1() - clears threading flags before coming here 478 * kse_exit() - treats last thread specially 479 * thr_exit() - treats last thread specially 480 * ifdef KSE 481 * thread_user_enter() - only if more exist 482 * thread_userret() - only if more exist 483 * endif 484 * thread_suspend_check() - only if more exist 485 */ 486 panic ("thread_exit: Last thread exiting on its own"); 487 } 488 } 489 PROC_UNLOCK(p); 490 thread_lock(td); 491 /* Save our tick information with both the thread and proc locked */ 492 ruxagg(&p->p_rux, td); 493 PROC_SUNLOCK(p); 494 td->td_state = TDS_INACTIVE; 495 CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td); 496 sched_throw(td); 497 panic("I'm a teapot!"); 498 /* NOTREACHED */ 499 } 500 501 /* 502 * Do any thread specific cleanups that may be needed in wait() 503 * called with Giant, proc and schedlock not held. 504 */ 505 void 506 thread_wait(struct proc *p) 507 { 508 struct thread *td; 509 510 mtx_assert(&Giant, MA_NOTOWNED); 511 KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()")); 512 td = FIRST_THREAD_IN_PROC(p); 513 #ifdef KSE 514 if (td->td_standin != NULL) { 515 if (td->td_standin->td_ucred != NULL) { 516 crfree(td->td_standin->td_ucred); 517 td->td_standin->td_ucred = NULL; 518 } 519 thread_free(td->td_standin); 520 td->td_standin = NULL; 521 } 522 #endif 523 /* Lock the last thread so we spin until it exits cpu_throw(). */ 524 thread_lock(td); 525 thread_unlock(td); 526 /* Wait for any remaining threads to exit cpu_throw(). */ 527 while (p->p_exitthreads) 528 sched_relinquish(curthread); 529 cpu_thread_clean(td); 530 crfree(td->td_ucred); 531 thread_reap(); /* check for zombie threads etc. */ 532 } 533 534 /* 535 * Link a thread to a process. 536 * set up anything that needs to be initialized for it to 537 * be used by the process. 538 * 539 * Note that we do not link to the proc's ucred here. 540 * The thread is linked as if running but no KSE assigned. 541 * Called from: 542 * proc_linkup() 543 * thread_schedule_upcall() 544 * thr_create() 545 */ 546 void 547 thread_link(struct thread *td, struct proc *p) 548 { 549 550 /* 551 * XXX This can't be enabled because it's called for proc0 before 552 * it's spinlock has been created. 553 * PROC_SLOCK_ASSERT(p, MA_OWNED); 554 */ 555 td->td_state = TDS_INACTIVE; 556 td->td_proc = p; 557 td->td_flags = TDF_INMEM; 558 559 LIST_INIT(&td->td_contested); 560 LIST_INIT(&td->td_lprof[0]); 561 LIST_INIT(&td->td_lprof[1]); 562 sigqueue_init(&td->td_sigqueue, p); 563 callout_init(&td->td_slpcallout, CALLOUT_MPSAFE); 564 TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist); 565 p->p_numthreads++; 566 } 567 568 /* 569 * Convert a process with one thread to an unthreaded process. 570 * Called from: 571 * thread_single(exit) (called from execve and exit) 572 * kse_exit() XXX may need cleaning up wrt KSE stuff 573 */ 574 void 575 thread_unthread(struct thread *td) 576 { 577 struct proc *p = td->td_proc; 578 579 KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads")); 580 #ifdef KSE 581 thread_lock(td); 582 upcall_remove(td); 583 thread_unlock(td); 584 p->p_flag &= ~(P_SA|P_HADTHREADS); 585 td->td_mailbox = NULL; 586 td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND); 587 if (td->td_standin != NULL) { 588 thread_zombie(td->td_standin); 589 td->td_standin = NULL; 590 } 591 #else 592 p->p_flag &= ~P_HADTHREADS; 593 #endif 594 } 595 596 /* 597 * Called from: 598 * thread_exit() 599 */ 600 void 601 thread_unlink(struct thread *td) 602 { 603 struct proc *p = td->td_proc; 604 605 PROC_SLOCK_ASSERT(p, MA_OWNED); 606 TAILQ_REMOVE(&p->p_threads, td, td_plist); 607 p->p_numthreads--; 608 /* could clear a few other things here */ 609 /* Must NOT clear links to proc! */ 610 } 611 612 /* 613 * Enforce single-threading. 614 * 615 * Returns 1 if the caller must abort (another thread is waiting to 616 * exit the process or similar). Process is locked! 617 * Returns 0 when you are successfully the only thread running. 618 * A process has successfully single threaded in the suspend mode when 619 * There are no threads in user mode. Threads in the kernel must be 620 * allowed to continue until they get to the user boundary. They may even 621 * copy out their return values and data before suspending. They may however be 622 * accelerated in reaching the user boundary as we will wake up 623 * any sleeping threads that are interruptable. (PCATCH). 624 */ 625 int 626 thread_single(int mode) 627 { 628 struct thread *td; 629 struct thread *td2; 630 struct proc *p; 631 int remaining; 632 633 td = curthread; 634 p = td->td_proc; 635 mtx_assert(&Giant, MA_NOTOWNED); 636 PROC_LOCK_ASSERT(p, MA_OWNED); 637 KASSERT((td != NULL), ("curthread is NULL")); 638 639 if ((p->p_flag & P_HADTHREADS) == 0) 640 return (0); 641 642 /* Is someone already single threading? */ 643 if (p->p_singlethread != NULL && p->p_singlethread != td) 644 return (1); 645 646 if (mode == SINGLE_EXIT) { 647 p->p_flag |= P_SINGLE_EXIT; 648 p->p_flag &= ~P_SINGLE_BOUNDARY; 649 } else { 650 p->p_flag &= ~P_SINGLE_EXIT; 651 if (mode == SINGLE_BOUNDARY) 652 p->p_flag |= P_SINGLE_BOUNDARY; 653 else 654 p->p_flag &= ~P_SINGLE_BOUNDARY; 655 } 656 p->p_flag |= P_STOPPED_SINGLE; 657 PROC_SLOCK(p); 658 p->p_singlethread = td; 659 if (mode == SINGLE_EXIT) 660 remaining = p->p_numthreads; 661 else if (mode == SINGLE_BOUNDARY) 662 remaining = p->p_numthreads - p->p_boundary_count; 663 else 664 remaining = p->p_numthreads - p->p_suspcount; 665 while (remaining != 1) { 666 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE) 667 goto stopme; 668 FOREACH_THREAD_IN_PROC(p, td2) { 669 if (td2 == td) 670 continue; 671 thread_lock(td2); 672 td2->td_flags |= TDF_ASTPENDING; 673 if (TD_IS_INHIBITED(td2)) { 674 switch (mode) { 675 case SINGLE_EXIT: 676 if (td->td_flags & TDF_DBSUSPEND) 677 td->td_flags &= ~TDF_DBSUSPEND; 678 if (TD_IS_SUSPENDED(td2)) 679 thread_unsuspend_one(td2); 680 if (TD_ON_SLEEPQ(td2) && 681 (td2->td_flags & TDF_SINTR)) 682 sleepq_abort(td2, EINTR); 683 break; 684 case SINGLE_BOUNDARY: 685 break; 686 default: 687 if (TD_IS_SUSPENDED(td2)) { 688 thread_unlock(td2); 689 continue; 690 } 691 /* 692 * maybe other inhibited states too? 693 */ 694 if ((td2->td_flags & TDF_SINTR) && 695 (td2->td_inhibitors & 696 (TDI_SLEEPING | TDI_SWAPPED))) 697 thread_suspend_one(td2); 698 break; 699 } 700 } 701 #ifdef SMP 702 else if (TD_IS_RUNNING(td2) && td != td2) { 703 forward_signal(td2); 704 } 705 #endif 706 thread_unlock(td2); 707 } 708 if (mode == SINGLE_EXIT) 709 remaining = p->p_numthreads; 710 else if (mode == SINGLE_BOUNDARY) 711 remaining = p->p_numthreads - p->p_boundary_count; 712 else 713 remaining = p->p_numthreads - p->p_suspcount; 714 715 /* 716 * Maybe we suspended some threads.. was it enough? 717 */ 718 if (remaining == 1) 719 break; 720 721 stopme: 722 /* 723 * Wake us up when everyone else has suspended. 724 * In the mean time we suspend as well. 725 */ 726 thread_suspend_switch(td); 727 if (mode == SINGLE_EXIT) 728 remaining = p->p_numthreads; 729 else if (mode == SINGLE_BOUNDARY) 730 remaining = p->p_numthreads - p->p_boundary_count; 731 else 732 remaining = p->p_numthreads - p->p_suspcount; 733 } 734 if (mode == SINGLE_EXIT) { 735 /* 736 * We have gotten rid of all the other threads and we 737 * are about to either exit or exec. In either case, 738 * we try our utmost to revert to being a non-threaded 739 * process. 740 */ 741 p->p_singlethread = NULL; 742 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT); 743 thread_unthread(td); 744 } 745 PROC_SUNLOCK(p); 746 return (0); 747 } 748 749 /* 750 * Called in from locations that can safely check to see 751 * whether we have to suspend or at least throttle for a 752 * single-thread event (e.g. fork). 753 * 754 * Such locations include userret(). 755 * If the "return_instead" argument is non zero, the thread must be able to 756 * accept 0 (caller may continue), or 1 (caller must abort) as a result. 757 * 758 * The 'return_instead' argument tells the function if it may do a 759 * thread_exit() or suspend, or whether the caller must abort and back 760 * out instead. 761 * 762 * If the thread that set the single_threading request has set the 763 * P_SINGLE_EXIT bit in the process flags then this call will never return 764 * if 'return_instead' is false, but will exit. 765 * 766 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 767 *---------------+--------------------+--------------------- 768 * 0 | returns 0 | returns 0 or 1 769 * | when ST ends | immediatly 770 *---------------+--------------------+--------------------- 771 * 1 | thread exits | returns 1 772 * | | immediatly 773 * 0 = thread_exit() or suspension ok, 774 * other = return error instead of stopping the thread. 775 * 776 * While a full suspension is under effect, even a single threading 777 * thread would be suspended if it made this call (but it shouldn't). 778 * This call should only be made from places where 779 * thread_exit() would be safe as that may be the outcome unless 780 * return_instead is set. 781 */ 782 int 783 thread_suspend_check(int return_instead) 784 { 785 struct thread *td; 786 struct proc *p; 787 788 td = curthread; 789 p = td->td_proc; 790 mtx_assert(&Giant, MA_NOTOWNED); 791 PROC_LOCK_ASSERT(p, MA_OWNED); 792 while (P_SHOULDSTOP(p) || 793 ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) { 794 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 795 KASSERT(p->p_singlethread != NULL, 796 ("singlethread not set")); 797 /* 798 * The only suspension in action is a 799 * single-threading. Single threader need not stop. 800 * XXX Should be safe to access unlocked 801 * as it can only be set to be true by us. 802 */ 803 if (p->p_singlethread == td) 804 return (0); /* Exempt from stopping. */ 805 } 806 if ((p->p_flag & P_SINGLE_EXIT) && return_instead) 807 return (EINTR); 808 809 /* Should we goto user boundary if we didn't come from there? */ 810 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && 811 (p->p_flag & P_SINGLE_BOUNDARY) && return_instead) 812 return (ERESTART); 813 814 /* If thread will exit, flush its pending signals */ 815 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) 816 sigqueue_flush(&td->td_sigqueue); 817 818 PROC_SLOCK(p); 819 thread_stopped(p); 820 /* 821 * If the process is waiting for us to exit, 822 * this thread should just suicide. 823 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. 824 */ 825 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) 826 thread_exit(); 827 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 828 if (p->p_numthreads == p->p_suspcount + 1) { 829 thread_lock(p->p_singlethread); 830 thread_unsuspend_one(p->p_singlethread); 831 thread_unlock(p->p_singlethread); 832 } 833 } 834 PROC_UNLOCK(p); 835 thread_lock(td); 836 /* 837 * When a thread suspends, it just 838 * gets taken off all queues. 839 */ 840 thread_suspend_one(td); 841 if (return_instead == 0) { 842 p->p_boundary_count++; 843 td->td_flags |= TDF_BOUNDARY; 844 } 845 PROC_SUNLOCK(p); 846 mi_switch(SW_INVOL, NULL); 847 if (return_instead == 0) 848 td->td_flags &= ~TDF_BOUNDARY; 849 thread_unlock(td); 850 PROC_LOCK(p); 851 if (return_instead == 0) 852 p->p_boundary_count--; 853 } 854 return (0); 855 } 856 857 void 858 thread_suspend_switch(struct thread *td) 859 { 860 struct proc *p; 861 862 p = td->td_proc; 863 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 864 PROC_LOCK_ASSERT(p, MA_OWNED); 865 PROC_SLOCK_ASSERT(p, MA_OWNED); 866 /* 867 * We implement thread_suspend_one in stages here to avoid 868 * dropping the proc lock while the thread lock is owned. 869 */ 870 thread_stopped(p); 871 p->p_suspcount++; 872 PROC_UNLOCK(p); 873 thread_lock(td); 874 sched_sleep(td); 875 TD_SET_SUSPENDED(td); 876 PROC_SUNLOCK(p); 877 DROP_GIANT(); 878 mi_switch(SW_VOL, NULL); 879 thread_unlock(td); 880 PICKUP_GIANT(); 881 PROC_LOCK(p); 882 PROC_SLOCK(p); 883 } 884 885 void 886 thread_suspend_one(struct thread *td) 887 { 888 struct proc *p = td->td_proc; 889 890 PROC_SLOCK_ASSERT(p, MA_OWNED); 891 THREAD_LOCK_ASSERT(td, MA_OWNED); 892 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 893 p->p_suspcount++; 894 sched_sleep(td); 895 TD_SET_SUSPENDED(td); 896 } 897 898 void 899 thread_unsuspend_one(struct thread *td) 900 { 901 struct proc *p = td->td_proc; 902 903 PROC_SLOCK_ASSERT(p, MA_OWNED); 904 THREAD_LOCK_ASSERT(td, MA_OWNED); 905 KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended")); 906 TD_CLR_SUSPENDED(td); 907 p->p_suspcount--; 908 setrunnable(td); 909 } 910 911 /* 912 * Allow all threads blocked by single threading to continue running. 913 */ 914 void 915 thread_unsuspend(struct proc *p) 916 { 917 struct thread *td; 918 919 PROC_LOCK_ASSERT(p, MA_OWNED); 920 PROC_SLOCK_ASSERT(p, MA_OWNED); 921 if (!P_SHOULDSTOP(p)) { 922 FOREACH_THREAD_IN_PROC(p, td) { 923 thread_lock(td); 924 if (TD_IS_SUSPENDED(td)) { 925 thread_unsuspend_one(td); 926 } 927 thread_unlock(td); 928 } 929 } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) && 930 (p->p_numthreads == p->p_suspcount)) { 931 /* 932 * Stopping everything also did the job for the single 933 * threading request. Now we've downgraded to single-threaded, 934 * let it continue. 935 */ 936 thread_lock(p->p_singlethread); 937 thread_unsuspend_one(p->p_singlethread); 938 thread_unlock(p->p_singlethread); 939 } 940 } 941 942 /* 943 * End the single threading mode.. 944 */ 945 void 946 thread_single_end(void) 947 { 948 struct thread *td; 949 struct proc *p; 950 951 td = curthread; 952 p = td->td_proc; 953 PROC_LOCK_ASSERT(p, MA_OWNED); 954 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY); 955 PROC_SLOCK(p); 956 p->p_singlethread = NULL; 957 /* 958 * If there are other threads they mey now run, 959 * unless of course there is a blanket 'stop order' 960 * on the process. The single threader must be allowed 961 * to continue however as this is a bad place to stop. 962 */ 963 if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) { 964 FOREACH_THREAD_IN_PROC(p, td) { 965 thread_lock(td); 966 if (TD_IS_SUSPENDED(td)) { 967 thread_unsuspend_one(td); 968 } 969 thread_unlock(td); 970 } 971 } 972 PROC_SUNLOCK(p); 973 } 974 975 struct thread * 976 thread_find(struct proc *p, lwpid_t tid) 977 { 978 struct thread *td; 979 980 PROC_LOCK_ASSERT(p, MA_OWNED); 981 PROC_SLOCK(p); 982 FOREACH_THREAD_IN_PROC(p, td) { 983 if (td->td_tid == tid) 984 break; 985 } 986 PROC_SUNLOCK(p); 987 return (td); 988 } 989