xref: /freebsd/sys/kern/kern_thread.c (revision 2ca7a12a81a5376ef17d3a3ea70f7000c025c579)
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/proc.h>
38 #include <sys/resourcevar.h>
39 #include <sys/smp.h>
40 #include <sys/sysctl.h>
41 #include <sys/sched.h>
42 #include <sys/sleepqueue.h>
43 #include <sys/selinfo.h>
44 #include <sys/turnstile.h>
45 #include <sys/ktr.h>
46 #include <sys/umtx.h>
47 
48 #include <security/audit/audit.h>
49 
50 #include <vm/vm.h>
51 #include <vm/vm_extern.h>
52 #include <vm/uma.h>
53 #include <sys/eventhandler.h>
54 
55 /*
56  * thread related storage.
57  */
58 static uma_zone_t thread_zone;
59 
60 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
61 
62 int max_threads_per_proc = 1500;
63 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
64 	&max_threads_per_proc, 0, "Limit on threads per proc");
65 
66 int max_threads_hits;
67 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
68 	&max_threads_hits, 0, "");
69 
70 #ifdef KSE
71 int virtual_cpu;
72 
73 #endif
74 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
75 static struct mtx zombie_lock;
76 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
77 
78 static void thread_zombie(struct thread *);
79 
80 #ifdef KSE
81 static int
82 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
83 {
84 	int error, new_val;
85 	int def_val;
86 
87 	def_val = mp_ncpus;
88 	if (virtual_cpu == 0)
89 		new_val = def_val;
90 	else
91 		new_val = virtual_cpu;
92 	error = sysctl_handle_int(oidp, &new_val, 0, req);
93 	if (error != 0 || req->newptr == NULL)
94 		return (error);
95 	if (new_val < 0)
96 		return (EINVAL);
97 	virtual_cpu = new_val;
98 	return (0);
99 }
100 
101 /* DEBUG ONLY */
102 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
103 	0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
104 	"debug virtual cpus");
105 #endif
106 
107 struct mtx tid_lock;
108 static struct unrhdr *tid_unrhdr;
109 
110 /*
111  * Prepare a thread for use.
112  */
113 static int
114 thread_ctor(void *mem, int size, void *arg, int flags)
115 {
116 	struct thread	*td;
117 
118 	td = (struct thread *)mem;
119 	td->td_state = TDS_INACTIVE;
120 	td->td_oncpu = NOCPU;
121 
122 	td->td_tid = alloc_unr(tid_unrhdr);
123 	td->td_syscalls = 0;
124 
125 	/*
126 	 * Note that td_critnest begins life as 1 because the thread is not
127 	 * running and is thereby implicitly waiting to be on the receiving
128 	 * end of a context switch.
129 	 */
130 	td->td_critnest = 1;
131 	EVENTHANDLER_INVOKE(thread_ctor, td);
132 #ifdef AUDIT
133 	audit_thread_alloc(td);
134 #endif
135 	umtx_thread_alloc(td);
136 	return (0);
137 }
138 
139 /*
140  * Reclaim a thread after use.
141  */
142 static void
143 thread_dtor(void *mem, int size, void *arg)
144 {
145 	struct thread *td;
146 
147 	td = (struct thread *)mem;
148 
149 #ifdef INVARIANTS
150 	/* Verify that this thread is in a safe state to free. */
151 	switch (td->td_state) {
152 	case TDS_INHIBITED:
153 	case TDS_RUNNING:
154 	case TDS_CAN_RUN:
155 	case TDS_RUNQ:
156 		/*
157 		 * We must never unlink a thread that is in one of
158 		 * these states, because it is currently active.
159 		 */
160 		panic("bad state for thread unlinking");
161 		/* NOTREACHED */
162 	case TDS_INACTIVE:
163 		break;
164 	default:
165 		panic("bad thread state");
166 		/* NOTREACHED */
167 	}
168 #endif
169 #ifdef AUDIT
170 	audit_thread_free(td);
171 #endif
172 	EVENTHANDLER_INVOKE(thread_dtor, td);
173 	free_unr(tid_unrhdr, td->td_tid);
174 	sched_newthread(td);
175 }
176 
177 /*
178  * Initialize type-stable parts of a thread (when newly created).
179  */
180 static int
181 thread_init(void *mem, int size, int flags)
182 {
183 	struct thread *td;
184 
185 	td = (struct thread *)mem;
186 
187 	td->td_sleepqueue = sleepq_alloc();
188 	td->td_turnstile = turnstile_alloc();
189 	EVENTHANDLER_INVOKE(thread_init, td);
190 	td->td_sched = (struct td_sched *)&td[1];
191 	sched_newthread(td);
192 	umtx_thread_init(td);
193 	td->td_kstack = 0;
194 	return (0);
195 }
196 
197 /*
198  * Tear down type-stable parts of a thread (just before being discarded).
199  */
200 static void
201 thread_fini(void *mem, int size)
202 {
203 	struct thread *td;
204 
205 	td = (struct thread *)mem;
206 	EVENTHANDLER_INVOKE(thread_fini, td);
207 	turnstile_free(td->td_turnstile);
208 	sleepq_free(td->td_sleepqueue);
209 	umtx_thread_fini(td);
210 	seltdfini(td);
211 }
212 
213 /*
214  * For a newly created process,
215  * link up all the structures and its initial threads etc.
216  * called from:
217  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
218  * proc_dtor() (should go away)
219  * proc_init()
220  */
221 void
222 proc_linkup0(struct proc *p, struct thread *td)
223 {
224 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
225 	proc_linkup(p, td);
226 }
227 
228 void
229 proc_linkup(struct proc *p, struct thread *td)
230 {
231 
232 #ifdef KSE
233 	TAILQ_INIT(&p->p_upcalls);	     /* upcall list */
234 #endif
235 	sigqueue_init(&p->p_sigqueue, p);
236 	p->p_ksi = ksiginfo_alloc(1);
237 	if (p->p_ksi != NULL) {
238 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
239 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
240 	}
241 	LIST_INIT(&p->p_mqnotifier);
242 	p->p_numthreads = 0;
243 	thread_link(td, p);
244 }
245 
246 /*
247  * Initialize global thread allocation resources.
248  */
249 void
250 threadinit(void)
251 {
252 
253 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
254 	tid_unrhdr = new_unrhdr(PID_MAX + 1, INT_MAX, &tid_lock);
255 
256 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
257 	    thread_ctor, thread_dtor, thread_init, thread_fini,
258 	    16 - 1, 0);
259 #ifdef KSE
260 	kseinit();	/* set up kse specific stuff  e.g. upcall zone*/
261 #endif
262 }
263 
264 /*
265  * Place an unused thread on the zombie list.
266  * Use the slpq as that must be unused by now.
267  */
268 void
269 thread_zombie(struct thread *td)
270 {
271 	mtx_lock_spin(&zombie_lock);
272 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
273 	mtx_unlock_spin(&zombie_lock);
274 }
275 
276 /*
277  * Release a thread that has exited after cpu_throw().
278  */
279 void
280 thread_stash(struct thread *td)
281 {
282 	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
283 	thread_zombie(td);
284 }
285 
286 /*
287  * Reap zombie kse resource.
288  */
289 void
290 thread_reap(void)
291 {
292 	struct thread *td_first, *td_next;
293 
294 	/*
295 	 * Don't even bother to lock if none at this instant,
296 	 * we really don't care about the next instant..
297 	 */
298 	if (!TAILQ_EMPTY(&zombie_threads)) {
299 		mtx_lock_spin(&zombie_lock);
300 		td_first = TAILQ_FIRST(&zombie_threads);
301 		if (td_first)
302 			TAILQ_INIT(&zombie_threads);
303 		mtx_unlock_spin(&zombie_lock);
304 		while (td_first) {
305 			td_next = TAILQ_NEXT(td_first, td_slpq);
306 			if (td_first->td_ucred)
307 				crfree(td_first->td_ucred);
308 			thread_free(td_first);
309 			td_first = td_next;
310 		}
311 	}
312 #ifdef KSE
313 	upcall_reap();
314 #endif
315 }
316 
317 /*
318  * Allocate a thread.
319  */
320 struct thread *
321 thread_alloc(void)
322 {
323 	struct thread *td;
324 
325 	thread_reap(); /* check if any zombies to get */
326 
327 	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
328 	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
329 	if (!vm_thread_new(td, 0)) {
330 		uma_zfree(thread_zone, td);
331 		return (NULL);
332 	}
333 	cpu_thread_alloc(td);
334 	return (td);
335 }
336 
337 
338 /*
339  * Deallocate a thread.
340  */
341 void
342 thread_free(struct thread *td)
343 {
344 
345 	cpu_thread_free(td);
346 	if (td->td_altkstack != 0)
347 		vm_thread_dispose_altkstack(td);
348 	if (td->td_kstack != 0)
349 		vm_thread_dispose(td);
350 	uma_zfree(thread_zone, td);
351 }
352 
353 /*
354  * Discard the current thread and exit from its context.
355  * Always called with scheduler locked.
356  *
357  * Because we can't free a thread while we're operating under its context,
358  * push the current thread into our CPU's deadthread holder. This means
359  * we needn't worry about someone else grabbing our context before we
360  * do a cpu_throw().  This may not be needed now as we are under schedlock.
361  * Maybe we can just do a thread_stash() as thr_exit1 does.
362  */
363 /*  XXX
364  * libthr expects its thread exit to return for the last
365  * thread, meaning that the program is back to non-threaded
366  * mode I guess. Because we do this (cpu_throw) unconditionally
367  * here, they have their own version of it. (thr_exit1())
368  * that doesn't do it all if this was the last thread.
369  * It is also called from thread_suspend_check().
370  * Of course in the end, they end up coming here through exit1
371  * anyhow..  After fixing 'thr' to play by the rules we should be able
372  * to merge these two functions together.
373  *
374  * called from:
375  * exit1()
376  * kse_exit()
377  * thr_exit()
378  * ifdef KSE
379  * thread_user_enter()
380  * thread_userret()
381  * endif
382  * thread_suspend_check()
383  */
384 void
385 thread_exit(void)
386 {
387 	uint64_t new_switchtime;
388 	struct thread *td;
389 	struct thread *td2;
390 	struct proc *p;
391 
392 	td = curthread;
393 	p = td->td_proc;
394 
395 	PROC_SLOCK_ASSERT(p, MA_OWNED);
396 	mtx_assert(&Giant, MA_NOTOWNED);
397 
398 	PROC_LOCK_ASSERT(p, MA_OWNED);
399 	KASSERT(p != NULL, ("thread exiting without a process"));
400 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
401 	    (long)p->p_pid, td->td_name);
402 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
403 
404 #ifdef AUDIT
405 	AUDIT_SYSCALL_EXIT(0, td);
406 #endif
407 
408 #ifdef KSE
409 	if (td->td_standin != NULL) {
410 		/*
411 		 * Note that we don't need to free the cred here as it
412 		 * is done in thread_reap().
413 		 */
414 		thread_zombie(td->td_standin);
415 		td->td_standin = NULL;
416 	}
417 #endif
418 
419 	umtx_thread_exit(td);
420 
421 	/*
422 	 * drop FPU & debug register state storage, or any other
423 	 * architecture specific resources that
424 	 * would not be on a new untouched process.
425 	 */
426 	cpu_thread_exit(td);	/* XXXSMP */
427 
428 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
429 	new_switchtime = cpu_ticks();
430 	p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
431 	PCPU_SET(switchtime, new_switchtime);
432 	PCPU_SET(switchticks, ticks);
433 	PCPU_INC(cnt.v_swtch);
434 	/* Save our resource usage in our process. */
435 	td->td_ru.ru_nvcsw++;
436 	rucollect(&p->p_ru, &td->td_ru);
437 	/*
438 	 * The last thread is left attached to the process
439 	 * So that the whole bundle gets recycled. Skip
440 	 * all this stuff if we never had threads.
441 	 * EXIT clears all sign of other threads when
442 	 * it goes to single threading, so the last thread always
443 	 * takes the short path.
444 	 */
445 	if (p->p_flag & P_HADTHREADS) {
446 		if (p->p_numthreads > 1) {
447 			thread_lock(td);
448 #ifdef KSE
449 			kse_unlink(td);
450 #else
451 			thread_unlink(td);
452 #endif
453 			thread_unlock(td);
454 			td2 = FIRST_THREAD_IN_PROC(p);
455 			sched_exit_thread(td2, td);
456 
457 			/*
458 			 * The test below is NOT true if we are the
459 			 * sole exiting thread. P_STOPPED_SNGL is unset
460 			 * in exit1() after it is the only survivor.
461 			 */
462 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
463 				if (p->p_numthreads == p->p_suspcount) {
464 					thread_lock(p->p_singlethread);
465 					thread_unsuspend_one(p->p_singlethread);
466 					thread_unlock(p->p_singlethread);
467 				}
468 			}
469 
470 			atomic_add_int(&td->td_proc->p_exitthreads, 1);
471 			PCPU_SET(deadthread, td);
472 		} else {
473 			/*
474 			 * The last thread is exiting.. but not through exit()
475 			 * what should we do?
476 			 * Theoretically this can't happen
477  			 * exit1() - clears threading flags before coming here
478  			 * kse_exit() - treats last thread specially
479  			 * thr_exit() - treats last thread specially
480 			 * ifdef KSE
481  			 * thread_user_enter() - only if more exist
482  			 * thread_userret() - only if more exist
483 			 * endif
484  			 * thread_suspend_check() - only if more exist
485 			 */
486 			panic ("thread_exit: Last thread exiting on its own");
487 		}
488 	}
489 	PROC_UNLOCK(p);
490 	thread_lock(td);
491 	/* Save our tick information with both the thread and proc locked */
492 	ruxagg(&p->p_rux, td);
493 	PROC_SUNLOCK(p);
494 	td->td_state = TDS_INACTIVE;
495 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
496 	sched_throw(td);
497 	panic("I'm a teapot!");
498 	/* NOTREACHED */
499 }
500 
501 /*
502  * Do any thread specific cleanups that may be needed in wait()
503  * called with Giant, proc and schedlock not held.
504  */
505 void
506 thread_wait(struct proc *p)
507 {
508 	struct thread *td;
509 
510 	mtx_assert(&Giant, MA_NOTOWNED);
511 	KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
512 	td = FIRST_THREAD_IN_PROC(p);
513 #ifdef KSE
514 	if (td->td_standin != NULL) {
515 		if (td->td_standin->td_ucred != NULL) {
516 			crfree(td->td_standin->td_ucred);
517 			td->td_standin->td_ucred = NULL;
518 		}
519 		thread_free(td->td_standin);
520 		td->td_standin = NULL;
521 	}
522 #endif
523 	/* Lock the last thread so we spin until it exits cpu_throw(). */
524 	thread_lock(td);
525 	thread_unlock(td);
526 	/* Wait for any remaining threads to exit cpu_throw(). */
527 	while (p->p_exitthreads)
528 		sched_relinquish(curthread);
529 	cpu_thread_clean(td);
530 	crfree(td->td_ucred);
531 	thread_reap();	/* check for zombie threads etc. */
532 }
533 
534 /*
535  * Link a thread to a process.
536  * set up anything that needs to be initialized for it to
537  * be used by the process.
538  *
539  * Note that we do not link to the proc's ucred here.
540  * The thread is linked as if running but no KSE assigned.
541  * Called from:
542  *  proc_linkup()
543  *  thread_schedule_upcall()
544  *  thr_create()
545  */
546 void
547 thread_link(struct thread *td, struct proc *p)
548 {
549 
550 	/*
551 	 * XXX This can't be enabled because it's called for proc0 before
552 	 * it's spinlock has been created.
553 	 * PROC_SLOCK_ASSERT(p, MA_OWNED);
554 	 */
555 	td->td_state    = TDS_INACTIVE;
556 	td->td_proc     = p;
557 	td->td_flags    = TDF_INMEM;
558 
559 	LIST_INIT(&td->td_contested);
560 	LIST_INIT(&td->td_lprof[0]);
561 	LIST_INIT(&td->td_lprof[1]);
562 	sigqueue_init(&td->td_sigqueue, p);
563 	callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
564 	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
565 	p->p_numthreads++;
566 }
567 
568 /*
569  * Convert a process with one thread to an unthreaded process.
570  * Called from:
571  *  thread_single(exit)  (called from execve and exit)
572  *  kse_exit()		XXX may need cleaning up wrt KSE stuff
573  */
574 void
575 thread_unthread(struct thread *td)
576 {
577 	struct proc *p = td->td_proc;
578 
579 	KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
580 #ifdef KSE
581 	thread_lock(td);
582 	upcall_remove(td);
583 	thread_unlock(td);
584 	p->p_flag &= ~(P_SA|P_HADTHREADS);
585 	td->td_mailbox = NULL;
586 	td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND);
587 	if (td->td_standin != NULL) {
588 		thread_zombie(td->td_standin);
589 		td->td_standin = NULL;
590 	}
591 #else
592 	p->p_flag &= ~P_HADTHREADS;
593 #endif
594 }
595 
596 /*
597  * Called from:
598  *  thread_exit()
599  */
600 void
601 thread_unlink(struct thread *td)
602 {
603 	struct proc *p = td->td_proc;
604 
605 	PROC_SLOCK_ASSERT(p, MA_OWNED);
606 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
607 	p->p_numthreads--;
608 	/* could clear a few other things here */
609 	/* Must  NOT clear links to proc! */
610 }
611 
612 /*
613  * Enforce single-threading.
614  *
615  * Returns 1 if the caller must abort (another thread is waiting to
616  * exit the process or similar). Process is locked!
617  * Returns 0 when you are successfully the only thread running.
618  * A process has successfully single threaded in the suspend mode when
619  * There are no threads in user mode. Threads in the kernel must be
620  * allowed to continue until they get to the user boundary. They may even
621  * copy out their return values and data before suspending. They may however be
622  * accelerated in reaching the user boundary as we will wake up
623  * any sleeping threads that are interruptable. (PCATCH).
624  */
625 int
626 thread_single(int mode)
627 {
628 	struct thread *td;
629 	struct thread *td2;
630 	struct proc *p;
631 	int remaining;
632 
633 	td = curthread;
634 	p = td->td_proc;
635 	mtx_assert(&Giant, MA_NOTOWNED);
636 	PROC_LOCK_ASSERT(p, MA_OWNED);
637 	KASSERT((td != NULL), ("curthread is NULL"));
638 
639 	if ((p->p_flag & P_HADTHREADS) == 0)
640 		return (0);
641 
642 	/* Is someone already single threading? */
643 	if (p->p_singlethread != NULL && p->p_singlethread != td)
644 		return (1);
645 
646 	if (mode == SINGLE_EXIT) {
647 		p->p_flag |= P_SINGLE_EXIT;
648 		p->p_flag &= ~P_SINGLE_BOUNDARY;
649 	} else {
650 		p->p_flag &= ~P_SINGLE_EXIT;
651 		if (mode == SINGLE_BOUNDARY)
652 			p->p_flag |= P_SINGLE_BOUNDARY;
653 		else
654 			p->p_flag &= ~P_SINGLE_BOUNDARY;
655 	}
656 	p->p_flag |= P_STOPPED_SINGLE;
657 	PROC_SLOCK(p);
658 	p->p_singlethread = td;
659 	if (mode == SINGLE_EXIT)
660 		remaining = p->p_numthreads;
661 	else if (mode == SINGLE_BOUNDARY)
662 		remaining = p->p_numthreads - p->p_boundary_count;
663 	else
664 		remaining = p->p_numthreads - p->p_suspcount;
665 	while (remaining != 1) {
666 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
667 			goto stopme;
668 		FOREACH_THREAD_IN_PROC(p, td2) {
669 			if (td2 == td)
670 				continue;
671 			thread_lock(td2);
672 			td2->td_flags |= TDF_ASTPENDING;
673 			if (TD_IS_INHIBITED(td2)) {
674 				switch (mode) {
675 				case SINGLE_EXIT:
676 					if (td->td_flags & TDF_DBSUSPEND)
677 						td->td_flags &= ~TDF_DBSUSPEND;
678 					if (TD_IS_SUSPENDED(td2))
679 						thread_unsuspend_one(td2);
680 					if (TD_ON_SLEEPQ(td2) &&
681 					    (td2->td_flags & TDF_SINTR))
682 						sleepq_abort(td2, EINTR);
683 					break;
684 				case SINGLE_BOUNDARY:
685 					break;
686 				default:
687 					if (TD_IS_SUSPENDED(td2)) {
688 						thread_unlock(td2);
689 						continue;
690 					}
691 					/*
692 					 * maybe other inhibited states too?
693 					 */
694 					if ((td2->td_flags & TDF_SINTR) &&
695 					    (td2->td_inhibitors &
696 					    (TDI_SLEEPING | TDI_SWAPPED)))
697 						thread_suspend_one(td2);
698 					break;
699 				}
700 			}
701 #ifdef SMP
702 			else if (TD_IS_RUNNING(td2) && td != td2) {
703 				forward_signal(td2);
704 			}
705 #endif
706 			thread_unlock(td2);
707 		}
708 		if (mode == SINGLE_EXIT)
709 			remaining = p->p_numthreads;
710 		else if (mode == SINGLE_BOUNDARY)
711 			remaining = p->p_numthreads - p->p_boundary_count;
712 		else
713 			remaining = p->p_numthreads - p->p_suspcount;
714 
715 		/*
716 		 * Maybe we suspended some threads.. was it enough?
717 		 */
718 		if (remaining == 1)
719 			break;
720 
721 stopme:
722 		/*
723 		 * Wake us up when everyone else has suspended.
724 		 * In the mean time we suspend as well.
725 		 */
726 		thread_suspend_switch(td);
727 		if (mode == SINGLE_EXIT)
728 			remaining = p->p_numthreads;
729 		else if (mode == SINGLE_BOUNDARY)
730 			remaining = p->p_numthreads - p->p_boundary_count;
731 		else
732 			remaining = p->p_numthreads - p->p_suspcount;
733 	}
734 	if (mode == SINGLE_EXIT) {
735 		/*
736 		 * We have gotten rid of all the other threads and we
737 		 * are about to either exit or exec. In either case,
738 		 * we try our utmost  to revert to being a non-threaded
739 		 * process.
740 		 */
741 		p->p_singlethread = NULL;
742 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
743 		thread_unthread(td);
744 	}
745 	PROC_SUNLOCK(p);
746 	return (0);
747 }
748 
749 /*
750  * Called in from locations that can safely check to see
751  * whether we have to suspend or at least throttle for a
752  * single-thread event (e.g. fork).
753  *
754  * Such locations include userret().
755  * If the "return_instead" argument is non zero, the thread must be able to
756  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
757  *
758  * The 'return_instead' argument tells the function if it may do a
759  * thread_exit() or suspend, or whether the caller must abort and back
760  * out instead.
761  *
762  * If the thread that set the single_threading request has set the
763  * P_SINGLE_EXIT bit in the process flags then this call will never return
764  * if 'return_instead' is false, but will exit.
765  *
766  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
767  *---------------+--------------------+---------------------
768  *       0       | returns 0          |   returns 0 or 1
769  *               | when ST ends       |   immediatly
770  *---------------+--------------------+---------------------
771  *       1       | thread exits       |   returns 1
772  *               |                    |  immediatly
773  * 0 = thread_exit() or suspension ok,
774  * other = return error instead of stopping the thread.
775  *
776  * While a full suspension is under effect, even a single threading
777  * thread would be suspended if it made this call (but it shouldn't).
778  * This call should only be made from places where
779  * thread_exit() would be safe as that may be the outcome unless
780  * return_instead is set.
781  */
782 int
783 thread_suspend_check(int return_instead)
784 {
785 	struct thread *td;
786 	struct proc *p;
787 
788 	td = curthread;
789 	p = td->td_proc;
790 	mtx_assert(&Giant, MA_NOTOWNED);
791 	PROC_LOCK_ASSERT(p, MA_OWNED);
792 	while (P_SHOULDSTOP(p) ||
793 	      ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) {
794 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
795 			KASSERT(p->p_singlethread != NULL,
796 			    ("singlethread not set"));
797 			/*
798 			 * The only suspension in action is a
799 			 * single-threading. Single threader need not stop.
800 			 * XXX Should be safe to access unlocked
801 			 * as it can only be set to be true by us.
802 			 */
803 			if (p->p_singlethread == td)
804 				return (0);	/* Exempt from stopping. */
805 		}
806 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
807 			return (EINTR);
808 
809 		/* Should we goto user boundary if we didn't come from there? */
810 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
811 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
812 			return (ERESTART);
813 
814 		/* If thread will exit, flush its pending signals */
815 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
816 			sigqueue_flush(&td->td_sigqueue);
817 
818 		PROC_SLOCK(p);
819 		thread_stopped(p);
820 		/*
821 		 * If the process is waiting for us to exit,
822 		 * this thread should just suicide.
823 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
824 		 */
825 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
826 			thread_exit();
827 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
828 			if (p->p_numthreads == p->p_suspcount + 1) {
829 				thread_lock(p->p_singlethread);
830 				thread_unsuspend_one(p->p_singlethread);
831 				thread_unlock(p->p_singlethread);
832 			}
833 		}
834 		PROC_UNLOCK(p);
835 		thread_lock(td);
836 		/*
837 		 * When a thread suspends, it just
838 		 * gets taken off all queues.
839 		 */
840 		thread_suspend_one(td);
841 		if (return_instead == 0) {
842 			p->p_boundary_count++;
843 			td->td_flags |= TDF_BOUNDARY;
844 		}
845 		PROC_SUNLOCK(p);
846 		mi_switch(SW_INVOL, NULL);
847 		if (return_instead == 0)
848 			td->td_flags &= ~TDF_BOUNDARY;
849 		thread_unlock(td);
850 		PROC_LOCK(p);
851 		if (return_instead == 0)
852 			p->p_boundary_count--;
853 	}
854 	return (0);
855 }
856 
857 void
858 thread_suspend_switch(struct thread *td)
859 {
860 	struct proc *p;
861 
862 	p = td->td_proc;
863 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
864 	PROC_LOCK_ASSERT(p, MA_OWNED);
865 	PROC_SLOCK_ASSERT(p, MA_OWNED);
866 	/*
867 	 * We implement thread_suspend_one in stages here to avoid
868 	 * dropping the proc lock while the thread lock is owned.
869 	 */
870 	thread_stopped(p);
871 	p->p_suspcount++;
872 	PROC_UNLOCK(p);
873 	thread_lock(td);
874 	sched_sleep(td);
875 	TD_SET_SUSPENDED(td);
876 	PROC_SUNLOCK(p);
877 	DROP_GIANT();
878 	mi_switch(SW_VOL, NULL);
879 	thread_unlock(td);
880 	PICKUP_GIANT();
881 	PROC_LOCK(p);
882 	PROC_SLOCK(p);
883 }
884 
885 void
886 thread_suspend_one(struct thread *td)
887 {
888 	struct proc *p = td->td_proc;
889 
890 	PROC_SLOCK_ASSERT(p, MA_OWNED);
891 	THREAD_LOCK_ASSERT(td, MA_OWNED);
892 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
893 	p->p_suspcount++;
894 	sched_sleep(td);
895 	TD_SET_SUSPENDED(td);
896 }
897 
898 void
899 thread_unsuspend_one(struct thread *td)
900 {
901 	struct proc *p = td->td_proc;
902 
903 	PROC_SLOCK_ASSERT(p, MA_OWNED);
904 	THREAD_LOCK_ASSERT(td, MA_OWNED);
905 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
906 	TD_CLR_SUSPENDED(td);
907 	p->p_suspcount--;
908 	setrunnable(td);
909 }
910 
911 /*
912  * Allow all threads blocked by single threading to continue running.
913  */
914 void
915 thread_unsuspend(struct proc *p)
916 {
917 	struct thread *td;
918 
919 	PROC_LOCK_ASSERT(p, MA_OWNED);
920 	PROC_SLOCK_ASSERT(p, MA_OWNED);
921 	if (!P_SHOULDSTOP(p)) {
922                 FOREACH_THREAD_IN_PROC(p, td) {
923 			thread_lock(td);
924 			if (TD_IS_SUSPENDED(td)) {
925 				thread_unsuspend_one(td);
926 			}
927 			thread_unlock(td);
928 		}
929 	} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
930 	    (p->p_numthreads == p->p_suspcount)) {
931 		/*
932 		 * Stopping everything also did the job for the single
933 		 * threading request. Now we've downgraded to single-threaded,
934 		 * let it continue.
935 		 */
936 		thread_lock(p->p_singlethread);
937 		thread_unsuspend_one(p->p_singlethread);
938 		thread_unlock(p->p_singlethread);
939 	}
940 }
941 
942 /*
943  * End the single threading mode..
944  */
945 void
946 thread_single_end(void)
947 {
948 	struct thread *td;
949 	struct proc *p;
950 
951 	td = curthread;
952 	p = td->td_proc;
953 	PROC_LOCK_ASSERT(p, MA_OWNED);
954 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
955 	PROC_SLOCK(p);
956 	p->p_singlethread = NULL;
957 	/*
958 	 * If there are other threads they mey now run,
959 	 * unless of course there is a blanket 'stop order'
960 	 * on the process. The single threader must be allowed
961 	 * to continue however as this is a bad place to stop.
962 	 */
963 	if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
964                 FOREACH_THREAD_IN_PROC(p, td) {
965 			thread_lock(td);
966 			if (TD_IS_SUSPENDED(td)) {
967 				thread_unsuspend_one(td);
968 			}
969 			thread_unlock(td);
970 		}
971 	}
972 	PROC_SUNLOCK(p);
973 }
974 
975 struct thread *
976 thread_find(struct proc *p, lwpid_t tid)
977 {
978 	struct thread *td;
979 
980 	PROC_LOCK_ASSERT(p, MA_OWNED);
981 	PROC_SLOCK(p);
982 	FOREACH_THREAD_IN_PROC(p, td) {
983 		if (td->td_tid == tid)
984 			break;
985 	}
986 	PROC_SUNLOCK(p);
987 	return (td);
988 }
989