xref: /freebsd/sys/kern/kern_thread.c (revision 2b743a9e9ddc6736208dc8ca1ce06ce64ad20a19)
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/proc.h>
38 #include <sys/resourcevar.h>
39 #include <sys/smp.h>
40 #include <sys/sysctl.h>
41 #include <sys/sched.h>
42 #include <sys/sleepqueue.h>
43 #include <sys/turnstile.h>
44 #include <sys/ktr.h>
45 #include <sys/umtx.h>
46 
47 #include <security/audit/audit.h>
48 
49 #include <vm/vm.h>
50 #include <vm/vm_extern.h>
51 #include <vm/uma.h>
52 
53 /*
54  * thread related storage.
55  */
56 static uma_zone_t thread_zone;
57 
58 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
59 
60 int max_threads_per_proc = 1500;
61 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
62 	&max_threads_per_proc, 0, "Limit on threads per proc");
63 
64 int max_threads_hits;
65 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
66 	&max_threads_hits, 0, "");
67 
68 #ifdef KSE
69 int virtual_cpu;
70 
71 #endif
72 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
73 struct mtx kse_zombie_lock;
74 MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN);
75 
76 #ifdef KSE
77 static int
78 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
79 {
80 	int error, new_val;
81 	int def_val;
82 
83 	def_val = mp_ncpus;
84 	if (virtual_cpu == 0)
85 		new_val = def_val;
86 	else
87 		new_val = virtual_cpu;
88 	error = sysctl_handle_int(oidp, &new_val, 0, req);
89 	if (error != 0 || req->newptr == NULL)
90 		return (error);
91 	if (new_val < 0)
92 		return (EINVAL);
93 	virtual_cpu = new_val;
94 	return (0);
95 }
96 
97 /* DEBUG ONLY */
98 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
99 	0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
100 	"debug virtual cpus");
101 #endif
102 
103 struct mtx tid_lock;
104 static struct unrhdr *tid_unrhdr;
105 
106 /*
107  * Prepare a thread for use.
108  */
109 static int
110 thread_ctor(void *mem, int size, void *arg, int flags)
111 {
112 	struct thread	*td;
113 
114 	td = (struct thread *)mem;
115 	td->td_state = TDS_INACTIVE;
116 	td->td_oncpu = NOCPU;
117 
118 	td->td_tid = alloc_unr(tid_unrhdr);
119 
120 	/*
121 	 * Note that td_critnest begins life as 1 because the thread is not
122 	 * running and is thereby implicitly waiting to be on the receiving
123 	 * end of a context switch.  A context switch must occur inside a
124 	 * critical section, and in fact, includes hand-off of the sched_lock.
125 	 * After a context switch to a newly created thread, it will release
126 	 * sched_lock for the first time, and its td_critnest will hit 0 for
127 	 * the first time.  This happens on the far end of a context switch,
128 	 * and when it context switches away from itself, it will in fact go
129 	 * back into a critical section, and hand off the sched lock to the
130 	 * next thread.
131 	 */
132 	td->td_critnest = 1;
133 
134 #ifdef AUDIT
135 	audit_thread_alloc(td);
136 #endif
137 	umtx_thread_alloc(td);
138 	return (0);
139 }
140 
141 /*
142  * Reclaim a thread after use.
143  */
144 static void
145 thread_dtor(void *mem, int size, void *arg)
146 {
147 	struct thread *td;
148 
149 	td = (struct thread *)mem;
150 
151 #ifdef INVARIANTS
152 	/* Verify that this thread is in a safe state to free. */
153 	switch (td->td_state) {
154 	case TDS_INHIBITED:
155 	case TDS_RUNNING:
156 	case TDS_CAN_RUN:
157 	case TDS_RUNQ:
158 		/*
159 		 * We must never unlink a thread that is in one of
160 		 * these states, because it is currently active.
161 		 */
162 		panic("bad state for thread unlinking");
163 		/* NOTREACHED */
164 	case TDS_INACTIVE:
165 		break;
166 	default:
167 		panic("bad thread state");
168 		/* NOTREACHED */
169 	}
170 #endif
171 #ifdef AUDIT
172 	audit_thread_free(td);
173 #endif
174 	free_unr(tid_unrhdr, td->td_tid);
175 	sched_newthread(td);
176 }
177 
178 /*
179  * Initialize type-stable parts of a thread (when newly created).
180  */
181 static int
182 thread_init(void *mem, int size, int flags)
183 {
184 	struct thread *td;
185 
186 	td = (struct thread *)mem;
187 
188 	vm_thread_new(td, 0);
189 	cpu_thread_setup(td);
190 	td->td_sleepqueue = sleepq_alloc();
191 	td->td_turnstile = turnstile_alloc();
192 	td->td_sched = (struct td_sched *)&td[1];
193 	sched_newthread(td);
194 	umtx_thread_init(td);
195 	return (0);
196 }
197 
198 /*
199  * Tear down type-stable parts of a thread (just before being discarded).
200  */
201 static void
202 thread_fini(void *mem, int size)
203 {
204 	struct thread *td;
205 
206 	td = (struct thread *)mem;
207 	turnstile_free(td->td_turnstile);
208 	sleepq_free(td->td_sleepqueue);
209 	umtx_thread_fini(td);
210 	vm_thread_dispose(td);
211 }
212 
213 /*
214  * For a newly created process,
215  * link up all the structures and its initial threads etc.
216  * called from:
217  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
218  * proc_dtor() (should go away)
219  * proc_init()
220  */
221 void
222 proc_linkup(struct proc *p, struct thread *td)
223 {
224 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
225 	TAILQ_INIT(&p->p_upcalls);	     /* upcall list */
226 	sigqueue_init(&p->p_sigqueue, p);
227 	p->p_ksi = ksiginfo_alloc(1);
228 	if (p->p_ksi != NULL) {
229 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
230 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
231 	}
232 	LIST_INIT(&p->p_mqnotifier);
233 	p->p_numthreads = 0;
234 	thread_link(td, p);
235 }
236 
237 /*
238  * Initialize global thread allocation resources.
239  */
240 void
241 threadinit(void)
242 {
243 
244 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
245 	tid_unrhdr = new_unrhdr(PID_MAX + 1, INT_MAX, &tid_lock);
246 
247 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
248 	    thread_ctor, thread_dtor, thread_init, thread_fini,
249 	    UMA_ALIGN_CACHE, 0);
250 #ifdef KSE
251 	kseinit();	/* set up kse specific stuff  e.g. upcall zone*/
252 #endif
253 }
254 
255 /*
256  * Stash an embarasingly extra thread into the zombie thread queue.
257  * Use the slpq as that must be unused by now.
258  */
259 void
260 thread_stash(struct thread *td)
261 {
262 	mtx_lock_spin(&kse_zombie_lock);
263 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
264 	mtx_unlock_spin(&kse_zombie_lock);
265 }
266 
267 /*
268  * Reap zombie kse resource.
269  */
270 void
271 thread_reap(void)
272 {
273 	struct thread *td_first, *td_next;
274 
275 	/*
276 	 * Don't even bother to lock if none at this instant,
277 	 * we really don't care about the next instant..
278 	 */
279 	if (!TAILQ_EMPTY(&zombie_threads)) {
280 		mtx_lock_spin(&kse_zombie_lock);
281 		td_first = TAILQ_FIRST(&zombie_threads);
282 		if (td_first)
283 			TAILQ_INIT(&zombie_threads);
284 		mtx_unlock_spin(&kse_zombie_lock);
285 		while (td_first) {
286 			td_next = TAILQ_NEXT(td_first, td_slpq);
287 			if (td_first->td_ucred)
288 				crfree(td_first->td_ucred);
289 			thread_free(td_first);
290 			td_first = td_next;
291 		}
292 	}
293 }
294 
295 /*
296  * Allocate a thread.
297  */
298 struct thread *
299 thread_alloc(void)
300 {
301 
302 	thread_reap(); /* check if any zombies to get */
303 	return (uma_zalloc(thread_zone, M_WAITOK));
304 }
305 
306 
307 /*
308  * Deallocate a thread.
309  */
310 void
311 thread_free(struct thread *td)
312 {
313 
314 	cpu_thread_clean(td);
315 	uma_zfree(thread_zone, td);
316 }
317 
318 /*
319  * Discard the current thread and exit from its context.
320  * Always called with scheduler locked.
321  *
322  * Because we can't free a thread while we're operating under its context,
323  * push the current thread into our CPU's deadthread holder. This means
324  * we needn't worry about someone else grabbing our context before we
325  * do a cpu_throw().  This may not be needed now as we are under schedlock.
326  * Maybe we can just do a thread_stash() as thr_exit1 does.
327  */
328 /*  XXX
329  * libthr expects its thread exit to return for the last
330  * thread, meaning that the program is back to non-threaded
331  * mode I guess. Because we do this (cpu_throw) unconditionally
332  * here, they have their own version of it. (thr_exit1())
333  * that doesn't do it all if this was the last thread.
334  * It is also called from thread_suspend_check().
335  * Of course in the end, they end up coming here through exit1
336  * anyhow..  After fixing 'thr' to play by the rules we should be able
337  * to merge these two functions together.
338  *
339  * called from:
340  * exit1()
341  * kse_exit()
342  * thr_exit()
343  * ifdef KSE
344  * thread_user_enter()
345  * thread_userret()
346  * endif
347  * thread_suspend_check()
348  */
349 void
350 thread_exit(void)
351 {
352 	uint64_t new_switchtime;
353 	struct thread *td;
354 	struct proc *p;
355 
356 	td = curthread;
357 	p = td->td_proc;
358 
359 	mtx_assert(&sched_lock, MA_OWNED);
360 	mtx_assert(&Giant, MA_NOTOWNED);
361 	PROC_LOCK_ASSERT(p, MA_OWNED);
362 	KASSERT(p != NULL, ("thread exiting without a process"));
363 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
364 	    (long)p->p_pid, p->p_comm);
365 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
366 
367 #ifdef AUDIT
368 	AUDIT_SYSCALL_EXIT(0, td);
369 #endif
370 
371 #ifdef KSE
372 	if (td->td_standin != NULL) {
373 		/*
374 		 * Note that we don't need to free the cred here as it
375 		 * is done in thread_reap().
376 		 */
377 		thread_stash(td->td_standin);
378 		td->td_standin = NULL;
379 	}
380 #endif
381 
382 	umtx_thread_exit(td);
383 
384 	/*
385 	 * drop FPU & debug register state storage, or any other
386 	 * architecture specific resources that
387 	 * would not be on a new untouched process.
388 	 */
389 	cpu_thread_exit(td);	/* XXXSMP */
390 
391 #ifdef KSE
392 	/*
393 	 * The thread is exiting. scheduler can release its stuff
394 	 * and collect stats etc.
395 	 * XXX this is not very right, since PROC_UNLOCK may still
396 	 * need scheduler stuff.
397 	 */
398 	sched_thread_exit(td);
399 #endif
400 
401 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
402 	new_switchtime = cpu_ticks();
403 	p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
404 	p->p_rux.rux_uticks += td->td_uticks;
405 	p->p_rux.rux_sticks += td->td_sticks;
406 	p->p_rux.rux_iticks += td->td_iticks;
407 	PCPU_SET(switchtime, new_switchtime);
408 	PCPU_SET(switchticks, ticks);
409 	cnt.v_swtch++;
410 
411 	/* Add our usage into the usage of all our children. */
412 	if (p->p_numthreads == 1)
413 		ruadd(p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux);
414 
415 	/*
416 	 * The last thread is left attached to the process
417 	 * So that the whole bundle gets recycled. Skip
418 	 * all this stuff if we never had threads.
419 	 * EXIT clears all sign of other threads when
420 	 * it goes to single threading, so the last thread always
421 	 * takes the short path.
422 	 */
423 	if (p->p_flag & P_HADTHREADS) {
424 		if (p->p_numthreads > 1) {
425 			thread_unlink(td);
426 
427 			sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
428 
429 			/*
430 			 * The test below is NOT true if we are the
431 			 * sole exiting thread. P_STOPPED_SNGL is unset
432 			 * in exit1() after it is the only survivor.
433 			 */
434 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
435 				if (p->p_numthreads == p->p_suspcount) {
436 					thread_unsuspend_one(p->p_singlethread);
437 				}
438 			}
439 
440 #ifdef KSE
441 			/*
442 			 * Because each upcall structure has an owner thread,
443 			 * owner thread exits only when process is in exiting
444 			 * state, so upcall to userland is no longer needed,
445 			 * deleting upcall structure is safe here.
446 			 * So when all threads in a group is exited, all upcalls
447 			 * in the group should be automatically freed.
448 			 *  XXXKSE This is a KSE thing and should be exported
449 			 * there somehow.
450 			 */
451 			upcall_remove(td);
452 #endif
453 
454 			PROC_UNLOCK(p);
455 			PCPU_SET(deadthread, td);
456 		} else {
457 			/*
458 			 * The last thread is exiting.. but not through exit()
459 			 * what should we do?
460 			 * Theoretically this can't happen
461  			 * exit1() - clears threading flags before coming here
462  			 * kse_exit() - treats last thread specially
463  			 * thr_exit() - treats last thread specially
464 			 * ifdef KSE
465  			 * thread_user_enter() - only if more exist
466  			 * thread_userret() - only if more exist
467 			 * endif
468  			 * thread_suspend_check() - only if more exist
469 			 */
470 			panic ("thread_exit: Last thread exiting on its own");
471 		}
472 	} else {
473 		/*
474 		 * non threaded process comes here.
475 		 * This includes an EX threaded process that is coming
476 		 * here via exit1(). (exit1 dethreads the proc first).
477 		 */
478 		PROC_UNLOCK(p);
479 	}
480 	td->td_state = TDS_INACTIVE;
481 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
482 	cpu_throw(td, choosethread());
483 	panic("I'm a teapot!");
484 	/* NOTREACHED */
485 }
486 
487 /*
488  * Do any thread specific cleanups that may be needed in wait()
489  * called with Giant, proc and schedlock not held.
490  */
491 void
492 thread_wait(struct proc *p)
493 {
494 	struct thread *td;
495 
496 	mtx_assert(&Giant, MA_NOTOWNED);
497 	KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
498 	FOREACH_THREAD_IN_PROC(p, td) {
499 #ifdef KSE
500 		if (td->td_standin != NULL) {
501 			if (td->td_standin->td_ucred != NULL) {
502 				crfree(td->td_standin->td_ucred);
503 				td->td_standin->td_ucred = NULL;
504 			}
505 			thread_free(td->td_standin);
506 			td->td_standin = NULL;
507 		}
508 #endif
509 		cpu_thread_clean(td);
510 		crfree(td->td_ucred);
511 	}
512 	thread_reap();	/* check for zombie threads etc. */
513 }
514 
515 /*
516  * Link a thread to a process.
517  * set up anything that needs to be initialized for it to
518  * be used by the process.
519  *
520  * Note that we do not link to the proc's ucred here.
521  * The thread is linked as if running but no KSE assigned.
522  * Called from:
523  *  proc_linkup()
524  *  thread_schedule_upcall()
525  *  thr_create()
526  */
527 void
528 thread_link(struct thread *td, struct proc *p)
529 {
530 
531 	td->td_state    = TDS_INACTIVE;
532 	td->td_proc     = p;
533 	td->td_flags    = 0;
534 
535 	LIST_INIT(&td->td_contested);
536 	sigqueue_init(&td->td_sigqueue, p);
537 	callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
538 	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
539 	p->p_numthreads++;
540 }
541 
542 /*
543  * Convert a process with one thread to an unthreaded process.
544  * Called from:
545  *  thread_single(exit)  (called from execve and exit)
546  *  kse_exit()		XXX may need cleaning up wrt KSE stuff
547  */
548 void
549 thread_unthread(struct thread *td)
550 {
551 	struct proc *p = td->td_proc;
552 
553 	KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
554 #ifdef KSE
555 	upcall_remove(td);
556 	p->p_flag &= ~(P_SA|P_HADTHREADS);
557 	td->td_mailbox = NULL;
558 	td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND);
559 	if (td->td_standin != NULL) {
560 		thread_stash(td->td_standin);
561 		td->td_standin = NULL;
562 	}
563 	sched_set_concurrency(p, 1);
564 #else
565 	p->p_flag &= ~P_HADTHREADS;
566 #endif
567 }
568 
569 /*
570  * Called from:
571  *  thread_exit()
572  */
573 void
574 thread_unlink(struct thread *td)
575 {
576 	struct proc *p = td->td_proc;
577 
578 	mtx_assert(&sched_lock, MA_OWNED);
579 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
580 	p->p_numthreads--;
581 	/* could clear a few other things here */
582 	/* Must  NOT clear links to proc! */
583 }
584 
585 /*
586  * Enforce single-threading.
587  *
588  * Returns 1 if the caller must abort (another thread is waiting to
589  * exit the process or similar). Process is locked!
590  * Returns 0 when you are successfully the only thread running.
591  * A process has successfully single threaded in the suspend mode when
592  * There are no threads in user mode. Threads in the kernel must be
593  * allowed to continue until they get to the user boundary. They may even
594  * copy out their return values and data before suspending. They may however be
595  * accelerated in reaching the user boundary as we will wake up
596  * any sleeping threads that are interruptable. (PCATCH).
597  */
598 int
599 thread_single(int mode)
600 {
601 	struct thread *td;
602 	struct thread *td2;
603 	struct proc *p;
604 	int remaining;
605 
606 	td = curthread;
607 	p = td->td_proc;
608 	mtx_assert(&Giant, MA_NOTOWNED);
609 	PROC_LOCK_ASSERT(p, MA_OWNED);
610 	KASSERT((td != NULL), ("curthread is NULL"));
611 
612 	if ((p->p_flag & P_HADTHREADS) == 0)
613 		return (0);
614 
615 	/* Is someone already single threading? */
616 	if (p->p_singlethread != NULL && p->p_singlethread != td)
617 		return (1);
618 
619 	if (mode == SINGLE_EXIT) {
620 		p->p_flag |= P_SINGLE_EXIT;
621 		p->p_flag &= ~P_SINGLE_BOUNDARY;
622 	} else {
623 		p->p_flag &= ~P_SINGLE_EXIT;
624 		if (mode == SINGLE_BOUNDARY)
625 			p->p_flag |= P_SINGLE_BOUNDARY;
626 		else
627 			p->p_flag &= ~P_SINGLE_BOUNDARY;
628 	}
629 	p->p_flag |= P_STOPPED_SINGLE;
630 	mtx_lock_spin(&sched_lock);
631 	p->p_singlethread = td;
632 	if (mode == SINGLE_EXIT)
633 		remaining = p->p_numthreads;
634 	else if (mode == SINGLE_BOUNDARY)
635 		remaining = p->p_numthreads - p->p_boundary_count;
636 	else
637 		remaining = p->p_numthreads - p->p_suspcount;
638 	while (remaining != 1) {
639 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
640 			goto stopme;
641 		FOREACH_THREAD_IN_PROC(p, td2) {
642 			if (td2 == td)
643 				continue;
644 			td2->td_flags |= TDF_ASTPENDING;
645 			if (TD_IS_INHIBITED(td2)) {
646 				switch (mode) {
647 				case SINGLE_EXIT:
648 					if (td->td_flags & TDF_DBSUSPEND)
649 						td->td_flags &= ~TDF_DBSUSPEND;
650 					if (TD_IS_SUSPENDED(td2))
651 						thread_unsuspend_one(td2);
652 					if (TD_ON_SLEEPQ(td2) &&
653 					    (td2->td_flags & TDF_SINTR))
654 						sleepq_abort(td2, EINTR);
655 					break;
656 				case SINGLE_BOUNDARY:
657 					if (TD_IS_SUSPENDED(td2) &&
658 					    !(td2->td_flags & TDF_BOUNDARY))
659 						thread_unsuspend_one(td2);
660 					if (TD_ON_SLEEPQ(td2) &&
661 					    (td2->td_flags & TDF_SINTR))
662 						sleepq_abort(td2, ERESTART);
663 					break;
664 				default:
665 					if (TD_IS_SUSPENDED(td2))
666 						continue;
667 					/*
668 					 * maybe other inhibited states too?
669 					 */
670 					if ((td2->td_flags & TDF_SINTR) &&
671 					    (td2->td_inhibitors &
672 					    (TDI_SLEEPING | TDI_SWAPPED)))
673 						thread_suspend_one(td2);
674 					break;
675 				}
676 			}
677 #ifdef SMP
678 			else if (TD_IS_RUNNING(td2) && td != td2) {
679 				forward_signal(td2);
680 			}
681 #endif
682 		}
683 		if (mode == SINGLE_EXIT)
684 			remaining = p->p_numthreads;
685 		else if (mode == SINGLE_BOUNDARY)
686 			remaining = p->p_numthreads - p->p_boundary_count;
687 		else
688 			remaining = p->p_numthreads - p->p_suspcount;
689 
690 		/*
691 		 * Maybe we suspended some threads.. was it enough?
692 		 */
693 		if (remaining == 1)
694 			break;
695 
696 stopme:
697 		/*
698 		 * Wake us up when everyone else has suspended.
699 		 * In the mean time we suspend as well.
700 		 */
701 		thread_stopped(p);
702 		thread_suspend_one(td);
703 		PROC_UNLOCK(p);
704 		mi_switch(SW_VOL, NULL);
705 		mtx_unlock_spin(&sched_lock);
706 		PROC_LOCK(p);
707 		mtx_lock_spin(&sched_lock);
708 		if (mode == SINGLE_EXIT)
709 			remaining = p->p_numthreads;
710 		else if (mode == SINGLE_BOUNDARY)
711 			remaining = p->p_numthreads - p->p_boundary_count;
712 		else
713 			remaining = p->p_numthreads - p->p_suspcount;
714 	}
715 	if (mode == SINGLE_EXIT) {
716 		/*
717 		 * We have gotten rid of all the other threads and we
718 		 * are about to either exit or exec. In either case,
719 		 * we try our utmost  to revert to being a non-threaded
720 		 * process.
721 		 */
722 		p->p_singlethread = NULL;
723 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
724 		thread_unthread(td);
725 	}
726 	mtx_unlock_spin(&sched_lock);
727 	return (0);
728 }
729 
730 /*
731  * Called in from locations that can safely check to see
732  * whether we have to suspend or at least throttle for a
733  * single-thread event (e.g. fork).
734  *
735  * Such locations include userret().
736  * If the "return_instead" argument is non zero, the thread must be able to
737  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
738  *
739  * The 'return_instead' argument tells the function if it may do a
740  * thread_exit() or suspend, or whether the caller must abort and back
741  * out instead.
742  *
743  * If the thread that set the single_threading request has set the
744  * P_SINGLE_EXIT bit in the process flags then this call will never return
745  * if 'return_instead' is false, but will exit.
746  *
747  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
748  *---------------+--------------------+---------------------
749  *       0       | returns 0          |   returns 0 or 1
750  *               | when ST ends       |   immediatly
751  *---------------+--------------------+---------------------
752  *       1       | thread exits       |   returns 1
753  *               |                    |  immediatly
754  * 0 = thread_exit() or suspension ok,
755  * other = return error instead of stopping the thread.
756  *
757  * While a full suspension is under effect, even a single threading
758  * thread would be suspended if it made this call (but it shouldn't).
759  * This call should only be made from places where
760  * thread_exit() would be safe as that may be the outcome unless
761  * return_instead is set.
762  */
763 int
764 thread_suspend_check(int return_instead)
765 {
766 	struct thread *td;
767 	struct proc *p;
768 
769 	td = curthread;
770 	p = td->td_proc;
771 	mtx_assert(&Giant, MA_NOTOWNED);
772 	PROC_LOCK_ASSERT(p, MA_OWNED);
773 	while (P_SHOULDSTOP(p) ||
774 	      ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) {
775 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
776 			KASSERT(p->p_singlethread != NULL,
777 			    ("singlethread not set"));
778 			/*
779 			 * The only suspension in action is a
780 			 * single-threading. Single threader need not stop.
781 			 * XXX Should be safe to access unlocked
782 			 * as it can only be set to be true by us.
783 			 */
784 			if (p->p_singlethread == td)
785 				return (0);	/* Exempt from stopping. */
786 		}
787 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
788 			return (EINTR);
789 
790 		/* Should we goto user boundary if we didn't come from there? */
791 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
792 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
793 			return (ERESTART);
794 
795 		/* If thread will exit, flush its pending signals */
796 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
797 			sigqueue_flush(&td->td_sigqueue);
798 
799 		mtx_lock_spin(&sched_lock);
800 		thread_stopped(p);
801 		/*
802 		 * If the process is waiting for us to exit,
803 		 * this thread should just suicide.
804 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
805 		 */
806 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
807 			thread_exit();
808 
809 		/*
810 		 * When a thread suspends, it just
811 		 * gets taken off all queues.
812 		 */
813 		thread_suspend_one(td);
814 		if (return_instead == 0) {
815 			p->p_boundary_count++;
816 			td->td_flags |= TDF_BOUNDARY;
817 		}
818 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
819 			if (p->p_numthreads == p->p_suspcount)
820 				thread_unsuspend_one(p->p_singlethread);
821 		}
822 		PROC_UNLOCK(p);
823 		mi_switch(SW_INVOL, NULL);
824 		if (return_instead == 0) {
825 			p->p_boundary_count--;
826 			td->td_flags &= ~TDF_BOUNDARY;
827 		}
828 		mtx_unlock_spin(&sched_lock);
829 		PROC_LOCK(p);
830 	}
831 	return (0);
832 }
833 
834 void
835 thread_suspend_one(struct thread *td)
836 {
837 	struct proc *p = td->td_proc;
838 
839 	mtx_assert(&sched_lock, MA_OWNED);
840 	PROC_LOCK_ASSERT(p, MA_OWNED);
841 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
842 	p->p_suspcount++;
843 	TD_SET_SUSPENDED(td);
844 }
845 
846 void
847 thread_unsuspend_one(struct thread *td)
848 {
849 	struct proc *p = td->td_proc;
850 
851 	mtx_assert(&sched_lock, MA_OWNED);
852 	PROC_LOCK_ASSERT(p, MA_OWNED);
853 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
854 	TD_CLR_SUSPENDED(td);
855 	p->p_suspcount--;
856 	setrunnable(td);
857 }
858 
859 /*
860  * Allow all threads blocked by single threading to continue running.
861  */
862 void
863 thread_unsuspend(struct proc *p)
864 {
865 	struct thread *td;
866 
867 	mtx_assert(&sched_lock, MA_OWNED);
868 	PROC_LOCK_ASSERT(p, MA_OWNED);
869 	if (!P_SHOULDSTOP(p)) {
870                 FOREACH_THREAD_IN_PROC(p, td) {
871 			if (TD_IS_SUSPENDED(td)) {
872 				thread_unsuspend_one(td);
873 			}
874 		}
875 	} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
876 	    (p->p_numthreads == p->p_suspcount)) {
877 		/*
878 		 * Stopping everything also did the job for the single
879 		 * threading request. Now we've downgraded to single-threaded,
880 		 * let it continue.
881 		 */
882 		thread_unsuspend_one(p->p_singlethread);
883 	}
884 }
885 
886 /*
887  * End the single threading mode..
888  */
889 void
890 thread_single_end(void)
891 {
892 	struct thread *td;
893 	struct proc *p;
894 
895 	td = curthread;
896 	p = td->td_proc;
897 	PROC_LOCK_ASSERT(p, MA_OWNED);
898 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
899 	mtx_lock_spin(&sched_lock);
900 	p->p_singlethread = NULL;
901 	/*
902 	 * If there are other threads they mey now run,
903 	 * unless of course there is a blanket 'stop order'
904 	 * on the process. The single threader must be allowed
905 	 * to continue however as this is a bad place to stop.
906 	 */
907 	if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
908                 FOREACH_THREAD_IN_PROC(p, td) {
909 			if (TD_IS_SUSPENDED(td)) {
910 				thread_unsuspend_one(td);
911 			}
912 		}
913 	}
914 	mtx_unlock_spin(&sched_lock);
915 }
916 
917 struct thread *
918 thread_find(struct proc *p, lwpid_t tid)
919 {
920 	struct thread *td;
921 
922 	PROC_LOCK_ASSERT(p, MA_OWNED);
923 	mtx_lock_spin(&sched_lock);
924 	FOREACH_THREAD_IN_PROC(p, td) {
925 		if (td->td_tid == tid)
926 			break;
927 	}
928 	mtx_unlock_spin(&sched_lock);
929 	return (td);
930 }
931