1 /*- 2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice(s), this list of conditions and the following disclaimer as 10 * the first lines of this file unmodified other than the possible 11 * addition of one or more copyright notices. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice(s), this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 19 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 26 * DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/proc.h> 38 #include <sys/resourcevar.h> 39 #include <sys/smp.h> 40 #include <sys/sysctl.h> 41 #include <sys/sched.h> 42 #include <sys/sleepqueue.h> 43 #include <sys/turnstile.h> 44 #include <sys/ktr.h> 45 #include <sys/umtx.h> 46 47 #include <security/audit/audit.h> 48 49 #include <vm/vm.h> 50 #include <vm/vm_extern.h> 51 #include <vm/uma.h> 52 53 /* 54 * thread related storage. 55 */ 56 static uma_zone_t thread_zone; 57 58 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation"); 59 60 int max_threads_per_proc = 1500; 61 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW, 62 &max_threads_per_proc, 0, "Limit on threads per proc"); 63 64 int max_threads_hits; 65 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD, 66 &max_threads_hits, 0, ""); 67 68 #ifdef KSE 69 int virtual_cpu; 70 71 #endif 72 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); 73 struct mtx kse_zombie_lock; 74 MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN); 75 76 #ifdef KSE 77 static int 78 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS) 79 { 80 int error, new_val; 81 int def_val; 82 83 def_val = mp_ncpus; 84 if (virtual_cpu == 0) 85 new_val = def_val; 86 else 87 new_val = virtual_cpu; 88 error = sysctl_handle_int(oidp, &new_val, 0, req); 89 if (error != 0 || req->newptr == NULL) 90 return (error); 91 if (new_val < 0) 92 return (EINVAL); 93 virtual_cpu = new_val; 94 return (0); 95 } 96 97 /* DEBUG ONLY */ 98 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW, 99 0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I", 100 "debug virtual cpus"); 101 #endif 102 103 struct mtx tid_lock; 104 static struct unrhdr *tid_unrhdr; 105 106 /* 107 * Prepare a thread for use. 108 */ 109 static int 110 thread_ctor(void *mem, int size, void *arg, int flags) 111 { 112 struct thread *td; 113 114 td = (struct thread *)mem; 115 td->td_state = TDS_INACTIVE; 116 td->td_oncpu = NOCPU; 117 118 td->td_tid = alloc_unr(tid_unrhdr); 119 120 /* 121 * Note that td_critnest begins life as 1 because the thread is not 122 * running and is thereby implicitly waiting to be on the receiving 123 * end of a context switch. A context switch must occur inside a 124 * critical section, and in fact, includes hand-off of the sched_lock. 125 * After a context switch to a newly created thread, it will release 126 * sched_lock for the first time, and its td_critnest will hit 0 for 127 * the first time. This happens on the far end of a context switch, 128 * and when it context switches away from itself, it will in fact go 129 * back into a critical section, and hand off the sched lock to the 130 * next thread. 131 */ 132 td->td_critnest = 1; 133 134 #ifdef AUDIT 135 audit_thread_alloc(td); 136 #endif 137 umtx_thread_alloc(td); 138 return (0); 139 } 140 141 /* 142 * Reclaim a thread after use. 143 */ 144 static void 145 thread_dtor(void *mem, int size, void *arg) 146 { 147 struct thread *td; 148 149 td = (struct thread *)mem; 150 151 #ifdef INVARIANTS 152 /* Verify that this thread is in a safe state to free. */ 153 switch (td->td_state) { 154 case TDS_INHIBITED: 155 case TDS_RUNNING: 156 case TDS_CAN_RUN: 157 case TDS_RUNQ: 158 /* 159 * We must never unlink a thread that is in one of 160 * these states, because it is currently active. 161 */ 162 panic("bad state for thread unlinking"); 163 /* NOTREACHED */ 164 case TDS_INACTIVE: 165 break; 166 default: 167 panic("bad thread state"); 168 /* NOTREACHED */ 169 } 170 #endif 171 #ifdef AUDIT 172 audit_thread_free(td); 173 #endif 174 free_unr(tid_unrhdr, td->td_tid); 175 sched_newthread(td); 176 } 177 178 /* 179 * Initialize type-stable parts of a thread (when newly created). 180 */ 181 static int 182 thread_init(void *mem, int size, int flags) 183 { 184 struct thread *td; 185 186 td = (struct thread *)mem; 187 188 vm_thread_new(td, 0); 189 cpu_thread_setup(td); 190 td->td_sleepqueue = sleepq_alloc(); 191 td->td_turnstile = turnstile_alloc(); 192 td->td_sched = (struct td_sched *)&td[1]; 193 sched_newthread(td); 194 umtx_thread_init(td); 195 return (0); 196 } 197 198 /* 199 * Tear down type-stable parts of a thread (just before being discarded). 200 */ 201 static void 202 thread_fini(void *mem, int size) 203 { 204 struct thread *td; 205 206 td = (struct thread *)mem; 207 turnstile_free(td->td_turnstile); 208 sleepq_free(td->td_sleepqueue); 209 umtx_thread_fini(td); 210 vm_thread_dispose(td); 211 } 212 213 /* 214 * For a newly created process, 215 * link up all the structures and its initial threads etc. 216 * called from: 217 * {arch}/{arch}/machdep.c ia64_init(), init386() etc. 218 * proc_dtor() (should go away) 219 * proc_init() 220 */ 221 void 222 proc_linkup(struct proc *p, struct thread *td) 223 { 224 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 225 TAILQ_INIT(&p->p_upcalls); /* upcall list */ 226 sigqueue_init(&p->p_sigqueue, p); 227 p->p_ksi = ksiginfo_alloc(1); 228 if (p->p_ksi != NULL) { 229 /* XXX p_ksi may be null if ksiginfo zone is not ready */ 230 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS; 231 } 232 LIST_INIT(&p->p_mqnotifier); 233 p->p_numthreads = 0; 234 thread_link(td, p); 235 } 236 237 /* 238 * Initialize global thread allocation resources. 239 */ 240 void 241 threadinit(void) 242 { 243 244 mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF); 245 tid_unrhdr = new_unrhdr(PID_MAX + 1, INT_MAX, &tid_lock); 246 247 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 248 thread_ctor, thread_dtor, thread_init, thread_fini, 249 UMA_ALIGN_CACHE, 0); 250 #ifdef KSE 251 kseinit(); /* set up kse specific stuff e.g. upcall zone*/ 252 #endif 253 } 254 255 /* 256 * Stash an embarasingly extra thread into the zombie thread queue. 257 * Use the slpq as that must be unused by now. 258 */ 259 void 260 thread_stash(struct thread *td) 261 { 262 mtx_lock_spin(&kse_zombie_lock); 263 TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq); 264 mtx_unlock_spin(&kse_zombie_lock); 265 } 266 267 /* 268 * Reap zombie kse resource. 269 */ 270 void 271 thread_reap(void) 272 { 273 struct thread *td_first, *td_next; 274 275 /* 276 * Don't even bother to lock if none at this instant, 277 * we really don't care about the next instant.. 278 */ 279 if (!TAILQ_EMPTY(&zombie_threads)) { 280 mtx_lock_spin(&kse_zombie_lock); 281 td_first = TAILQ_FIRST(&zombie_threads); 282 if (td_first) 283 TAILQ_INIT(&zombie_threads); 284 mtx_unlock_spin(&kse_zombie_lock); 285 while (td_first) { 286 td_next = TAILQ_NEXT(td_first, td_slpq); 287 if (td_first->td_ucred) 288 crfree(td_first->td_ucred); 289 thread_free(td_first); 290 td_first = td_next; 291 } 292 } 293 } 294 295 /* 296 * Allocate a thread. 297 */ 298 struct thread * 299 thread_alloc(void) 300 { 301 302 thread_reap(); /* check if any zombies to get */ 303 return (uma_zalloc(thread_zone, M_WAITOK)); 304 } 305 306 307 /* 308 * Deallocate a thread. 309 */ 310 void 311 thread_free(struct thread *td) 312 { 313 314 cpu_thread_clean(td); 315 uma_zfree(thread_zone, td); 316 } 317 318 /* 319 * Discard the current thread and exit from its context. 320 * Always called with scheduler locked. 321 * 322 * Because we can't free a thread while we're operating under its context, 323 * push the current thread into our CPU's deadthread holder. This means 324 * we needn't worry about someone else grabbing our context before we 325 * do a cpu_throw(). This may not be needed now as we are under schedlock. 326 * Maybe we can just do a thread_stash() as thr_exit1 does. 327 */ 328 /* XXX 329 * libthr expects its thread exit to return for the last 330 * thread, meaning that the program is back to non-threaded 331 * mode I guess. Because we do this (cpu_throw) unconditionally 332 * here, they have their own version of it. (thr_exit1()) 333 * that doesn't do it all if this was the last thread. 334 * It is also called from thread_suspend_check(). 335 * Of course in the end, they end up coming here through exit1 336 * anyhow.. After fixing 'thr' to play by the rules we should be able 337 * to merge these two functions together. 338 * 339 * called from: 340 * exit1() 341 * kse_exit() 342 * thr_exit() 343 * ifdef KSE 344 * thread_user_enter() 345 * thread_userret() 346 * endif 347 * thread_suspend_check() 348 */ 349 void 350 thread_exit(void) 351 { 352 uint64_t new_switchtime; 353 struct thread *td; 354 struct proc *p; 355 356 td = curthread; 357 p = td->td_proc; 358 359 mtx_assert(&sched_lock, MA_OWNED); 360 mtx_assert(&Giant, MA_NOTOWNED); 361 PROC_LOCK_ASSERT(p, MA_OWNED); 362 KASSERT(p != NULL, ("thread exiting without a process")); 363 CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td, 364 (long)p->p_pid, p->p_comm); 365 KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending")); 366 367 #ifdef AUDIT 368 AUDIT_SYSCALL_EXIT(0, td); 369 #endif 370 371 #ifdef KSE 372 if (td->td_standin != NULL) { 373 /* 374 * Note that we don't need to free the cred here as it 375 * is done in thread_reap(). 376 */ 377 thread_stash(td->td_standin); 378 td->td_standin = NULL; 379 } 380 #endif 381 382 umtx_thread_exit(td); 383 384 /* 385 * drop FPU & debug register state storage, or any other 386 * architecture specific resources that 387 * would not be on a new untouched process. 388 */ 389 cpu_thread_exit(td); /* XXXSMP */ 390 391 #ifdef KSE 392 /* 393 * The thread is exiting. scheduler can release its stuff 394 * and collect stats etc. 395 * XXX this is not very right, since PROC_UNLOCK may still 396 * need scheduler stuff. 397 */ 398 sched_thread_exit(td); 399 #endif 400 401 /* Do the same timestamp bookkeeping that mi_switch() would do. */ 402 new_switchtime = cpu_ticks(); 403 p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime)); 404 p->p_rux.rux_uticks += td->td_uticks; 405 p->p_rux.rux_sticks += td->td_sticks; 406 p->p_rux.rux_iticks += td->td_iticks; 407 PCPU_SET(switchtime, new_switchtime); 408 PCPU_SET(switchticks, ticks); 409 cnt.v_swtch++; 410 411 /* Add our usage into the usage of all our children. */ 412 if (p->p_numthreads == 1) 413 ruadd(p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux); 414 415 /* 416 * The last thread is left attached to the process 417 * So that the whole bundle gets recycled. Skip 418 * all this stuff if we never had threads. 419 * EXIT clears all sign of other threads when 420 * it goes to single threading, so the last thread always 421 * takes the short path. 422 */ 423 if (p->p_flag & P_HADTHREADS) { 424 if (p->p_numthreads > 1) { 425 thread_unlink(td); 426 427 sched_exit_thread(FIRST_THREAD_IN_PROC(p), td); 428 429 /* 430 * The test below is NOT true if we are the 431 * sole exiting thread. P_STOPPED_SNGL is unset 432 * in exit1() after it is the only survivor. 433 */ 434 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 435 if (p->p_numthreads == p->p_suspcount) { 436 thread_unsuspend_one(p->p_singlethread); 437 } 438 } 439 440 #ifdef KSE 441 /* 442 * Because each upcall structure has an owner thread, 443 * owner thread exits only when process is in exiting 444 * state, so upcall to userland is no longer needed, 445 * deleting upcall structure is safe here. 446 * So when all threads in a group is exited, all upcalls 447 * in the group should be automatically freed. 448 * XXXKSE This is a KSE thing and should be exported 449 * there somehow. 450 */ 451 upcall_remove(td); 452 #endif 453 454 PROC_UNLOCK(p); 455 PCPU_SET(deadthread, td); 456 } else { 457 /* 458 * The last thread is exiting.. but not through exit() 459 * what should we do? 460 * Theoretically this can't happen 461 * exit1() - clears threading flags before coming here 462 * kse_exit() - treats last thread specially 463 * thr_exit() - treats last thread specially 464 * ifdef KSE 465 * thread_user_enter() - only if more exist 466 * thread_userret() - only if more exist 467 * endif 468 * thread_suspend_check() - only if more exist 469 */ 470 panic ("thread_exit: Last thread exiting on its own"); 471 } 472 } else { 473 /* 474 * non threaded process comes here. 475 * This includes an EX threaded process that is coming 476 * here via exit1(). (exit1 dethreads the proc first). 477 */ 478 PROC_UNLOCK(p); 479 } 480 td->td_state = TDS_INACTIVE; 481 CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td); 482 cpu_throw(td, choosethread()); 483 panic("I'm a teapot!"); 484 /* NOTREACHED */ 485 } 486 487 /* 488 * Do any thread specific cleanups that may be needed in wait() 489 * called with Giant, proc and schedlock not held. 490 */ 491 void 492 thread_wait(struct proc *p) 493 { 494 struct thread *td; 495 496 mtx_assert(&Giant, MA_NOTOWNED); 497 KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()")); 498 FOREACH_THREAD_IN_PROC(p, td) { 499 #ifdef KSE 500 if (td->td_standin != NULL) { 501 if (td->td_standin->td_ucred != NULL) { 502 crfree(td->td_standin->td_ucred); 503 td->td_standin->td_ucred = NULL; 504 } 505 thread_free(td->td_standin); 506 td->td_standin = NULL; 507 } 508 #endif 509 cpu_thread_clean(td); 510 crfree(td->td_ucred); 511 } 512 thread_reap(); /* check for zombie threads etc. */ 513 } 514 515 /* 516 * Link a thread to a process. 517 * set up anything that needs to be initialized for it to 518 * be used by the process. 519 * 520 * Note that we do not link to the proc's ucred here. 521 * The thread is linked as if running but no KSE assigned. 522 * Called from: 523 * proc_linkup() 524 * thread_schedule_upcall() 525 * thr_create() 526 */ 527 void 528 thread_link(struct thread *td, struct proc *p) 529 { 530 531 td->td_state = TDS_INACTIVE; 532 td->td_proc = p; 533 td->td_flags = 0; 534 535 LIST_INIT(&td->td_contested); 536 sigqueue_init(&td->td_sigqueue, p); 537 callout_init(&td->td_slpcallout, CALLOUT_MPSAFE); 538 TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist); 539 p->p_numthreads++; 540 } 541 542 /* 543 * Convert a process with one thread to an unthreaded process. 544 * Called from: 545 * thread_single(exit) (called from execve and exit) 546 * kse_exit() XXX may need cleaning up wrt KSE stuff 547 */ 548 void 549 thread_unthread(struct thread *td) 550 { 551 struct proc *p = td->td_proc; 552 553 KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads")); 554 #ifdef KSE 555 upcall_remove(td); 556 p->p_flag &= ~(P_SA|P_HADTHREADS); 557 td->td_mailbox = NULL; 558 td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND); 559 if (td->td_standin != NULL) { 560 thread_stash(td->td_standin); 561 td->td_standin = NULL; 562 } 563 sched_set_concurrency(p, 1); 564 #else 565 p->p_flag &= ~P_HADTHREADS; 566 #endif 567 } 568 569 /* 570 * Called from: 571 * thread_exit() 572 */ 573 void 574 thread_unlink(struct thread *td) 575 { 576 struct proc *p = td->td_proc; 577 578 mtx_assert(&sched_lock, MA_OWNED); 579 TAILQ_REMOVE(&p->p_threads, td, td_plist); 580 p->p_numthreads--; 581 /* could clear a few other things here */ 582 /* Must NOT clear links to proc! */ 583 } 584 585 /* 586 * Enforce single-threading. 587 * 588 * Returns 1 if the caller must abort (another thread is waiting to 589 * exit the process or similar). Process is locked! 590 * Returns 0 when you are successfully the only thread running. 591 * A process has successfully single threaded in the suspend mode when 592 * There are no threads in user mode. Threads in the kernel must be 593 * allowed to continue until they get to the user boundary. They may even 594 * copy out their return values and data before suspending. They may however be 595 * accelerated in reaching the user boundary as we will wake up 596 * any sleeping threads that are interruptable. (PCATCH). 597 */ 598 int 599 thread_single(int mode) 600 { 601 struct thread *td; 602 struct thread *td2; 603 struct proc *p; 604 int remaining; 605 606 td = curthread; 607 p = td->td_proc; 608 mtx_assert(&Giant, MA_NOTOWNED); 609 PROC_LOCK_ASSERT(p, MA_OWNED); 610 KASSERT((td != NULL), ("curthread is NULL")); 611 612 if ((p->p_flag & P_HADTHREADS) == 0) 613 return (0); 614 615 /* Is someone already single threading? */ 616 if (p->p_singlethread != NULL && p->p_singlethread != td) 617 return (1); 618 619 if (mode == SINGLE_EXIT) { 620 p->p_flag |= P_SINGLE_EXIT; 621 p->p_flag &= ~P_SINGLE_BOUNDARY; 622 } else { 623 p->p_flag &= ~P_SINGLE_EXIT; 624 if (mode == SINGLE_BOUNDARY) 625 p->p_flag |= P_SINGLE_BOUNDARY; 626 else 627 p->p_flag &= ~P_SINGLE_BOUNDARY; 628 } 629 p->p_flag |= P_STOPPED_SINGLE; 630 mtx_lock_spin(&sched_lock); 631 p->p_singlethread = td; 632 if (mode == SINGLE_EXIT) 633 remaining = p->p_numthreads; 634 else if (mode == SINGLE_BOUNDARY) 635 remaining = p->p_numthreads - p->p_boundary_count; 636 else 637 remaining = p->p_numthreads - p->p_suspcount; 638 while (remaining != 1) { 639 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE) 640 goto stopme; 641 FOREACH_THREAD_IN_PROC(p, td2) { 642 if (td2 == td) 643 continue; 644 td2->td_flags |= TDF_ASTPENDING; 645 if (TD_IS_INHIBITED(td2)) { 646 switch (mode) { 647 case SINGLE_EXIT: 648 if (td->td_flags & TDF_DBSUSPEND) 649 td->td_flags &= ~TDF_DBSUSPEND; 650 if (TD_IS_SUSPENDED(td2)) 651 thread_unsuspend_one(td2); 652 if (TD_ON_SLEEPQ(td2) && 653 (td2->td_flags & TDF_SINTR)) 654 sleepq_abort(td2, EINTR); 655 break; 656 case SINGLE_BOUNDARY: 657 if (TD_IS_SUSPENDED(td2) && 658 !(td2->td_flags & TDF_BOUNDARY)) 659 thread_unsuspend_one(td2); 660 if (TD_ON_SLEEPQ(td2) && 661 (td2->td_flags & TDF_SINTR)) 662 sleepq_abort(td2, ERESTART); 663 break; 664 default: 665 if (TD_IS_SUSPENDED(td2)) 666 continue; 667 /* 668 * maybe other inhibited states too? 669 */ 670 if ((td2->td_flags & TDF_SINTR) && 671 (td2->td_inhibitors & 672 (TDI_SLEEPING | TDI_SWAPPED))) 673 thread_suspend_one(td2); 674 break; 675 } 676 } 677 #ifdef SMP 678 else if (TD_IS_RUNNING(td2) && td != td2) { 679 forward_signal(td2); 680 } 681 #endif 682 } 683 if (mode == SINGLE_EXIT) 684 remaining = p->p_numthreads; 685 else if (mode == SINGLE_BOUNDARY) 686 remaining = p->p_numthreads - p->p_boundary_count; 687 else 688 remaining = p->p_numthreads - p->p_suspcount; 689 690 /* 691 * Maybe we suspended some threads.. was it enough? 692 */ 693 if (remaining == 1) 694 break; 695 696 stopme: 697 /* 698 * Wake us up when everyone else has suspended. 699 * In the mean time we suspend as well. 700 */ 701 thread_stopped(p); 702 thread_suspend_one(td); 703 PROC_UNLOCK(p); 704 mi_switch(SW_VOL, NULL); 705 mtx_unlock_spin(&sched_lock); 706 PROC_LOCK(p); 707 mtx_lock_spin(&sched_lock); 708 if (mode == SINGLE_EXIT) 709 remaining = p->p_numthreads; 710 else if (mode == SINGLE_BOUNDARY) 711 remaining = p->p_numthreads - p->p_boundary_count; 712 else 713 remaining = p->p_numthreads - p->p_suspcount; 714 } 715 if (mode == SINGLE_EXIT) { 716 /* 717 * We have gotten rid of all the other threads and we 718 * are about to either exit or exec. In either case, 719 * we try our utmost to revert to being a non-threaded 720 * process. 721 */ 722 p->p_singlethread = NULL; 723 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT); 724 thread_unthread(td); 725 } 726 mtx_unlock_spin(&sched_lock); 727 return (0); 728 } 729 730 /* 731 * Called in from locations that can safely check to see 732 * whether we have to suspend or at least throttle for a 733 * single-thread event (e.g. fork). 734 * 735 * Such locations include userret(). 736 * If the "return_instead" argument is non zero, the thread must be able to 737 * accept 0 (caller may continue), or 1 (caller must abort) as a result. 738 * 739 * The 'return_instead' argument tells the function if it may do a 740 * thread_exit() or suspend, or whether the caller must abort and back 741 * out instead. 742 * 743 * If the thread that set the single_threading request has set the 744 * P_SINGLE_EXIT bit in the process flags then this call will never return 745 * if 'return_instead' is false, but will exit. 746 * 747 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 748 *---------------+--------------------+--------------------- 749 * 0 | returns 0 | returns 0 or 1 750 * | when ST ends | immediatly 751 *---------------+--------------------+--------------------- 752 * 1 | thread exits | returns 1 753 * | | immediatly 754 * 0 = thread_exit() or suspension ok, 755 * other = return error instead of stopping the thread. 756 * 757 * While a full suspension is under effect, even a single threading 758 * thread would be suspended if it made this call (but it shouldn't). 759 * This call should only be made from places where 760 * thread_exit() would be safe as that may be the outcome unless 761 * return_instead is set. 762 */ 763 int 764 thread_suspend_check(int return_instead) 765 { 766 struct thread *td; 767 struct proc *p; 768 769 td = curthread; 770 p = td->td_proc; 771 mtx_assert(&Giant, MA_NOTOWNED); 772 PROC_LOCK_ASSERT(p, MA_OWNED); 773 while (P_SHOULDSTOP(p) || 774 ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) { 775 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 776 KASSERT(p->p_singlethread != NULL, 777 ("singlethread not set")); 778 /* 779 * The only suspension in action is a 780 * single-threading. Single threader need not stop. 781 * XXX Should be safe to access unlocked 782 * as it can only be set to be true by us. 783 */ 784 if (p->p_singlethread == td) 785 return (0); /* Exempt from stopping. */ 786 } 787 if ((p->p_flag & P_SINGLE_EXIT) && return_instead) 788 return (EINTR); 789 790 /* Should we goto user boundary if we didn't come from there? */ 791 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && 792 (p->p_flag & P_SINGLE_BOUNDARY) && return_instead) 793 return (ERESTART); 794 795 /* If thread will exit, flush its pending signals */ 796 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) 797 sigqueue_flush(&td->td_sigqueue); 798 799 mtx_lock_spin(&sched_lock); 800 thread_stopped(p); 801 /* 802 * If the process is waiting for us to exit, 803 * this thread should just suicide. 804 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. 805 */ 806 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) 807 thread_exit(); 808 809 /* 810 * When a thread suspends, it just 811 * gets taken off all queues. 812 */ 813 thread_suspend_one(td); 814 if (return_instead == 0) { 815 p->p_boundary_count++; 816 td->td_flags |= TDF_BOUNDARY; 817 } 818 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 819 if (p->p_numthreads == p->p_suspcount) 820 thread_unsuspend_one(p->p_singlethread); 821 } 822 PROC_UNLOCK(p); 823 mi_switch(SW_INVOL, NULL); 824 if (return_instead == 0) { 825 p->p_boundary_count--; 826 td->td_flags &= ~TDF_BOUNDARY; 827 } 828 mtx_unlock_spin(&sched_lock); 829 PROC_LOCK(p); 830 } 831 return (0); 832 } 833 834 void 835 thread_suspend_one(struct thread *td) 836 { 837 struct proc *p = td->td_proc; 838 839 mtx_assert(&sched_lock, MA_OWNED); 840 PROC_LOCK_ASSERT(p, MA_OWNED); 841 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 842 p->p_suspcount++; 843 TD_SET_SUSPENDED(td); 844 } 845 846 void 847 thread_unsuspend_one(struct thread *td) 848 { 849 struct proc *p = td->td_proc; 850 851 mtx_assert(&sched_lock, MA_OWNED); 852 PROC_LOCK_ASSERT(p, MA_OWNED); 853 KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended")); 854 TD_CLR_SUSPENDED(td); 855 p->p_suspcount--; 856 setrunnable(td); 857 } 858 859 /* 860 * Allow all threads blocked by single threading to continue running. 861 */ 862 void 863 thread_unsuspend(struct proc *p) 864 { 865 struct thread *td; 866 867 mtx_assert(&sched_lock, MA_OWNED); 868 PROC_LOCK_ASSERT(p, MA_OWNED); 869 if (!P_SHOULDSTOP(p)) { 870 FOREACH_THREAD_IN_PROC(p, td) { 871 if (TD_IS_SUSPENDED(td)) { 872 thread_unsuspend_one(td); 873 } 874 } 875 } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) && 876 (p->p_numthreads == p->p_suspcount)) { 877 /* 878 * Stopping everything also did the job for the single 879 * threading request. Now we've downgraded to single-threaded, 880 * let it continue. 881 */ 882 thread_unsuspend_one(p->p_singlethread); 883 } 884 } 885 886 /* 887 * End the single threading mode.. 888 */ 889 void 890 thread_single_end(void) 891 { 892 struct thread *td; 893 struct proc *p; 894 895 td = curthread; 896 p = td->td_proc; 897 PROC_LOCK_ASSERT(p, MA_OWNED); 898 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY); 899 mtx_lock_spin(&sched_lock); 900 p->p_singlethread = NULL; 901 /* 902 * If there are other threads they mey now run, 903 * unless of course there is a blanket 'stop order' 904 * on the process. The single threader must be allowed 905 * to continue however as this is a bad place to stop. 906 */ 907 if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) { 908 FOREACH_THREAD_IN_PROC(p, td) { 909 if (TD_IS_SUSPENDED(td)) { 910 thread_unsuspend_one(td); 911 } 912 } 913 } 914 mtx_unlock_spin(&sched_lock); 915 } 916 917 struct thread * 918 thread_find(struct proc *p, lwpid_t tid) 919 { 920 struct thread *td; 921 922 PROC_LOCK_ASSERT(p, MA_OWNED); 923 mtx_lock_spin(&sched_lock); 924 FOREACH_THREAD_IN_PROC(p, td) { 925 if (td->td_tid == tid) 926 break; 927 } 928 mtx_unlock_spin(&sched_lock); 929 return (td); 930 } 931