1 /*- 2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice(s), this list of conditions and the following disclaimer as 10 * the first lines of this file unmodified other than the possible 11 * addition of one or more copyright notices. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice(s), this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 19 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 26 * DAMAGE. 27 */ 28 29 #include "opt_witness.h" 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/proc.h> 40 #include <sys/resourcevar.h> 41 #include <sys/smp.h> 42 #include <sys/sysctl.h> 43 #include <sys/sched.h> 44 #include <sys/sleepqueue.h> 45 #include <sys/selinfo.h> 46 #include <sys/turnstile.h> 47 #include <sys/ktr.h> 48 #include <sys/umtx.h> 49 #include <sys/cpuset.h> 50 51 #include <security/audit/audit.h> 52 53 #include <vm/vm.h> 54 #include <vm/vm_extern.h> 55 #include <vm/uma.h> 56 #include <sys/eventhandler.h> 57 58 /* 59 * thread related storage. 60 */ 61 static uma_zone_t thread_zone; 62 63 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation"); 64 65 int max_threads_per_proc = 1500; 66 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW, 67 &max_threads_per_proc, 0, "Limit on threads per proc"); 68 69 int max_threads_hits; 70 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD, 71 &max_threads_hits, 0, ""); 72 73 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); 74 static struct mtx zombie_lock; 75 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN); 76 77 static void thread_zombie(struct thread *); 78 79 struct mtx tid_lock; 80 static struct unrhdr *tid_unrhdr; 81 82 /* 83 * Prepare a thread for use. 84 */ 85 static int 86 thread_ctor(void *mem, int size, void *arg, int flags) 87 { 88 struct thread *td; 89 90 td = (struct thread *)mem; 91 td->td_state = TDS_INACTIVE; 92 td->td_oncpu = NOCPU; 93 94 td->td_tid = alloc_unr(tid_unrhdr); 95 td->td_syscalls = 0; 96 97 /* 98 * Note that td_critnest begins life as 1 because the thread is not 99 * running and is thereby implicitly waiting to be on the receiving 100 * end of a context switch. 101 */ 102 td->td_critnest = 1; 103 EVENTHANDLER_INVOKE(thread_ctor, td); 104 #ifdef AUDIT 105 audit_thread_alloc(td); 106 #endif 107 umtx_thread_alloc(td); 108 return (0); 109 } 110 111 /* 112 * Reclaim a thread after use. 113 */ 114 static void 115 thread_dtor(void *mem, int size, void *arg) 116 { 117 struct thread *td; 118 119 td = (struct thread *)mem; 120 121 #ifdef INVARIANTS 122 /* Verify that this thread is in a safe state to free. */ 123 switch (td->td_state) { 124 case TDS_INHIBITED: 125 case TDS_RUNNING: 126 case TDS_CAN_RUN: 127 case TDS_RUNQ: 128 /* 129 * We must never unlink a thread that is in one of 130 * these states, because it is currently active. 131 */ 132 panic("bad state for thread unlinking"); 133 /* NOTREACHED */ 134 case TDS_INACTIVE: 135 break; 136 default: 137 panic("bad thread state"); 138 /* NOTREACHED */ 139 } 140 #endif 141 #ifdef AUDIT 142 audit_thread_free(td); 143 #endif 144 EVENTHANDLER_INVOKE(thread_dtor, td); 145 free_unr(tid_unrhdr, td->td_tid); 146 } 147 148 /* 149 * Initialize type-stable parts of a thread (when newly created). 150 */ 151 static int 152 thread_init(void *mem, int size, int flags) 153 { 154 struct thread *td; 155 156 td = (struct thread *)mem; 157 158 td->td_sleepqueue = sleepq_alloc(); 159 td->td_turnstile = turnstile_alloc(); 160 EVENTHANDLER_INVOKE(thread_init, td); 161 td->td_sched = (struct td_sched *)&td[1]; 162 umtx_thread_init(td); 163 td->td_kstack = 0; 164 return (0); 165 } 166 167 /* 168 * Tear down type-stable parts of a thread (just before being discarded). 169 */ 170 static void 171 thread_fini(void *mem, int size) 172 { 173 struct thread *td; 174 175 td = (struct thread *)mem; 176 EVENTHANDLER_INVOKE(thread_fini, td); 177 turnstile_free(td->td_turnstile); 178 sleepq_free(td->td_sleepqueue); 179 umtx_thread_fini(td); 180 seltdfini(td); 181 } 182 183 /* 184 * For a newly created process, 185 * link up all the structures and its initial threads etc. 186 * called from: 187 * {arch}/{arch}/machdep.c ia64_init(), init386() etc. 188 * proc_dtor() (should go away) 189 * proc_init() 190 */ 191 void 192 proc_linkup0(struct proc *p, struct thread *td) 193 { 194 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 195 proc_linkup(p, td); 196 } 197 198 void 199 proc_linkup(struct proc *p, struct thread *td) 200 { 201 202 sigqueue_init(&p->p_sigqueue, p); 203 p->p_ksi = ksiginfo_alloc(1); 204 if (p->p_ksi != NULL) { 205 /* XXX p_ksi may be null if ksiginfo zone is not ready */ 206 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS; 207 } 208 LIST_INIT(&p->p_mqnotifier); 209 p->p_numthreads = 0; 210 thread_link(td, p); 211 } 212 213 /* 214 * Initialize global thread allocation resources. 215 */ 216 void 217 threadinit(void) 218 { 219 220 mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF); 221 /* leave one number for thread0 */ 222 tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock); 223 224 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 225 thread_ctor, thread_dtor, thread_init, thread_fini, 226 16 - 1, 0); 227 } 228 229 /* 230 * Place an unused thread on the zombie list. 231 * Use the slpq as that must be unused by now. 232 */ 233 void 234 thread_zombie(struct thread *td) 235 { 236 mtx_lock_spin(&zombie_lock); 237 TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq); 238 mtx_unlock_spin(&zombie_lock); 239 } 240 241 /* 242 * Release a thread that has exited after cpu_throw(). 243 */ 244 void 245 thread_stash(struct thread *td) 246 { 247 atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1); 248 thread_zombie(td); 249 } 250 251 /* 252 * Reap zombie resources. 253 */ 254 void 255 thread_reap(void) 256 { 257 struct thread *td_first, *td_next; 258 259 /* 260 * Don't even bother to lock if none at this instant, 261 * we really don't care about the next instant.. 262 */ 263 if (!TAILQ_EMPTY(&zombie_threads)) { 264 mtx_lock_spin(&zombie_lock); 265 td_first = TAILQ_FIRST(&zombie_threads); 266 if (td_first) 267 TAILQ_INIT(&zombie_threads); 268 mtx_unlock_spin(&zombie_lock); 269 while (td_first) { 270 td_next = TAILQ_NEXT(td_first, td_slpq); 271 if (td_first->td_ucred) 272 crfree(td_first->td_ucred); 273 thread_free(td_first); 274 td_first = td_next; 275 } 276 } 277 } 278 279 /* 280 * Allocate a thread. 281 */ 282 struct thread * 283 thread_alloc(void) 284 { 285 struct thread *td; 286 287 thread_reap(); /* check if any zombies to get */ 288 289 td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK); 290 KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack")); 291 if (!vm_thread_new(td, 0)) { 292 uma_zfree(thread_zone, td); 293 return (NULL); 294 } 295 cpu_thread_alloc(td); 296 return (td); 297 } 298 299 300 /* 301 * Deallocate a thread. 302 */ 303 void 304 thread_free(struct thread *td) 305 { 306 if (td->td_cpuset) 307 cpuset_rel(td->td_cpuset); 308 td->td_cpuset = NULL; 309 cpu_thread_free(td); 310 if (td->td_altkstack != 0) 311 vm_thread_dispose_altkstack(td); 312 if (td->td_kstack != 0) 313 vm_thread_dispose(td); 314 uma_zfree(thread_zone, td); 315 } 316 317 /* 318 * Discard the current thread and exit from its context. 319 * Always called with scheduler locked. 320 * 321 * Because we can't free a thread while we're operating under its context, 322 * push the current thread into our CPU's deadthread holder. This means 323 * we needn't worry about someone else grabbing our context before we 324 * do a cpu_throw(). 325 */ 326 void 327 thread_exit(void) 328 { 329 uint64_t new_switchtime; 330 struct thread *td; 331 struct thread *td2; 332 struct proc *p; 333 334 td = curthread; 335 p = td->td_proc; 336 337 PROC_SLOCK_ASSERT(p, MA_OWNED); 338 mtx_assert(&Giant, MA_NOTOWNED); 339 340 PROC_LOCK_ASSERT(p, MA_OWNED); 341 KASSERT(p != NULL, ("thread exiting without a process")); 342 CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td, 343 (long)p->p_pid, td->td_name); 344 KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending")); 345 346 #ifdef AUDIT 347 AUDIT_SYSCALL_EXIT(0, td); 348 #endif 349 umtx_thread_exit(td); 350 /* 351 * drop FPU & debug register state storage, or any other 352 * architecture specific resources that 353 * would not be on a new untouched process. 354 */ 355 cpu_thread_exit(td); /* XXXSMP */ 356 357 /* Do the same timestamp bookkeeping that mi_switch() would do. */ 358 new_switchtime = cpu_ticks(); 359 p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime)); 360 PCPU_SET(switchtime, new_switchtime); 361 PCPU_SET(switchticks, ticks); 362 PCPU_INC(cnt.v_swtch); 363 /* Save our resource usage in our process. */ 364 td->td_ru.ru_nvcsw++; 365 rucollect(&p->p_ru, &td->td_ru); 366 /* 367 * The last thread is left attached to the process 368 * So that the whole bundle gets recycled. Skip 369 * all this stuff if we never had threads. 370 * EXIT clears all sign of other threads when 371 * it goes to single threading, so the last thread always 372 * takes the short path. 373 */ 374 if (p->p_flag & P_HADTHREADS) { 375 if (p->p_numthreads > 1) { 376 thread_unlink(td); 377 td2 = FIRST_THREAD_IN_PROC(p); 378 sched_exit_thread(td2, td); 379 380 /* 381 * The test below is NOT true if we are the 382 * sole exiting thread. P_STOPPED_SNGL is unset 383 * in exit1() after it is the only survivor. 384 */ 385 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 386 if (p->p_numthreads == p->p_suspcount) { 387 thread_lock(p->p_singlethread); 388 thread_unsuspend_one(p->p_singlethread); 389 thread_unlock(p->p_singlethread); 390 } 391 } 392 393 atomic_add_int(&td->td_proc->p_exitthreads, 1); 394 PCPU_SET(deadthread, td); 395 } else { 396 /* 397 * The last thread is exiting.. but not through exit() 398 */ 399 panic ("thread_exit: Last thread exiting on its own"); 400 } 401 } 402 PROC_UNLOCK(p); 403 thread_lock(td); 404 /* Save our tick information with both the thread and proc locked */ 405 ruxagg(&p->p_rux, td); 406 PROC_SUNLOCK(p); 407 td->td_state = TDS_INACTIVE; 408 #ifdef WITNESS 409 witness_thread_exit(td); 410 #endif 411 CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td); 412 sched_throw(td); 413 panic("I'm a teapot!"); 414 /* NOTREACHED */ 415 } 416 417 /* 418 * Do any thread specific cleanups that may be needed in wait() 419 * called with Giant, proc and schedlock not held. 420 */ 421 void 422 thread_wait(struct proc *p) 423 { 424 struct thread *td; 425 426 mtx_assert(&Giant, MA_NOTOWNED); 427 KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()")); 428 td = FIRST_THREAD_IN_PROC(p); 429 /* Lock the last thread so we spin until it exits cpu_throw(). */ 430 thread_lock(td); 431 thread_unlock(td); 432 /* Wait for any remaining threads to exit cpu_throw(). */ 433 while (p->p_exitthreads) 434 sched_relinquish(curthread); 435 cpuset_rel(td->td_cpuset); 436 td->td_cpuset = NULL; 437 cpu_thread_clean(td); 438 crfree(td->td_ucred); 439 thread_reap(); /* check for zombie threads etc. */ 440 } 441 442 /* 443 * Link a thread to a process. 444 * set up anything that needs to be initialized for it to 445 * be used by the process. 446 */ 447 void 448 thread_link(struct thread *td, struct proc *p) 449 { 450 451 /* 452 * XXX This can't be enabled because it's called for proc0 before 453 * its lock has been created. 454 * PROC_LOCK_ASSERT(p, MA_OWNED); 455 */ 456 td->td_state = TDS_INACTIVE; 457 td->td_proc = p; 458 td->td_flags = TDF_INMEM; 459 460 LIST_INIT(&td->td_contested); 461 LIST_INIT(&td->td_lprof[0]); 462 LIST_INIT(&td->td_lprof[1]); 463 sigqueue_init(&td->td_sigqueue, p); 464 callout_init(&td->td_slpcallout, CALLOUT_MPSAFE); 465 TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist); 466 p->p_numthreads++; 467 } 468 469 /* 470 * Convert a process with one thread to an unthreaded process. 471 */ 472 void 473 thread_unthread(struct thread *td) 474 { 475 struct proc *p = td->td_proc; 476 477 KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads")); 478 p->p_flag &= ~P_HADTHREADS; 479 } 480 481 /* 482 * Called from: 483 * thread_exit() 484 */ 485 void 486 thread_unlink(struct thread *td) 487 { 488 struct proc *p = td->td_proc; 489 490 PROC_LOCK_ASSERT(p, MA_OWNED); 491 TAILQ_REMOVE(&p->p_threads, td, td_plist); 492 p->p_numthreads--; 493 /* could clear a few other things here */ 494 /* Must NOT clear links to proc! */ 495 } 496 497 /* 498 * Enforce single-threading. 499 * 500 * Returns 1 if the caller must abort (another thread is waiting to 501 * exit the process or similar). Process is locked! 502 * Returns 0 when you are successfully the only thread running. 503 * A process has successfully single threaded in the suspend mode when 504 * There are no threads in user mode. Threads in the kernel must be 505 * allowed to continue until they get to the user boundary. They may even 506 * copy out their return values and data before suspending. They may however be 507 * accelerated in reaching the user boundary as we will wake up 508 * any sleeping threads that are interruptable. (PCATCH). 509 */ 510 int 511 thread_single(int mode) 512 { 513 struct thread *td; 514 struct thread *td2; 515 struct proc *p; 516 int remaining, wakeup_swapper; 517 518 td = curthread; 519 p = td->td_proc; 520 mtx_assert(&Giant, MA_NOTOWNED); 521 PROC_LOCK_ASSERT(p, MA_OWNED); 522 KASSERT((td != NULL), ("curthread is NULL")); 523 524 if ((p->p_flag & P_HADTHREADS) == 0) 525 return (0); 526 527 /* Is someone already single threading? */ 528 if (p->p_singlethread != NULL && p->p_singlethread != td) 529 return (1); 530 531 if (mode == SINGLE_EXIT) { 532 p->p_flag |= P_SINGLE_EXIT; 533 p->p_flag &= ~P_SINGLE_BOUNDARY; 534 } else { 535 p->p_flag &= ~P_SINGLE_EXIT; 536 if (mode == SINGLE_BOUNDARY) 537 p->p_flag |= P_SINGLE_BOUNDARY; 538 else 539 p->p_flag &= ~P_SINGLE_BOUNDARY; 540 } 541 p->p_flag |= P_STOPPED_SINGLE; 542 PROC_SLOCK(p); 543 p->p_singlethread = td; 544 if (mode == SINGLE_EXIT) 545 remaining = p->p_numthreads; 546 else if (mode == SINGLE_BOUNDARY) 547 remaining = p->p_numthreads - p->p_boundary_count; 548 else 549 remaining = p->p_numthreads - p->p_suspcount; 550 while (remaining != 1) { 551 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE) 552 goto stopme; 553 wakeup_swapper = 0; 554 FOREACH_THREAD_IN_PROC(p, td2) { 555 if (td2 == td) 556 continue; 557 thread_lock(td2); 558 td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK; 559 if (TD_IS_INHIBITED(td2)) { 560 switch (mode) { 561 case SINGLE_EXIT: 562 if (td->td_flags & TDF_DBSUSPEND) 563 td->td_flags &= ~TDF_DBSUSPEND; 564 if (TD_IS_SUSPENDED(td2)) 565 thread_unsuspend_one(td2); 566 if (TD_ON_SLEEPQ(td2) && 567 (td2->td_flags & TDF_SINTR)) 568 wakeup_swapper = 569 sleepq_abort(td2, EINTR); 570 break; 571 case SINGLE_BOUNDARY: 572 break; 573 default: 574 if (TD_IS_SUSPENDED(td2)) { 575 thread_unlock(td2); 576 continue; 577 } 578 /* 579 * maybe other inhibited states too? 580 */ 581 if ((td2->td_flags & TDF_SINTR) && 582 (td2->td_inhibitors & 583 (TDI_SLEEPING | TDI_SWAPPED))) 584 thread_suspend_one(td2); 585 break; 586 } 587 } 588 #ifdef SMP 589 else if (TD_IS_RUNNING(td2) && td != td2) { 590 forward_signal(td2); 591 } 592 #endif 593 thread_unlock(td2); 594 } 595 if (wakeup_swapper) 596 kick_proc0(); 597 if (mode == SINGLE_EXIT) 598 remaining = p->p_numthreads; 599 else if (mode == SINGLE_BOUNDARY) 600 remaining = p->p_numthreads - p->p_boundary_count; 601 else 602 remaining = p->p_numthreads - p->p_suspcount; 603 604 /* 605 * Maybe we suspended some threads.. was it enough? 606 */ 607 if (remaining == 1) 608 break; 609 610 stopme: 611 /* 612 * Wake us up when everyone else has suspended. 613 * In the mean time we suspend as well. 614 */ 615 thread_suspend_switch(td); 616 if (mode == SINGLE_EXIT) 617 remaining = p->p_numthreads; 618 else if (mode == SINGLE_BOUNDARY) 619 remaining = p->p_numthreads - p->p_boundary_count; 620 else 621 remaining = p->p_numthreads - p->p_suspcount; 622 } 623 if (mode == SINGLE_EXIT) { 624 /* 625 * We have gotten rid of all the other threads and we 626 * are about to either exit or exec. In either case, 627 * we try our utmost to revert to being a non-threaded 628 * process. 629 */ 630 p->p_singlethread = NULL; 631 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT); 632 thread_unthread(td); 633 } 634 PROC_SUNLOCK(p); 635 return (0); 636 } 637 638 /* 639 * Called in from locations that can safely check to see 640 * whether we have to suspend or at least throttle for a 641 * single-thread event (e.g. fork). 642 * 643 * Such locations include userret(). 644 * If the "return_instead" argument is non zero, the thread must be able to 645 * accept 0 (caller may continue), or 1 (caller must abort) as a result. 646 * 647 * The 'return_instead' argument tells the function if it may do a 648 * thread_exit() or suspend, or whether the caller must abort and back 649 * out instead. 650 * 651 * If the thread that set the single_threading request has set the 652 * P_SINGLE_EXIT bit in the process flags then this call will never return 653 * if 'return_instead' is false, but will exit. 654 * 655 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 656 *---------------+--------------------+--------------------- 657 * 0 | returns 0 | returns 0 or 1 658 * | when ST ends | immediatly 659 *---------------+--------------------+--------------------- 660 * 1 | thread exits | returns 1 661 * | | immediatly 662 * 0 = thread_exit() or suspension ok, 663 * other = return error instead of stopping the thread. 664 * 665 * While a full suspension is under effect, even a single threading 666 * thread would be suspended if it made this call (but it shouldn't). 667 * This call should only be made from places where 668 * thread_exit() would be safe as that may be the outcome unless 669 * return_instead is set. 670 */ 671 int 672 thread_suspend_check(int return_instead) 673 { 674 struct thread *td; 675 struct proc *p; 676 677 td = curthread; 678 p = td->td_proc; 679 mtx_assert(&Giant, MA_NOTOWNED); 680 PROC_LOCK_ASSERT(p, MA_OWNED); 681 while (P_SHOULDSTOP(p) || 682 ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) { 683 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 684 KASSERT(p->p_singlethread != NULL, 685 ("singlethread not set")); 686 /* 687 * The only suspension in action is a 688 * single-threading. Single threader need not stop. 689 * XXX Should be safe to access unlocked 690 * as it can only be set to be true by us. 691 */ 692 if (p->p_singlethread == td) 693 return (0); /* Exempt from stopping. */ 694 } 695 if ((p->p_flag & P_SINGLE_EXIT) && return_instead) 696 return (EINTR); 697 698 /* Should we goto user boundary if we didn't come from there? */ 699 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && 700 (p->p_flag & P_SINGLE_BOUNDARY) && return_instead) 701 return (ERESTART); 702 703 /* If thread will exit, flush its pending signals */ 704 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) 705 sigqueue_flush(&td->td_sigqueue); 706 707 PROC_SLOCK(p); 708 thread_stopped(p); 709 /* 710 * If the process is waiting for us to exit, 711 * this thread should just suicide. 712 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. 713 */ 714 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) 715 thread_exit(); 716 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 717 if (p->p_numthreads == p->p_suspcount + 1) { 718 thread_lock(p->p_singlethread); 719 thread_unsuspend_one(p->p_singlethread); 720 thread_unlock(p->p_singlethread); 721 } 722 } 723 PROC_UNLOCK(p); 724 thread_lock(td); 725 /* 726 * When a thread suspends, it just 727 * gets taken off all queues. 728 */ 729 thread_suspend_one(td); 730 if (return_instead == 0) { 731 p->p_boundary_count++; 732 td->td_flags |= TDF_BOUNDARY; 733 } 734 PROC_SUNLOCK(p); 735 mi_switch(SW_INVOL | SWT_SUSPEND, NULL); 736 if (return_instead == 0) 737 td->td_flags &= ~TDF_BOUNDARY; 738 thread_unlock(td); 739 PROC_LOCK(p); 740 if (return_instead == 0) 741 p->p_boundary_count--; 742 } 743 return (0); 744 } 745 746 void 747 thread_suspend_switch(struct thread *td) 748 { 749 struct proc *p; 750 751 p = td->td_proc; 752 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 753 PROC_LOCK_ASSERT(p, MA_OWNED); 754 PROC_SLOCK_ASSERT(p, MA_OWNED); 755 /* 756 * We implement thread_suspend_one in stages here to avoid 757 * dropping the proc lock while the thread lock is owned. 758 */ 759 thread_stopped(p); 760 p->p_suspcount++; 761 PROC_UNLOCK(p); 762 thread_lock(td); 763 td->td_flags &= ~TDF_NEEDSUSPCHK; 764 TD_SET_SUSPENDED(td); 765 sched_sleep(td, 0); 766 PROC_SUNLOCK(p); 767 DROP_GIANT(); 768 mi_switch(SW_VOL | SWT_SUSPEND, NULL); 769 thread_unlock(td); 770 PICKUP_GIANT(); 771 PROC_LOCK(p); 772 PROC_SLOCK(p); 773 } 774 775 void 776 thread_suspend_one(struct thread *td) 777 { 778 struct proc *p = td->td_proc; 779 780 PROC_SLOCK_ASSERT(p, MA_OWNED); 781 THREAD_LOCK_ASSERT(td, MA_OWNED); 782 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 783 p->p_suspcount++; 784 td->td_flags &= ~TDF_NEEDSUSPCHK; 785 TD_SET_SUSPENDED(td); 786 sched_sleep(td, 0); 787 } 788 789 void 790 thread_unsuspend_one(struct thread *td) 791 { 792 struct proc *p = td->td_proc; 793 794 PROC_SLOCK_ASSERT(p, MA_OWNED); 795 THREAD_LOCK_ASSERT(td, MA_OWNED); 796 KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended")); 797 TD_CLR_SUSPENDED(td); 798 p->p_suspcount--; 799 if (setrunnable(td)) { 800 #ifdef INVARIANTS 801 panic("not waking up swapper"); 802 #endif 803 } 804 } 805 806 /* 807 * Allow all threads blocked by single threading to continue running. 808 */ 809 void 810 thread_unsuspend(struct proc *p) 811 { 812 struct thread *td; 813 814 PROC_LOCK_ASSERT(p, MA_OWNED); 815 PROC_SLOCK_ASSERT(p, MA_OWNED); 816 if (!P_SHOULDSTOP(p)) { 817 FOREACH_THREAD_IN_PROC(p, td) { 818 thread_lock(td); 819 if (TD_IS_SUSPENDED(td)) { 820 thread_unsuspend_one(td); 821 } 822 thread_unlock(td); 823 } 824 } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) && 825 (p->p_numthreads == p->p_suspcount)) { 826 /* 827 * Stopping everything also did the job for the single 828 * threading request. Now we've downgraded to single-threaded, 829 * let it continue. 830 */ 831 thread_lock(p->p_singlethread); 832 thread_unsuspend_one(p->p_singlethread); 833 thread_unlock(p->p_singlethread); 834 } 835 } 836 837 /* 838 * End the single threading mode.. 839 */ 840 void 841 thread_single_end(void) 842 { 843 struct thread *td; 844 struct proc *p; 845 846 td = curthread; 847 p = td->td_proc; 848 PROC_LOCK_ASSERT(p, MA_OWNED); 849 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY); 850 PROC_SLOCK(p); 851 p->p_singlethread = NULL; 852 /* 853 * If there are other threads they mey now run, 854 * unless of course there is a blanket 'stop order' 855 * on the process. The single threader must be allowed 856 * to continue however as this is a bad place to stop. 857 */ 858 if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) { 859 FOREACH_THREAD_IN_PROC(p, td) { 860 thread_lock(td); 861 if (TD_IS_SUSPENDED(td)) { 862 thread_unsuspend_one(td); 863 } 864 thread_unlock(td); 865 } 866 } 867 PROC_SUNLOCK(p); 868 } 869 870 struct thread * 871 thread_find(struct proc *p, lwpid_t tid) 872 { 873 struct thread *td; 874 875 PROC_LOCK_ASSERT(p, MA_OWNED); 876 FOREACH_THREAD_IN_PROC(p, td) { 877 if (td->td_tid == tid) 878 break; 879 } 880 return (td); 881 } 882