1 /*- 2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice(s), this list of conditions and the following disclaimer as 10 * the first lines of this file unmodified other than the possible 11 * addition of one or more copyright notices. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice(s), this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 19 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 26 * DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/proc.h> 38 #include <sys/smp.h> 39 #include <sys/sysctl.h> 40 #include <sys/sched.h> 41 #include <sys/sleepqueue.h> 42 #include <sys/turnstile.h> 43 #include <sys/ktr.h> 44 #include <sys/umtx.h> 45 46 #include <vm/vm.h> 47 #include <vm/vm_extern.h> 48 #include <vm/uma.h> 49 50 /* 51 * KSEGRP related storage. 52 */ 53 static uma_zone_t ksegrp_zone; 54 static uma_zone_t thread_zone; 55 56 /* DEBUG ONLY */ 57 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation"); 58 static int thread_debug = 0; 59 SYSCTL_INT(_kern_threads, OID_AUTO, debug, CTLFLAG_RW, 60 &thread_debug, 0, "thread debug"); 61 62 int max_threads_per_proc = 1500; 63 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW, 64 &max_threads_per_proc, 0, "Limit on threads per proc"); 65 66 int max_groups_per_proc = 1500; 67 SYSCTL_INT(_kern_threads, OID_AUTO, max_groups_per_proc, CTLFLAG_RW, 68 &max_groups_per_proc, 0, "Limit on thread groups per proc"); 69 70 int max_threads_hits; 71 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD, 72 &max_threads_hits, 0, ""); 73 74 int virtual_cpu; 75 76 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); 77 TAILQ_HEAD(, ksegrp) zombie_ksegrps = TAILQ_HEAD_INITIALIZER(zombie_ksegrps); 78 struct mtx kse_zombie_lock; 79 MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN); 80 81 static int 82 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS) 83 { 84 int error, new_val; 85 int def_val; 86 87 def_val = mp_ncpus; 88 if (virtual_cpu == 0) 89 new_val = def_val; 90 else 91 new_val = virtual_cpu; 92 error = sysctl_handle_int(oidp, &new_val, 0, req); 93 if (error != 0 || req->newptr == NULL) 94 return (error); 95 if (new_val < 0) 96 return (EINVAL); 97 virtual_cpu = new_val; 98 return (0); 99 } 100 101 /* DEBUG ONLY */ 102 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW, 103 0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I", 104 "debug virtual cpus"); 105 106 struct mtx tid_lock; 107 static struct unrhdr *tid_unrhdr; 108 109 /* 110 * Prepare a thread for use. 111 */ 112 static int 113 thread_ctor(void *mem, int size, void *arg, int flags) 114 { 115 struct thread *td; 116 117 td = (struct thread *)mem; 118 td->td_state = TDS_INACTIVE; 119 td->td_oncpu = NOCPU; 120 121 td->td_tid = alloc_unr(tid_unrhdr); 122 123 /* 124 * Note that td_critnest begins life as 1 because the thread is not 125 * running and is thereby implicitly waiting to be on the receiving 126 * end of a context switch. A context switch must occur inside a 127 * critical section, and in fact, includes hand-off of the sched_lock. 128 * After a context switch to a newly created thread, it will release 129 * sched_lock for the first time, and its td_critnest will hit 0 for 130 * the first time. This happens on the far end of a context switch, 131 * and when it context switches away from itself, it will in fact go 132 * back into a critical section, and hand off the sched lock to the 133 * next thread. 134 */ 135 td->td_critnest = 1; 136 return (0); 137 } 138 139 /* 140 * Reclaim a thread after use. 141 */ 142 static void 143 thread_dtor(void *mem, int size, void *arg) 144 { 145 struct thread *td; 146 147 td = (struct thread *)mem; 148 149 #ifdef INVARIANTS 150 /* Verify that this thread is in a safe state to free. */ 151 switch (td->td_state) { 152 case TDS_INHIBITED: 153 case TDS_RUNNING: 154 case TDS_CAN_RUN: 155 case TDS_RUNQ: 156 /* 157 * We must never unlink a thread that is in one of 158 * these states, because it is currently active. 159 */ 160 panic("bad state for thread unlinking"); 161 /* NOTREACHED */ 162 case TDS_INACTIVE: 163 break; 164 default: 165 panic("bad thread state"); 166 /* NOTREACHED */ 167 } 168 #endif 169 170 free_unr(tid_unrhdr, td->td_tid); 171 sched_newthread(td); 172 } 173 174 /* 175 * Initialize type-stable parts of a thread (when newly created). 176 */ 177 static int 178 thread_init(void *mem, int size, int flags) 179 { 180 struct thread *td; 181 182 td = (struct thread *)mem; 183 184 vm_thread_new(td, 0); 185 cpu_thread_setup(td); 186 td->td_sleepqueue = sleepq_alloc(); 187 td->td_turnstile = turnstile_alloc(); 188 td->td_umtxq = umtxq_alloc(); 189 td->td_sched = (struct td_sched *)&td[1]; 190 sched_newthread(td); 191 return (0); 192 } 193 194 /* 195 * Tear down type-stable parts of a thread (just before being discarded). 196 */ 197 static void 198 thread_fini(void *mem, int size) 199 { 200 struct thread *td; 201 202 td = (struct thread *)mem; 203 turnstile_free(td->td_turnstile); 204 sleepq_free(td->td_sleepqueue); 205 umtxq_free(td->td_umtxq); 206 vm_thread_dispose(td); 207 } 208 209 /* 210 * Initialize type-stable parts of a ksegrp (when newly created). 211 */ 212 static int 213 ksegrp_ctor(void *mem, int size, void *arg, int flags) 214 { 215 struct ksegrp *kg; 216 217 kg = (struct ksegrp *)mem; 218 bzero(mem, size); 219 kg->kg_sched = (struct kg_sched *)&kg[1]; 220 return (0); 221 } 222 223 void 224 ksegrp_link(struct ksegrp *kg, struct proc *p) 225 { 226 227 TAILQ_INIT(&kg->kg_threads); 228 TAILQ_INIT(&kg->kg_runq); /* links with td_runq */ 229 TAILQ_INIT(&kg->kg_upcalls); /* all upcall structure in ksegrp */ 230 kg->kg_proc = p; 231 /* 232 * the following counters are in the -zero- section 233 * and may not need clearing 234 */ 235 kg->kg_numthreads = 0; 236 kg->kg_numupcalls = 0; 237 /* link it in now that it's consistent */ 238 p->p_numksegrps++; 239 TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp); 240 } 241 242 /* 243 * Called from: 244 * thread-exit() 245 */ 246 void 247 ksegrp_unlink(struct ksegrp *kg) 248 { 249 struct proc *p; 250 251 mtx_assert(&sched_lock, MA_OWNED); 252 KASSERT((kg->kg_numthreads == 0), ("ksegrp_unlink: residual threads")); 253 KASSERT((kg->kg_numupcalls == 0), ("ksegrp_unlink: residual upcalls")); 254 255 p = kg->kg_proc; 256 TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp); 257 p->p_numksegrps--; 258 /* 259 * Aggregate stats from the KSE 260 */ 261 if (p->p_procscopegrp == kg) 262 p->p_procscopegrp = NULL; 263 } 264 265 /* 266 * For a newly created process, 267 * link up all the structures and its initial threads etc. 268 * called from: 269 * {arch}/{arch}/machdep.c ia64_init(), init386() etc. 270 * proc_dtor() (should go away) 271 * proc_init() 272 */ 273 void 274 proc_linkup(struct proc *p, struct ksegrp *kg, struct thread *td) 275 { 276 277 TAILQ_INIT(&p->p_ksegrps); /* all ksegrps in proc */ 278 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 279 TAILQ_INIT(&p->p_suspended); /* Threads suspended */ 280 sigqueue_init(&p->p_sigqueue, p); 281 p->p_ksi = ksiginfo_alloc(1); 282 if (p->p_ksi != NULL) { 283 /* XXX p_ksi may be null if ksiginfo zone is not ready */ 284 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS; 285 } 286 LIST_INIT(&p->p_mqnotifier); 287 p->p_numksegrps = 0; 288 p->p_numthreads = 0; 289 290 ksegrp_link(kg, p); 291 thread_link(td, kg); 292 } 293 294 /* 295 * Initialize global thread allocation resources. 296 */ 297 void 298 threadinit(void) 299 { 300 301 mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF); 302 tid_unrhdr = new_unrhdr(PID_MAX + 1, INT_MAX, &tid_lock); 303 304 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 305 thread_ctor, thread_dtor, thread_init, thread_fini, 306 UMA_ALIGN_CACHE, 0); 307 ksegrp_zone = uma_zcreate("KSEGRP", sched_sizeof_ksegrp(), 308 ksegrp_ctor, NULL, NULL, NULL, 309 UMA_ALIGN_CACHE, 0); 310 kseinit(); /* set up kse specific stuff e.g. upcall zone*/ 311 } 312 313 /* 314 * Stash an embarasingly extra thread into the zombie thread queue. 315 */ 316 void 317 thread_stash(struct thread *td) 318 { 319 mtx_lock_spin(&kse_zombie_lock); 320 TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq); 321 mtx_unlock_spin(&kse_zombie_lock); 322 } 323 324 /* 325 * Stash an embarasingly extra ksegrp into the zombie ksegrp queue. 326 */ 327 void 328 ksegrp_stash(struct ksegrp *kg) 329 { 330 mtx_lock_spin(&kse_zombie_lock); 331 TAILQ_INSERT_HEAD(&zombie_ksegrps, kg, kg_ksegrp); 332 mtx_unlock_spin(&kse_zombie_lock); 333 } 334 335 /* 336 * Reap zombie kse resource. 337 */ 338 void 339 thread_reap(void) 340 { 341 struct thread *td_first, *td_next; 342 struct ksegrp *kg_first, * kg_next; 343 344 /* 345 * Don't even bother to lock if none at this instant, 346 * we really don't care about the next instant.. 347 */ 348 if ((!TAILQ_EMPTY(&zombie_threads)) 349 || (!TAILQ_EMPTY(&zombie_ksegrps))) { 350 mtx_lock_spin(&kse_zombie_lock); 351 td_first = TAILQ_FIRST(&zombie_threads); 352 kg_first = TAILQ_FIRST(&zombie_ksegrps); 353 if (td_first) 354 TAILQ_INIT(&zombie_threads); 355 if (kg_first) 356 TAILQ_INIT(&zombie_ksegrps); 357 mtx_unlock_spin(&kse_zombie_lock); 358 while (td_first) { 359 td_next = TAILQ_NEXT(td_first, td_runq); 360 if (td_first->td_ucred) 361 crfree(td_first->td_ucred); 362 thread_free(td_first); 363 td_first = td_next; 364 } 365 while (kg_first) { 366 kg_next = TAILQ_NEXT(kg_first, kg_ksegrp); 367 ksegrp_free(kg_first); 368 kg_first = kg_next; 369 } 370 /* 371 * there will always be a thread on the list if one of these 372 * is there. 373 */ 374 kse_GC(); 375 } 376 } 377 378 /* 379 * Allocate a ksegrp. 380 */ 381 struct ksegrp * 382 ksegrp_alloc(void) 383 { 384 return (uma_zalloc(ksegrp_zone, M_WAITOK)); 385 } 386 387 /* 388 * Allocate a thread. 389 */ 390 struct thread * 391 thread_alloc(void) 392 { 393 thread_reap(); /* check if any zombies to get */ 394 return (uma_zalloc(thread_zone, M_WAITOK)); 395 } 396 397 /* 398 * Deallocate a ksegrp. 399 */ 400 void 401 ksegrp_free(struct ksegrp *td) 402 { 403 uma_zfree(ksegrp_zone, td); 404 } 405 406 /* 407 * Deallocate a thread. 408 */ 409 void 410 thread_free(struct thread *td) 411 { 412 413 cpu_thread_clean(td); 414 uma_zfree(thread_zone, td); 415 } 416 417 /* 418 * Discard the current thread and exit from its context. 419 * Always called with scheduler locked. 420 * 421 * Because we can't free a thread while we're operating under its context, 422 * push the current thread into our CPU's deadthread holder. This means 423 * we needn't worry about someone else grabbing our context before we 424 * do a cpu_throw(). This may not be needed now as we are under schedlock. 425 * Maybe we can just do a thread_stash() as thr_exit1 does. 426 */ 427 /* XXX 428 * libthr expects its thread exit to return for the last 429 * thread, meaning that the program is back to non-threaded 430 * mode I guess. Because we do this (cpu_throw) unconditionally 431 * here, they have their own version of it. (thr_exit1()) 432 * that doesn't do it all if this was the last thread. 433 * It is also called from thread_suspend_check(). 434 * Of course in the end, they end up coming here through exit1 435 * anyhow.. After fixing 'thr' to play by the rules we should be able 436 * to merge these two functions together. 437 * 438 * called from: 439 * exit1() 440 * kse_exit() 441 * thr_exit() 442 * thread_user_enter() 443 * thread_userret() 444 * thread_suspend_check() 445 */ 446 void 447 thread_exit(void) 448 { 449 struct thread *td; 450 struct proc *p; 451 struct ksegrp *kg; 452 453 td = curthread; 454 kg = td->td_ksegrp; 455 p = td->td_proc; 456 457 mtx_assert(&sched_lock, MA_OWNED); 458 mtx_assert(&Giant, MA_NOTOWNED); 459 PROC_LOCK_ASSERT(p, MA_OWNED); 460 KASSERT(p != NULL, ("thread exiting without a process")); 461 KASSERT(kg != NULL, ("thread exiting without a kse group")); 462 CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td, 463 (long)p->p_pid, p->p_comm); 464 KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending")); 465 466 if (td->td_standin != NULL) { 467 /* 468 * Note that we don't need to free the cred here as it 469 * is done in thread_reap(). 470 */ 471 thread_stash(td->td_standin); 472 td->td_standin = NULL; 473 } 474 475 /* 476 * drop FPU & debug register state storage, or any other 477 * architecture specific resources that 478 * would not be on a new untouched process. 479 */ 480 cpu_thread_exit(td); /* XXXSMP */ 481 482 /* 483 * The thread is exiting. scheduler can release its stuff 484 * and collect stats etc. 485 */ 486 sched_thread_exit(td); 487 488 /* 489 * The last thread is left attached to the process 490 * So that the whole bundle gets recycled. Skip 491 * all this stuff if we never had threads. 492 * EXIT clears all sign of other threads when 493 * it goes to single threading, so the last thread always 494 * takes the short path. 495 */ 496 if (p->p_flag & P_HADTHREADS) { 497 if (p->p_numthreads > 1) { 498 thread_unlink(td); 499 500 /* XXX first arg not used in 4BSD or ULE */ 501 sched_exit_thread(FIRST_THREAD_IN_PROC(p), td); 502 503 /* 504 * The test below is NOT true if we are the 505 * sole exiting thread. P_STOPPED_SNGL is unset 506 * in exit1() after it is the only survivor. 507 */ 508 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 509 if (p->p_numthreads == p->p_suspcount) { 510 thread_unsuspend_one(p->p_singlethread); 511 } 512 } 513 514 /* 515 * Because each upcall structure has an owner thread, 516 * owner thread exits only when process is in exiting 517 * state, so upcall to userland is no longer needed, 518 * deleting upcall structure is safe here. 519 * So when all threads in a group is exited, all upcalls 520 * in the group should be automatically freed. 521 * XXXKSE This is a KSE thing and should be exported 522 * there somehow. 523 */ 524 upcall_remove(td); 525 526 /* 527 * If the thread we unlinked above was the last one, 528 * then this ksegrp should go away too. 529 */ 530 if (kg->kg_numthreads == 0) { 531 /* 532 * let the scheduler know about this in case 533 * it needs to recover stats or resources. 534 * Theoretically we could let 535 * sched_exit_ksegrp() do the equivalent of 536 * setting the concurrency to 0 537 * but don't do it yet to avoid changing 538 * the existing scheduler code until we 539 * are ready. 540 * We supply a random other ksegrp 541 * as the recipient of any built up 542 * cpu usage etc. (If the scheduler wants it). 543 * XXXKSE 544 * This is probably not fair so think of 545 * a better answer. 546 */ 547 sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), td); 548 sched_set_concurrency(kg, 0); /* XXX TEMP */ 549 ksegrp_unlink(kg); 550 ksegrp_stash(kg); 551 } 552 PROC_UNLOCK(p); 553 td->td_ksegrp = NULL; 554 PCPU_SET(deadthread, td); 555 } else { 556 /* 557 * The last thread is exiting.. but not through exit() 558 * what should we do? 559 * Theoretically this can't happen 560 * exit1() - clears threading flags before coming here 561 * kse_exit() - treats last thread specially 562 * thr_exit() - treats last thread specially 563 * thread_user_enter() - only if more exist 564 * thread_userret() - only if more exist 565 * thread_suspend_check() - only if more exist 566 */ 567 panic ("thread_exit: Last thread exiting on its own"); 568 } 569 } else { 570 /* 571 * non threaded process comes here. 572 * This includes an EX threaded process that is coming 573 * here via exit1(). (exit1 dethreads the proc first). 574 */ 575 PROC_UNLOCK(p); 576 } 577 td->td_state = TDS_INACTIVE; 578 CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td); 579 cpu_throw(td, choosethread()); 580 panic("I'm a teapot!"); 581 /* NOTREACHED */ 582 } 583 584 /* 585 * Do any thread specific cleanups that may be needed in wait() 586 * called with Giant, proc and schedlock not held. 587 */ 588 void 589 thread_wait(struct proc *p) 590 { 591 struct thread *td; 592 593 mtx_assert(&Giant, MA_NOTOWNED); 594 KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()")); 595 KASSERT((p->p_numksegrps == 1), ("Multiple ksegrps in wait1()")); 596 FOREACH_THREAD_IN_PROC(p, td) { 597 if (td->td_standin != NULL) { 598 if (td->td_standin->td_ucred != NULL) { 599 crfree(td->td_standin->td_ucred); 600 td->td_standin->td_ucred = NULL; 601 } 602 thread_free(td->td_standin); 603 td->td_standin = NULL; 604 } 605 cpu_thread_clean(td); 606 crfree(td->td_ucred); 607 } 608 thread_reap(); /* check for zombie threads etc. */ 609 } 610 611 /* 612 * Link a thread to a process. 613 * set up anything that needs to be initialized for it to 614 * be used by the process. 615 * 616 * Note that we do not link to the proc's ucred here. 617 * The thread is linked as if running but no KSE assigned. 618 * Called from: 619 * proc_linkup() 620 * thread_schedule_upcall() 621 * thr_create() 622 */ 623 void 624 thread_link(struct thread *td, struct ksegrp *kg) 625 { 626 struct proc *p; 627 628 p = kg->kg_proc; 629 td->td_state = TDS_INACTIVE; 630 td->td_proc = p; 631 td->td_ksegrp = kg; 632 td->td_flags = 0; 633 td->td_kflags = 0; 634 635 LIST_INIT(&td->td_contested); 636 sigqueue_init(&td->td_sigqueue, p); 637 callout_init(&td->td_slpcallout, CALLOUT_MPSAFE); 638 TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist); 639 TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist); 640 p->p_numthreads++; 641 kg->kg_numthreads++; 642 } 643 644 /* 645 * Convert a process with one thread to an unthreaded process. 646 * Called from: 647 * thread_single(exit) (called from execve and exit) 648 * kse_exit() XXX may need cleaning up wrt KSE stuff 649 */ 650 void 651 thread_unthread(struct thread *td) 652 { 653 struct proc *p = td->td_proc; 654 655 KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads")); 656 upcall_remove(td); 657 p->p_flag &= ~(P_SA|P_HADTHREADS); 658 td->td_mailbox = NULL; 659 td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND); 660 if (td->td_standin != NULL) { 661 thread_stash(td->td_standin); 662 td->td_standin = NULL; 663 } 664 sched_set_concurrency(td->td_ksegrp, 1); 665 } 666 667 /* 668 * Called from: 669 * thread_exit() 670 */ 671 void 672 thread_unlink(struct thread *td) 673 { 674 struct proc *p = td->td_proc; 675 struct ksegrp *kg = td->td_ksegrp; 676 677 mtx_assert(&sched_lock, MA_OWNED); 678 TAILQ_REMOVE(&p->p_threads, td, td_plist); 679 p->p_numthreads--; 680 TAILQ_REMOVE(&kg->kg_threads, td, td_kglist); 681 kg->kg_numthreads--; 682 /* could clear a few other things here */ 683 /* Must NOT clear links to proc and ksegrp! */ 684 } 685 686 /* 687 * Enforce single-threading. 688 * 689 * Returns 1 if the caller must abort (another thread is waiting to 690 * exit the process or similar). Process is locked! 691 * Returns 0 when you are successfully the only thread running. 692 * A process has successfully single threaded in the suspend mode when 693 * There are no threads in user mode. Threads in the kernel must be 694 * allowed to continue until they get to the user boundary. They may even 695 * copy out their return values and data before suspending. They may however be 696 * accellerated in reaching the user boundary as we will wake up 697 * any sleeping threads that are interruptable. (PCATCH). 698 */ 699 int 700 thread_single(int mode) 701 { 702 struct thread *td; 703 struct thread *td2; 704 struct proc *p; 705 int remaining; 706 707 td = curthread; 708 p = td->td_proc; 709 mtx_assert(&Giant, MA_NOTOWNED); 710 PROC_LOCK_ASSERT(p, MA_OWNED); 711 KASSERT((td != NULL), ("curthread is NULL")); 712 713 if ((p->p_flag & P_HADTHREADS) == 0) 714 return (0); 715 716 /* Is someone already single threading? */ 717 if (p->p_singlethread != NULL && p->p_singlethread != td) 718 return (1); 719 720 if (mode == SINGLE_EXIT) { 721 p->p_flag |= P_SINGLE_EXIT; 722 p->p_flag &= ~P_SINGLE_BOUNDARY; 723 } else { 724 p->p_flag &= ~P_SINGLE_EXIT; 725 if (mode == SINGLE_BOUNDARY) 726 p->p_flag |= P_SINGLE_BOUNDARY; 727 else 728 p->p_flag &= ~P_SINGLE_BOUNDARY; 729 } 730 p->p_flag |= P_STOPPED_SINGLE; 731 mtx_lock_spin(&sched_lock); 732 p->p_singlethread = td; 733 if (mode == SINGLE_EXIT) 734 remaining = p->p_numthreads; 735 else if (mode == SINGLE_BOUNDARY) 736 remaining = p->p_numthreads - p->p_boundary_count; 737 else 738 remaining = p->p_numthreads - p->p_suspcount; 739 while (remaining != 1) { 740 FOREACH_THREAD_IN_PROC(p, td2) { 741 if (td2 == td) 742 continue; 743 td2->td_flags |= TDF_ASTPENDING; 744 if (TD_IS_INHIBITED(td2)) { 745 switch (mode) { 746 case SINGLE_EXIT: 747 if (td->td_flags & TDF_DBSUSPEND) 748 td->td_flags &= ~TDF_DBSUSPEND; 749 if (TD_IS_SUSPENDED(td2)) 750 thread_unsuspend_one(td2); 751 if (TD_ON_SLEEPQ(td2) && 752 (td2->td_flags & TDF_SINTR)) 753 sleepq_abort(td2); 754 break; 755 case SINGLE_BOUNDARY: 756 if (TD_IS_SUSPENDED(td2) && 757 !(td2->td_flags & TDF_BOUNDARY)) 758 thread_unsuspend_one(td2); 759 if (TD_ON_SLEEPQ(td2) && 760 (td2->td_flags & TDF_SINTR)) 761 sleepq_abort(td2); 762 break; 763 default: 764 if (TD_IS_SUSPENDED(td2)) 765 continue; 766 /* 767 * maybe other inhibitted states too? 768 */ 769 if ((td2->td_flags & TDF_SINTR) && 770 (td2->td_inhibitors & 771 (TDI_SLEEPING | TDI_SWAPPED))) 772 thread_suspend_one(td2); 773 break; 774 } 775 } 776 } 777 if (mode == SINGLE_EXIT) 778 remaining = p->p_numthreads; 779 else if (mode == SINGLE_BOUNDARY) 780 remaining = p->p_numthreads - p->p_boundary_count; 781 else 782 remaining = p->p_numthreads - p->p_suspcount; 783 784 /* 785 * Maybe we suspended some threads.. was it enough? 786 */ 787 if (remaining == 1) 788 break; 789 790 /* 791 * Wake us up when everyone else has suspended. 792 * In the mean time we suspend as well. 793 */ 794 thread_suspend_one(td); 795 PROC_UNLOCK(p); 796 mi_switch(SW_VOL, NULL); 797 mtx_unlock_spin(&sched_lock); 798 PROC_LOCK(p); 799 mtx_lock_spin(&sched_lock); 800 if (mode == SINGLE_EXIT) 801 remaining = p->p_numthreads; 802 else if (mode == SINGLE_BOUNDARY) 803 remaining = p->p_numthreads - p->p_boundary_count; 804 else 805 remaining = p->p_numthreads - p->p_suspcount; 806 } 807 if (mode == SINGLE_EXIT) { 808 /* 809 * We have gotten rid of all the other threads and we 810 * are about to either exit or exec. In either case, 811 * we try our utmost to revert to being a non-threaded 812 * process. 813 */ 814 p->p_singlethread = NULL; 815 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT); 816 thread_unthread(td); 817 } 818 mtx_unlock_spin(&sched_lock); 819 return (0); 820 } 821 822 /* 823 * Called in from locations that can safely check to see 824 * whether we have to suspend or at least throttle for a 825 * single-thread event (e.g. fork). 826 * 827 * Such locations include userret(). 828 * If the "return_instead" argument is non zero, the thread must be able to 829 * accept 0 (caller may continue), or 1 (caller must abort) as a result. 830 * 831 * The 'return_instead' argument tells the function if it may do a 832 * thread_exit() or suspend, or whether the caller must abort and back 833 * out instead. 834 * 835 * If the thread that set the single_threading request has set the 836 * P_SINGLE_EXIT bit in the process flags then this call will never return 837 * if 'return_instead' is false, but will exit. 838 * 839 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 840 *---------------+--------------------+--------------------- 841 * 0 | returns 0 | returns 0 or 1 842 * | when ST ends | immediatly 843 *---------------+--------------------+--------------------- 844 * 1 | thread exits | returns 1 845 * | | immediatly 846 * 0 = thread_exit() or suspension ok, 847 * other = return error instead of stopping the thread. 848 * 849 * While a full suspension is under effect, even a single threading 850 * thread would be suspended if it made this call (but it shouldn't). 851 * This call should only be made from places where 852 * thread_exit() would be safe as that may be the outcome unless 853 * return_instead is set. 854 */ 855 int 856 thread_suspend_check(int return_instead) 857 { 858 struct thread *td; 859 struct proc *p; 860 861 td = curthread; 862 p = td->td_proc; 863 mtx_assert(&Giant, MA_NOTOWNED); 864 PROC_LOCK_ASSERT(p, MA_OWNED); 865 while (P_SHOULDSTOP(p) || 866 ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) { 867 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 868 KASSERT(p->p_singlethread != NULL, 869 ("singlethread not set")); 870 /* 871 * The only suspension in action is a 872 * single-threading. Single threader need not stop. 873 * XXX Should be safe to access unlocked 874 * as it can only be set to be true by us. 875 */ 876 if (p->p_singlethread == td) 877 return (0); /* Exempt from stopping. */ 878 } 879 if ((p->p_flag & P_SINGLE_EXIT) && return_instead) 880 return (1); 881 882 /* Should we goto user boundary if we didn't come from there? */ 883 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && 884 (p->p_flag & P_SINGLE_BOUNDARY) && return_instead) 885 return (1); 886 887 /* If thread will exit, flush its pending signals */ 888 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) 889 sigqueue_flush(&td->td_sigqueue); 890 891 mtx_lock_spin(&sched_lock); 892 thread_stopped(p); 893 /* 894 * If the process is waiting for us to exit, 895 * this thread should just suicide. 896 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. 897 */ 898 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) 899 thread_exit(); 900 901 /* 902 * When a thread suspends, it just 903 * moves to the processes's suspend queue 904 * and stays there. 905 */ 906 thread_suspend_one(td); 907 if (return_instead == 0) { 908 p->p_boundary_count++; 909 td->td_flags |= TDF_BOUNDARY; 910 } 911 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 912 if (p->p_numthreads == p->p_suspcount) 913 thread_unsuspend_one(p->p_singlethread); 914 } 915 PROC_UNLOCK(p); 916 mi_switch(SW_INVOL, NULL); 917 if (return_instead == 0) { 918 p->p_boundary_count--; 919 td->td_flags &= ~TDF_BOUNDARY; 920 } 921 mtx_unlock_spin(&sched_lock); 922 PROC_LOCK(p); 923 } 924 return (0); 925 } 926 927 void 928 thread_suspend_one(struct thread *td) 929 { 930 struct proc *p = td->td_proc; 931 932 mtx_assert(&sched_lock, MA_OWNED); 933 PROC_LOCK_ASSERT(p, MA_OWNED); 934 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 935 p->p_suspcount++; 936 TD_SET_SUSPENDED(td); 937 TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq); 938 } 939 940 void 941 thread_unsuspend_one(struct thread *td) 942 { 943 struct proc *p = td->td_proc; 944 945 mtx_assert(&sched_lock, MA_OWNED); 946 PROC_LOCK_ASSERT(p, MA_OWNED); 947 TAILQ_REMOVE(&p->p_suspended, td, td_runq); 948 TD_CLR_SUSPENDED(td); 949 p->p_suspcount--; 950 setrunnable(td); 951 } 952 953 /* 954 * Allow all threads blocked by single threading to continue running. 955 */ 956 void 957 thread_unsuspend(struct proc *p) 958 { 959 struct thread *td; 960 961 mtx_assert(&sched_lock, MA_OWNED); 962 PROC_LOCK_ASSERT(p, MA_OWNED); 963 if (!P_SHOULDSTOP(p)) { 964 while ((td = TAILQ_FIRST(&p->p_suspended))) { 965 thread_unsuspend_one(td); 966 } 967 } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) && 968 (p->p_numthreads == p->p_suspcount)) { 969 /* 970 * Stopping everything also did the job for the single 971 * threading request. Now we've downgraded to single-threaded, 972 * let it continue. 973 */ 974 thread_unsuspend_one(p->p_singlethread); 975 } 976 } 977 978 /* 979 * End the single threading mode.. 980 */ 981 void 982 thread_single_end(void) 983 { 984 struct thread *td; 985 struct proc *p; 986 987 td = curthread; 988 p = td->td_proc; 989 PROC_LOCK_ASSERT(p, MA_OWNED); 990 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY); 991 mtx_lock_spin(&sched_lock); 992 p->p_singlethread = NULL; 993 p->p_procscopegrp = NULL; 994 /* 995 * If there are other threads they mey now run, 996 * unless of course there is a blanket 'stop order' 997 * on the process. The single threader must be allowed 998 * to continue however as this is a bad place to stop. 999 */ 1000 if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) { 1001 while ((td = TAILQ_FIRST(&p->p_suspended))) { 1002 thread_unsuspend_one(td); 1003 } 1004 } 1005 mtx_unlock_spin(&sched_lock); 1006 } 1007 1008 /* 1009 * Called before going into an interruptible sleep to see if we have been 1010 * interrupted or requested to exit. 1011 */ 1012 int 1013 thread_sleep_check(struct thread *td) 1014 { 1015 struct proc *p; 1016 1017 p = td->td_proc; 1018 mtx_assert(&sched_lock, MA_OWNED); 1019 if (p->p_flag & P_HADTHREADS) { 1020 if (p->p_singlethread != td) { 1021 if (p->p_flag & P_SINGLE_EXIT) 1022 return (EINTR); 1023 if (p->p_flag & P_SINGLE_BOUNDARY) 1024 return (ERESTART); 1025 } 1026 if (td->td_flags & TDF_INTERRUPT) 1027 return (td->td_intrval); 1028 } 1029 return (0); 1030 } 1031 1032 struct thread * 1033 thread_find(struct proc *p, lwpid_t tid) 1034 { 1035 struct thread *td; 1036 1037 PROC_LOCK_ASSERT(p, MA_OWNED); 1038 mtx_lock_spin(&sched_lock); 1039 FOREACH_THREAD_IN_PROC(p, td) { 1040 if (td->td_tid == tid) 1041 break; 1042 } 1043 mtx_unlock_spin(&sched_lock); 1044 return (td); 1045 } 1046