xref: /freebsd/sys/kern/kern_thread.c (revision 0e1497aefd602cea581d2380d22e67dfdcac6b4e)
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28 
29 #include "opt_witness.h"
30 #include "opt_hwpmc_hooks.h"
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/resourcevar.h>
42 #include <sys/smp.h>
43 #include <sys/sysctl.h>
44 #include <sys/sched.h>
45 #include <sys/sleepqueue.h>
46 #include <sys/selinfo.h>
47 #include <sys/turnstile.h>
48 #include <sys/ktr.h>
49 #include <sys/rwlock.h>
50 #include <sys/umtx.h>
51 #include <sys/cpuset.h>
52 #ifdef	HWPMC_HOOKS
53 #include <sys/pmckern.h>
54 #endif
55 
56 #include <security/audit/audit.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_extern.h>
60 #include <vm/uma.h>
61 #include <sys/eventhandler.h>
62 
63 /*
64  * thread related storage.
65  */
66 static uma_zone_t thread_zone;
67 
68 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
69 
70 int max_threads_per_proc = 1500;
71 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
72 	&max_threads_per_proc, 0, "Limit on threads per proc");
73 
74 int max_threads_hits;
75 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
76 	&max_threads_hits, 0, "");
77 
78 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
79 static struct mtx zombie_lock;
80 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
81 
82 static void thread_zombie(struct thread *);
83 
84 #define TID_BUFFER_SIZE	1024
85 
86 struct mtx tid_lock;
87 static struct unrhdr *tid_unrhdr;
88 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
89 static int tid_head, tid_tail;
90 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
91 
92 struct	tidhashhead *tidhashtbl;
93 u_long	tidhash;
94 struct	rwlock tidhash_lock;
95 
96 static lwpid_t
97 tid_alloc(void)
98 {
99 	lwpid_t	tid;
100 
101 	tid = alloc_unr(tid_unrhdr);
102 	if (tid != -1)
103 		return (tid);
104 	mtx_lock(&tid_lock);
105 	if (tid_head == tid_tail) {
106 		mtx_unlock(&tid_lock);
107 		return (-1);
108 	}
109 	tid = tid_buffer[tid_head++];
110 	tid_head %= TID_BUFFER_SIZE;
111 	mtx_unlock(&tid_lock);
112 	return (tid);
113 }
114 
115 static void
116 tid_free(lwpid_t tid)
117 {
118 	lwpid_t tmp_tid = -1;
119 
120 	mtx_lock(&tid_lock);
121 	if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
122 		tmp_tid = tid_buffer[tid_head++];
123 		tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
124 	}
125 	tid_buffer[tid_tail++] = tid;
126 	tid_tail %= TID_BUFFER_SIZE;
127 	mtx_unlock(&tid_lock);
128 	if (tmp_tid != -1)
129 		free_unr(tid_unrhdr, tmp_tid);
130 }
131 
132 /*
133  * Prepare a thread for use.
134  */
135 static int
136 thread_ctor(void *mem, int size, void *arg, int flags)
137 {
138 	struct thread	*td;
139 
140 	td = (struct thread *)mem;
141 	td->td_state = TDS_INACTIVE;
142 	td->td_oncpu = NOCPU;
143 
144 	td->td_tid = tid_alloc();
145 
146 	/*
147 	 * Note that td_critnest begins life as 1 because the thread is not
148 	 * running and is thereby implicitly waiting to be on the receiving
149 	 * end of a context switch.
150 	 */
151 	td->td_critnest = 1;
152 	td->td_lend_user_pri = PRI_MAX;
153 	EVENTHANDLER_INVOKE(thread_ctor, td);
154 #ifdef AUDIT
155 	audit_thread_alloc(td);
156 #endif
157 	umtx_thread_alloc(td);
158 	return (0);
159 }
160 
161 /*
162  * Reclaim a thread after use.
163  */
164 static void
165 thread_dtor(void *mem, int size, void *arg)
166 {
167 	struct thread *td;
168 
169 	td = (struct thread *)mem;
170 
171 #ifdef INVARIANTS
172 	/* Verify that this thread is in a safe state to free. */
173 	switch (td->td_state) {
174 	case TDS_INHIBITED:
175 	case TDS_RUNNING:
176 	case TDS_CAN_RUN:
177 	case TDS_RUNQ:
178 		/*
179 		 * We must never unlink a thread that is in one of
180 		 * these states, because it is currently active.
181 		 */
182 		panic("bad state for thread unlinking");
183 		/* NOTREACHED */
184 	case TDS_INACTIVE:
185 		break;
186 	default:
187 		panic("bad thread state");
188 		/* NOTREACHED */
189 	}
190 #endif
191 #ifdef AUDIT
192 	audit_thread_free(td);
193 #endif
194 	/* Free all OSD associated to this thread. */
195 	osd_thread_exit(td);
196 
197 	EVENTHANDLER_INVOKE(thread_dtor, td);
198 	tid_free(td->td_tid);
199 }
200 
201 /*
202  * Initialize type-stable parts of a thread (when newly created).
203  */
204 static int
205 thread_init(void *mem, int size, int flags)
206 {
207 	struct thread *td;
208 
209 	td = (struct thread *)mem;
210 
211 	td->td_sleepqueue = sleepq_alloc();
212 	td->td_turnstile = turnstile_alloc();
213 	EVENTHANDLER_INVOKE(thread_init, td);
214 	td->td_sched = (struct td_sched *)&td[1];
215 	umtx_thread_init(td);
216 	td->td_kstack = 0;
217 	return (0);
218 }
219 
220 /*
221  * Tear down type-stable parts of a thread (just before being discarded).
222  */
223 static void
224 thread_fini(void *mem, int size)
225 {
226 	struct thread *td;
227 
228 	td = (struct thread *)mem;
229 	EVENTHANDLER_INVOKE(thread_fini, td);
230 	turnstile_free(td->td_turnstile);
231 	sleepq_free(td->td_sleepqueue);
232 	umtx_thread_fini(td);
233 	seltdfini(td);
234 }
235 
236 /*
237  * For a newly created process,
238  * link up all the structures and its initial threads etc.
239  * called from:
240  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
241  * proc_dtor() (should go away)
242  * proc_init()
243  */
244 void
245 proc_linkup0(struct proc *p, struct thread *td)
246 {
247 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
248 	proc_linkup(p, td);
249 }
250 
251 void
252 proc_linkup(struct proc *p, struct thread *td)
253 {
254 
255 	sigqueue_init(&p->p_sigqueue, p);
256 	p->p_ksi = ksiginfo_alloc(1);
257 	if (p->p_ksi != NULL) {
258 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
259 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
260 	}
261 	LIST_INIT(&p->p_mqnotifier);
262 	p->p_numthreads = 0;
263 	thread_link(td, p);
264 }
265 
266 /*
267  * Initialize global thread allocation resources.
268  */
269 void
270 threadinit(void)
271 {
272 
273 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
274 	/* leave one number for thread0 */
275 	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
276 
277 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
278 	    thread_ctor, thread_dtor, thread_init, thread_fini,
279 	    16 - 1, 0);
280 	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
281 	rw_init(&tidhash_lock, "tidhash");
282 }
283 
284 /*
285  * Place an unused thread on the zombie list.
286  * Use the slpq as that must be unused by now.
287  */
288 void
289 thread_zombie(struct thread *td)
290 {
291 	mtx_lock_spin(&zombie_lock);
292 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
293 	mtx_unlock_spin(&zombie_lock);
294 }
295 
296 /*
297  * Release a thread that has exited after cpu_throw().
298  */
299 void
300 thread_stash(struct thread *td)
301 {
302 	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
303 	thread_zombie(td);
304 }
305 
306 /*
307  * Reap zombie resources.
308  */
309 void
310 thread_reap(void)
311 {
312 	struct thread *td_first, *td_next;
313 
314 	/*
315 	 * Don't even bother to lock if none at this instant,
316 	 * we really don't care about the next instant..
317 	 */
318 	if (!TAILQ_EMPTY(&zombie_threads)) {
319 		mtx_lock_spin(&zombie_lock);
320 		td_first = TAILQ_FIRST(&zombie_threads);
321 		if (td_first)
322 			TAILQ_INIT(&zombie_threads);
323 		mtx_unlock_spin(&zombie_lock);
324 		while (td_first) {
325 			td_next = TAILQ_NEXT(td_first, td_slpq);
326 			if (td_first->td_ucred)
327 				crfree(td_first->td_ucred);
328 			thread_free(td_first);
329 			td_first = td_next;
330 		}
331 	}
332 }
333 
334 /*
335  * Allocate a thread.
336  */
337 struct thread *
338 thread_alloc(int pages)
339 {
340 	struct thread *td;
341 
342 	thread_reap(); /* check if any zombies to get */
343 
344 	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
345 	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
346 	if (!vm_thread_new(td, pages)) {
347 		uma_zfree(thread_zone, td);
348 		return (NULL);
349 	}
350 	cpu_thread_alloc(td);
351 	return (td);
352 }
353 
354 int
355 thread_alloc_stack(struct thread *td, int pages)
356 {
357 
358 	KASSERT(td->td_kstack == 0,
359 	    ("thread_alloc_stack called on a thread with kstack"));
360 	if (!vm_thread_new(td, pages))
361 		return (0);
362 	cpu_thread_alloc(td);
363 	return (1);
364 }
365 
366 /*
367  * Deallocate a thread.
368  */
369 void
370 thread_free(struct thread *td)
371 {
372 
373 	lock_profile_thread_exit(td);
374 	if (td->td_cpuset)
375 		cpuset_rel(td->td_cpuset);
376 	td->td_cpuset = NULL;
377 	cpu_thread_free(td);
378 	if (td->td_kstack != 0)
379 		vm_thread_dispose(td);
380 	uma_zfree(thread_zone, td);
381 }
382 
383 /*
384  * Discard the current thread and exit from its context.
385  * Always called with scheduler locked.
386  *
387  * Because we can't free a thread while we're operating under its context,
388  * push the current thread into our CPU's deadthread holder. This means
389  * we needn't worry about someone else grabbing our context before we
390  * do a cpu_throw().
391  */
392 void
393 thread_exit(void)
394 {
395 	uint64_t new_switchtime;
396 	struct thread *td;
397 	struct thread *td2;
398 	struct proc *p;
399 	int wakeup_swapper;
400 
401 	td = curthread;
402 	p = td->td_proc;
403 
404 	PROC_SLOCK_ASSERT(p, MA_OWNED);
405 	mtx_assert(&Giant, MA_NOTOWNED);
406 
407 	PROC_LOCK_ASSERT(p, MA_OWNED);
408 	KASSERT(p != NULL, ("thread exiting without a process"));
409 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
410 	    (long)p->p_pid, td->td_name);
411 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
412 
413 #ifdef AUDIT
414 	AUDIT_SYSCALL_EXIT(0, td);
415 #endif
416 	umtx_thread_exit(td);
417 	/*
418 	 * drop FPU & debug register state storage, or any other
419 	 * architecture specific resources that
420 	 * would not be on a new untouched process.
421 	 */
422 	cpu_thread_exit(td);	/* XXXSMP */
423 
424 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
425 	new_switchtime = cpu_ticks();
426 	p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
427 	PCPU_SET(switchtime, new_switchtime);
428 	PCPU_SET(switchticks, ticks);
429 	PCPU_INC(cnt.v_swtch);
430 	/* Save our resource usage in our process. */
431 	td->td_ru.ru_nvcsw++;
432 	rucollect(&p->p_ru, &td->td_ru);
433 	/*
434 	 * The last thread is left attached to the process
435 	 * So that the whole bundle gets recycled. Skip
436 	 * all this stuff if we never had threads.
437 	 * EXIT clears all sign of other threads when
438 	 * it goes to single threading, so the last thread always
439 	 * takes the short path.
440 	 */
441 	if (p->p_flag & P_HADTHREADS) {
442 		if (p->p_numthreads > 1) {
443 			thread_unlink(td);
444 			td2 = FIRST_THREAD_IN_PROC(p);
445 			sched_exit_thread(td2, td);
446 
447 			/*
448 			 * The test below is NOT true if we are the
449 			 * sole exiting thread. P_STOPPED_SINGLE is unset
450 			 * in exit1() after it is the only survivor.
451 			 */
452 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
453 				if (p->p_numthreads == p->p_suspcount) {
454 					thread_lock(p->p_singlethread);
455 					wakeup_swapper = thread_unsuspend_one(
456 						p->p_singlethread);
457 					thread_unlock(p->p_singlethread);
458 					if (wakeup_swapper)
459 						kick_proc0();
460 				}
461 			}
462 
463 			atomic_add_int(&td->td_proc->p_exitthreads, 1);
464 			PCPU_SET(deadthread, td);
465 		} else {
466 			/*
467 			 * The last thread is exiting.. but not through exit()
468 			 */
469 			panic ("thread_exit: Last thread exiting on its own");
470 		}
471 	}
472 #ifdef	HWPMC_HOOKS
473 	/*
474 	 * If this thread is part of a process that is being tracked by hwpmc(4),
475 	 * inform the module of the thread's impending exit.
476 	 */
477 	if (PMC_PROC_IS_USING_PMCS(td->td_proc))
478 		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
479 #endif
480 	PROC_UNLOCK(p);
481 	ruxagg(p, td);
482 	thread_lock(td);
483 	PROC_SUNLOCK(p);
484 	td->td_state = TDS_INACTIVE;
485 #ifdef WITNESS
486 	witness_thread_exit(td);
487 #endif
488 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
489 	sched_throw(td);
490 	panic("I'm a teapot!");
491 	/* NOTREACHED */
492 }
493 
494 /*
495  * Do any thread specific cleanups that may be needed in wait()
496  * called with Giant, proc and schedlock not held.
497  */
498 void
499 thread_wait(struct proc *p)
500 {
501 	struct thread *td;
502 
503 	mtx_assert(&Giant, MA_NOTOWNED);
504 	KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
505 	td = FIRST_THREAD_IN_PROC(p);
506 	/* Lock the last thread so we spin until it exits cpu_throw(). */
507 	thread_lock(td);
508 	thread_unlock(td);
509 	/* Wait for any remaining threads to exit cpu_throw(). */
510 	while (p->p_exitthreads)
511 		sched_relinquish(curthread);
512 	lock_profile_thread_exit(td);
513 	cpuset_rel(td->td_cpuset);
514 	td->td_cpuset = NULL;
515 	cpu_thread_clean(td);
516 	crfree(td->td_ucred);
517 	thread_reap();	/* check for zombie threads etc. */
518 }
519 
520 /*
521  * Link a thread to a process.
522  * set up anything that needs to be initialized for it to
523  * be used by the process.
524  */
525 void
526 thread_link(struct thread *td, struct proc *p)
527 {
528 
529 	/*
530 	 * XXX This can't be enabled because it's called for proc0 before
531 	 * its lock has been created.
532 	 * PROC_LOCK_ASSERT(p, MA_OWNED);
533 	 */
534 	td->td_state    = TDS_INACTIVE;
535 	td->td_proc     = p;
536 	td->td_flags    = TDF_INMEM;
537 
538 	LIST_INIT(&td->td_contested);
539 	LIST_INIT(&td->td_lprof[0]);
540 	LIST_INIT(&td->td_lprof[1]);
541 	sigqueue_init(&td->td_sigqueue, p);
542 	callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
543 	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
544 	p->p_numthreads++;
545 }
546 
547 /*
548  * Convert a process with one thread to an unthreaded process.
549  */
550 void
551 thread_unthread(struct thread *td)
552 {
553 	struct proc *p = td->td_proc;
554 
555 	KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
556 	p->p_flag &= ~P_HADTHREADS;
557 }
558 
559 /*
560  * Called from:
561  *  thread_exit()
562  */
563 void
564 thread_unlink(struct thread *td)
565 {
566 	struct proc *p = td->td_proc;
567 
568 	PROC_LOCK_ASSERT(p, MA_OWNED);
569 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
570 	p->p_numthreads--;
571 	/* could clear a few other things here */
572 	/* Must  NOT clear links to proc! */
573 }
574 
575 static int
576 calc_remaining(struct proc *p, int mode)
577 {
578 	int remaining;
579 
580 	if (mode == SINGLE_EXIT)
581 		remaining = p->p_numthreads;
582 	else if (mode == SINGLE_BOUNDARY)
583 		remaining = p->p_numthreads - p->p_boundary_count;
584 	else if (mode == SINGLE_NO_EXIT)
585 		remaining = p->p_numthreads - p->p_suspcount;
586 	else
587 		panic("calc_remaining: wrong mode %d", mode);
588 	return (remaining);
589 }
590 
591 /*
592  * Enforce single-threading.
593  *
594  * Returns 1 if the caller must abort (another thread is waiting to
595  * exit the process or similar). Process is locked!
596  * Returns 0 when you are successfully the only thread running.
597  * A process has successfully single threaded in the suspend mode when
598  * There are no threads in user mode. Threads in the kernel must be
599  * allowed to continue until they get to the user boundary. They may even
600  * copy out their return values and data before suspending. They may however be
601  * accelerated in reaching the user boundary as we will wake up
602  * any sleeping threads that are interruptable. (PCATCH).
603  */
604 int
605 thread_single(int mode)
606 {
607 	struct thread *td;
608 	struct thread *td2;
609 	struct proc *p;
610 	int remaining, wakeup_swapper;
611 
612 	td = curthread;
613 	p = td->td_proc;
614 	mtx_assert(&Giant, MA_NOTOWNED);
615 	PROC_LOCK_ASSERT(p, MA_OWNED);
616 	KASSERT((td != NULL), ("curthread is NULL"));
617 
618 	if ((p->p_flag & P_HADTHREADS) == 0)
619 		return (0);
620 
621 	/* Is someone already single threading? */
622 	if (p->p_singlethread != NULL && p->p_singlethread != td)
623 		return (1);
624 
625 	if (mode == SINGLE_EXIT) {
626 		p->p_flag |= P_SINGLE_EXIT;
627 		p->p_flag &= ~P_SINGLE_BOUNDARY;
628 	} else {
629 		p->p_flag &= ~P_SINGLE_EXIT;
630 		if (mode == SINGLE_BOUNDARY)
631 			p->p_flag |= P_SINGLE_BOUNDARY;
632 		else
633 			p->p_flag &= ~P_SINGLE_BOUNDARY;
634 	}
635 	p->p_flag |= P_STOPPED_SINGLE;
636 	PROC_SLOCK(p);
637 	p->p_singlethread = td;
638 	remaining = calc_remaining(p, mode);
639 	while (remaining != 1) {
640 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
641 			goto stopme;
642 		wakeup_swapper = 0;
643 		FOREACH_THREAD_IN_PROC(p, td2) {
644 			if (td2 == td)
645 				continue;
646 			thread_lock(td2);
647 			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
648 			if (TD_IS_INHIBITED(td2)) {
649 				switch (mode) {
650 				case SINGLE_EXIT:
651 					if (TD_IS_SUSPENDED(td2))
652 						wakeup_swapper |=
653 						    thread_unsuspend_one(td2);
654 					if (TD_ON_SLEEPQ(td2) &&
655 					    (td2->td_flags & TDF_SINTR))
656 						wakeup_swapper |=
657 						    sleepq_abort(td2, EINTR);
658 					break;
659 				case SINGLE_BOUNDARY:
660 					if (TD_IS_SUSPENDED(td2) &&
661 					    !(td2->td_flags & TDF_BOUNDARY))
662 						wakeup_swapper |=
663 						    thread_unsuspend_one(td2);
664 					if (TD_ON_SLEEPQ(td2) &&
665 					    (td2->td_flags & TDF_SINTR))
666 						wakeup_swapper |=
667 						    sleepq_abort(td2, ERESTART);
668 					break;
669 				case SINGLE_NO_EXIT:
670 					if (TD_IS_SUSPENDED(td2) &&
671 					    !(td2->td_flags & TDF_BOUNDARY))
672 						wakeup_swapper |=
673 						    thread_unsuspend_one(td2);
674 					if (TD_ON_SLEEPQ(td2) &&
675 					    (td2->td_flags & TDF_SINTR))
676 						wakeup_swapper |=
677 						    sleepq_abort(td2, ERESTART);
678 					break;
679 				default:
680 					break;
681 				}
682 			}
683 #ifdef SMP
684 			else if (TD_IS_RUNNING(td2) && td != td2) {
685 				forward_signal(td2);
686 			}
687 #endif
688 			thread_unlock(td2);
689 		}
690 		if (wakeup_swapper)
691 			kick_proc0();
692 		remaining = calc_remaining(p, mode);
693 
694 		/*
695 		 * Maybe we suspended some threads.. was it enough?
696 		 */
697 		if (remaining == 1)
698 			break;
699 
700 stopme:
701 		/*
702 		 * Wake us up when everyone else has suspended.
703 		 * In the mean time we suspend as well.
704 		 */
705 		thread_suspend_switch(td);
706 		remaining = calc_remaining(p, mode);
707 	}
708 	if (mode == SINGLE_EXIT) {
709 		/*
710 		 * We have gotten rid of all the other threads and we
711 		 * are about to either exit or exec. In either case,
712 		 * we try our utmost  to revert to being a non-threaded
713 		 * process.
714 		 */
715 		p->p_singlethread = NULL;
716 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
717 		thread_unthread(td);
718 	}
719 	PROC_SUNLOCK(p);
720 	return (0);
721 }
722 
723 /*
724  * Called in from locations that can safely check to see
725  * whether we have to suspend or at least throttle for a
726  * single-thread event (e.g. fork).
727  *
728  * Such locations include userret().
729  * If the "return_instead" argument is non zero, the thread must be able to
730  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
731  *
732  * The 'return_instead' argument tells the function if it may do a
733  * thread_exit() or suspend, or whether the caller must abort and back
734  * out instead.
735  *
736  * If the thread that set the single_threading request has set the
737  * P_SINGLE_EXIT bit in the process flags then this call will never return
738  * if 'return_instead' is false, but will exit.
739  *
740  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
741  *---------------+--------------------+---------------------
742  *       0       | returns 0          |   returns 0 or 1
743  *               | when ST ends       |   immediatly
744  *---------------+--------------------+---------------------
745  *       1       | thread exits       |   returns 1
746  *               |                    |  immediatly
747  * 0 = thread_exit() or suspension ok,
748  * other = return error instead of stopping the thread.
749  *
750  * While a full suspension is under effect, even a single threading
751  * thread would be suspended if it made this call (but it shouldn't).
752  * This call should only be made from places where
753  * thread_exit() would be safe as that may be the outcome unless
754  * return_instead is set.
755  */
756 int
757 thread_suspend_check(int return_instead)
758 {
759 	struct thread *td;
760 	struct proc *p;
761 	int wakeup_swapper;
762 
763 	td = curthread;
764 	p = td->td_proc;
765 	mtx_assert(&Giant, MA_NOTOWNED);
766 	PROC_LOCK_ASSERT(p, MA_OWNED);
767 	while (P_SHOULDSTOP(p) ||
768 	      ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
769 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
770 			KASSERT(p->p_singlethread != NULL,
771 			    ("singlethread not set"));
772 			/*
773 			 * The only suspension in action is a
774 			 * single-threading. Single threader need not stop.
775 			 * XXX Should be safe to access unlocked
776 			 * as it can only be set to be true by us.
777 			 */
778 			if (p->p_singlethread == td)
779 				return (0);	/* Exempt from stopping. */
780 		}
781 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
782 			return (EINTR);
783 
784 		/* Should we goto user boundary if we didn't come from there? */
785 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
786 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
787 			return (ERESTART);
788 
789 		/*
790 		 * If the process is waiting for us to exit,
791 		 * this thread should just suicide.
792 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
793 		 */
794 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
795 			PROC_UNLOCK(p);
796 			tidhash_remove(td);
797 			PROC_LOCK(p);
798 			tdsigcleanup(td);
799 			PROC_SLOCK(p);
800 			thread_stopped(p);
801 			thread_exit();
802 		}
803 
804 		PROC_SLOCK(p);
805 		thread_stopped(p);
806 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
807 			if (p->p_numthreads == p->p_suspcount + 1) {
808 				thread_lock(p->p_singlethread);
809 				wakeup_swapper =
810 				    thread_unsuspend_one(p->p_singlethread);
811 				thread_unlock(p->p_singlethread);
812 				if (wakeup_swapper)
813 					kick_proc0();
814 			}
815 		}
816 		PROC_UNLOCK(p);
817 		thread_lock(td);
818 		/*
819 		 * When a thread suspends, it just
820 		 * gets taken off all queues.
821 		 */
822 		thread_suspend_one(td);
823 		if (return_instead == 0) {
824 			p->p_boundary_count++;
825 			td->td_flags |= TDF_BOUNDARY;
826 		}
827 		PROC_SUNLOCK(p);
828 		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
829 		if (return_instead == 0)
830 			td->td_flags &= ~TDF_BOUNDARY;
831 		thread_unlock(td);
832 		PROC_LOCK(p);
833 		if (return_instead == 0)
834 			p->p_boundary_count--;
835 	}
836 	return (0);
837 }
838 
839 void
840 thread_suspend_switch(struct thread *td)
841 {
842 	struct proc *p;
843 
844 	p = td->td_proc;
845 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
846 	PROC_LOCK_ASSERT(p, MA_OWNED);
847 	PROC_SLOCK_ASSERT(p, MA_OWNED);
848 	/*
849 	 * We implement thread_suspend_one in stages here to avoid
850 	 * dropping the proc lock while the thread lock is owned.
851 	 */
852 	thread_stopped(p);
853 	p->p_suspcount++;
854 	PROC_UNLOCK(p);
855 	thread_lock(td);
856 	td->td_flags &= ~TDF_NEEDSUSPCHK;
857 	TD_SET_SUSPENDED(td);
858 	sched_sleep(td, 0);
859 	PROC_SUNLOCK(p);
860 	DROP_GIANT();
861 	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
862 	thread_unlock(td);
863 	PICKUP_GIANT();
864 	PROC_LOCK(p);
865 	PROC_SLOCK(p);
866 }
867 
868 void
869 thread_suspend_one(struct thread *td)
870 {
871 	struct proc *p = td->td_proc;
872 
873 	PROC_SLOCK_ASSERT(p, MA_OWNED);
874 	THREAD_LOCK_ASSERT(td, MA_OWNED);
875 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
876 	p->p_suspcount++;
877 	td->td_flags &= ~TDF_NEEDSUSPCHK;
878 	TD_SET_SUSPENDED(td);
879 	sched_sleep(td, 0);
880 }
881 
882 int
883 thread_unsuspend_one(struct thread *td)
884 {
885 	struct proc *p = td->td_proc;
886 
887 	PROC_SLOCK_ASSERT(p, MA_OWNED);
888 	THREAD_LOCK_ASSERT(td, MA_OWNED);
889 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
890 	TD_CLR_SUSPENDED(td);
891 	p->p_suspcount--;
892 	return (setrunnable(td));
893 }
894 
895 /*
896  * Allow all threads blocked by single threading to continue running.
897  */
898 void
899 thread_unsuspend(struct proc *p)
900 {
901 	struct thread *td;
902 	int wakeup_swapper;
903 
904 	PROC_LOCK_ASSERT(p, MA_OWNED);
905 	PROC_SLOCK_ASSERT(p, MA_OWNED);
906 	wakeup_swapper = 0;
907 	if (!P_SHOULDSTOP(p)) {
908                 FOREACH_THREAD_IN_PROC(p, td) {
909 			thread_lock(td);
910 			if (TD_IS_SUSPENDED(td)) {
911 				wakeup_swapper |= thread_unsuspend_one(td);
912 			}
913 			thread_unlock(td);
914 		}
915 	} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
916 	    (p->p_numthreads == p->p_suspcount)) {
917 		/*
918 		 * Stopping everything also did the job for the single
919 		 * threading request. Now we've downgraded to single-threaded,
920 		 * let it continue.
921 		 */
922 		thread_lock(p->p_singlethread);
923 		wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
924 		thread_unlock(p->p_singlethread);
925 	}
926 	if (wakeup_swapper)
927 		kick_proc0();
928 }
929 
930 /*
931  * End the single threading mode..
932  */
933 void
934 thread_single_end(void)
935 {
936 	struct thread *td;
937 	struct proc *p;
938 	int wakeup_swapper;
939 
940 	td = curthread;
941 	p = td->td_proc;
942 	PROC_LOCK_ASSERT(p, MA_OWNED);
943 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
944 	PROC_SLOCK(p);
945 	p->p_singlethread = NULL;
946 	wakeup_swapper = 0;
947 	/*
948 	 * If there are other threads they may now run,
949 	 * unless of course there is a blanket 'stop order'
950 	 * on the process. The single threader must be allowed
951 	 * to continue however as this is a bad place to stop.
952 	 */
953 	if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
954                 FOREACH_THREAD_IN_PROC(p, td) {
955 			thread_lock(td);
956 			if (TD_IS_SUSPENDED(td)) {
957 				wakeup_swapper |= thread_unsuspend_one(td);
958 			}
959 			thread_unlock(td);
960 		}
961 	}
962 	PROC_SUNLOCK(p);
963 	if (wakeup_swapper)
964 		kick_proc0();
965 }
966 
967 struct thread *
968 thread_find(struct proc *p, lwpid_t tid)
969 {
970 	struct thread *td;
971 
972 	PROC_LOCK_ASSERT(p, MA_OWNED);
973 	FOREACH_THREAD_IN_PROC(p, td) {
974 		if (td->td_tid == tid)
975 			break;
976 	}
977 	return (td);
978 }
979 
980 /* Locate a thread by number; return with proc lock held. */
981 struct thread *
982 tdfind(lwpid_t tid, pid_t pid)
983 {
984 #define RUN_THRESH	16
985 	struct thread *td;
986 	int run = 0;
987 
988 	rw_rlock(&tidhash_lock);
989 	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
990 		if (td->td_tid == tid) {
991 			if (pid != -1 && td->td_proc->p_pid != pid) {
992 				td = NULL;
993 				break;
994 			}
995 			if (td->td_proc->p_state == PRS_NEW) {
996 				td = NULL;
997 				break;
998 			}
999 			if (run > RUN_THRESH) {
1000 				if (rw_try_upgrade(&tidhash_lock)) {
1001 					LIST_REMOVE(td, td_hash);
1002 					LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1003 						td, td_hash);
1004 					PROC_LOCK(td->td_proc);
1005 					rw_wunlock(&tidhash_lock);
1006 					return (td);
1007 				}
1008 			}
1009 			PROC_LOCK(td->td_proc);
1010 			break;
1011 		}
1012 		run++;
1013 	}
1014 	rw_runlock(&tidhash_lock);
1015 	return (td);
1016 }
1017 
1018 void
1019 tidhash_add(struct thread *td)
1020 {
1021 	rw_wlock(&tidhash_lock);
1022 	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1023 	rw_wunlock(&tidhash_lock);
1024 }
1025 
1026 void
1027 tidhash_remove(struct thread *td)
1028 {
1029 	rw_wlock(&tidhash_lock);
1030 	LIST_REMOVE(td, td_hash);
1031 	rw_wunlock(&tidhash_lock);
1032 }
1033