xref: /freebsd/sys/kern/kern_thread.c (revision 035e325c81b75ea3b5c878c55cc133672b6ac06d)
1 /*
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/lock.h>
36 #include <sys/malloc.h>
37 #include <sys/mutex.h>
38 #include <sys/proc.h>
39 #include <sys/smp.h>
40 #include <sys/sysctl.h>
41 #include <sys/sysproto.h>
42 #include <sys/filedesc.h>
43 #include <sys/sched.h>
44 #include <sys/signalvar.h>
45 #include <sys/sx.h>
46 #include <sys/tty.h>
47 #include <sys/user.h>
48 #include <sys/jail.h>
49 #include <sys/kse.h>
50 #include <sys/ktr.h>
51 #include <sys/ucontext.h>
52 
53 #include <vm/vm.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_object.h>
56 #include <vm/pmap.h>
57 #include <vm/uma.h>
58 #include <vm/vm_map.h>
59 
60 #include <machine/frame.h>
61 
62 /*
63  * KSEGRP related storage.
64  */
65 static uma_zone_t ksegrp_zone;
66 static uma_zone_t kse_zone;
67 static uma_zone_t thread_zone;
68 static uma_zone_t upcall_zone;
69 
70 /* DEBUG ONLY */
71 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
72 static int thread_debug = 0;
73 SYSCTL_INT(_kern_threads, OID_AUTO, debug, CTLFLAG_RW,
74 	&thread_debug, 0, "thread debug");
75 
76 static int max_threads_per_proc = 150;
77 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
78 	&max_threads_per_proc, 0, "Limit on threads per proc");
79 
80 static int max_groups_per_proc = 50;
81 SYSCTL_INT(_kern_threads, OID_AUTO, max_groups_per_proc, CTLFLAG_RW,
82 	&max_groups_per_proc, 0, "Limit on thread groups per proc");
83 
84 static int max_threads_hits;
85 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
86 	&max_threads_hits, 0, "");
87 
88 static int virtual_cpu;
89 
90 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
91 
92 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
93 TAILQ_HEAD(, kse) zombie_kses = TAILQ_HEAD_INITIALIZER(zombie_kses);
94 TAILQ_HEAD(, ksegrp) zombie_ksegrps = TAILQ_HEAD_INITIALIZER(zombie_ksegrps);
95 TAILQ_HEAD(, kse_upcall) zombie_upcalls =
96 	TAILQ_HEAD_INITIALIZER(zombie_upcalls);
97 struct mtx kse_zombie_lock;
98 MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN);
99 
100 static void kse_purge(struct proc *p, struct thread *td);
101 static void kse_purge_group(struct thread *td);
102 static int thread_update_usr_ticks(struct thread *td, int user);
103 static void thread_alloc_spare(struct thread *td, struct thread *spare);
104 
105 static int
106 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
107 {
108 	int error, new_val;
109 	int def_val;
110 
111 #ifdef SMP
112 	def_val = mp_ncpus;
113 #else
114 	def_val = 1;
115 #endif
116 	if (virtual_cpu == 0)
117 		new_val = def_val;
118 	else
119 		new_val = virtual_cpu;
120 	error = sysctl_handle_int(oidp, &new_val, 0, req);
121         if (error != 0 || req->newptr == NULL)
122 		return (error);
123 	if (new_val < 0)
124 		return (EINVAL);
125 	virtual_cpu = new_val;
126 	return (0);
127 }
128 
129 /* DEBUG ONLY */
130 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
131 	0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
132 	"debug virtual cpus");
133 
134 /*
135  * Prepare a thread for use.
136  */
137 static void
138 thread_ctor(void *mem, int size, void *arg)
139 {
140 	struct thread	*td;
141 
142 	td = (struct thread *)mem;
143 	td->td_state = TDS_INACTIVE;
144 	td->td_oncpu	= NOCPU;
145 }
146 
147 /*
148  * Reclaim a thread after use.
149  */
150 static void
151 thread_dtor(void *mem, int size, void *arg)
152 {
153 	struct thread	*td;
154 
155 	td = (struct thread *)mem;
156 
157 #ifdef INVARIANTS
158 	/* Verify that this thread is in a safe state to free. */
159 	switch (td->td_state) {
160 	case TDS_INHIBITED:
161 	case TDS_RUNNING:
162 	case TDS_CAN_RUN:
163 	case TDS_RUNQ:
164 		/*
165 		 * We must never unlink a thread that is in one of
166 		 * these states, because it is currently active.
167 		 */
168 		panic("bad state for thread unlinking");
169 		/* NOTREACHED */
170 	case TDS_INACTIVE:
171 		break;
172 	default:
173 		panic("bad thread state");
174 		/* NOTREACHED */
175 	}
176 #endif
177 }
178 
179 /*
180  * Initialize type-stable parts of a thread (when newly created).
181  */
182 static void
183 thread_init(void *mem, int size)
184 {
185 	struct thread	*td;
186 
187 	td = (struct thread *)mem;
188 	mtx_lock(&Giant);
189 	vm_thread_new(td, 0);
190 	mtx_unlock(&Giant);
191 	cpu_thread_setup(td);
192 	td->td_sched = (struct td_sched *)&td[1];
193 }
194 
195 /*
196  * Tear down type-stable parts of a thread (just before being discarded).
197  */
198 static void
199 thread_fini(void *mem, int size)
200 {
201 	struct thread	*td;
202 
203 	td = (struct thread *)mem;
204 	vm_thread_dispose(td);
205 }
206 
207 /*
208  * Initialize type-stable parts of a kse (when newly created).
209  */
210 static void
211 kse_init(void *mem, int size)
212 {
213 	struct kse	*ke;
214 
215 	ke = (struct kse *)mem;
216 	ke->ke_sched = (struct ke_sched *)&ke[1];
217 }
218 
219 /*
220  * Initialize type-stable parts of a ksegrp (when newly created).
221  */
222 static void
223 ksegrp_init(void *mem, int size)
224 {
225 	struct ksegrp	*kg;
226 
227 	kg = (struct ksegrp *)mem;
228 	kg->kg_sched = (struct kg_sched *)&kg[1];
229 }
230 
231 /*
232  * KSE is linked into kse group.
233  */
234 void
235 kse_link(struct kse *ke, struct ksegrp *kg)
236 {
237 	struct proc *p = kg->kg_proc;
238 
239 	TAILQ_INSERT_HEAD(&kg->kg_kseq, ke, ke_kglist);
240 	kg->kg_kses++;
241 	ke->ke_state	= KES_UNQUEUED;
242 	ke->ke_proc	= p;
243 	ke->ke_ksegrp	= kg;
244 	ke->ke_thread	= NULL;
245 	ke->ke_oncpu	= NOCPU;
246 	ke->ke_flags	= 0;
247 }
248 
249 void
250 kse_unlink(struct kse *ke)
251 {
252 	struct ksegrp *kg;
253 
254 	mtx_assert(&sched_lock, MA_OWNED);
255 	kg = ke->ke_ksegrp;
256 	TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist);
257 	if (ke->ke_state == KES_IDLE) {
258 		TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
259 		kg->kg_idle_kses--;
260 	}
261 	if (--kg->kg_kses == 0)
262 		ksegrp_unlink(kg);
263 	/*
264 	 * Aggregate stats from the KSE
265 	 */
266 	kse_stash(ke);
267 }
268 
269 void
270 ksegrp_link(struct ksegrp *kg, struct proc *p)
271 {
272 
273 	TAILQ_INIT(&kg->kg_threads);
274 	TAILQ_INIT(&kg->kg_runq);	/* links with td_runq */
275 	TAILQ_INIT(&kg->kg_slpq);	/* links with td_runq */
276 	TAILQ_INIT(&kg->kg_kseq);	/* all kses in ksegrp */
277 	TAILQ_INIT(&kg->kg_iq);		/* all idle kses in ksegrp */
278 	TAILQ_INIT(&kg->kg_upcalls);	/* all upcall structure in ksegrp */
279 	kg->kg_proc = p;
280 	/*
281 	 * the following counters are in the -zero- section
282 	 * and may not need clearing
283 	 */
284 	kg->kg_numthreads = 0;
285 	kg->kg_runnable   = 0;
286 	kg->kg_kses       = 0;
287 	kg->kg_runq_kses  = 0; /* XXXKSE change name */
288 	kg->kg_idle_kses  = 0;
289 	kg->kg_numupcalls = 0;
290 	/* link it in now that it's consistent */
291 	p->p_numksegrps++;
292 	TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp);
293 }
294 
295 void
296 ksegrp_unlink(struct ksegrp *kg)
297 {
298 	struct proc *p;
299 
300 	mtx_assert(&sched_lock, MA_OWNED);
301 	KASSERT((kg->kg_numthreads == 0), ("ksegrp_unlink: residual threads"));
302 	KASSERT((kg->kg_kses == 0), ("ksegrp_unlink: residual kses"));
303 	KASSERT((kg->kg_numupcalls == 0), ("ksegrp_unlink: residual upcalls"));
304 
305 	p = kg->kg_proc;
306 	TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
307 	p->p_numksegrps--;
308 	/*
309 	 * Aggregate stats from the KSE
310 	 */
311 	ksegrp_stash(kg);
312 }
313 
314 struct kse_upcall *
315 upcall_alloc(void)
316 {
317 	struct kse_upcall *ku;
318 
319 	ku = uma_zalloc(upcall_zone, M_WAITOK);
320 	bzero(ku, sizeof(*ku));
321 	return (ku);
322 }
323 
324 void
325 upcall_free(struct kse_upcall *ku)
326 {
327 
328 	uma_zfree(upcall_zone, ku);
329 }
330 
331 void
332 upcall_link(struct kse_upcall *ku, struct ksegrp *kg)
333 {
334 
335 	mtx_assert(&sched_lock, MA_OWNED);
336 	TAILQ_INSERT_TAIL(&kg->kg_upcalls, ku, ku_link);
337 	ku->ku_ksegrp = kg;
338 	kg->kg_numupcalls++;
339 }
340 
341 void
342 upcall_unlink(struct kse_upcall *ku)
343 {
344 	struct ksegrp *kg = ku->ku_ksegrp;
345 
346 	mtx_assert(&sched_lock, MA_OWNED);
347 	KASSERT(ku->ku_owner == NULL, ("%s: have owner", __func__));
348 	TAILQ_REMOVE(&kg->kg_upcalls, ku, ku_link);
349 	kg->kg_numupcalls--;
350 	upcall_stash(ku);
351 }
352 
353 void
354 upcall_remove(struct thread *td)
355 {
356 
357 	if (td->td_upcall) {
358 		td->td_upcall->ku_owner = NULL;
359 		upcall_unlink(td->td_upcall);
360 		td->td_upcall = 0;
361 	}
362 }
363 
364 /*
365  * For a newly created process,
366  * link up all the structures and its initial threads etc.
367  */
368 void
369 proc_linkup(struct proc *p, struct ksegrp *kg,
370 	    struct kse *ke, struct thread *td)
371 {
372 
373 	TAILQ_INIT(&p->p_ksegrps);	     /* all ksegrps in proc */
374 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
375 	TAILQ_INIT(&p->p_suspended);	     /* Threads suspended */
376 	p->p_numksegrps = 0;
377 	p->p_numthreads = 0;
378 
379 	ksegrp_link(kg, p);
380 	kse_link(ke, kg);
381 	thread_link(td, kg);
382 }
383 
384 /*
385 struct kse_thr_interrupt_args {
386 	struct kse_thr_mailbox * tmbx;
387 	int sig;
388 };
389 */
390 int
391 kse_thr_interrupt(struct thread *td, struct kse_thr_interrupt_args *uap)
392 {
393 	struct proc *p;
394 	struct thread *td2;
395 	int sig = uap->sig;
396 
397 	p = td->td_proc;
398 	if (!(p->p_flag & P_SA) || (uap->tmbx == NULL) ||
399 	    (sig < -2) || (sig > _SIG_MAXSIG))
400 		return (EINVAL);
401 
402 	PROC_LOCK(p);
403 	mtx_lock_spin(&sched_lock);
404 	FOREACH_THREAD_IN_PROC(p, td2) {
405 		if (td2->td_mailbox == uap->tmbx)
406 			break;
407 	}
408 	if (td2 == NULL) {
409 		mtx_unlock_spin(&sched_lock);
410 		PROC_UNLOCK(p);
411 		return (ESRCH);
412 	}
413 	if (sig > 0) {
414 		td2->td_flags &= ~TDF_INTERRUPT;
415 		mtx_unlock_spin(&sched_lock);
416 		tdsignal(td2, sig, SIGTARGET_TD);
417 	} else if (sig == 0) {
418 		mtx_unlock_spin(&sched_lock);
419 	} else {
420 		td2->td_flags |= TDF_INTERRUPT | TDF_ASTPENDING;
421 		if (TD_CAN_UNBIND(td2))
422 			td2->td_upcall->ku_flags |= KUF_DOUPCALL;
423 		if (sig == -1)
424 			td2->td_intrval = EINTR;
425 		else if (sig == -2)
426 			td2->td_intrval = ERESTART;
427 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR)) {
428 			if (td2->td_flags & TDF_CVWAITQ)
429 				cv_abort(td2);
430 			else
431 				abortsleep(td2);
432 		}
433 		mtx_unlock_spin(&sched_lock);
434 	}
435 	PROC_UNLOCK(p);
436 	return (0);
437 }
438 
439 /*
440 struct kse_exit_args {
441 	register_t dummy;
442 };
443 */
444 int
445 kse_exit(struct thread *td, struct kse_exit_args *uap)
446 {
447 	struct proc *p;
448 	struct ksegrp *kg;
449 	struct kse *ke;
450 	struct kse_upcall *ku, *ku2;
451 	int    error, count;
452 
453 	p = td->td_proc;
454 	if ((ku = td->td_upcall) == NULL || TD_CAN_UNBIND(td))
455 		return (EINVAL);
456 	kg = td->td_ksegrp;
457 	count = 0;
458 	PROC_LOCK(p);
459 	mtx_lock_spin(&sched_lock);
460 	FOREACH_UPCALL_IN_GROUP(kg, ku2) {
461 		if (ku2->ku_flags & KUF_EXITING)
462 			count++;
463 	}
464 	if ((kg->kg_numupcalls - count) == 1 &&
465 	    (kg->kg_numthreads > 1)) {
466 		mtx_unlock_spin(&sched_lock);
467 		PROC_UNLOCK(p);
468 		return (EDEADLK);
469 	}
470 	ku->ku_flags |= KUF_EXITING;
471 	mtx_unlock_spin(&sched_lock);
472 	PROC_UNLOCK(p);
473 	error = suword(&ku->ku_mailbox->km_flags, ku->ku_mflags|KMF_DONE);
474 	PROC_LOCK(p);
475 	if (error)
476 		psignal(p, SIGSEGV);
477 	mtx_lock_spin(&sched_lock);
478 	upcall_remove(td);
479 	ke = td->td_kse;
480 	if (p->p_numthreads == 1) {
481 		kse_purge(p, td);
482 		p->p_flag &= ~P_SA;
483 		mtx_unlock_spin(&sched_lock);
484 		PROC_UNLOCK(p);
485 	} else {
486 		if (kg->kg_numthreads == 1) { /* Shutdown a group */
487 			kse_purge_group(td);
488 			ke->ke_flags |= KEF_EXIT;
489 		}
490 		thread_stopped(p);
491 		thread_exit();
492 		/* NOTREACHED */
493 	}
494 	return (0);
495 }
496 
497 /*
498  * Either becomes an upcall or waits for an awakening event and
499  * then becomes an upcall. Only error cases return.
500  */
501 /*
502 struct kse_release_args {
503 	struct timespec *timeout;
504 };
505 */
506 int
507 kse_release(struct thread *td, struct kse_release_args *uap)
508 {
509 	struct proc *p;
510 	struct ksegrp *kg;
511 	struct kse_upcall *ku;
512 	struct timespec timeout;
513 	struct timeval tv;
514 	sigset_t sigset;
515 	int error;
516 
517 	p = td->td_proc;
518 	kg = td->td_ksegrp;
519 	if ((ku = td->td_upcall) == NULL || TD_CAN_UNBIND(td))
520 		return (EINVAL);
521 	if (uap->timeout != NULL) {
522 		if ((error = copyin(uap->timeout, &timeout, sizeof(timeout))))
523 			return (error);
524 		TIMESPEC_TO_TIMEVAL(&tv, &timeout);
525 	}
526 	if (td->td_flags & TDF_SA)
527 		td->td_pflags |= TDP_UPCALLING;
528 	else {
529 		ku->ku_mflags = fuword(&ku->ku_mailbox->km_flags);
530 		if (ku->ku_mflags == -1) {
531 			PROC_LOCK(p);
532 			sigexit(td, SIGSEGV);
533 		}
534 	}
535 	PROC_LOCK(p);
536 	if (ku->ku_mflags & KMF_WAITSIGEVENT) {
537 		/* UTS wants to wait for signal event */
538 		if (!(p->p_flag & P_SIGEVENT) && !(ku->ku_flags & KUF_DOUPCALL))
539 			error = msleep(&p->p_siglist, &p->p_mtx, PPAUSE|PCATCH,
540 			    "ksesigwait", (uap->timeout ? tvtohz(&tv) : 0));
541 		p->p_flag &= ~P_SIGEVENT;
542 		sigset = p->p_siglist;
543 		PROC_UNLOCK(p);
544 		error = copyout(&sigset, &ku->ku_mailbox->km_sigscaught,
545 		    sizeof(sigset));
546 	} else {
547 		 if (! kg->kg_completed && !(ku->ku_flags & KUF_DOUPCALL)) {
548 			kg->kg_upsleeps++;
549 			error = msleep(&kg->kg_completed, &p->p_mtx,
550 				PPAUSE|PCATCH, "kserel",
551 				(uap->timeout ? tvtohz(&tv) : 0));
552 			kg->kg_upsleeps--;
553 		}
554 		PROC_UNLOCK(p);
555 	}
556 	if (ku->ku_flags & KUF_DOUPCALL) {
557 		mtx_lock_spin(&sched_lock);
558 		ku->ku_flags &= ~KUF_DOUPCALL;
559 		mtx_unlock_spin(&sched_lock);
560 	}
561 	return (0);
562 }
563 
564 /* struct kse_wakeup_args {
565 	struct kse_mailbox *mbx;
566 }; */
567 int
568 kse_wakeup(struct thread *td, struct kse_wakeup_args *uap)
569 {
570 	struct proc *p;
571 	struct ksegrp *kg;
572 	struct kse_upcall *ku;
573 	struct thread *td2;
574 
575 	p = td->td_proc;
576 	td2 = NULL;
577 	ku = NULL;
578 	/* KSE-enabled processes only, please. */
579 	if (!(p->p_flag & P_SA))
580 		return (EINVAL);
581 	PROC_LOCK(p);
582 	mtx_lock_spin(&sched_lock);
583 	if (uap->mbx) {
584 		FOREACH_KSEGRP_IN_PROC(p, kg) {
585 			FOREACH_UPCALL_IN_GROUP(kg, ku) {
586 				if (ku->ku_mailbox == uap->mbx)
587 					break;
588 			}
589 			if (ku)
590 				break;
591 		}
592 	} else {
593 		kg = td->td_ksegrp;
594 		if (kg->kg_upsleeps) {
595 			wakeup_one(&kg->kg_completed);
596 			mtx_unlock_spin(&sched_lock);
597 			PROC_UNLOCK(p);
598 			return (0);
599 		}
600 		ku = TAILQ_FIRST(&kg->kg_upcalls);
601 	}
602 	if (ku) {
603 		if ((td2 = ku->ku_owner) == NULL) {
604 			panic("%s: no owner", __func__);
605 		} else if (TD_ON_SLEEPQ(td2) &&
606 		           ((td2->td_wchan == &kg->kg_completed) ||
607 			    (td2->td_wchan == &p->p_siglist &&
608 			     (ku->ku_mflags & KMF_WAITSIGEVENT)))) {
609 			abortsleep(td2);
610 		} else {
611 			ku->ku_flags |= KUF_DOUPCALL;
612 		}
613 		mtx_unlock_spin(&sched_lock);
614 		PROC_UNLOCK(p);
615 		return (0);
616 	}
617 	mtx_unlock_spin(&sched_lock);
618 	PROC_UNLOCK(p);
619 	return (ESRCH);
620 }
621 
622 /*
623  * No new KSEG: first call: use current KSE, don't schedule an upcall
624  * All other situations, do allocate max new KSEs and schedule an upcall.
625  */
626 /* struct kse_create_args {
627 	struct kse_mailbox *mbx;
628 	int newgroup;
629 }; */
630 int
631 kse_create(struct thread *td, struct kse_create_args *uap)
632 {
633 	struct kse *newke;
634 	struct ksegrp *newkg;
635 	struct ksegrp *kg;
636 	struct proc *p;
637 	struct kse_mailbox mbx;
638 	struct kse_upcall *newku;
639 	int err, ncpus, sa = 0, first = 0;
640 	struct thread *newtd;
641 
642 	p = td->td_proc;
643 	if ((err = copyin(uap->mbx, &mbx, sizeof(mbx))))
644 		return (err);
645 
646 	/* Too bad, why hasn't kernel always a cpu counter !? */
647 #ifdef SMP
648 	ncpus = mp_ncpus;
649 #else
650 	ncpus = 1;
651 #endif
652 	if (virtual_cpu != 0)
653 		ncpus = virtual_cpu;
654 	if (!(mbx.km_flags & KMF_BOUND))
655 		sa = TDF_SA;
656 	else
657 		ncpus = 1;
658 	PROC_LOCK(p);
659 	if (!(p->p_flag & P_SA)) {
660 		first = 1;
661 		p->p_flag |= P_SA;
662 	}
663 	PROC_UNLOCK(p);
664 	if (!sa && !uap->newgroup && !first)
665 		return (EINVAL);
666 	kg = td->td_ksegrp;
667 	if (uap->newgroup) {
668 		/* Have race condition but it is cheap */
669 		if (p->p_numksegrps >= max_groups_per_proc)
670 			return (EPROCLIM);
671 		/*
672 		 * If we want a new KSEGRP it doesn't matter whether
673 		 * we have already fired up KSE mode before or not.
674 		 * We put the process in KSE mode and create a new KSEGRP.
675 		 */
676 		newkg = ksegrp_alloc();
677 		bzero(&newkg->kg_startzero, RANGEOF(struct ksegrp,
678 		      kg_startzero, kg_endzero));
679 		bcopy(&kg->kg_startcopy, &newkg->kg_startcopy,
680 		      RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy));
681 		mtx_lock_spin(&sched_lock);
682 		if (p->p_numksegrps >= max_groups_per_proc) {
683 			mtx_unlock_spin(&sched_lock);
684 			ksegrp_free(newkg);
685 			return (EPROCLIM);
686 		}
687 		ksegrp_link(newkg, p);
688 		mtx_unlock_spin(&sched_lock);
689 	} else {
690 		if (!first && ((td->td_flags & TDF_SA) ^ sa) != 0)
691 			return (EINVAL);
692 		newkg = kg;
693 	}
694 
695 	/*
696 	 * Creating upcalls more than number of physical cpu does
697 	 * not help performance.
698 	 */
699 	if (newkg->kg_numupcalls >= ncpus)
700 		return (EPROCLIM);
701 
702 	if (newkg->kg_numupcalls == 0) {
703 		/*
704 		 * Initialize KSE group
705 		 *
706 		 * For multiplxed group, create KSEs as many as physical
707 		 * cpus. This increases concurrent even if userland
708 		 * is not MP safe and can only run on single CPU.
709 		 * In ideal world, every physical cpu should execute a thread.
710 		 * If there is enough KSEs, threads in kernel can be
711 		 * executed parallel on different cpus with full speed,
712 		 * Concurrent in kernel shouldn't be restricted by number of
713 		 * upcalls userland provides. Adding more upcall structures
714 		 * only increases concurrent in userland.
715 		 *
716 		 * For bound thread group, because there is only thread in the
717 		 * group, we only create one KSE for the group. Thread in this
718 		 * kind of group will never schedule an upcall when blocked,
719 		 * this intends to simulate pthread system scope thread.
720 		 */
721 		while (newkg->kg_kses < ncpus) {
722 			newke = kse_alloc();
723 			bzero(&newke->ke_startzero, RANGEOF(struct kse,
724 			      ke_startzero, ke_endzero));
725 #if 0
726 			mtx_lock_spin(&sched_lock);
727 			bcopy(&ke->ke_startcopy, &newke->ke_startcopy,
728 			      RANGEOF(struct kse, ke_startcopy, ke_endcopy));
729 			mtx_unlock_spin(&sched_lock);
730 #endif
731 			mtx_lock_spin(&sched_lock);
732 			kse_link(newke, newkg);
733 			/* Add engine */
734 			kse_reassign(newke);
735 			mtx_unlock_spin(&sched_lock);
736 		}
737 	}
738 	newku = upcall_alloc();
739 	newku->ku_mailbox = uap->mbx;
740 	newku->ku_func = mbx.km_func;
741 	bcopy(&mbx.km_stack, &newku->ku_stack, sizeof(stack_t));
742 
743 	/* For the first call this may not have been set */
744 	if (td->td_standin == NULL)
745 		thread_alloc_spare(td, NULL);
746 
747 	PROC_LOCK(p);
748 	if (newkg->kg_numupcalls >= ncpus) {
749 		PROC_UNLOCK(p);
750 		upcall_free(newku);
751 		return (EPROCLIM);
752 	}
753 	if (first) {
754 		SIGSETOR(p->p_siglist, td->td_siglist);
755 		SIGEMPTYSET(td->td_siglist);
756 		SIGFILLSET(td->td_sigmask);
757 		SIG_CANTMASK(td->td_sigmask);
758 	}
759 	mtx_lock_spin(&sched_lock);
760 	PROC_UNLOCK(p);
761 	upcall_link(newku, newkg);
762 	if (mbx.km_quantum)
763 		newkg->kg_upquantum = max(1, mbx.km_quantum/tick);
764 
765 	/*
766 	 * Each upcall structure has an owner thread, find which
767 	 * one owns it.
768 	 */
769 	if (uap->newgroup) {
770 		/*
771 		 * Because new ksegrp hasn't thread,
772 		 * create an initial upcall thread to own it.
773 		 */
774 		newtd = thread_schedule_upcall(td, newku);
775 	} else {
776 		/*
777 		 * If current thread hasn't an upcall structure,
778 		 * just assign the upcall to it.
779 		 */
780 		if (td->td_upcall == NULL) {
781 			newku->ku_owner = td;
782 			td->td_upcall = newku;
783 			newtd = td;
784 		} else {
785 			/*
786 			 * Create a new upcall thread to own it.
787 			 */
788 			newtd = thread_schedule_upcall(td, newku);
789 		}
790 	}
791 	if (!sa) {
792 		newtd->td_mailbox = mbx.km_curthread;
793 		newtd->td_flags &= ~TDF_SA;
794 		if (newtd != td) {
795 			mtx_unlock_spin(&sched_lock);
796 			cpu_set_upcall_kse(newtd, newku);
797 			mtx_lock_spin(&sched_lock);
798 		}
799 	} else {
800 		newtd->td_flags |= TDF_SA;
801 	}
802 	if (newtd != td)
803 		setrunqueue(newtd);
804 	mtx_unlock_spin(&sched_lock);
805 	return (0);
806 }
807 
808 /*
809  * Initialize global thread allocation resources.
810  */
811 void
812 threadinit(void)
813 {
814 
815 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
816 	    thread_ctor, thread_dtor, thread_init, thread_fini,
817 	    UMA_ALIGN_CACHE, 0);
818 	ksegrp_zone = uma_zcreate("KSEGRP", sched_sizeof_ksegrp(),
819 	    NULL, NULL, ksegrp_init, NULL,
820 	    UMA_ALIGN_CACHE, 0);
821 	kse_zone = uma_zcreate("KSE", sched_sizeof_kse(),
822 	    NULL, NULL, kse_init, NULL,
823 	    UMA_ALIGN_CACHE, 0);
824 	upcall_zone = uma_zcreate("UPCALL", sizeof(struct kse_upcall),
825 	    NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
826 }
827 
828 /*
829  * Stash an embarasingly extra thread into the zombie thread queue.
830  */
831 void
832 thread_stash(struct thread *td)
833 {
834 	mtx_lock_spin(&kse_zombie_lock);
835 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq);
836 	mtx_unlock_spin(&kse_zombie_lock);
837 }
838 
839 /*
840  * Stash an embarasingly extra kse into the zombie kse queue.
841  */
842 void
843 kse_stash(struct kse *ke)
844 {
845 	mtx_lock_spin(&kse_zombie_lock);
846 	TAILQ_INSERT_HEAD(&zombie_kses, ke, ke_procq);
847 	mtx_unlock_spin(&kse_zombie_lock);
848 }
849 
850 /*
851  * Stash an embarasingly extra upcall into the zombie upcall queue.
852  */
853 
854 void
855 upcall_stash(struct kse_upcall *ku)
856 {
857 	mtx_lock_spin(&kse_zombie_lock);
858 	TAILQ_INSERT_HEAD(&zombie_upcalls, ku, ku_link);
859 	mtx_unlock_spin(&kse_zombie_lock);
860 }
861 
862 /*
863  * Stash an embarasingly extra ksegrp into the zombie ksegrp queue.
864  */
865 void
866 ksegrp_stash(struct ksegrp *kg)
867 {
868 	mtx_lock_spin(&kse_zombie_lock);
869 	TAILQ_INSERT_HEAD(&zombie_ksegrps, kg, kg_ksegrp);
870 	mtx_unlock_spin(&kse_zombie_lock);
871 }
872 
873 /*
874  * Reap zombie kse resource.
875  */
876 void
877 thread_reap(void)
878 {
879 	struct thread *td_first, *td_next;
880 	struct kse *ke_first, *ke_next;
881 	struct ksegrp *kg_first, * kg_next;
882 	struct kse_upcall *ku_first, *ku_next;
883 
884 	/*
885 	 * Don't even bother to lock if none at this instant,
886 	 * we really don't care about the next instant..
887 	 */
888 	if ((!TAILQ_EMPTY(&zombie_threads))
889 	    || (!TAILQ_EMPTY(&zombie_kses))
890 	    || (!TAILQ_EMPTY(&zombie_ksegrps))
891 	    || (!TAILQ_EMPTY(&zombie_upcalls))) {
892 		mtx_lock_spin(&kse_zombie_lock);
893 		td_first = TAILQ_FIRST(&zombie_threads);
894 		ke_first = TAILQ_FIRST(&zombie_kses);
895 		kg_first = TAILQ_FIRST(&zombie_ksegrps);
896 		ku_first = TAILQ_FIRST(&zombie_upcalls);
897 		if (td_first)
898 			TAILQ_INIT(&zombie_threads);
899 		if (ke_first)
900 			TAILQ_INIT(&zombie_kses);
901 		if (kg_first)
902 			TAILQ_INIT(&zombie_ksegrps);
903 		if (ku_first)
904 			TAILQ_INIT(&zombie_upcalls);
905 		mtx_unlock_spin(&kse_zombie_lock);
906 		while (td_first) {
907 			td_next = TAILQ_NEXT(td_first, td_runq);
908 			if (td_first->td_ucred)
909 				crfree(td_first->td_ucred);
910 			thread_free(td_first);
911 			td_first = td_next;
912 		}
913 		while (ke_first) {
914 			ke_next = TAILQ_NEXT(ke_first, ke_procq);
915 			kse_free(ke_first);
916 			ke_first = ke_next;
917 		}
918 		while (kg_first) {
919 			kg_next = TAILQ_NEXT(kg_first, kg_ksegrp);
920 			ksegrp_free(kg_first);
921 			kg_first = kg_next;
922 		}
923 		while (ku_first) {
924 			ku_next = TAILQ_NEXT(ku_first, ku_link);
925 			upcall_free(ku_first);
926 			ku_first = ku_next;
927 		}
928 	}
929 }
930 
931 /*
932  * Allocate a ksegrp.
933  */
934 struct ksegrp *
935 ksegrp_alloc(void)
936 {
937 	return (uma_zalloc(ksegrp_zone, M_WAITOK));
938 }
939 
940 /*
941  * Allocate a kse.
942  */
943 struct kse *
944 kse_alloc(void)
945 {
946 	return (uma_zalloc(kse_zone, M_WAITOK));
947 }
948 
949 /*
950  * Allocate a thread.
951  */
952 struct thread *
953 thread_alloc(void)
954 {
955 	thread_reap(); /* check if any zombies to get */
956 	return (uma_zalloc(thread_zone, M_WAITOK));
957 }
958 
959 /*
960  * Deallocate a ksegrp.
961  */
962 void
963 ksegrp_free(struct ksegrp *td)
964 {
965 	uma_zfree(ksegrp_zone, td);
966 }
967 
968 /*
969  * Deallocate a kse.
970  */
971 void
972 kse_free(struct kse *td)
973 {
974 	uma_zfree(kse_zone, td);
975 }
976 
977 /*
978  * Deallocate a thread.
979  */
980 void
981 thread_free(struct thread *td)
982 {
983 
984 	cpu_thread_clean(td);
985 	uma_zfree(thread_zone, td);
986 }
987 
988 /*
989  * Store the thread context in the UTS's mailbox.
990  * then add the mailbox at the head of a list we are building in user space.
991  * The list is anchored in the ksegrp structure.
992  */
993 int
994 thread_export_context(struct thread *td)
995 {
996 	struct proc *p;
997 	struct ksegrp *kg;
998 	uintptr_t mbx;
999 	void *addr;
1000 	int error = 0, temp, sig;
1001 	mcontext_t mc;
1002 
1003 	p = td->td_proc;
1004 	kg = td->td_ksegrp;
1005 
1006 	/* Export the user/machine context. */
1007 	get_mcontext(td, &mc, 0);
1008 	addr = (void *)(&td->td_mailbox->tm_context.uc_mcontext);
1009 	error = copyout(&mc, addr, sizeof(mcontext_t));
1010 	if (error)
1011 		goto bad;
1012 
1013 	/* Exports clock ticks in kernel mode */
1014 	addr = (caddr_t)(&td->td_mailbox->tm_sticks);
1015 	temp = fuword32(addr) + td->td_usticks;
1016 	if (suword32(addr, temp)) {
1017 		error = EFAULT;
1018 		goto bad;
1019 	}
1020 
1021 	/*
1022 	 * Post sync signal, or process SIGKILL and SIGSTOP.
1023 	 * For sync signal, it is only possible when the signal is not
1024 	 * caught by userland or process is being debugged.
1025 	 */
1026 	if (td->td_flags & TDF_NEEDSIGCHK) {
1027 		mtx_lock_spin(&sched_lock);
1028 		td->td_flags &= ~TDF_NEEDSIGCHK;
1029 		mtx_unlock_spin(&sched_lock);
1030 		PROC_LOCK(p);
1031 		mtx_lock(&p->p_sigacts->ps_mtx);
1032 		while ((sig = cursig(td)) != 0)
1033 			postsig(sig);
1034 		mtx_unlock(&p->p_sigacts->ps_mtx);
1035 		PROC_UNLOCK(p);
1036 	}
1037 
1038 	/* Get address in latest mbox of list pointer */
1039 	addr = (void *)(&td->td_mailbox->tm_next);
1040 	/*
1041 	 * Put the saved address of the previous first
1042 	 * entry into this one
1043 	 */
1044 	for (;;) {
1045 		mbx = (uintptr_t)kg->kg_completed;
1046 		if (suword(addr, mbx)) {
1047 			error = EFAULT;
1048 			goto bad;
1049 		}
1050 		PROC_LOCK(p);
1051 		if (mbx == (uintptr_t)kg->kg_completed) {
1052 			kg->kg_completed = td->td_mailbox;
1053 			/*
1054 			 * The thread context may be taken away by
1055 			 * other upcall threads when we unlock
1056 			 * process lock. it's no longer valid to
1057 			 * use it again in any other places.
1058 			 */
1059 			td->td_mailbox = NULL;
1060 			PROC_UNLOCK(p);
1061 			break;
1062 		}
1063 		PROC_UNLOCK(p);
1064 	}
1065 	td->td_usticks = 0;
1066 	return (0);
1067 
1068 bad:
1069 	PROC_LOCK(p);
1070 	psignal(p, SIGSEGV);
1071 	PROC_UNLOCK(p);
1072 	/* The mailbox is bad, don't use it */
1073 	td->td_mailbox = NULL;
1074 	td->td_usticks = 0;
1075 	return (error);
1076 }
1077 
1078 /*
1079  * Take the list of completed mailboxes for this KSEGRP and put them on this
1080  * upcall's mailbox as it's the next one going up.
1081  */
1082 static int
1083 thread_link_mboxes(struct ksegrp *kg, struct kse_upcall *ku)
1084 {
1085 	struct proc *p = kg->kg_proc;
1086 	void *addr;
1087 	uintptr_t mbx;
1088 
1089 	addr = (void *)(&ku->ku_mailbox->km_completed);
1090 	for (;;) {
1091 		mbx = (uintptr_t)kg->kg_completed;
1092 		if (suword(addr, mbx)) {
1093 			PROC_LOCK(p);
1094 			psignal(p, SIGSEGV);
1095 			PROC_UNLOCK(p);
1096 			return (EFAULT);
1097 		}
1098 		PROC_LOCK(p);
1099 		if (mbx == (uintptr_t)kg->kg_completed) {
1100 			kg->kg_completed = NULL;
1101 			PROC_UNLOCK(p);
1102 			break;
1103 		}
1104 		PROC_UNLOCK(p);
1105 	}
1106 	return (0);
1107 }
1108 
1109 /*
1110  * This function should be called at statclock interrupt time
1111  */
1112 int
1113 thread_statclock(int user)
1114 {
1115 	struct thread *td = curthread;
1116 	struct ksegrp *kg = td->td_ksegrp;
1117 
1118 	if (kg->kg_numupcalls == 0 || !(td->td_flags & TDF_SA))
1119 		return (0);
1120 	if (user) {
1121 		/* Current always do via ast() */
1122 		mtx_lock_spin(&sched_lock);
1123 		td->td_flags |= (TDF_USTATCLOCK|TDF_ASTPENDING);
1124 		mtx_unlock_spin(&sched_lock);
1125 		td->td_uuticks++;
1126 	} else {
1127 		if (td->td_mailbox != NULL)
1128 			td->td_usticks++;
1129 		else {
1130 			/* XXXKSE
1131 		 	 * We will call thread_user_enter() for every
1132 			 * kernel entry in future, so if the thread mailbox
1133 			 * is NULL, it must be a UTS kernel, don't account
1134 			 * clock ticks for it.
1135 			 */
1136 		}
1137 	}
1138 	return (0);
1139 }
1140 
1141 /*
1142  * Export state clock ticks for userland
1143  */
1144 static int
1145 thread_update_usr_ticks(struct thread *td, int user)
1146 {
1147 	struct proc *p = td->td_proc;
1148 	struct kse_thr_mailbox *tmbx;
1149 	struct kse_upcall *ku;
1150 	struct ksegrp *kg;
1151 	caddr_t addr;
1152 	uint uticks;
1153 
1154 	if ((ku = td->td_upcall) == NULL)
1155 		return (-1);
1156 
1157 	tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread);
1158 	if ((tmbx == NULL) || (tmbx == (void *)-1))
1159 		return (-1);
1160 	if (user) {
1161 		uticks = td->td_uuticks;
1162 		td->td_uuticks = 0;
1163 		addr = (caddr_t)&tmbx->tm_uticks;
1164 	} else {
1165 		uticks = td->td_usticks;
1166 		td->td_usticks = 0;
1167 		addr = (caddr_t)&tmbx->tm_sticks;
1168 	}
1169 	if (uticks) {
1170 		if (suword32(addr, uticks+fuword32(addr))) {
1171 			PROC_LOCK(p);
1172 			psignal(p, SIGSEGV);
1173 			PROC_UNLOCK(p);
1174 			return (-2);
1175 		}
1176 	}
1177 	kg = td->td_ksegrp;
1178 	if (kg->kg_upquantum && ticks >= kg->kg_nextupcall) {
1179 		mtx_lock_spin(&sched_lock);
1180 		td->td_upcall->ku_flags |= KUF_DOUPCALL;
1181 		mtx_unlock_spin(&sched_lock);
1182 	}
1183 	return (0);
1184 }
1185 
1186 /*
1187  * Discard the current thread and exit from its context.
1188  *
1189  * Because we can't free a thread while we're operating under its context,
1190  * push the current thread into our CPU's deadthread holder. This means
1191  * we needn't worry about someone else grabbing our context before we
1192  * do a cpu_throw().
1193  */
1194 void
1195 thread_exit(void)
1196 {
1197 	struct thread *td;
1198 	struct kse *ke;
1199 	struct proc *p;
1200 	struct ksegrp	*kg;
1201 
1202 	td = curthread;
1203 	kg = td->td_ksegrp;
1204 	p = td->td_proc;
1205 	ke = td->td_kse;
1206 
1207 	mtx_assert(&sched_lock, MA_OWNED);
1208 	KASSERT(p != NULL, ("thread exiting without a process"));
1209 	KASSERT(ke != NULL, ("thread exiting without a kse"));
1210 	KASSERT(kg != NULL, ("thread exiting without a kse group"));
1211 	PROC_LOCK_ASSERT(p, MA_OWNED);
1212 	CTR1(KTR_PROC, "thread_exit: thread %p", td);
1213 	KASSERT(!mtx_owned(&Giant), ("dying thread owns giant"));
1214 
1215 	if (td->td_standin != NULL) {
1216 		thread_stash(td->td_standin);
1217 		td->td_standin = NULL;
1218 	}
1219 
1220 	cpu_thread_exit(td);	/* XXXSMP */
1221 
1222 	/*
1223 	 * The last thread is left attached to the process
1224 	 * So that the whole bundle gets recycled. Skip
1225 	 * all this stuff.
1226 	 */
1227 	if (p->p_numthreads > 1) {
1228 		thread_unlink(td);
1229 		if (p->p_maxthrwaits)
1230 			wakeup(&p->p_numthreads);
1231 		/*
1232 		 * The test below is NOT true if we are the
1233 		 * sole exiting thread. P_STOPPED_SNGL is unset
1234 		 * in exit1() after it is the only survivor.
1235 		 */
1236 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1237 			if (p->p_numthreads == p->p_suspcount) {
1238 				thread_unsuspend_one(p->p_singlethread);
1239 			}
1240 		}
1241 
1242 		/*
1243 		 * Because each upcall structure has an owner thread,
1244 		 * owner thread exits only when process is in exiting
1245 		 * state, so upcall to userland is no longer needed,
1246 		 * deleting upcall structure is safe here.
1247 		 * So when all threads in a group is exited, all upcalls
1248 		 * in the group should be automatically freed.
1249 		 */
1250 		if (td->td_upcall)
1251 			upcall_remove(td);
1252 
1253 		ke->ke_state = KES_UNQUEUED;
1254 		ke->ke_thread = NULL;
1255 		/*
1256 		 * Decide what to do with the KSE attached to this thread.
1257 		 */
1258 		if (ke->ke_flags & KEF_EXIT)
1259 			kse_unlink(ke);
1260 		else
1261 			kse_reassign(ke);
1262 		PROC_UNLOCK(p);
1263 		td->td_kse	= NULL;
1264 		td->td_state	= TDS_INACTIVE;
1265 #if 0
1266 		td->td_proc	= NULL;
1267 #endif
1268 		td->td_ksegrp	= NULL;
1269 		td->td_last_kse	= NULL;
1270 		PCPU_SET(deadthread, td);
1271 	} else {
1272 		PROC_UNLOCK(p);
1273 	}
1274 	/* XXX Shouldn't cpu_throw() here. */
1275 	mtx_assert(&sched_lock, MA_OWNED);
1276 #if !defined(__alpha__) && !defined(__powerpc__)
1277 	cpu_throw(td, choosethread());
1278 #else
1279 	cpu_throw();
1280 #endif
1281 	panic("I'm a teapot!");
1282 	/* NOTREACHED */
1283 }
1284 
1285 /*
1286  * Do any thread specific cleanups that may be needed in wait()
1287  * called with Giant held, proc and schedlock not held.
1288  */
1289 void
1290 thread_wait(struct proc *p)
1291 {
1292 	struct thread *td;
1293 
1294 	KASSERT((p->p_numthreads == 1), ("Muliple threads in wait1()"));
1295 	KASSERT((p->p_numksegrps == 1), ("Muliple ksegrps in wait1()"));
1296 	FOREACH_THREAD_IN_PROC(p, td) {
1297 		if (td->td_standin != NULL) {
1298 			thread_free(td->td_standin);
1299 			td->td_standin = NULL;
1300 		}
1301 		cpu_thread_clean(td);
1302 	}
1303 	thread_reap();	/* check for zombie threads etc. */
1304 }
1305 
1306 /*
1307  * Link a thread to a process.
1308  * set up anything that needs to be initialized for it to
1309  * be used by the process.
1310  *
1311  * Note that we do not link to the proc's ucred here.
1312  * The thread is linked as if running but no KSE assigned.
1313  */
1314 void
1315 thread_link(struct thread *td, struct ksegrp *kg)
1316 {
1317 	struct proc *p;
1318 
1319 	p = kg->kg_proc;
1320 	td->td_state    = TDS_INACTIVE;
1321 	td->td_proc     = p;
1322 	td->td_ksegrp   = kg;
1323 	td->td_last_kse = NULL;
1324 	td->td_flags    = 0;
1325 	td->td_kse      = NULL;
1326 
1327 	LIST_INIT(&td->td_contested);
1328 	callout_init(&td->td_slpcallout, 1);
1329 	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
1330 	TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist);
1331 	p->p_numthreads++;
1332 	kg->kg_numthreads++;
1333 }
1334 
1335 void
1336 thread_unlink(struct thread *td)
1337 {
1338 	struct proc *p = td->td_proc;
1339 	struct ksegrp *kg = td->td_ksegrp;
1340 
1341 	mtx_assert(&sched_lock, MA_OWNED);
1342 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
1343 	p->p_numthreads--;
1344 	TAILQ_REMOVE(&kg->kg_threads, td, td_kglist);
1345 	kg->kg_numthreads--;
1346 	/* could clear a few other things here */
1347 }
1348 
1349 /*
1350  * Purge a ksegrp resource. When a ksegrp is preparing to
1351  * exit, it calls this function.
1352  */
1353 static void
1354 kse_purge_group(struct thread *td)
1355 {
1356 	struct ksegrp *kg;
1357 	struct kse *ke;
1358 
1359 	kg = td->td_ksegrp;
1360  	KASSERT(kg->kg_numthreads == 1, ("%s: bad thread number", __func__));
1361 	while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) {
1362 		KASSERT(ke->ke_state == KES_IDLE,
1363 			("%s: wrong idle KSE state", __func__));
1364 		kse_unlink(ke);
1365 	}
1366 	KASSERT((kg->kg_kses == 1),
1367 		("%s: ksegrp still has %d KSEs", __func__, kg->kg_kses));
1368 	KASSERT((kg->kg_numupcalls == 0),
1369 	        ("%s: ksegrp still has %d upcall datas",
1370 		__func__, kg->kg_numupcalls));
1371 }
1372 
1373 /*
1374  * Purge a process's KSE resource. When a process is preparing to
1375  * exit, it calls kse_purge to release any extra KSE resources in
1376  * the process.
1377  */
1378 static void
1379 kse_purge(struct proc *p, struct thread *td)
1380 {
1381 	struct ksegrp *kg;
1382 	struct kse *ke;
1383 
1384  	KASSERT(p->p_numthreads == 1, ("bad thread number"));
1385 	while ((kg = TAILQ_FIRST(&p->p_ksegrps)) != NULL) {
1386 		TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
1387 		p->p_numksegrps--;
1388 		/*
1389 		 * There is no ownership for KSE, after all threads
1390 		 * in the group exited, it is possible that some KSEs
1391 		 * were left in idle queue, gc them now.
1392 		 */
1393 		while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) {
1394 			KASSERT(ke->ke_state == KES_IDLE,
1395 			   ("%s: wrong idle KSE state", __func__));
1396 			TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
1397 			kg->kg_idle_kses--;
1398 			TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist);
1399 			kg->kg_kses--;
1400 			kse_stash(ke);
1401 		}
1402 		KASSERT(((kg->kg_kses == 0) && (kg != td->td_ksegrp)) ||
1403 		        ((kg->kg_kses == 1) && (kg == td->td_ksegrp)),
1404 		        ("ksegrp has wrong kg_kses: %d", kg->kg_kses));
1405 		KASSERT((kg->kg_numupcalls == 0),
1406 		        ("%s: ksegrp still has %d upcall datas",
1407 			__func__, kg->kg_numupcalls));
1408 
1409 		if (kg != td->td_ksegrp)
1410 			ksegrp_stash(kg);
1411 	}
1412 	TAILQ_INSERT_HEAD(&p->p_ksegrps, td->td_ksegrp, kg_ksegrp);
1413 	p->p_numksegrps++;
1414 }
1415 
1416 /*
1417  * This function is intended to be used to initialize a spare thread
1418  * for upcall. Initialize thread's large data area outside sched_lock
1419  * for thread_schedule_upcall().
1420  */
1421 void
1422 thread_alloc_spare(struct thread *td, struct thread *spare)
1423 {
1424 	if (td->td_standin)
1425 		return;
1426 	if (spare == NULL)
1427 		spare = thread_alloc();
1428 	td->td_standin = spare;
1429 	bzero(&spare->td_startzero,
1430 	    (unsigned)RANGEOF(struct thread, td_startzero, td_endzero));
1431 	spare->td_proc = td->td_proc;
1432 	spare->td_ucred = crhold(td->td_ucred);
1433 }
1434 
1435 /*
1436  * Create a thread and schedule it for upcall on the KSE given.
1437  * Use our thread's standin so that we don't have to allocate one.
1438  */
1439 struct thread *
1440 thread_schedule_upcall(struct thread *td, struct kse_upcall *ku)
1441 {
1442 	struct thread *td2;
1443 
1444 	mtx_assert(&sched_lock, MA_OWNED);
1445 
1446 	/*
1447 	 * Schedule an upcall thread on specified kse_upcall,
1448 	 * the kse_upcall must be free.
1449 	 * td must have a spare thread.
1450 	 */
1451 	KASSERT(ku->ku_owner == NULL, ("%s: upcall has owner", __func__));
1452 	if ((td2 = td->td_standin) != NULL) {
1453 		td->td_standin = NULL;
1454 	} else {
1455 		panic("no reserve thread when scheduling an upcall");
1456 		return (NULL);
1457 	}
1458 	CTR3(KTR_PROC, "thread_schedule_upcall: thread %p (pid %d, %s)",
1459 	     td2, td->td_proc->p_pid, td->td_proc->p_comm);
1460 	bcopy(&td->td_startcopy, &td2->td_startcopy,
1461 	    (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
1462 	thread_link(td2, ku->ku_ksegrp);
1463 	/* inherit blocked thread's context */
1464 	cpu_set_upcall(td2, td);
1465 	/* Let the new thread become owner of the upcall */
1466 	ku->ku_owner   = td2;
1467 	td2->td_upcall = ku;
1468 	td2->td_flags  = TDF_SA;
1469 	td2->td_pflags = TDP_UPCALLING;
1470 	td2->td_kse    = NULL;
1471 	td2->td_state  = TDS_CAN_RUN;
1472 	td2->td_inhibitors = 0;
1473 	SIGFILLSET(td2->td_sigmask);
1474 	SIG_CANTMASK(td2->td_sigmask);
1475 	return (td2);	/* bogus.. should be a void function */
1476 }
1477 
1478 /*
1479  * It is only used when thread generated a trap and process is being
1480  * debugged.
1481  */
1482 void
1483 thread_signal_add(struct thread *td, int sig)
1484 {
1485 	struct proc *p;
1486 	siginfo_t siginfo;
1487 	struct sigacts *ps;
1488 	int error;
1489 
1490 	p = td->td_proc;
1491 	PROC_LOCK_ASSERT(p, MA_OWNED);
1492 	ps = p->p_sigacts;
1493 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1494 
1495 	thread_siginfo(sig, 0, &siginfo);
1496 	mtx_unlock(&ps->ps_mtx);
1497 	PROC_UNLOCK(p);
1498 	error = copyout(&siginfo, &td->td_mailbox->tm_syncsig, sizeof(siginfo));
1499 	if (error) {
1500 		PROC_LOCK(p);
1501 		sigexit(td, SIGILL);
1502 	}
1503 	PROC_LOCK(p);
1504 	SIGADDSET(td->td_sigmask, sig);
1505 	mtx_lock(&ps->ps_mtx);
1506 }
1507 
1508 void
1509 thread_switchout(struct thread *td)
1510 {
1511 	struct kse_upcall *ku;
1512 	struct thread *td2;
1513 
1514 	mtx_assert(&sched_lock, MA_OWNED);
1515 
1516 	/*
1517 	 * If the outgoing thread is in threaded group and has never
1518 	 * scheduled an upcall, decide whether this is a short
1519 	 * or long term event and thus whether or not to schedule
1520 	 * an upcall.
1521 	 * If it is a short term event, just suspend it in
1522 	 * a way that takes its KSE with it.
1523 	 * Select the events for which we want to schedule upcalls.
1524 	 * For now it's just sleep.
1525 	 * XXXKSE eventually almost any inhibition could do.
1526 	 */
1527 	if (TD_CAN_UNBIND(td) && (td->td_standin) && TD_ON_SLEEPQ(td)) {
1528 		/*
1529 		 * Release ownership of upcall, and schedule an upcall
1530 		 * thread, this new upcall thread becomes the owner of
1531 		 * the upcall structure.
1532 		 */
1533 		ku = td->td_upcall;
1534 		ku->ku_owner = NULL;
1535 		td->td_upcall = NULL;
1536 		td->td_flags &= ~TDF_CAN_UNBIND;
1537 		td2 = thread_schedule_upcall(td, ku);
1538 		setrunqueue(td2);
1539 	}
1540 }
1541 
1542 /*
1543  * Setup done on the thread when it enters the kernel.
1544  * XXXKSE Presently only for syscalls but eventually all kernel entries.
1545  */
1546 void
1547 thread_user_enter(struct proc *p, struct thread *td)
1548 {
1549 	struct ksegrp *kg;
1550 	struct kse_upcall *ku;
1551 	struct kse_thr_mailbox *tmbx;
1552 
1553 	kg = td->td_ksegrp;
1554 
1555 	/*
1556 	 * First check that we shouldn't just abort.
1557 	 * But check if we are the single thread first!
1558 	 */
1559 	if (p->p_flag & P_SINGLE_EXIT) {
1560 		PROC_LOCK(p);
1561 		mtx_lock_spin(&sched_lock);
1562 		thread_stopped(p);
1563 		thread_exit();
1564 		/* NOTREACHED */
1565 	}
1566 
1567 	/*
1568 	 * If we are doing a syscall in a KSE environment,
1569 	 * note where our mailbox is. There is always the
1570 	 * possibility that we could do this lazily (in kse_reassign()),
1571 	 * but for now do it every time.
1572 	 */
1573 	kg = td->td_ksegrp;
1574 	if (td->td_flags & TDF_SA) {
1575 		ku = td->td_upcall;
1576 		KASSERT(ku, ("%s: no upcall owned", __func__));
1577 		KASSERT((ku->ku_owner == td), ("%s: wrong owner", __func__));
1578 		KASSERT(!TD_CAN_UNBIND(td), ("%s: can unbind", __func__));
1579 		ku->ku_mflags = fuword32((void *)&ku->ku_mailbox->km_flags);
1580 		tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread);
1581 		if ((tmbx == NULL) || (tmbx == (void *)-1)) {
1582 			td->td_mailbox = NULL;
1583 		} else {
1584 			td->td_mailbox = tmbx;
1585 			if (td->td_standin == NULL)
1586 				thread_alloc_spare(td, NULL);
1587 			mtx_lock_spin(&sched_lock);
1588 			if (ku->ku_mflags & KMF_NOUPCALL)
1589 				td->td_flags &= ~TDF_CAN_UNBIND;
1590 			else
1591 				td->td_flags |= TDF_CAN_UNBIND;
1592 			mtx_unlock_spin(&sched_lock);
1593 		}
1594 	}
1595 }
1596 
1597 /*
1598  * The extra work we go through if we are a threaded process when we
1599  * return to userland.
1600  *
1601  * If we are a KSE process and returning to user mode, check for
1602  * extra work to do before we return (e.g. for more syscalls
1603  * to complete first).  If we were in a critical section, we should
1604  * just return to let it finish. Same if we were in the UTS (in
1605  * which case the mailbox's context's busy indicator will be set).
1606  * The only traps we suport will have set the mailbox.
1607  * We will clear it here.
1608  */
1609 int
1610 thread_userret(struct thread *td, struct trapframe *frame)
1611 {
1612 	int error = 0, upcalls, uts_crit;
1613 	struct kse_upcall *ku;
1614 	struct ksegrp *kg, *kg2;
1615 	struct proc *p;
1616 	struct timespec ts;
1617 
1618 	p = td->td_proc;
1619 	kg = td->td_ksegrp;
1620 	ku = td->td_upcall;
1621 
1622 	/* Nothing to do with bound thread */
1623 	if (!(td->td_flags & TDF_SA))
1624 		return (0);
1625 
1626 	/*
1627 	 * Stat clock interrupt hit in userland, it
1628 	 * is returning from interrupt, charge thread's
1629 	 * userland time for UTS.
1630 	 */
1631 	if (td->td_flags & TDF_USTATCLOCK) {
1632 		thread_update_usr_ticks(td, 1);
1633 		mtx_lock_spin(&sched_lock);
1634 		td->td_flags &= ~TDF_USTATCLOCK;
1635 		mtx_unlock_spin(&sched_lock);
1636 		if (kg->kg_completed ||
1637 		    (td->td_upcall->ku_flags & KUF_DOUPCALL))
1638 			thread_user_enter(p, td);
1639 	}
1640 
1641 	uts_crit = (td->td_mailbox == NULL);
1642 	/*
1643 	 * Optimisation:
1644 	 * This thread has not started any upcall.
1645 	 * If there is no work to report other than ourself,
1646 	 * then it can return direct to userland.
1647 	 */
1648 	if (TD_CAN_UNBIND(td)) {
1649 		mtx_lock_spin(&sched_lock);
1650 		td->td_flags &= ~TDF_CAN_UNBIND;
1651 		if ((td->td_flags & TDF_NEEDSIGCHK) == 0 &&
1652 		    (kg->kg_completed == NULL) &&
1653 		    (ku->ku_flags & KUF_DOUPCALL) == 0 &&
1654 		    (kg->kg_upquantum && ticks < kg->kg_nextupcall)) {
1655 			mtx_unlock_spin(&sched_lock);
1656 			thread_update_usr_ticks(td, 0);
1657 			nanotime(&ts);
1658 			error = copyout(&ts,
1659 				(caddr_t)&ku->ku_mailbox->km_timeofday,
1660 				sizeof(ts));
1661 			td->td_mailbox = 0;
1662 			ku->ku_mflags = 0;
1663 			if (error)
1664 				goto out;
1665 			return (0);
1666 		}
1667 		mtx_unlock_spin(&sched_lock);
1668 		error = thread_export_context(td);
1669 		if (error) {
1670 			/*
1671 			 * Failing to do the KSE operation just defaults
1672 			 * back to synchonous operation, so just return from
1673 			 * the syscall.
1674 			 */
1675 			goto out;
1676 		}
1677 		/*
1678 		 * There is something to report, and we own an upcall
1679 		 * strucuture, we can go to userland.
1680 		 * Turn ourself into an upcall thread.
1681 		 */
1682 		td->td_pflags |= TDP_UPCALLING;
1683 	} else if (td->td_mailbox && (ku == NULL)) {
1684 		/*
1685 		 * Because we are exiting, SIGKILL and SIGSTOP shouldn't
1686 		 * be posted to us anymore, otherwise they will be lost.
1687 		 */
1688 		mtx_lock_spin(&sched_lock);
1689 		td->td_flags |= TDF_NOSIGPOST;
1690 		mtx_unlock_spin(&sched_lock);
1691 		error = thread_export_context(td);
1692 		/* possibly upcall with error? */
1693 		PROC_LOCK(p);
1694 		/*
1695 		 * There are upcall threads waiting for
1696 		 * work to do, wake one of them up.
1697 		 * XXXKSE Maybe wake all of them up.
1698 		 */
1699 		if (!error && kg->kg_upsleeps)
1700 			wakeup_one(&kg->kg_completed);
1701 		mtx_lock_spin(&sched_lock);
1702 		thread_stopped(p);
1703 		thread_exit();
1704 		/* NOTREACHED */
1705 	}
1706 
1707 	KASSERT(ku != NULL, ("upcall is NULL\n"));
1708 	KASSERT(TD_CAN_UNBIND(td) == 0, ("can unbind"));
1709 
1710 	if (p->p_numthreads > max_threads_per_proc) {
1711 		max_threads_hits++;
1712 		PROC_LOCK(p);
1713 		mtx_lock_spin(&sched_lock);
1714 		p->p_maxthrwaits++;
1715 		while (p->p_numthreads > max_threads_per_proc) {
1716 			upcalls = 0;
1717 			FOREACH_KSEGRP_IN_PROC(p, kg2) {
1718 				if (kg2->kg_numupcalls == 0)
1719 					upcalls++;
1720 				else
1721 					upcalls += kg2->kg_numupcalls;
1722 			}
1723 			if (upcalls >= max_threads_per_proc)
1724 				break;
1725 			mtx_unlock_spin(&sched_lock);
1726 			if (msleep(&p->p_numthreads, &p->p_mtx, PPAUSE|PCATCH,
1727 			    "maxthreads", NULL)) {
1728 				mtx_lock_spin(&sched_lock);
1729 				break;
1730 			} else {
1731 				mtx_lock_spin(&sched_lock);
1732 			}
1733 		}
1734 		p->p_maxthrwaits--;
1735 		mtx_unlock_spin(&sched_lock);
1736 		PROC_UNLOCK(p);
1737 	}
1738 
1739 	if (td->td_pflags & TDP_UPCALLING) {
1740 		uts_crit = 0;
1741 		kg->kg_nextupcall = ticks+kg->kg_upquantum;
1742 		/*
1743 		 * There is no more work to do and we are going to ride
1744 		 * this thread up to userland as an upcall.
1745 		 * Do the last parts of the setup needed for the upcall.
1746 		 */
1747 		CTR3(KTR_PROC, "userret: upcall thread %p (pid %d, %s)",
1748 		    td, td->td_proc->p_pid, td->td_proc->p_comm);
1749 
1750 		td->td_pflags &= ~TDP_UPCALLING;
1751 		if (ku->ku_flags & KUF_DOUPCALL) {
1752 			mtx_lock_spin(&sched_lock);
1753 			ku->ku_flags &= ~KUF_DOUPCALL;
1754 			mtx_unlock_spin(&sched_lock);
1755 		}
1756 		/*
1757 		 * Set user context to the UTS
1758 		 */
1759 		if (!(ku->ku_mflags & KMF_NOUPCALL)) {
1760 			cpu_set_upcall_kse(td, ku);
1761 			error = suword(&ku->ku_mailbox->km_curthread, 0);
1762 			if (error)
1763 				goto out;
1764 		}
1765 
1766 		/*
1767 		 * Unhook the list of completed threads.
1768 		 * anything that completes after this gets to
1769 		 * come in next time.
1770 		 * Put the list of completed thread mailboxes on
1771 		 * this KSE's mailbox.
1772 		 */
1773 		if (!(ku->ku_mflags & KMF_NOCOMPLETED) &&
1774 		    (error = thread_link_mboxes(kg, ku)) != 0)
1775 			goto out;
1776 	}
1777 	if (!uts_crit) {
1778 		nanotime(&ts);
1779 		error = copyout(&ts, &ku->ku_mailbox->km_timeofday, sizeof(ts));
1780 	}
1781 
1782 out:
1783 	if (error) {
1784 		/*
1785 		 * Things are going to be so screwed we should just kill
1786 		 * the process.
1787 		 * how do we do that?
1788 		 */
1789 		PROC_LOCK(td->td_proc);
1790 		psignal(td->td_proc, SIGSEGV);
1791 		PROC_UNLOCK(td->td_proc);
1792 	} else {
1793 		/*
1794 		 * Optimisation:
1795 		 * Ensure that we have a spare thread available,
1796 		 * for when we re-enter the kernel.
1797 		 */
1798 		if (td->td_standin == NULL)
1799 			thread_alloc_spare(td, NULL);
1800 	}
1801 
1802 	ku->ku_mflags = 0;
1803 	/*
1804 	 * Clear thread mailbox first, then clear system tick count.
1805 	 * The order is important because thread_statclock() use
1806 	 * mailbox pointer to see if it is an userland thread or
1807 	 * an UTS kernel thread.
1808 	 */
1809 	td->td_mailbox = NULL;
1810 	td->td_usticks = 0;
1811 	return (error);	/* go sync */
1812 }
1813 
1814 /*
1815  * Enforce single-threading.
1816  *
1817  * Returns 1 if the caller must abort (another thread is waiting to
1818  * exit the process or similar). Process is locked!
1819  * Returns 0 when you are successfully the only thread running.
1820  * A process has successfully single threaded in the suspend mode when
1821  * There are no threads in user mode. Threads in the kernel must be
1822  * allowed to continue until they get to the user boundary. They may even
1823  * copy out their return values and data before suspending. They may however be
1824  * accellerated in reaching the user boundary as we will wake up
1825  * any sleeping threads that are interruptable. (PCATCH).
1826  */
1827 int
1828 thread_single(int force_exit)
1829 {
1830 	struct thread *td;
1831 	struct thread *td2;
1832 	struct proc *p;
1833 
1834 	td = curthread;
1835 	p = td->td_proc;
1836 	mtx_assert(&Giant, MA_OWNED);
1837 	PROC_LOCK_ASSERT(p, MA_OWNED);
1838 	KASSERT((td != NULL), ("curthread is NULL"));
1839 
1840 	if ((p->p_flag & P_SA) == 0 && p->p_numthreads == 1)
1841 		return (0);
1842 
1843 	/* Is someone already single threading? */
1844 	if (p->p_singlethread)
1845 		return (1);
1846 
1847 	if (force_exit == SINGLE_EXIT) {
1848 		p->p_flag |= P_SINGLE_EXIT;
1849 	} else
1850 		p->p_flag &= ~P_SINGLE_EXIT;
1851 	p->p_flag |= P_STOPPED_SINGLE;
1852 	mtx_lock_spin(&sched_lock);
1853 	p->p_singlethread = td;
1854 	while ((p->p_numthreads - p->p_suspcount) != 1) {
1855 		FOREACH_THREAD_IN_PROC(p, td2) {
1856 			if (td2 == td)
1857 				continue;
1858 			td2->td_flags |= TDF_ASTPENDING;
1859 			if (TD_IS_INHIBITED(td2)) {
1860 				if (force_exit == SINGLE_EXIT) {
1861 					if (TD_IS_SUSPENDED(td2)) {
1862 						thread_unsuspend_one(td2);
1863 					}
1864 					if (TD_ON_SLEEPQ(td2) &&
1865 					    (td2->td_flags & TDF_SINTR)) {
1866 						if (td2->td_flags & TDF_CVWAITQ)
1867 							cv_abort(td2);
1868 						else
1869 							abortsleep(td2);
1870 					}
1871 				} else {
1872 					if (TD_IS_SUSPENDED(td2))
1873 						continue;
1874 					/*
1875 					 * maybe other inhibitted states too?
1876 					 * XXXKSE Is it totally safe to
1877 					 * suspend a non-interruptable thread?
1878 					 */
1879 					if (td2->td_inhibitors &
1880 					    (TDI_SLEEPING | TDI_SWAPPED))
1881 						thread_suspend_one(td2);
1882 				}
1883 			}
1884 		}
1885 		/*
1886 		 * Maybe we suspended some threads.. was it enough?
1887 		 */
1888 		if ((p->p_numthreads - p->p_suspcount) == 1)
1889 			break;
1890 
1891 		/*
1892 		 * Wake us up when everyone else has suspended.
1893 		 * In the mean time we suspend as well.
1894 		 */
1895 		thread_suspend_one(td);
1896 		DROP_GIANT();
1897 		PROC_UNLOCK(p);
1898 		p->p_stats->p_ru.ru_nvcsw++;
1899 		mi_switch();
1900 		mtx_unlock_spin(&sched_lock);
1901 		PICKUP_GIANT();
1902 		PROC_LOCK(p);
1903 		mtx_lock_spin(&sched_lock);
1904 	}
1905 	if (force_exit == SINGLE_EXIT) {
1906 		if (td->td_upcall)
1907 			upcall_remove(td);
1908 		kse_purge(p, td);
1909 	}
1910 	mtx_unlock_spin(&sched_lock);
1911 	return (0);
1912 }
1913 
1914 /*
1915  * Called in from locations that can safely check to see
1916  * whether we have to suspend or at least throttle for a
1917  * single-thread event (e.g. fork).
1918  *
1919  * Such locations include userret().
1920  * If the "return_instead" argument is non zero, the thread must be able to
1921  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
1922  *
1923  * The 'return_instead' argument tells the function if it may do a
1924  * thread_exit() or suspend, or whether the caller must abort and back
1925  * out instead.
1926  *
1927  * If the thread that set the single_threading request has set the
1928  * P_SINGLE_EXIT bit in the process flags then this call will never return
1929  * if 'return_instead' is false, but will exit.
1930  *
1931  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
1932  *---------------+--------------------+---------------------
1933  *       0       | returns 0          |   returns 0 or 1
1934  *               | when ST ends       |   immediatly
1935  *---------------+--------------------+---------------------
1936  *       1       | thread exits       |   returns 1
1937  *               |                    |  immediatly
1938  * 0 = thread_exit() or suspension ok,
1939  * other = return error instead of stopping the thread.
1940  *
1941  * While a full suspension is under effect, even a single threading
1942  * thread would be suspended if it made this call (but it shouldn't).
1943  * This call should only be made from places where
1944  * thread_exit() would be safe as that may be the outcome unless
1945  * return_instead is set.
1946  */
1947 int
1948 thread_suspend_check(int return_instead)
1949 {
1950 	struct thread *td;
1951 	struct proc *p;
1952 
1953 	td = curthread;
1954 	p = td->td_proc;
1955 	PROC_LOCK_ASSERT(p, MA_OWNED);
1956 	while (P_SHOULDSTOP(p)) {
1957 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1958 			KASSERT(p->p_singlethread != NULL,
1959 			    ("singlethread not set"));
1960 			/*
1961 			 * The only suspension in action is a
1962 			 * single-threading. Single threader need not stop.
1963 			 * XXX Should be safe to access unlocked
1964 			 * as it can only be set to be true by us.
1965 			 */
1966 			if (p->p_singlethread == td)
1967 				return (0);	/* Exempt from stopping. */
1968 		}
1969 		if (return_instead)
1970 			return (1);
1971 
1972 		mtx_lock_spin(&sched_lock);
1973 		thread_stopped(p);
1974 		/*
1975 		 * If the process is waiting for us to exit,
1976 		 * this thread should just suicide.
1977 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1978 		 */
1979 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1980 			while (mtx_owned(&Giant))
1981 				mtx_unlock(&Giant);
1982 			if (p->p_flag & P_SA)
1983 				thread_exit();
1984 			else
1985 				thr_exit1();
1986 		}
1987 
1988 		/*
1989 		 * When a thread suspends, it just
1990 		 * moves to the processes's suspend queue
1991 		 * and stays there.
1992 		 */
1993 		thread_suspend_one(td);
1994 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1995 			if (p->p_numthreads == p->p_suspcount) {
1996 				thread_unsuspend_one(p->p_singlethread);
1997 			}
1998 		}
1999 		DROP_GIANT();
2000 		PROC_UNLOCK(p);
2001 		p->p_stats->p_ru.ru_nivcsw++;
2002 		mi_switch();
2003 		mtx_unlock_spin(&sched_lock);
2004 		PICKUP_GIANT();
2005 		PROC_LOCK(p);
2006 	}
2007 	return (0);
2008 }
2009 
2010 void
2011 thread_suspend_one(struct thread *td)
2012 {
2013 	struct proc *p = td->td_proc;
2014 
2015 	mtx_assert(&sched_lock, MA_OWNED);
2016 	PROC_LOCK_ASSERT(p, MA_OWNED);
2017 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
2018 	p->p_suspcount++;
2019 	TD_SET_SUSPENDED(td);
2020 	TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq);
2021 	/*
2022 	 * Hack: If we are suspending but are on the sleep queue
2023 	 * then we are in msleep or the cv equivalent. We
2024 	 * want to look like we have two Inhibitors.
2025 	 * May already be set.. doesn't matter.
2026 	 */
2027 	if (TD_ON_SLEEPQ(td))
2028 		TD_SET_SLEEPING(td);
2029 }
2030 
2031 void
2032 thread_unsuspend_one(struct thread *td)
2033 {
2034 	struct proc *p = td->td_proc;
2035 
2036 	mtx_assert(&sched_lock, MA_OWNED);
2037 	PROC_LOCK_ASSERT(p, MA_OWNED);
2038 	TAILQ_REMOVE(&p->p_suspended, td, td_runq);
2039 	TD_CLR_SUSPENDED(td);
2040 	p->p_suspcount--;
2041 	setrunnable(td);
2042 }
2043 
2044 /*
2045  * Allow all threads blocked by single threading to continue running.
2046  */
2047 void
2048 thread_unsuspend(struct proc *p)
2049 {
2050 	struct thread *td;
2051 
2052 	mtx_assert(&sched_lock, MA_OWNED);
2053 	PROC_LOCK_ASSERT(p, MA_OWNED);
2054 	if (!P_SHOULDSTOP(p)) {
2055 		while (( td = TAILQ_FIRST(&p->p_suspended))) {
2056 			thread_unsuspend_one(td);
2057 		}
2058 	} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
2059 	    (p->p_numthreads == p->p_suspcount)) {
2060 		/*
2061 		 * Stopping everything also did the job for the single
2062 		 * threading request. Now we've downgraded to single-threaded,
2063 		 * let it continue.
2064 		 */
2065 		thread_unsuspend_one(p->p_singlethread);
2066 	}
2067 }
2068 
2069 void
2070 thread_single_end(void)
2071 {
2072 	struct thread *td;
2073 	struct proc *p;
2074 
2075 	td = curthread;
2076 	p = td->td_proc;
2077 	PROC_LOCK_ASSERT(p, MA_OWNED);
2078 	p->p_flag &= ~P_STOPPED_SINGLE;
2079 	mtx_lock_spin(&sched_lock);
2080 	p->p_singlethread = NULL;
2081 	/*
2082 	 * If there are other threads they mey now run,
2083 	 * unless of course there is a blanket 'stop order'
2084 	 * on the process. The single threader must be allowed
2085 	 * to continue however as this is a bad place to stop.
2086 	 */
2087 	if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
2088 		while (( td = TAILQ_FIRST(&p->p_suspended))) {
2089 			thread_unsuspend_one(td);
2090 		}
2091 	}
2092 	mtx_unlock_spin(&sched_lock);
2093 }
2094 
2095 
2096