xref: /freebsd/sys/kern/kern_thr.c (revision 086ce467adec42d58414fdb4d54c2b6819cf0c07)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2003, Jeffrey Roberson <jeff@freebsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "opt_ktrace.h"
30 #include "opt_posix.h"
31 #include "opt_hwpmc_hooks.h"
32 #include "opt_hwt_hooks.h"
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #ifdef KTRACE
36 #include <sys/ktrace.h>
37 #endif
38 #include <sys/limits.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/priv.h>
42 #include <sys/proc.h>
43 #include <sys/posix4.h>
44 #include <sys/ptrace.h>
45 #include <sys/racct.h>
46 #include <sys/resourcevar.h>
47 #include <sys/rtprio.h>
48 #include <sys/rwlock.h>
49 #include <sys/sched.h>
50 #include <sys/sysctl.h>
51 #include <sys/smp.h>
52 #include <sys/syscallsubr.h>
53 #include <sys/sysent.h>
54 #include <sys/sysproto.h>
55 #include <sys/signalvar.h>
56 #include <sys/sysctl.h>
57 #include <sys/thr.h>
58 #include <sys/ucontext.h>
59 #include <sys/umtxvar.h>
60 #ifdef	HWPMC_HOOKS
61 #include <sys/pmckern.h>
62 #endif
63 #ifdef HWT_HOOKS
64 #include <dev/hwt/hwt_hook.h>
65 #endif
66 
67 #include <machine/frame.h>
68 
69 #include <security/audit/audit.h>
70 
71 static SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
72     "thread allocation");
73 
74 int max_threads_per_proc = 1500;
75 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
76     &max_threads_per_proc, 0, "Limit on threads per proc");
77 
78 static int max_threads_hits;
79 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
80     &max_threads_hits, 0, "kern.threads.max_threads_per_proc hit count");
81 
82 #ifdef COMPAT_FREEBSD32
83 
84 static inline int
85 suword_lwpid(void *addr, lwpid_t lwpid)
86 {
87 	int error;
88 
89 	if (SV_CURPROC_FLAG(SV_LP64))
90 		error = suword(addr, lwpid);
91 	else
92 		error = suword32(addr, lwpid);
93 	return (error);
94 }
95 
96 #else
97 #define suword_lwpid	suword
98 #endif
99 
100 /*
101  * System call interface.
102  */
103 
104 struct thr_create_initthr_args {
105 	ucontext_t ctx;
106 	long *tid;
107 };
108 
109 static int
110 thr_create_initthr(struct thread *td, void *thunk)
111 {
112 	struct thr_create_initthr_args *args;
113 
114 	/* Copy out the child tid. */
115 	args = thunk;
116 	if (args->tid != NULL && suword_lwpid(args->tid, td->td_tid))
117 		return (EFAULT);
118 
119 	return (set_mcontext(td, &args->ctx.uc_mcontext));
120 }
121 
122 int
123 sys_thr_create(struct thread *td, struct thr_create_args *uap)
124     /* ucontext_t *ctx, long *id, int flags */
125 {
126 	struct thr_create_initthr_args args;
127 	int error;
128 
129 	if ((error = copyin(uap->ctx, &args.ctx, sizeof(args.ctx))))
130 		return (error);
131 	args.tid = uap->id;
132 	return (thread_create(td, NULL, thr_create_initthr, &args));
133 }
134 
135 int
136 sys_thr_new(struct thread *td, struct thr_new_args *uap)
137     /* struct thr_param * */
138 {
139 	struct thr_param param;
140 	int error;
141 
142 	if (uap->param_size < 0 || uap->param_size > sizeof(param))
143 		return (EINVAL);
144 	bzero(&param, sizeof(param));
145 	if ((error = copyin(uap->param, &param, uap->param_size)))
146 		return (error);
147 	return (kern_thr_new(td, &param));
148 }
149 
150 static int
151 thr_new_initthr(struct thread *td, void *thunk)
152 {
153 	stack_t stack;
154 	struct thr_param *param;
155 	int error;
156 
157 	/*
158 	 * Here we copy out tid to two places, one for child and one
159 	 * for parent, because pthread can create a detached thread,
160 	 * if parent wants to safely access child tid, it has to provide
161 	 * its storage, because child thread may exit quickly and
162 	 * memory is freed before parent thread can access it.
163 	 */
164 	param = thunk;
165 	if ((param->child_tid != NULL &&
166 	    suword_lwpid(param->child_tid, td->td_tid)) ||
167 	    (param->parent_tid != NULL &&
168 	    suword_lwpid(param->parent_tid, td->td_tid)))
169 		return (EFAULT);
170 
171 	/* Set up our machine context. */
172 	stack.ss_sp = param->stack_base;
173 	stack.ss_size = param->stack_size;
174 	/* Set upcall address to user thread entry function. */
175 	error = cpu_set_upcall(td, param->start_func, param->arg, &stack);
176 	if (error != 0)
177 		return (error);
178 	/* Setup user TLS address and TLS pointer register. */
179 	return (cpu_set_user_tls(td, param->tls_base, param->flags));
180 }
181 
182 int
183 kern_thr_new(struct thread *td, struct thr_param *param)
184 {
185 	struct rtprio rtp, *rtpp;
186 	int error;
187 
188 	if ((param->flags & ~(THR_SUSPENDED | THR_SYSTEM_SCOPE |
189 	    THR_C_RUNTIME)) != 0)
190 		return (EINVAL);
191 	rtpp = NULL;
192 	if (param->rtp != 0) {
193 		error = copyin(param->rtp, &rtp, sizeof(struct rtprio));
194 		if (error)
195 			return (error);
196 		rtpp = &rtp;
197 	}
198 #ifdef KTRACE
199 	if (KTRPOINT(td, KTR_STRUCT))
200 		ktrthrparam(param);
201 #endif
202 	return (thread_create(td, rtpp, thr_new_initthr, param));
203 }
204 
205 int
206 thread_create(struct thread *td, struct rtprio *rtp,
207     int (*initialize_thread)(struct thread *, void *), void *thunk)
208 {
209 	struct thread *newtd;
210 	struct proc *p;
211 	int error;
212 
213 	p = td->td_proc;
214 
215 	if (rtp != NULL) {
216 		switch(rtp->type) {
217 		case RTP_PRIO_REALTIME:
218 		case RTP_PRIO_FIFO:
219 			/* Only root can set scheduler policy */
220 			if (priv_check(td, PRIV_SCHED_SETPOLICY) != 0)
221 				return (EPERM);
222 			if (rtp->prio > RTP_PRIO_MAX)
223 				return (EINVAL);
224 			break;
225 		case RTP_PRIO_NORMAL:
226 			rtp->prio = 0;
227 			break;
228 		default:
229 			return (EINVAL);
230 		}
231 	}
232 
233 #ifdef RACCT
234 	if (racct_enable) {
235 		PROC_LOCK(p);
236 		error = racct_add(p, RACCT_NTHR, 1);
237 		PROC_UNLOCK(p);
238 		if (error != 0)
239 			return (EPROCLIM);
240 	}
241 #endif
242 
243 	/* Initialize our td */
244 	error = kern_thr_alloc(p, 0, &newtd);
245 	if (error)
246 		goto fail;
247 
248 	bzero(&newtd->td_startzero,
249 	    __rangeof(struct thread, td_startzero, td_endzero));
250 	bcopy(&td->td_startcopy, &newtd->td_startcopy,
251 	    __rangeof(struct thread, td_startcopy, td_endcopy));
252 	newtd->td_proc = td->td_proc;
253 	newtd->td_rb_list = newtd->td_rbp_list = newtd->td_rb_inact = 0;
254 	thread_cow_get(newtd, td);
255 
256 	cpu_copy_thread(newtd, td);
257 
258 	error = initialize_thread(newtd, thunk);
259 	if (error != 0) {
260 		thread_cow_free(newtd);
261 		thread_free(newtd);
262 		goto fail;
263 	}
264 
265 	PROC_LOCK(p);
266 	p->p_flag |= P_HADTHREADS;
267 	thread_link(newtd, p);
268 	bcopy(p->p_comm, newtd->td_name, sizeof(newtd->td_name));
269 	thread_lock(td);
270 	/* let the scheduler know about these things. */
271 	sched_fork_thread(td, newtd);
272 	thread_unlock(td);
273 	if (P_SHOULDSTOP(p))
274 		ast_sched(newtd, TDA_SUSPEND);
275 	if (p->p_ptevents & PTRACE_LWP)
276 		newtd->td_dbgflags |= TDB_BORN;
277 
278 	PROC_UNLOCK(p);
279 #ifdef	HWPMC_HOOKS
280 	if (PMC_PROC_IS_USING_PMCS(p))
281 		PMC_CALL_HOOK(newtd, PMC_FN_THR_CREATE, NULL);
282 	else if (PMC_SYSTEM_SAMPLING_ACTIVE())
283 		PMC_CALL_HOOK_UNLOCKED(newtd, PMC_FN_THR_CREATE_LOG, NULL);
284 #endif
285 
286 #ifdef HWT_HOOKS
287 	HWT_CALL_HOOK(newtd, HWT_THREAD_CREATE, NULL);
288 #endif
289 
290 	tidhash_add(newtd);
291 
292 	/* ignore timesharing class */
293 	if (rtp != NULL && !(td->td_pri_class == PRI_TIMESHARE &&
294 	    rtp->type == RTP_PRIO_NORMAL))
295 		rtp_to_pri(rtp, newtd);
296 
297 	thread_lock(newtd);
298 	TD_SET_CAN_RUN(newtd);
299 	sched_add(newtd, SRQ_BORING);
300 
301 	return (0);
302 
303 fail:
304 #ifdef RACCT
305 	if (racct_enable) {
306 		PROC_LOCK(p);
307 		racct_sub(p, RACCT_NTHR, 1);
308 		PROC_UNLOCK(p);
309 	}
310 #endif
311 	return (error);
312 }
313 
314 int
315 sys_thr_self(struct thread *td, struct thr_self_args *uap)
316     /* long *id */
317 {
318 	int error;
319 
320 	error = suword_lwpid(uap->id, (unsigned)td->td_tid);
321 	if (error == -1)
322 		return (EFAULT);
323 	return (0);
324 }
325 
326 int
327 sys_thr_exit(struct thread *td, struct thr_exit_args *uap)
328     /* long *state */
329 {
330 
331 	umtx_thread_exit(td);
332 
333 	/* Signal userland that it can free the stack. */
334 	if ((void *)uap->state != NULL) {
335 		(void)suword_lwpid(uap->state, 1);
336 		(void)kern_umtx_wake(td, uap->state, INT_MAX, 0);
337 	}
338 
339 	return (kern_thr_exit(td));
340 }
341 
342 int
343 kern_thr_exit(struct thread *td)
344 {
345 	struct proc *p;
346 
347 	p = td->td_proc;
348 
349 	/*
350 	 * Clear kernel ASTs in advance of selecting the last exiting
351 	 * thread and acquiring schedulers locks.  It is fine to
352 	 * clear the ASTs here even if we are not going to exit after
353 	 * all.  On the other hand, leaving them pending could trigger
354 	 * execution in subsystems in a context where they are not
355 	 * prepared to handle top kernel actions, even in execution of
356 	 * an unrelated thread.
357 	 */
358 	ast_kclear(td);
359 
360 	/*
361 	 * If all of the threads in a process call this routine to
362 	 * exit (e.g. all threads call pthread_exit()), exactly one
363 	 * thread should return to the caller to terminate the process
364 	 * instead of the thread.
365 	 *
366 	 * Checking p_numthreads alone is not sufficient since threads
367 	 * might be committed to terminating while the PROC_LOCK is
368 	 * dropped in either ptracestop() or while removing this thread
369 	 * from the tidhash.  Instead, the p_pendingexits field holds
370 	 * the count of threads in either of those states and a thread
371 	 * is considered the "last" thread if all of the other threads
372 	 * in a process are already terminating.
373 	 */
374 	PROC_LOCK(p);
375 	if (p->p_numthreads == p->p_pendingexits + 1) {
376 		/*
377 		 * Ignore attempts to shut down last thread in the
378 		 * proc.  This will actually call _exit(2) in the
379 		 * usermode trampoline when it returns.
380 		 */
381 		PROC_UNLOCK(p);
382 		return (0);
383 	}
384 
385 	if (p->p_sysent->sv_ontdexit != NULL)
386 		p->p_sysent->sv_ontdexit(td);
387 
388 	td->td_dbgflags |= TDB_EXIT;
389 	if (p->p_ptevents & PTRACE_LWP) {
390 		p->p_pendingexits++;
391 		ptracestop(td, SIGTRAP, NULL);
392 		p->p_pendingexits--;
393 	}
394 	tidhash_remove(td);
395 
396 	/*
397 	 * The check above should prevent all other threads from this
398 	 * process from exiting while the PROC_LOCK is dropped, so
399 	 * there must be at least one other thread other than the
400 	 * current thread.
401 	 */
402 	KASSERT(p->p_numthreads > 1, ("too few threads"));
403 	racct_sub(p, RACCT_NTHR, 1);
404 	tdsigcleanup(td);
405 
406 #ifdef AUDIT
407 	AUDIT_SYSCALL_EXIT(0, td);
408 #endif
409 
410 	PROC_SLOCK(p);
411 	thread_stopped(p);
412 	thread_exit();
413 	/* NOTREACHED */
414 }
415 
416 int
417 sys_thr_kill(struct thread *td, struct thr_kill_args *uap)
418     /* long id, int sig */
419 {
420 	ksiginfo_t ksi;
421 	struct thread *ttd;
422 	struct proc *p;
423 	int error;
424 
425 	p = td->td_proc;
426 	ksiginfo_init(&ksi);
427 	ksi.ksi_signo = uap->sig;
428 	ksi.ksi_code = SI_LWP;
429 	ksi.ksi_pid = p->p_pid;
430 	ksi.ksi_uid = td->td_ucred->cr_ruid;
431 	if (uap->id == -1) {
432 		if (uap->sig != 0 && !_SIG_VALID(uap->sig)) {
433 			error = EINVAL;
434 		} else {
435 			error = ESRCH;
436 			PROC_LOCK(p);
437 			FOREACH_THREAD_IN_PROC(p, ttd) {
438 				if (ttd != td) {
439 					error = 0;
440 					if (uap->sig == 0)
441 						break;
442 					tdksignal(ttd, uap->sig, &ksi);
443 				}
444 			}
445 			PROC_UNLOCK(p);
446 		}
447 	} else {
448 		error = 0;
449 		ttd = tdfind((lwpid_t)uap->id, p->p_pid);
450 		if (ttd == NULL)
451 			return (ESRCH);
452 		if (uap->sig == 0)
453 			;
454 		else if (!_SIG_VALID(uap->sig))
455 			error = EINVAL;
456 		else
457 			tdksignal(ttd, uap->sig, &ksi);
458 		PROC_UNLOCK(ttd->td_proc);
459 	}
460 	return (error);
461 }
462 
463 int
464 sys_thr_kill2(struct thread *td, struct thr_kill2_args *uap)
465     /* pid_t pid, long id, int sig */
466 {
467 	ksiginfo_t ksi;
468 	struct thread *ttd;
469 	struct proc *p;
470 	int error;
471 
472 	AUDIT_ARG_SIGNUM(uap->sig);
473 
474 	ksiginfo_init(&ksi);
475 	ksi.ksi_signo = uap->sig;
476 	ksi.ksi_code = SI_LWP;
477 	ksi.ksi_pid = td->td_proc->p_pid;
478 	ksi.ksi_uid = td->td_ucred->cr_ruid;
479 	if (uap->id == -1) {
480 		if ((p = pfind(uap->pid)) == NULL)
481 			return (ESRCH);
482 		AUDIT_ARG_PROCESS(p);
483 		error = p_cansignal(td, p, uap->sig);
484 		if (error) {
485 			PROC_UNLOCK(p);
486 			return (error);
487 		}
488 		if (uap->sig != 0 && !_SIG_VALID(uap->sig)) {
489 			error = EINVAL;
490 		} else {
491 			error = ESRCH;
492 			FOREACH_THREAD_IN_PROC(p, ttd) {
493 				if (ttd != td) {
494 					error = 0;
495 					if (uap->sig == 0)
496 						break;
497 					tdksignal(ttd, uap->sig, &ksi);
498 				}
499 			}
500 		}
501 		PROC_UNLOCK(p);
502 	} else {
503 		ttd = tdfind((lwpid_t)uap->id, uap->pid);
504 		if (ttd == NULL)
505 			return (ESRCH);
506 		p = ttd->td_proc;
507 		AUDIT_ARG_PROCESS(p);
508 		error = p_cansignal(td, p, uap->sig);
509 		if (uap->sig == 0)
510 			;
511 		else if (!_SIG_VALID(uap->sig))
512 			error = EINVAL;
513 		else
514 			tdksignal(ttd, uap->sig, &ksi);
515 		PROC_UNLOCK(p);
516 	}
517 	return (error);
518 }
519 
520 int
521 sys_thr_suspend(struct thread *td, struct thr_suspend_args *uap)
522 	/* const struct timespec *timeout */
523 {
524 	struct timespec ts, *tsp;
525 	int error;
526 
527 	tsp = NULL;
528 	if (uap->timeout != NULL) {
529 		error = umtx_copyin_timeout(uap->timeout, &ts);
530 		if (error != 0)
531 			return (error);
532 		tsp = &ts;
533 	}
534 
535 	return (kern_thr_suspend(td, tsp));
536 }
537 
538 int
539 kern_thr_suspend(struct thread *td, struct timespec *tsp)
540 {
541 	struct proc *p = td->td_proc;
542 	struct timeval tv;
543 	int error = 0;
544 	int timo = 0;
545 
546 	if (td->td_pflags & TDP_WAKEUP) {
547 		td->td_pflags &= ~TDP_WAKEUP;
548 		return (0);
549 	}
550 
551 	if (tsp != NULL) {
552 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
553 			error = EWOULDBLOCK;
554 		else {
555 			TIMESPEC_TO_TIMEVAL(&tv, tsp);
556 			timo = tvtohz(&tv);
557 		}
558 	}
559 
560 	PROC_LOCK(p);
561 	if (error == 0 && (td->td_flags & TDF_THRWAKEUP) == 0)
562 		error = msleep((void *)td, &p->p_mtx,
563 			 PCATCH, "lthr", timo);
564 
565 	if (td->td_flags & TDF_THRWAKEUP) {
566 		thread_lock(td);
567 		td->td_flags &= ~TDF_THRWAKEUP;
568 		thread_unlock(td);
569 		PROC_UNLOCK(p);
570 		return (0);
571 	}
572 	PROC_UNLOCK(p);
573 	if (error == EWOULDBLOCK)
574 		error = ETIMEDOUT;
575 	else if (error == ERESTART) {
576 		if (timo != 0)
577 			error = EINTR;
578 	}
579 	return (error);
580 }
581 
582 int
583 sys_thr_wake(struct thread *td, struct thr_wake_args *uap)
584 	/* long id */
585 {
586 	struct proc *p;
587 	struct thread *ttd;
588 
589 	if (uap->id == td->td_tid) {
590 		td->td_pflags |= TDP_WAKEUP;
591 		return (0);
592 	}
593 
594 	p = td->td_proc;
595 	ttd = tdfind((lwpid_t)uap->id, p->p_pid);
596 	if (ttd == NULL)
597 		return (ESRCH);
598 	thread_lock(ttd);
599 	ttd->td_flags |= TDF_THRWAKEUP;
600 	thread_unlock(ttd);
601 	wakeup((void *)ttd);
602 	PROC_UNLOCK(p);
603 	return (0);
604 }
605 
606 int
607 sys_thr_set_name(struct thread *td, struct thr_set_name_args *uap)
608 {
609 	struct proc *p;
610 	char name[MAXCOMLEN + 1];
611 	struct thread *ttd;
612 	int error;
613 
614 	error = 0;
615 	name[0] = '\0';
616 	if (uap->name != NULL) {
617 		error = copyinstr(uap->name, name, sizeof(name), NULL);
618 		if (error == ENAMETOOLONG) {
619 			error = copyin(uap->name, name, sizeof(name) - 1);
620 			name[sizeof(name) - 1] = '\0';
621 		}
622 		if (error)
623 			return (error);
624 	}
625 	p = td->td_proc;
626 	ttd = tdfind((lwpid_t)uap->id, p->p_pid);
627 	if (ttd == NULL)
628 		return (ESRCH);
629 	strcpy(ttd->td_name, name);
630 #ifdef HWPMC_HOOKS
631 	if (PMC_PROC_IS_USING_PMCS(p) || PMC_SYSTEM_SAMPLING_ACTIVE())
632 		PMC_CALL_HOOK_UNLOCKED(ttd, PMC_FN_THR_CREATE_LOG, NULL);
633 #endif
634 #ifdef HWT_HOOKS
635 	HWT_CALL_HOOK(ttd, HWT_THREAD_SET_NAME, NULL);
636 #endif
637 #ifdef KTR
638 	sched_clear_tdname(ttd);
639 #endif
640 	PROC_UNLOCK(p);
641 	return (error);
642 }
643 
644 int
645 kern_thr_alloc(struct proc *p, int pages, struct thread **ntd)
646 {
647 
648 	/* Have race condition but it is cheap. */
649 	if (p->p_numthreads >= max_threads_per_proc) {
650 		++max_threads_hits;
651 		return (EPROCLIM);
652 	}
653 
654 	*ntd = thread_alloc(pages);
655 	if (*ntd == NULL)
656 		return (ENOMEM);
657 
658 	return (0);
659 }
660