1 /*- 2 * SPDX-License-Identifier: Beerware 3 * 4 * ---------------------------------------------------------------------------- 5 * "THE BEER-WARE LICENSE" (Revision 42): 6 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 7 * can do whatever you want with this stuff. If we meet some day, and you think 8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 9 * ---------------------------------------------------------------------------- 10 * 11 * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation 12 * 13 * Portions of this software were developed by Julien Ridoux at the University 14 * of Melbourne under sponsorship from the FreeBSD Foundation. 15 * 16 * Portions of this software were developed by Konstantin Belousov 17 * under sponsorship from the FreeBSD Foundation. 18 */ 19 20 #include <sys/cdefs.h> 21 __FBSDID("$FreeBSD$"); 22 23 #include "opt_ntp.h" 24 #include "opt_ffclock.h" 25 26 #include <sys/param.h> 27 #include <sys/kernel.h> 28 #include <sys/limits.h> 29 #include <sys/lock.h> 30 #include <sys/mutex.h> 31 #include <sys/proc.h> 32 #include <sys/sbuf.h> 33 #include <sys/sleepqueue.h> 34 #include <sys/sysctl.h> 35 #include <sys/syslog.h> 36 #include <sys/systm.h> 37 #include <sys/timeffc.h> 38 #include <sys/timepps.h> 39 #include <sys/timetc.h> 40 #include <sys/timex.h> 41 #include <sys/vdso.h> 42 43 /* 44 * A large step happens on boot. This constant detects such steps. 45 * It is relatively small so that ntp_update_second gets called enough 46 * in the typical 'missed a couple of seconds' case, but doesn't loop 47 * forever when the time step is large. 48 */ 49 #define LARGE_STEP 200 50 51 /* 52 * Implement a dummy timecounter which we can use until we get a real one 53 * in the air. This allows the console and other early stuff to use 54 * time services. 55 */ 56 57 static u_int 58 dummy_get_timecount(struct timecounter *tc) 59 { 60 static u_int now; 61 62 return (++now); 63 } 64 65 static struct timecounter dummy_timecounter = { 66 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 67 }; 68 69 struct timehands { 70 /* These fields must be initialized by the driver. */ 71 struct timecounter *th_counter; 72 int64_t th_adjustment; 73 uint64_t th_scale; 74 u_int th_large_delta; 75 u_int th_offset_count; 76 struct bintime th_offset; 77 struct bintime th_bintime; 78 struct timeval th_microtime; 79 struct timespec th_nanotime; 80 struct bintime th_boottime; 81 /* Fields not to be copied in tc_windup start with th_generation. */ 82 u_int th_generation; 83 struct timehands *th_next; 84 }; 85 86 static struct timehands ths[16] = { 87 [0] = { 88 .th_counter = &dummy_timecounter, 89 .th_scale = (uint64_t)-1 / 1000000, 90 .th_large_delta = 1000000, 91 .th_offset = { .sec = 1 }, 92 .th_generation = 1, 93 }, 94 }; 95 96 static struct timehands *volatile timehands = &ths[0]; 97 struct timecounter *timecounter = &dummy_timecounter; 98 static struct timecounter *timecounters = &dummy_timecounter; 99 100 /* Mutex to protect the timecounter list. */ 101 static struct mtx tc_lock; 102 MTX_SYSINIT(tc_lock, &tc_lock, "tc", MTX_DEF); 103 104 int tc_min_ticktock_freq = 1; 105 106 volatile time_t time_second = 1; 107 volatile time_t time_uptime = 1; 108 109 /* 110 * The system time is always computed by summing the estimated boot time and the 111 * system uptime. The timehands track boot time, but it changes when the system 112 * time is set by the user, stepped by ntpd or adjusted when resuming. It 113 * is set to new_time - uptime. 114 */ 115 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 116 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, 117 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 118 sysctl_kern_boottime, "S,timeval", 119 "Estimated system boottime"); 120 121 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 122 ""); 123 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, 124 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 125 ""); 126 127 static int timestepwarnings; 128 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RWTUN, 129 ×tepwarnings, 0, "Log time steps"); 130 131 static int timehands_count = 2; 132 SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count, 133 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 134 &timehands_count, 0, "Count of timehands in rotation"); 135 136 struct bintime bt_timethreshold; 137 struct bintime bt_tickthreshold; 138 sbintime_t sbt_timethreshold; 139 sbintime_t sbt_tickthreshold; 140 struct bintime tc_tick_bt; 141 sbintime_t tc_tick_sbt; 142 int tc_precexp; 143 int tc_timepercentage = TC_DEFAULTPERC; 144 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 145 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 146 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 147 sysctl_kern_timecounter_adjprecision, "I", 148 "Allowed time interval deviation in percents"); 149 150 volatile int rtc_generation = 1; 151 152 static int tc_chosen; /* Non-zero if a specific tc was chosen via sysctl. */ 153 static char tc_from_tunable[16]; 154 155 static void tc_windup(struct bintime *new_boottimebin); 156 static void cpu_tick_calibrate(int); 157 158 void dtrace_getnanotime(struct timespec *tsp); 159 void dtrace_getnanouptime(struct timespec *tsp); 160 161 static int 162 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 163 { 164 struct timeval boottime; 165 166 getboottime(&boottime); 167 168 /* i386 is the only arch which uses a 32bits time_t */ 169 #ifdef __amd64__ 170 #ifdef SCTL_MASK32 171 int tv[2]; 172 173 if (req->flags & SCTL_MASK32) { 174 tv[0] = boottime.tv_sec; 175 tv[1] = boottime.tv_usec; 176 return (SYSCTL_OUT(req, tv, sizeof(tv))); 177 } 178 #endif 179 #endif 180 return (SYSCTL_OUT(req, &boottime, sizeof(boottime))); 181 } 182 183 static int 184 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 185 { 186 u_int ncount; 187 struct timecounter *tc = arg1; 188 189 ncount = tc->tc_get_timecount(tc); 190 return (sysctl_handle_int(oidp, &ncount, 0, req)); 191 } 192 193 static int 194 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 195 { 196 uint64_t freq; 197 struct timecounter *tc = arg1; 198 199 freq = tc->tc_frequency; 200 return (sysctl_handle_64(oidp, &freq, 0, req)); 201 } 202 203 /* 204 * Return the difference between the timehands' counter value now and what 205 * was when we copied it to the timehands' offset_count. 206 */ 207 static __inline u_int 208 tc_delta(struct timehands *th) 209 { 210 struct timecounter *tc; 211 212 tc = th->th_counter; 213 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 214 tc->tc_counter_mask); 215 } 216 217 /* 218 * Functions for reading the time. We have to loop until we are sure that 219 * the timehands that we operated on was not updated under our feet. See 220 * the comment in <sys/time.h> for a description of these 12 functions. 221 */ 222 223 static __inline void 224 bintime_off(struct bintime *bt, u_int off) 225 { 226 struct timehands *th; 227 struct bintime *btp; 228 uint64_t scale, x; 229 u_int delta, gen, large_delta; 230 231 do { 232 th = timehands; 233 gen = atomic_load_acq_int(&th->th_generation); 234 btp = (struct bintime *)((vm_offset_t)th + off); 235 *bt = *btp; 236 scale = th->th_scale; 237 delta = tc_delta(th); 238 large_delta = th->th_large_delta; 239 atomic_thread_fence_acq(); 240 } while (gen == 0 || gen != th->th_generation); 241 242 if (__predict_false(delta >= large_delta)) { 243 /* Avoid overflow for scale * delta. */ 244 x = (scale >> 32) * delta; 245 bt->sec += x >> 32; 246 bintime_addx(bt, x << 32); 247 bintime_addx(bt, (scale & 0xffffffff) * delta); 248 } else { 249 bintime_addx(bt, scale * delta); 250 } 251 } 252 #define GETTHBINTIME(dst, member) \ 253 do { \ 254 _Static_assert(_Generic(((struct timehands *)NULL)->member, \ 255 struct bintime: 1, default: 0) == 1, \ 256 "struct timehands member is not of struct bintime type"); \ 257 bintime_off(dst, __offsetof(struct timehands, member)); \ 258 } while (0) 259 260 static __inline void 261 getthmember(void *out, size_t out_size, u_int off) 262 { 263 struct timehands *th; 264 u_int gen; 265 266 do { 267 th = timehands; 268 gen = atomic_load_acq_int(&th->th_generation); 269 memcpy(out, (char *)th + off, out_size); 270 atomic_thread_fence_acq(); 271 } while (gen == 0 || gen != th->th_generation); 272 } 273 #define GETTHMEMBER(dst, member) \ 274 do { \ 275 _Static_assert(_Generic(*dst, \ 276 __typeof(((struct timehands *)NULL)->member): 1, \ 277 default: 0) == 1, \ 278 "*dst and struct timehands member have different types"); \ 279 getthmember(dst, sizeof(*dst), __offsetof(struct timehands, \ 280 member)); \ 281 } while (0) 282 283 #ifdef FFCLOCK 284 void 285 fbclock_binuptime(struct bintime *bt) 286 { 287 288 GETTHBINTIME(bt, th_offset); 289 } 290 291 void 292 fbclock_nanouptime(struct timespec *tsp) 293 { 294 struct bintime bt; 295 296 fbclock_binuptime(&bt); 297 bintime2timespec(&bt, tsp); 298 } 299 300 void 301 fbclock_microuptime(struct timeval *tvp) 302 { 303 struct bintime bt; 304 305 fbclock_binuptime(&bt); 306 bintime2timeval(&bt, tvp); 307 } 308 309 void 310 fbclock_bintime(struct bintime *bt) 311 { 312 313 GETTHBINTIME(bt, th_bintime); 314 } 315 316 void 317 fbclock_nanotime(struct timespec *tsp) 318 { 319 struct bintime bt; 320 321 fbclock_bintime(&bt); 322 bintime2timespec(&bt, tsp); 323 } 324 325 void 326 fbclock_microtime(struct timeval *tvp) 327 { 328 struct bintime bt; 329 330 fbclock_bintime(&bt); 331 bintime2timeval(&bt, tvp); 332 } 333 334 void 335 fbclock_getbinuptime(struct bintime *bt) 336 { 337 338 GETTHMEMBER(bt, th_offset); 339 } 340 341 void 342 fbclock_getnanouptime(struct timespec *tsp) 343 { 344 struct bintime bt; 345 346 GETTHMEMBER(&bt, th_offset); 347 bintime2timespec(&bt, tsp); 348 } 349 350 void 351 fbclock_getmicrouptime(struct timeval *tvp) 352 { 353 struct bintime bt; 354 355 GETTHMEMBER(&bt, th_offset); 356 bintime2timeval(&bt, tvp); 357 } 358 359 void 360 fbclock_getbintime(struct bintime *bt) 361 { 362 363 GETTHMEMBER(bt, th_bintime); 364 } 365 366 void 367 fbclock_getnanotime(struct timespec *tsp) 368 { 369 370 GETTHMEMBER(tsp, th_nanotime); 371 } 372 373 void 374 fbclock_getmicrotime(struct timeval *tvp) 375 { 376 377 GETTHMEMBER(tvp, th_microtime); 378 } 379 #else /* !FFCLOCK */ 380 381 void 382 binuptime(struct bintime *bt) 383 { 384 385 GETTHBINTIME(bt, th_offset); 386 } 387 388 void 389 nanouptime(struct timespec *tsp) 390 { 391 struct bintime bt; 392 393 binuptime(&bt); 394 bintime2timespec(&bt, tsp); 395 } 396 397 void 398 microuptime(struct timeval *tvp) 399 { 400 struct bintime bt; 401 402 binuptime(&bt); 403 bintime2timeval(&bt, tvp); 404 } 405 406 void 407 bintime(struct bintime *bt) 408 { 409 410 GETTHBINTIME(bt, th_bintime); 411 } 412 413 void 414 nanotime(struct timespec *tsp) 415 { 416 struct bintime bt; 417 418 bintime(&bt); 419 bintime2timespec(&bt, tsp); 420 } 421 422 void 423 microtime(struct timeval *tvp) 424 { 425 struct bintime bt; 426 427 bintime(&bt); 428 bintime2timeval(&bt, tvp); 429 } 430 431 void 432 getbinuptime(struct bintime *bt) 433 { 434 435 GETTHMEMBER(bt, th_offset); 436 } 437 438 void 439 getnanouptime(struct timespec *tsp) 440 { 441 struct bintime bt; 442 443 GETTHMEMBER(&bt, th_offset); 444 bintime2timespec(&bt, tsp); 445 } 446 447 void 448 getmicrouptime(struct timeval *tvp) 449 { 450 struct bintime bt; 451 452 GETTHMEMBER(&bt, th_offset); 453 bintime2timeval(&bt, tvp); 454 } 455 456 void 457 getbintime(struct bintime *bt) 458 { 459 460 GETTHMEMBER(bt, th_bintime); 461 } 462 463 void 464 getnanotime(struct timespec *tsp) 465 { 466 467 GETTHMEMBER(tsp, th_nanotime); 468 } 469 470 void 471 getmicrotime(struct timeval *tvp) 472 { 473 474 GETTHMEMBER(tvp, th_microtime); 475 } 476 #endif /* FFCLOCK */ 477 478 void 479 getboottime(struct timeval *boottime) 480 { 481 struct bintime boottimebin; 482 483 getboottimebin(&boottimebin); 484 bintime2timeval(&boottimebin, boottime); 485 } 486 487 void 488 getboottimebin(struct bintime *boottimebin) 489 { 490 491 GETTHMEMBER(boottimebin, th_boottime); 492 } 493 494 #ifdef FFCLOCK 495 /* 496 * Support for feed-forward synchronization algorithms. This is heavily inspired 497 * by the timehands mechanism but kept independent from it. *_windup() functions 498 * have some connection to avoid accessing the timecounter hardware more than 499 * necessary. 500 */ 501 502 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 503 struct ffclock_estimate ffclock_estimate; 504 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 505 uint32_t ffclock_status; /* Feed-forward clock status. */ 506 int8_t ffclock_updated; /* New estimates are available. */ 507 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 508 509 struct fftimehands { 510 struct ffclock_estimate cest; 511 struct bintime tick_time; 512 struct bintime tick_time_lerp; 513 ffcounter tick_ffcount; 514 uint64_t period_lerp; 515 volatile uint8_t gen; 516 struct fftimehands *next; 517 }; 518 519 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 520 521 static struct fftimehands ffth[10]; 522 static struct fftimehands *volatile fftimehands = ffth; 523 524 static void 525 ffclock_init(void) 526 { 527 struct fftimehands *cur; 528 struct fftimehands *last; 529 530 memset(ffth, 0, sizeof(ffth)); 531 532 last = ffth + NUM_ELEMENTS(ffth) - 1; 533 for (cur = ffth; cur < last; cur++) 534 cur->next = cur + 1; 535 last->next = ffth; 536 537 ffclock_updated = 0; 538 ffclock_status = FFCLOCK_STA_UNSYNC; 539 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 540 } 541 542 /* 543 * Reset the feed-forward clock estimates. Called from inittodr() to get things 544 * kick started and uses the timecounter nominal frequency as a first period 545 * estimate. Note: this function may be called several time just after boot. 546 * Note: this is the only function that sets the value of boot time for the 547 * monotonic (i.e. uptime) version of the feed-forward clock. 548 */ 549 void 550 ffclock_reset_clock(struct timespec *ts) 551 { 552 struct timecounter *tc; 553 struct ffclock_estimate cest; 554 555 tc = timehands->th_counter; 556 memset(&cest, 0, sizeof(struct ffclock_estimate)); 557 558 timespec2bintime(ts, &ffclock_boottime); 559 timespec2bintime(ts, &(cest.update_time)); 560 ffclock_read_counter(&cest.update_ffcount); 561 cest.leapsec_next = 0; 562 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 563 cest.errb_abs = 0; 564 cest.errb_rate = 0; 565 cest.status = FFCLOCK_STA_UNSYNC; 566 cest.leapsec_total = 0; 567 cest.leapsec = 0; 568 569 mtx_lock(&ffclock_mtx); 570 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 571 ffclock_updated = INT8_MAX; 572 mtx_unlock(&ffclock_mtx); 573 574 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 575 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 576 (unsigned long)ts->tv_nsec); 577 } 578 579 /* 580 * Sub-routine to convert a time interval measured in RAW counter units to time 581 * in seconds stored in bintime format. 582 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 583 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 584 * extra cycles. 585 */ 586 static void 587 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 588 { 589 struct bintime bt2; 590 ffcounter delta, delta_max; 591 592 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 593 bintime_clear(bt); 594 do { 595 if (ffdelta > delta_max) 596 delta = delta_max; 597 else 598 delta = ffdelta; 599 bt2.sec = 0; 600 bt2.frac = period; 601 bintime_mul(&bt2, (unsigned int)delta); 602 bintime_add(bt, &bt2); 603 ffdelta -= delta; 604 } while (ffdelta > 0); 605 } 606 607 /* 608 * Update the fftimehands. 609 * Push the tick ffcount and time(s) forward based on current clock estimate. 610 * The conversion from ffcounter to bintime relies on the difference clock 611 * principle, whose accuracy relies on computing small time intervals. If a new 612 * clock estimate has been passed by the synchronisation daemon, make it 613 * current, and compute the linear interpolation for monotonic time if needed. 614 */ 615 static void 616 ffclock_windup(unsigned int delta) 617 { 618 struct ffclock_estimate *cest; 619 struct fftimehands *ffth; 620 struct bintime bt, gap_lerp; 621 ffcounter ffdelta; 622 uint64_t frac; 623 unsigned int polling; 624 uint8_t forward_jump, ogen; 625 626 /* 627 * Pick the next timehand, copy current ffclock estimates and move tick 628 * times and counter forward. 629 */ 630 forward_jump = 0; 631 ffth = fftimehands->next; 632 ogen = ffth->gen; 633 ffth->gen = 0; 634 cest = &ffth->cest; 635 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 636 ffdelta = (ffcounter)delta; 637 ffth->period_lerp = fftimehands->period_lerp; 638 639 ffth->tick_time = fftimehands->tick_time; 640 ffclock_convert_delta(ffdelta, cest->period, &bt); 641 bintime_add(&ffth->tick_time, &bt); 642 643 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 644 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 645 bintime_add(&ffth->tick_time_lerp, &bt); 646 647 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 648 649 /* 650 * Assess the status of the clock, if the last update is too old, it is 651 * likely the synchronisation daemon is dead and the clock is free 652 * running. 653 */ 654 if (ffclock_updated == 0) { 655 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 656 ffclock_convert_delta(ffdelta, cest->period, &bt); 657 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 658 ffclock_status |= FFCLOCK_STA_UNSYNC; 659 } 660 661 /* 662 * If available, grab updated clock estimates and make them current. 663 * Recompute time at this tick using the updated estimates. The clock 664 * estimates passed the feed-forward synchronisation daemon may result 665 * in time conversion that is not monotonically increasing (just after 666 * the update). time_lerp is a particular linear interpolation over the 667 * synchronisation algo polling period that ensures monotonicity for the 668 * clock ids requesting it. 669 */ 670 if (ffclock_updated > 0) { 671 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 672 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 673 ffth->tick_time = cest->update_time; 674 ffclock_convert_delta(ffdelta, cest->period, &bt); 675 bintime_add(&ffth->tick_time, &bt); 676 677 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 678 if (ffclock_updated == INT8_MAX) 679 ffth->tick_time_lerp = ffth->tick_time; 680 681 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 682 forward_jump = 1; 683 else 684 forward_jump = 0; 685 686 bintime_clear(&gap_lerp); 687 if (forward_jump) { 688 gap_lerp = ffth->tick_time; 689 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 690 } else { 691 gap_lerp = ffth->tick_time_lerp; 692 bintime_sub(&gap_lerp, &ffth->tick_time); 693 } 694 695 /* 696 * The reset from the RTC clock may be far from accurate, and 697 * reducing the gap between real time and interpolated time 698 * could take a very long time if the interpolated clock insists 699 * on strict monotonicity. The clock is reset under very strict 700 * conditions (kernel time is known to be wrong and 701 * synchronization daemon has been restarted recently. 702 * ffclock_boottime absorbs the jump to ensure boot time is 703 * correct and uptime functions stay consistent. 704 */ 705 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 706 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 707 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 708 if (forward_jump) 709 bintime_add(&ffclock_boottime, &gap_lerp); 710 else 711 bintime_sub(&ffclock_boottime, &gap_lerp); 712 ffth->tick_time_lerp = ffth->tick_time; 713 bintime_clear(&gap_lerp); 714 } 715 716 ffclock_status = cest->status; 717 ffth->period_lerp = cest->period; 718 719 /* 720 * Compute corrected period used for the linear interpolation of 721 * time. The rate of linear interpolation is capped to 5000PPM 722 * (5ms/s). 723 */ 724 if (bintime_isset(&gap_lerp)) { 725 ffdelta = cest->update_ffcount; 726 ffdelta -= fftimehands->cest.update_ffcount; 727 ffclock_convert_delta(ffdelta, cest->period, &bt); 728 polling = bt.sec; 729 bt.sec = 0; 730 bt.frac = 5000000 * (uint64_t)18446744073LL; 731 bintime_mul(&bt, polling); 732 if (bintime_cmp(&gap_lerp, &bt, >)) 733 gap_lerp = bt; 734 735 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 736 frac = 0; 737 if (gap_lerp.sec > 0) { 738 frac -= 1; 739 frac /= ffdelta / gap_lerp.sec; 740 } 741 frac += gap_lerp.frac / ffdelta; 742 743 if (forward_jump) 744 ffth->period_lerp += frac; 745 else 746 ffth->period_lerp -= frac; 747 } 748 749 ffclock_updated = 0; 750 } 751 if (++ogen == 0) 752 ogen = 1; 753 ffth->gen = ogen; 754 fftimehands = ffth; 755 } 756 757 /* 758 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 759 * the old and new hardware counter cannot be read simultaneously. tc_windup() 760 * does read the two counters 'back to back', but a few cycles are effectively 761 * lost, and not accumulated in tick_ffcount. This is a fairly radical 762 * operation for a feed-forward synchronization daemon, and it is its job to not 763 * pushing irrelevant data to the kernel. Because there is no locking here, 764 * simply force to ignore pending or next update to give daemon a chance to 765 * realize the counter has changed. 766 */ 767 static void 768 ffclock_change_tc(struct timehands *th) 769 { 770 struct fftimehands *ffth; 771 struct ffclock_estimate *cest; 772 struct timecounter *tc; 773 uint8_t ogen; 774 775 tc = th->th_counter; 776 ffth = fftimehands->next; 777 ogen = ffth->gen; 778 ffth->gen = 0; 779 780 cest = &ffth->cest; 781 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 782 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 783 cest->errb_abs = 0; 784 cest->errb_rate = 0; 785 cest->status |= FFCLOCK_STA_UNSYNC; 786 787 ffth->tick_ffcount = fftimehands->tick_ffcount; 788 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 789 ffth->tick_time = fftimehands->tick_time; 790 ffth->period_lerp = cest->period; 791 792 /* Do not lock but ignore next update from synchronization daemon. */ 793 ffclock_updated--; 794 795 if (++ogen == 0) 796 ogen = 1; 797 ffth->gen = ogen; 798 fftimehands = ffth; 799 } 800 801 /* 802 * Retrieve feed-forward counter and time of last kernel tick. 803 */ 804 void 805 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 806 { 807 struct fftimehands *ffth; 808 uint8_t gen; 809 810 /* 811 * No locking but check generation has not changed. Also need to make 812 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 813 */ 814 do { 815 ffth = fftimehands; 816 gen = ffth->gen; 817 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 818 *bt = ffth->tick_time_lerp; 819 else 820 *bt = ffth->tick_time; 821 *ffcount = ffth->tick_ffcount; 822 } while (gen == 0 || gen != ffth->gen); 823 } 824 825 /* 826 * Absolute clock conversion. Low level function to convert ffcounter to 827 * bintime. The ffcounter is converted using the current ffclock period estimate 828 * or the "interpolated period" to ensure monotonicity. 829 * NOTE: this conversion may have been deferred, and the clock updated since the 830 * hardware counter has been read. 831 */ 832 void 833 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 834 { 835 struct fftimehands *ffth; 836 struct bintime bt2; 837 ffcounter ffdelta; 838 uint8_t gen; 839 840 /* 841 * No locking but check generation has not changed. Also need to make 842 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 843 */ 844 do { 845 ffth = fftimehands; 846 gen = ffth->gen; 847 if (ffcount > ffth->tick_ffcount) 848 ffdelta = ffcount - ffth->tick_ffcount; 849 else 850 ffdelta = ffth->tick_ffcount - ffcount; 851 852 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 853 *bt = ffth->tick_time_lerp; 854 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 855 } else { 856 *bt = ffth->tick_time; 857 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 858 } 859 860 if (ffcount > ffth->tick_ffcount) 861 bintime_add(bt, &bt2); 862 else 863 bintime_sub(bt, &bt2); 864 } while (gen == 0 || gen != ffth->gen); 865 } 866 867 /* 868 * Difference clock conversion. 869 * Low level function to Convert a time interval measured in RAW counter units 870 * into bintime. The difference clock allows measuring small intervals much more 871 * reliably than the absolute clock. 872 */ 873 void 874 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 875 { 876 struct fftimehands *ffth; 877 uint8_t gen; 878 879 /* No locking but check generation has not changed. */ 880 do { 881 ffth = fftimehands; 882 gen = ffth->gen; 883 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 884 } while (gen == 0 || gen != ffth->gen); 885 } 886 887 /* 888 * Access to current ffcounter value. 889 */ 890 void 891 ffclock_read_counter(ffcounter *ffcount) 892 { 893 struct timehands *th; 894 struct fftimehands *ffth; 895 unsigned int gen, delta; 896 897 /* 898 * ffclock_windup() called from tc_windup(), safe to rely on 899 * th->th_generation only, for correct delta and ffcounter. 900 */ 901 do { 902 th = timehands; 903 gen = atomic_load_acq_int(&th->th_generation); 904 ffth = fftimehands; 905 delta = tc_delta(th); 906 *ffcount = ffth->tick_ffcount; 907 atomic_thread_fence_acq(); 908 } while (gen == 0 || gen != th->th_generation); 909 910 *ffcount += delta; 911 } 912 913 void 914 binuptime(struct bintime *bt) 915 { 916 917 binuptime_fromclock(bt, sysclock_active); 918 } 919 920 void 921 nanouptime(struct timespec *tsp) 922 { 923 924 nanouptime_fromclock(tsp, sysclock_active); 925 } 926 927 void 928 microuptime(struct timeval *tvp) 929 { 930 931 microuptime_fromclock(tvp, sysclock_active); 932 } 933 934 void 935 bintime(struct bintime *bt) 936 { 937 938 bintime_fromclock(bt, sysclock_active); 939 } 940 941 void 942 nanotime(struct timespec *tsp) 943 { 944 945 nanotime_fromclock(tsp, sysclock_active); 946 } 947 948 void 949 microtime(struct timeval *tvp) 950 { 951 952 microtime_fromclock(tvp, sysclock_active); 953 } 954 955 void 956 getbinuptime(struct bintime *bt) 957 { 958 959 getbinuptime_fromclock(bt, sysclock_active); 960 } 961 962 void 963 getnanouptime(struct timespec *tsp) 964 { 965 966 getnanouptime_fromclock(tsp, sysclock_active); 967 } 968 969 void 970 getmicrouptime(struct timeval *tvp) 971 { 972 973 getmicrouptime_fromclock(tvp, sysclock_active); 974 } 975 976 void 977 getbintime(struct bintime *bt) 978 { 979 980 getbintime_fromclock(bt, sysclock_active); 981 } 982 983 void 984 getnanotime(struct timespec *tsp) 985 { 986 987 getnanotime_fromclock(tsp, sysclock_active); 988 } 989 990 void 991 getmicrotime(struct timeval *tvp) 992 { 993 994 getmicrouptime_fromclock(tvp, sysclock_active); 995 } 996 997 #endif /* FFCLOCK */ 998 999 /* 1000 * This is a clone of getnanotime and used for walltimestamps. 1001 * The dtrace_ prefix prevents fbt from creating probes for 1002 * it so walltimestamp can be safely used in all fbt probes. 1003 */ 1004 void 1005 dtrace_getnanotime(struct timespec *tsp) 1006 { 1007 1008 GETTHMEMBER(tsp, th_nanotime); 1009 } 1010 1011 /* 1012 * This is a clone of getnanouptime used for time since boot. 1013 * The dtrace_ prefix prevents fbt from creating probes for 1014 * it so an uptime that can be safely used in all fbt probes. 1015 */ 1016 void 1017 dtrace_getnanouptime(struct timespec *tsp) 1018 { 1019 struct bintime bt; 1020 1021 GETTHMEMBER(&bt, th_offset); 1022 bintime2timespec(&bt, tsp); 1023 } 1024 1025 /* 1026 * System clock currently providing time to the system. Modifiable via sysctl 1027 * when the FFCLOCK option is defined. 1028 */ 1029 int sysclock_active = SYSCLOCK_FBCK; 1030 1031 /* Internal NTP status and error estimates. */ 1032 extern int time_status; 1033 extern long time_esterror; 1034 1035 /* 1036 * Take a snapshot of sysclock data which can be used to compare system clocks 1037 * and generate timestamps after the fact. 1038 */ 1039 void 1040 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 1041 { 1042 struct fbclock_info *fbi; 1043 struct timehands *th; 1044 struct bintime bt; 1045 unsigned int delta, gen; 1046 #ifdef FFCLOCK 1047 ffcounter ffcount; 1048 struct fftimehands *ffth; 1049 struct ffclock_info *ffi; 1050 struct ffclock_estimate cest; 1051 1052 ffi = &clock_snap->ff_info; 1053 #endif 1054 1055 fbi = &clock_snap->fb_info; 1056 delta = 0; 1057 1058 do { 1059 th = timehands; 1060 gen = atomic_load_acq_int(&th->th_generation); 1061 fbi->th_scale = th->th_scale; 1062 fbi->tick_time = th->th_offset; 1063 #ifdef FFCLOCK 1064 ffth = fftimehands; 1065 ffi->tick_time = ffth->tick_time_lerp; 1066 ffi->tick_time_lerp = ffth->tick_time_lerp; 1067 ffi->period = ffth->cest.period; 1068 ffi->period_lerp = ffth->period_lerp; 1069 clock_snap->ffcount = ffth->tick_ffcount; 1070 cest = ffth->cest; 1071 #endif 1072 if (!fast) 1073 delta = tc_delta(th); 1074 atomic_thread_fence_acq(); 1075 } while (gen == 0 || gen != th->th_generation); 1076 1077 clock_snap->delta = delta; 1078 clock_snap->sysclock_active = sysclock_active; 1079 1080 /* Record feedback clock status and error. */ 1081 clock_snap->fb_info.status = time_status; 1082 /* XXX: Very crude estimate of feedback clock error. */ 1083 bt.sec = time_esterror / 1000000; 1084 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1085 (uint64_t)18446744073709ULL; 1086 clock_snap->fb_info.error = bt; 1087 1088 #ifdef FFCLOCK 1089 if (!fast) 1090 clock_snap->ffcount += delta; 1091 1092 /* Record feed-forward clock leap second adjustment. */ 1093 ffi->leapsec_adjustment = cest.leapsec_total; 1094 if (clock_snap->ffcount > cest.leapsec_next) 1095 ffi->leapsec_adjustment -= cest.leapsec; 1096 1097 /* Record feed-forward clock status and error. */ 1098 clock_snap->ff_info.status = cest.status; 1099 ffcount = clock_snap->ffcount - cest.update_ffcount; 1100 ffclock_convert_delta(ffcount, cest.period, &bt); 1101 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1102 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1103 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1104 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1105 clock_snap->ff_info.error = bt; 1106 #endif 1107 } 1108 1109 /* 1110 * Convert a sysclock snapshot into a struct bintime based on the specified 1111 * clock source and flags. 1112 */ 1113 int 1114 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1115 int whichclock, uint32_t flags) 1116 { 1117 struct bintime boottimebin; 1118 #ifdef FFCLOCK 1119 struct bintime bt2; 1120 uint64_t period; 1121 #endif 1122 1123 switch (whichclock) { 1124 case SYSCLOCK_FBCK: 1125 *bt = cs->fb_info.tick_time; 1126 1127 /* If snapshot was created with !fast, delta will be >0. */ 1128 if (cs->delta > 0) 1129 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1130 1131 if ((flags & FBCLOCK_UPTIME) == 0) { 1132 getboottimebin(&boottimebin); 1133 bintime_add(bt, &boottimebin); 1134 } 1135 break; 1136 #ifdef FFCLOCK 1137 case SYSCLOCK_FFWD: 1138 if (flags & FFCLOCK_LERP) { 1139 *bt = cs->ff_info.tick_time_lerp; 1140 period = cs->ff_info.period_lerp; 1141 } else { 1142 *bt = cs->ff_info.tick_time; 1143 period = cs->ff_info.period; 1144 } 1145 1146 /* If snapshot was created with !fast, delta will be >0. */ 1147 if (cs->delta > 0) { 1148 ffclock_convert_delta(cs->delta, period, &bt2); 1149 bintime_add(bt, &bt2); 1150 } 1151 1152 /* Leap second adjustment. */ 1153 if (flags & FFCLOCK_LEAPSEC) 1154 bt->sec -= cs->ff_info.leapsec_adjustment; 1155 1156 /* Boot time adjustment, for uptime/monotonic clocks. */ 1157 if (flags & FFCLOCK_UPTIME) 1158 bintime_sub(bt, &ffclock_boottime); 1159 break; 1160 #endif 1161 default: 1162 return (EINVAL); 1163 break; 1164 } 1165 1166 return (0); 1167 } 1168 1169 /* 1170 * Initialize a new timecounter and possibly use it. 1171 */ 1172 void 1173 tc_init(struct timecounter *tc) 1174 { 1175 u_int u; 1176 struct sysctl_oid *tc_root; 1177 1178 u = tc->tc_frequency / tc->tc_counter_mask; 1179 /* XXX: We need some margin here, 10% is a guess */ 1180 u *= 11; 1181 u /= 10; 1182 if (u > hz && tc->tc_quality >= 0) { 1183 tc->tc_quality = -2000; 1184 if (bootverbose) { 1185 printf("Timecounter \"%s\" frequency %ju Hz", 1186 tc->tc_name, (uintmax_t)tc->tc_frequency); 1187 printf(" -- Insufficient hz, needs at least %u\n", u); 1188 } 1189 } else if (tc->tc_quality >= 0 || bootverbose) { 1190 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1191 tc->tc_name, (uintmax_t)tc->tc_frequency, 1192 tc->tc_quality); 1193 } 1194 1195 /* 1196 * Set up sysctl tree for this counter. 1197 */ 1198 tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL, 1199 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1200 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1201 "timecounter description", "timecounter"); 1202 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1203 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1204 "mask for implemented bits"); 1205 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1206 "counter", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, tc, 1207 sizeof(*tc), sysctl_kern_timecounter_get, "IU", 1208 "current timecounter value"); 1209 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1210 "frequency", CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, tc, 1211 sizeof(*tc), sysctl_kern_timecounter_freq, "QU", 1212 "timecounter frequency"); 1213 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1214 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1215 "goodness of time counter"); 1216 1217 mtx_lock(&tc_lock); 1218 tc->tc_next = timecounters; 1219 timecounters = tc; 1220 1221 /* 1222 * Do not automatically switch if the current tc was specifically 1223 * chosen. Never automatically use a timecounter with negative quality. 1224 * Even though we run on the dummy counter, switching here may be 1225 * worse since this timecounter may not be monotonic. 1226 */ 1227 if (tc_chosen) 1228 goto unlock; 1229 if (tc->tc_quality < 0) 1230 goto unlock; 1231 if (tc_from_tunable[0] != '\0' && 1232 strcmp(tc->tc_name, tc_from_tunable) == 0) { 1233 tc_chosen = 1; 1234 tc_from_tunable[0] = '\0'; 1235 } else { 1236 if (tc->tc_quality < timecounter->tc_quality) 1237 goto unlock; 1238 if (tc->tc_quality == timecounter->tc_quality && 1239 tc->tc_frequency < timecounter->tc_frequency) 1240 goto unlock; 1241 } 1242 (void)tc->tc_get_timecount(tc); 1243 timecounter = tc; 1244 unlock: 1245 mtx_unlock(&tc_lock); 1246 } 1247 1248 /* Report the frequency of the current timecounter. */ 1249 uint64_t 1250 tc_getfrequency(void) 1251 { 1252 1253 return (timehands->th_counter->tc_frequency); 1254 } 1255 1256 static bool 1257 sleeping_on_old_rtc(struct thread *td) 1258 { 1259 1260 /* 1261 * td_rtcgen is modified by curthread when it is running, 1262 * and by other threads in this function. By finding the thread 1263 * on a sleepqueue and holding the lock on the sleepqueue 1264 * chain, we guarantee that the thread is not running and that 1265 * modifying td_rtcgen is safe. Setting td_rtcgen to zero informs 1266 * the thread that it was woken due to a real-time clock adjustment. 1267 * (The declaration of td_rtcgen refers to this comment.) 1268 */ 1269 if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) { 1270 td->td_rtcgen = 0; 1271 return (true); 1272 } 1273 return (false); 1274 } 1275 1276 static struct mtx tc_setclock_mtx; 1277 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN); 1278 1279 /* 1280 * Step our concept of UTC. This is done by modifying our estimate of 1281 * when we booted. 1282 */ 1283 void 1284 tc_setclock(struct timespec *ts) 1285 { 1286 struct timespec tbef, taft; 1287 struct bintime bt, bt2; 1288 1289 timespec2bintime(ts, &bt); 1290 nanotime(&tbef); 1291 mtx_lock_spin(&tc_setclock_mtx); 1292 cpu_tick_calibrate(1); 1293 binuptime(&bt2); 1294 bintime_sub(&bt, &bt2); 1295 1296 /* XXX fiddle all the little crinkly bits around the fiords... */ 1297 tc_windup(&bt); 1298 mtx_unlock_spin(&tc_setclock_mtx); 1299 1300 /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */ 1301 atomic_add_rel_int(&rtc_generation, 2); 1302 sleepq_chains_remove_matching(sleeping_on_old_rtc); 1303 if (timestepwarnings) { 1304 nanotime(&taft); 1305 log(LOG_INFO, 1306 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1307 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1308 (intmax_t)taft.tv_sec, taft.tv_nsec, 1309 (intmax_t)ts->tv_sec, ts->tv_nsec); 1310 } 1311 } 1312 1313 /* 1314 * Recalculate the scaling factor. We want the number of 1/2^64 1315 * fractions of a second per period of the hardware counter, taking 1316 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1317 * processing provides us with. 1318 * 1319 * The th_adjustment is nanoseconds per second with 32 bit binary 1320 * fraction and we want 64 bit binary fraction of second: 1321 * 1322 * x = a * 2^32 / 10^9 = a * 4.294967296 1323 * 1324 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1325 * we can only multiply by about 850 without overflowing, that 1326 * leaves no suitably precise fractions for multiply before divide. 1327 * 1328 * Divide before multiply with a fraction of 2199/512 results in a 1329 * systematic undercompensation of 10PPM of th_adjustment. On a 1330 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1331 * 1332 * We happily sacrifice the lowest of the 64 bits of our result 1333 * to the goddess of code clarity. 1334 */ 1335 static void 1336 recalculate_scaling_factor_and_large_delta(struct timehands *th) 1337 { 1338 uint64_t scale; 1339 1340 scale = (uint64_t)1 << 63; 1341 scale += (th->th_adjustment / 1024) * 2199; 1342 scale /= th->th_counter->tc_frequency; 1343 th->th_scale = scale * 2; 1344 th->th_large_delta = MIN(((uint64_t)1 << 63) / scale, UINT_MAX); 1345 } 1346 1347 /* 1348 * Initialize the next struct timehands in the ring and make 1349 * it the active timehands. Along the way we might switch to a different 1350 * timecounter and/or do seconds processing in NTP. Slightly magic. 1351 */ 1352 static void 1353 tc_windup(struct bintime *new_boottimebin) 1354 { 1355 struct bintime bt; 1356 struct timecounter *tc; 1357 struct timehands *th, *tho; 1358 u_int delta, ncount, ogen; 1359 int i; 1360 time_t t; 1361 1362 /* 1363 * Make the next timehands a copy of the current one, but do 1364 * not overwrite the generation or next pointer. While we 1365 * update the contents, the generation must be zero. We need 1366 * to ensure that the zero generation is visible before the 1367 * data updates become visible, which requires release fence. 1368 * For similar reasons, re-reading of the generation after the 1369 * data is read should use acquire fence. 1370 */ 1371 tho = timehands; 1372 th = tho->th_next; 1373 ogen = th->th_generation; 1374 th->th_generation = 0; 1375 atomic_thread_fence_rel(); 1376 memcpy(th, tho, offsetof(struct timehands, th_generation)); 1377 if (new_boottimebin != NULL) 1378 th->th_boottime = *new_boottimebin; 1379 1380 /* 1381 * Capture a timecounter delta on the current timecounter and if 1382 * changing timecounters, a counter value from the new timecounter. 1383 * Update the offset fields accordingly. 1384 */ 1385 tc = atomic_load_ptr(&timecounter); 1386 delta = tc_delta(th); 1387 if (th->th_counter != tc) 1388 ncount = tc->tc_get_timecount(tc); 1389 else 1390 ncount = 0; 1391 #ifdef FFCLOCK 1392 ffclock_windup(delta); 1393 #endif 1394 th->th_offset_count += delta; 1395 th->th_offset_count &= th->th_counter->tc_counter_mask; 1396 while (delta > th->th_counter->tc_frequency) { 1397 /* Eat complete unadjusted seconds. */ 1398 delta -= th->th_counter->tc_frequency; 1399 th->th_offset.sec++; 1400 } 1401 if ((delta > th->th_counter->tc_frequency / 2) && 1402 (th->th_scale * delta < ((uint64_t)1 << 63))) { 1403 /* The product th_scale * delta just barely overflows. */ 1404 th->th_offset.sec++; 1405 } 1406 bintime_addx(&th->th_offset, th->th_scale * delta); 1407 1408 /* 1409 * Hardware latching timecounters may not generate interrupts on 1410 * PPS events, so instead we poll them. There is a finite risk that 1411 * the hardware might capture a count which is later than the one we 1412 * got above, and therefore possibly in the next NTP second which might 1413 * have a different rate than the current NTP second. It doesn't 1414 * matter in practice. 1415 */ 1416 if (tho->th_counter->tc_poll_pps) 1417 tho->th_counter->tc_poll_pps(tho->th_counter); 1418 1419 /* 1420 * Deal with NTP second processing. The loop normally 1421 * iterates at most once, but in extreme situations it might 1422 * keep NTP sane if timeouts are not run for several seconds. 1423 * At boot, the time step can be large when the TOD hardware 1424 * has been read, so on really large steps, we call 1425 * ntp_update_second only twice. We need to call it twice in 1426 * case we missed a leap second. 1427 */ 1428 bt = th->th_offset; 1429 bintime_add(&bt, &th->th_boottime); 1430 i = bt.sec - tho->th_microtime.tv_sec; 1431 if (i > 0) { 1432 if (i > LARGE_STEP) 1433 i = 2; 1434 1435 do { 1436 t = bt.sec; 1437 ntp_update_second(&th->th_adjustment, &bt.sec); 1438 if (bt.sec != t) 1439 th->th_boottime.sec += bt.sec - t; 1440 --i; 1441 } while (i > 0); 1442 1443 recalculate_scaling_factor_and_large_delta(th); 1444 } 1445 1446 /* Update the UTC timestamps used by the get*() functions. */ 1447 th->th_bintime = bt; 1448 bintime2timeval(&bt, &th->th_microtime); 1449 bintime2timespec(&bt, &th->th_nanotime); 1450 1451 /* Now is a good time to change timecounters. */ 1452 if (th->th_counter != tc) { 1453 #ifndef __arm__ 1454 if ((tc->tc_flags & TC_FLAGS_C2STOP) != 0) 1455 cpu_disable_c2_sleep++; 1456 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 1457 cpu_disable_c2_sleep--; 1458 #endif 1459 th->th_counter = tc; 1460 th->th_offset_count = ncount; 1461 tc_min_ticktock_freq = max(1, tc->tc_frequency / 1462 (((uint64_t)tc->tc_counter_mask + 1) / 3)); 1463 recalculate_scaling_factor_and_large_delta(th); 1464 #ifdef FFCLOCK 1465 ffclock_change_tc(th); 1466 #endif 1467 } 1468 1469 /* 1470 * Now that the struct timehands is again consistent, set the new 1471 * generation number, making sure to not make it zero. 1472 */ 1473 if (++ogen == 0) 1474 ogen = 1; 1475 atomic_store_rel_int(&th->th_generation, ogen); 1476 1477 /* Go live with the new struct timehands. */ 1478 #ifdef FFCLOCK 1479 switch (sysclock_active) { 1480 case SYSCLOCK_FBCK: 1481 #endif 1482 time_second = th->th_microtime.tv_sec; 1483 time_uptime = th->th_offset.sec; 1484 #ifdef FFCLOCK 1485 break; 1486 case SYSCLOCK_FFWD: 1487 time_second = fftimehands->tick_time_lerp.sec; 1488 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1489 break; 1490 } 1491 #endif 1492 1493 timehands = th; 1494 timekeep_push_vdso(); 1495 } 1496 1497 /* Report or change the active timecounter hardware. */ 1498 static int 1499 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1500 { 1501 char newname[32]; 1502 struct timecounter *newtc, *tc; 1503 int error; 1504 1505 mtx_lock(&tc_lock); 1506 tc = timecounter; 1507 strlcpy(newname, tc->tc_name, sizeof(newname)); 1508 mtx_unlock(&tc_lock); 1509 1510 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1511 if (error != 0 || req->newptr == NULL) 1512 return (error); 1513 1514 mtx_lock(&tc_lock); 1515 /* Record that the tc in use now was specifically chosen. */ 1516 tc_chosen = 1; 1517 if (strcmp(newname, tc->tc_name) == 0) { 1518 mtx_unlock(&tc_lock); 1519 return (0); 1520 } 1521 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1522 if (strcmp(newname, newtc->tc_name) != 0) 1523 continue; 1524 1525 /* Warm up new timecounter. */ 1526 (void)newtc->tc_get_timecount(newtc); 1527 1528 timecounter = newtc; 1529 1530 /* 1531 * The vdso timehands update is deferred until the next 1532 * 'tc_windup()'. 1533 * 1534 * This is prudent given that 'timekeep_push_vdso()' does not 1535 * use any locking and that it can be called in hard interrupt 1536 * context via 'tc_windup()'. 1537 */ 1538 break; 1539 } 1540 mtx_unlock(&tc_lock); 1541 return (newtc != NULL ? 0 : EINVAL); 1542 } 1543 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, 1544 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 0, 0, 1545 sysctl_kern_timecounter_hardware, "A", 1546 "Timecounter hardware selected"); 1547 1548 /* Report the available timecounter hardware. */ 1549 static int 1550 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1551 { 1552 struct sbuf sb; 1553 struct timecounter *tc; 1554 int error; 1555 1556 error = sysctl_wire_old_buffer(req, 0); 1557 if (error != 0) 1558 return (error); 1559 sbuf_new_for_sysctl(&sb, NULL, 0, req); 1560 mtx_lock(&tc_lock); 1561 for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 1562 if (tc != timecounters) 1563 sbuf_putc(&sb, ' '); 1564 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality); 1565 } 1566 mtx_unlock(&tc_lock); 1567 error = sbuf_finish(&sb); 1568 sbuf_delete(&sb); 1569 return (error); 1570 } 1571 1572 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, 1573 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, 1574 sysctl_kern_timecounter_choice, "A", 1575 "Timecounter hardware detected"); 1576 1577 /* 1578 * RFC 2783 PPS-API implementation. 1579 */ 1580 1581 /* 1582 * Return true if the driver is aware of the abi version extensions in the 1583 * pps_state structure, and it supports at least the given abi version number. 1584 */ 1585 static inline int 1586 abi_aware(struct pps_state *pps, int vers) 1587 { 1588 1589 return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers); 1590 } 1591 1592 static int 1593 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1594 { 1595 int err, timo; 1596 pps_seq_t aseq, cseq; 1597 struct timeval tv; 1598 1599 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1600 return (EINVAL); 1601 1602 /* 1603 * If no timeout is requested, immediately return whatever values were 1604 * most recently captured. If timeout seconds is -1, that's a request 1605 * to block without a timeout. WITNESS won't let us sleep forever 1606 * without a lock (we really don't need a lock), so just repeatedly 1607 * sleep a long time. 1608 */ 1609 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1610 if (fapi->timeout.tv_sec == -1) 1611 timo = 0x7fffffff; 1612 else { 1613 tv.tv_sec = fapi->timeout.tv_sec; 1614 tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1615 timo = tvtohz(&tv); 1616 } 1617 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence); 1618 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence); 1619 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) && 1620 cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) { 1621 if (abi_aware(pps, 1) && pps->driver_mtx != NULL) { 1622 if (pps->flags & PPSFLAG_MTX_SPIN) { 1623 err = msleep_spin(pps, pps->driver_mtx, 1624 "ppsfch", timo); 1625 } else { 1626 err = msleep(pps, pps->driver_mtx, PCATCH, 1627 "ppsfch", timo); 1628 } 1629 } else { 1630 err = tsleep(pps, PCATCH, "ppsfch", timo); 1631 } 1632 if (err == EWOULDBLOCK) { 1633 if (fapi->timeout.tv_sec == -1) { 1634 continue; 1635 } else { 1636 return (ETIMEDOUT); 1637 } 1638 } else if (err != 0) { 1639 return (err); 1640 } 1641 } 1642 } 1643 1644 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1645 fapi->pps_info_buf = pps->ppsinfo; 1646 1647 return (0); 1648 } 1649 1650 int 1651 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1652 { 1653 pps_params_t *app; 1654 struct pps_fetch_args *fapi; 1655 #ifdef FFCLOCK 1656 struct pps_fetch_ffc_args *fapi_ffc; 1657 #endif 1658 #ifdef PPS_SYNC 1659 struct pps_kcbind_args *kapi; 1660 #endif 1661 1662 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1663 switch (cmd) { 1664 case PPS_IOC_CREATE: 1665 return (0); 1666 case PPS_IOC_DESTROY: 1667 return (0); 1668 case PPS_IOC_SETPARAMS: 1669 app = (pps_params_t *)data; 1670 if (app->mode & ~pps->ppscap) 1671 return (EINVAL); 1672 #ifdef FFCLOCK 1673 /* Ensure only a single clock is selected for ffc timestamp. */ 1674 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1675 return (EINVAL); 1676 #endif 1677 pps->ppsparam = *app; 1678 return (0); 1679 case PPS_IOC_GETPARAMS: 1680 app = (pps_params_t *)data; 1681 *app = pps->ppsparam; 1682 app->api_version = PPS_API_VERS_1; 1683 return (0); 1684 case PPS_IOC_GETCAP: 1685 *(int*)data = pps->ppscap; 1686 return (0); 1687 case PPS_IOC_FETCH: 1688 fapi = (struct pps_fetch_args *)data; 1689 return (pps_fetch(fapi, pps)); 1690 #ifdef FFCLOCK 1691 case PPS_IOC_FETCH_FFCOUNTER: 1692 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1693 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1694 PPS_TSFMT_TSPEC) 1695 return (EINVAL); 1696 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1697 return (EOPNOTSUPP); 1698 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1699 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1700 /* Overwrite timestamps if feedback clock selected. */ 1701 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1702 case PPS_TSCLK_FBCK: 1703 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1704 pps->ppsinfo.assert_timestamp; 1705 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1706 pps->ppsinfo.clear_timestamp; 1707 break; 1708 case PPS_TSCLK_FFWD: 1709 break; 1710 default: 1711 break; 1712 } 1713 return (0); 1714 #endif /* FFCLOCK */ 1715 case PPS_IOC_KCBIND: 1716 #ifdef PPS_SYNC 1717 kapi = (struct pps_kcbind_args *)data; 1718 /* XXX Only root should be able to do this */ 1719 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1720 return (EINVAL); 1721 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1722 return (EINVAL); 1723 if (kapi->edge & ~pps->ppscap) 1724 return (EINVAL); 1725 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) | 1726 (pps->kcmode & KCMODE_ABIFLAG); 1727 return (0); 1728 #else 1729 return (EOPNOTSUPP); 1730 #endif 1731 default: 1732 return (ENOIOCTL); 1733 } 1734 } 1735 1736 void 1737 pps_init(struct pps_state *pps) 1738 { 1739 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1740 if (pps->ppscap & PPS_CAPTUREASSERT) 1741 pps->ppscap |= PPS_OFFSETASSERT; 1742 if (pps->ppscap & PPS_CAPTURECLEAR) 1743 pps->ppscap |= PPS_OFFSETCLEAR; 1744 #ifdef FFCLOCK 1745 pps->ppscap |= PPS_TSCLK_MASK; 1746 #endif 1747 pps->kcmode &= ~KCMODE_ABIFLAG; 1748 } 1749 1750 void 1751 pps_init_abi(struct pps_state *pps) 1752 { 1753 1754 pps_init(pps); 1755 if (pps->driver_abi > 0) { 1756 pps->kcmode |= KCMODE_ABIFLAG; 1757 pps->kernel_abi = PPS_ABI_VERSION; 1758 } 1759 } 1760 1761 void 1762 pps_capture(struct pps_state *pps) 1763 { 1764 struct timehands *th; 1765 1766 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1767 th = timehands; 1768 pps->capgen = atomic_load_acq_int(&th->th_generation); 1769 pps->capth = th; 1770 #ifdef FFCLOCK 1771 pps->capffth = fftimehands; 1772 #endif 1773 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1774 atomic_thread_fence_acq(); 1775 if (pps->capgen != th->th_generation) 1776 pps->capgen = 0; 1777 } 1778 1779 void 1780 pps_event(struct pps_state *pps, int event) 1781 { 1782 struct bintime bt; 1783 struct timespec ts, *tsp, *osp; 1784 u_int tcount, *pcount; 1785 int foff; 1786 pps_seq_t *pseq; 1787 #ifdef FFCLOCK 1788 struct timespec *tsp_ffc; 1789 pps_seq_t *pseq_ffc; 1790 ffcounter *ffcount; 1791 #endif 1792 #ifdef PPS_SYNC 1793 int fhard; 1794 #endif 1795 1796 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1797 /* Nothing to do if not currently set to capture this event type. */ 1798 if ((event & pps->ppsparam.mode) == 0) 1799 return; 1800 /* If the timecounter was wound up underneath us, bail out. */ 1801 if (pps->capgen == 0 || pps->capgen != 1802 atomic_load_acq_int(&pps->capth->th_generation)) 1803 return; 1804 1805 /* Things would be easier with arrays. */ 1806 if (event == PPS_CAPTUREASSERT) { 1807 tsp = &pps->ppsinfo.assert_timestamp; 1808 osp = &pps->ppsparam.assert_offset; 1809 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1810 #ifdef PPS_SYNC 1811 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1812 #endif 1813 pcount = &pps->ppscount[0]; 1814 pseq = &pps->ppsinfo.assert_sequence; 1815 #ifdef FFCLOCK 1816 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1817 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1818 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1819 #endif 1820 } else { 1821 tsp = &pps->ppsinfo.clear_timestamp; 1822 osp = &pps->ppsparam.clear_offset; 1823 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1824 #ifdef PPS_SYNC 1825 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1826 #endif 1827 pcount = &pps->ppscount[1]; 1828 pseq = &pps->ppsinfo.clear_sequence; 1829 #ifdef FFCLOCK 1830 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1831 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1832 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1833 #endif 1834 } 1835 1836 /* 1837 * If the timecounter changed, we cannot compare the count values, so 1838 * we have to drop the rest of the PPS-stuff until the next event. 1839 */ 1840 if (pps->ppstc != pps->capth->th_counter) { 1841 pps->ppstc = pps->capth->th_counter; 1842 *pcount = pps->capcount; 1843 pps->ppscount[2] = pps->capcount; 1844 return; 1845 } 1846 1847 /* Convert the count to a timespec. */ 1848 tcount = pps->capcount - pps->capth->th_offset_count; 1849 tcount &= pps->capth->th_counter->tc_counter_mask; 1850 bt = pps->capth->th_bintime; 1851 bintime_addx(&bt, pps->capth->th_scale * tcount); 1852 bintime2timespec(&bt, &ts); 1853 1854 /* If the timecounter was wound up underneath us, bail out. */ 1855 atomic_thread_fence_acq(); 1856 if (pps->capgen != pps->capth->th_generation) 1857 return; 1858 1859 *pcount = pps->capcount; 1860 (*pseq)++; 1861 *tsp = ts; 1862 1863 if (foff) { 1864 timespecadd(tsp, osp, tsp); 1865 if (tsp->tv_nsec < 0) { 1866 tsp->tv_nsec += 1000000000; 1867 tsp->tv_sec -= 1; 1868 } 1869 } 1870 1871 #ifdef FFCLOCK 1872 *ffcount = pps->capffth->tick_ffcount + tcount; 1873 bt = pps->capffth->tick_time; 1874 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1875 bintime_add(&bt, &pps->capffth->tick_time); 1876 bintime2timespec(&bt, &ts); 1877 (*pseq_ffc)++; 1878 *tsp_ffc = ts; 1879 #endif 1880 1881 #ifdef PPS_SYNC 1882 if (fhard) { 1883 uint64_t scale; 1884 1885 /* 1886 * Feed the NTP PLL/FLL. 1887 * The FLL wants to know how many (hardware) nanoseconds 1888 * elapsed since the previous event. 1889 */ 1890 tcount = pps->capcount - pps->ppscount[2]; 1891 pps->ppscount[2] = pps->capcount; 1892 tcount &= pps->capth->th_counter->tc_counter_mask; 1893 scale = (uint64_t)1 << 63; 1894 scale /= pps->capth->th_counter->tc_frequency; 1895 scale *= 2; 1896 bt.sec = 0; 1897 bt.frac = 0; 1898 bintime_addx(&bt, scale * tcount); 1899 bintime2timespec(&bt, &ts); 1900 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1901 } 1902 #endif 1903 1904 /* Wakeup anyone sleeping in pps_fetch(). */ 1905 wakeup(pps); 1906 } 1907 1908 /* 1909 * Timecounters need to be updated every so often to prevent the hardware 1910 * counter from overflowing. Updating also recalculates the cached values 1911 * used by the get*() family of functions, so their precision depends on 1912 * the update frequency. 1913 */ 1914 1915 static int tc_tick; 1916 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1917 "Approximate number of hardclock ticks in a millisecond"); 1918 1919 void 1920 tc_ticktock(int cnt) 1921 { 1922 static int count; 1923 1924 if (mtx_trylock_spin(&tc_setclock_mtx)) { 1925 count += cnt; 1926 if (count >= tc_tick) { 1927 count = 0; 1928 tc_windup(NULL); 1929 } 1930 mtx_unlock_spin(&tc_setclock_mtx); 1931 } 1932 } 1933 1934 static void __inline 1935 tc_adjprecision(void) 1936 { 1937 int t; 1938 1939 if (tc_timepercentage > 0) { 1940 t = (99 + tc_timepercentage) / tc_timepercentage; 1941 tc_precexp = fls(t + (t >> 1)) - 1; 1942 FREQ2BT(hz / tc_tick, &bt_timethreshold); 1943 FREQ2BT(hz, &bt_tickthreshold); 1944 bintime_shift(&bt_timethreshold, tc_precexp); 1945 bintime_shift(&bt_tickthreshold, tc_precexp); 1946 } else { 1947 tc_precexp = 31; 1948 bt_timethreshold.sec = INT_MAX; 1949 bt_timethreshold.frac = ~(uint64_t)0; 1950 bt_tickthreshold = bt_timethreshold; 1951 } 1952 sbt_timethreshold = bttosbt(bt_timethreshold); 1953 sbt_tickthreshold = bttosbt(bt_tickthreshold); 1954 } 1955 1956 static int 1957 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 1958 { 1959 int error, val; 1960 1961 val = tc_timepercentage; 1962 error = sysctl_handle_int(oidp, &val, 0, req); 1963 if (error != 0 || req->newptr == NULL) 1964 return (error); 1965 tc_timepercentage = val; 1966 if (cold) 1967 goto done; 1968 tc_adjprecision(); 1969 done: 1970 return (0); 1971 } 1972 1973 /* Set up the requested number of timehands. */ 1974 static void 1975 inittimehands(void *dummy) 1976 { 1977 struct timehands *thp; 1978 int i; 1979 1980 TUNABLE_INT_FETCH("kern.timecounter.timehands_count", 1981 &timehands_count); 1982 if (timehands_count < 1) 1983 timehands_count = 1; 1984 if (timehands_count > nitems(ths)) 1985 timehands_count = nitems(ths); 1986 for (i = 1, thp = &ths[0]; i < timehands_count; thp = &ths[i++]) 1987 thp->th_next = &ths[i]; 1988 thp->th_next = &ths[0]; 1989 1990 TUNABLE_STR_FETCH("kern.timecounter.hardware", tc_from_tunable, 1991 sizeof(tc_from_tunable)); 1992 } 1993 SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL); 1994 1995 static void 1996 inittimecounter(void *dummy) 1997 { 1998 u_int p; 1999 int tick_rate; 2000 2001 /* 2002 * Set the initial timeout to 2003 * max(1, <approx. number of hardclock ticks in a millisecond>). 2004 * People should probably not use the sysctl to set the timeout 2005 * to smaller than its initial value, since that value is the 2006 * smallest reasonable one. If they want better timestamps they 2007 * should use the non-"get"* functions. 2008 */ 2009 if (hz > 1000) 2010 tc_tick = (hz + 500) / 1000; 2011 else 2012 tc_tick = 1; 2013 tc_adjprecision(); 2014 FREQ2BT(hz, &tick_bt); 2015 tick_sbt = bttosbt(tick_bt); 2016 tick_rate = hz / tc_tick; 2017 FREQ2BT(tick_rate, &tc_tick_bt); 2018 tc_tick_sbt = bttosbt(tc_tick_bt); 2019 p = (tc_tick * 1000000) / hz; 2020 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 2021 2022 #ifdef FFCLOCK 2023 ffclock_init(); 2024 #endif 2025 2026 /* warm up new timecounter (again) and get rolling. */ 2027 (void)timecounter->tc_get_timecount(timecounter); 2028 mtx_lock_spin(&tc_setclock_mtx); 2029 tc_windup(NULL); 2030 mtx_unlock_spin(&tc_setclock_mtx); 2031 } 2032 2033 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 2034 2035 /* Cpu tick handling -------------------------------------------------*/ 2036 2037 static int cpu_tick_variable; 2038 static uint64_t cpu_tick_frequency; 2039 2040 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base); 2041 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last); 2042 2043 static uint64_t 2044 tc_cpu_ticks(void) 2045 { 2046 struct timecounter *tc; 2047 uint64_t res, *base; 2048 unsigned u, *last; 2049 2050 critical_enter(); 2051 base = DPCPU_PTR(tc_cpu_ticks_base); 2052 last = DPCPU_PTR(tc_cpu_ticks_last); 2053 tc = timehands->th_counter; 2054 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 2055 if (u < *last) 2056 *base += (uint64_t)tc->tc_counter_mask + 1; 2057 *last = u; 2058 res = u + *base; 2059 critical_exit(); 2060 return (res); 2061 } 2062 2063 void 2064 cpu_tick_calibration(void) 2065 { 2066 static time_t last_calib; 2067 2068 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 2069 cpu_tick_calibrate(0); 2070 last_calib = time_uptime; 2071 } 2072 } 2073 2074 /* 2075 * This function gets called every 16 seconds on only one designated 2076 * CPU in the system from hardclock() via cpu_tick_calibration()(). 2077 * 2078 * Whenever the real time clock is stepped we get called with reset=1 2079 * to make sure we handle suspend/resume and similar events correctly. 2080 */ 2081 2082 static void 2083 cpu_tick_calibrate(int reset) 2084 { 2085 static uint64_t c_last; 2086 uint64_t c_this, c_delta; 2087 static struct bintime t_last; 2088 struct bintime t_this, t_delta; 2089 uint32_t divi; 2090 2091 if (reset) { 2092 /* The clock was stepped, abort & reset */ 2093 t_last.sec = 0; 2094 return; 2095 } 2096 2097 /* we don't calibrate fixed rate cputicks */ 2098 if (!cpu_tick_variable) 2099 return; 2100 2101 getbinuptime(&t_this); 2102 c_this = cpu_ticks(); 2103 if (t_last.sec != 0) { 2104 c_delta = c_this - c_last; 2105 t_delta = t_this; 2106 bintime_sub(&t_delta, &t_last); 2107 /* 2108 * Headroom: 2109 * 2^(64-20) / 16[s] = 2110 * 2^(44) / 16[s] = 2111 * 17.592.186.044.416 / 16 = 2112 * 1.099.511.627.776 [Hz] 2113 */ 2114 divi = t_delta.sec << 20; 2115 divi |= t_delta.frac >> (64 - 20); 2116 c_delta <<= 20; 2117 c_delta /= divi; 2118 if (c_delta > cpu_tick_frequency) { 2119 if (0 && bootverbose) 2120 printf("cpu_tick increased to %ju Hz\n", 2121 c_delta); 2122 cpu_tick_frequency = c_delta; 2123 } 2124 } 2125 c_last = c_this; 2126 t_last = t_this; 2127 } 2128 2129 void 2130 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 2131 { 2132 2133 if (func == NULL) { 2134 cpu_ticks = tc_cpu_ticks; 2135 } else { 2136 cpu_tick_frequency = freq; 2137 cpu_tick_variable = var; 2138 cpu_ticks = func; 2139 } 2140 } 2141 2142 uint64_t 2143 cpu_tickrate(void) 2144 { 2145 2146 if (cpu_ticks == tc_cpu_ticks) 2147 return (tc_getfrequency()); 2148 return (cpu_tick_frequency); 2149 } 2150 2151 /* 2152 * We need to be slightly careful converting cputicks to microseconds. 2153 * There is plenty of margin in 64 bits of microseconds (half a million 2154 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 2155 * before divide conversion (to retain precision) we find that the 2156 * margin shrinks to 1.5 hours (one millionth of 146y). 2157 * With a three prong approach we never lose significant bits, no 2158 * matter what the cputick rate and length of timeinterval is. 2159 */ 2160 2161 uint64_t 2162 cputick2usec(uint64_t tick) 2163 { 2164 2165 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 2166 return (tick / (cpu_tickrate() / 1000000LL)); 2167 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 2168 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 2169 else 2170 return ((tick * 1000000LL) / cpu_tickrate()); 2171 } 2172 2173 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 2174 2175 static int vdso_th_enable = 1; 2176 static int 2177 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 2178 { 2179 int old_vdso_th_enable, error; 2180 2181 old_vdso_th_enable = vdso_th_enable; 2182 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 2183 if (error != 0) 2184 return (error); 2185 vdso_th_enable = old_vdso_th_enable; 2186 return (0); 2187 } 2188 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 2189 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 2190 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 2191 2192 uint32_t 2193 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2194 { 2195 struct timehands *th; 2196 uint32_t enabled; 2197 2198 th = timehands; 2199 vdso_th->th_scale = th->th_scale; 2200 vdso_th->th_offset_count = th->th_offset_count; 2201 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2202 vdso_th->th_offset = th->th_offset; 2203 vdso_th->th_boottime = th->th_boottime; 2204 if (th->th_counter->tc_fill_vdso_timehands != NULL) { 2205 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th, 2206 th->th_counter); 2207 } else 2208 enabled = 0; 2209 if (!vdso_th_enable) 2210 enabled = 0; 2211 return (enabled); 2212 } 2213 2214 #ifdef COMPAT_FREEBSD32 2215 uint32_t 2216 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2217 { 2218 struct timehands *th; 2219 uint32_t enabled; 2220 2221 th = timehands; 2222 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2223 vdso_th32->th_offset_count = th->th_offset_count; 2224 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2225 vdso_th32->th_offset.sec = th->th_offset.sec; 2226 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 2227 vdso_th32->th_boottime.sec = th->th_boottime.sec; 2228 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac; 2229 if (th->th_counter->tc_fill_vdso_timehands32 != NULL) { 2230 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32, 2231 th->th_counter); 2232 } else 2233 enabled = 0; 2234 if (!vdso_th_enable) 2235 enabled = 0; 2236 return (enabled); 2237 } 2238 #endif 2239 2240 #include "opt_ddb.h" 2241 #ifdef DDB 2242 #include <ddb/ddb.h> 2243 2244 DB_SHOW_COMMAND(timecounter, db_show_timecounter) 2245 { 2246 struct timehands *th; 2247 struct timecounter *tc; 2248 u_int val1, val2; 2249 2250 th = timehands; 2251 tc = th->th_counter; 2252 val1 = tc->tc_get_timecount(tc); 2253 __compiler_membar(); 2254 val2 = tc->tc_get_timecount(tc); 2255 2256 db_printf("timecounter %p %s\n", tc, tc->tc_name); 2257 db_printf(" mask %#x freq %ju qual %d flags %#x priv %p\n", 2258 tc->tc_counter_mask, (uintmax_t)tc->tc_frequency, tc->tc_quality, 2259 tc->tc_flags, tc->tc_priv); 2260 db_printf(" val %#x %#x\n", val1, val2); 2261 db_printf("timehands adj %#jx scale %#jx ldelta %d off_cnt %d gen %d\n", 2262 (uintmax_t)th->th_adjustment, (uintmax_t)th->th_scale, 2263 th->th_large_delta, th->th_offset_count, th->th_generation); 2264 db_printf(" offset %jd %jd boottime %jd %jd\n", 2265 (intmax_t)th->th_offset.sec, (uintmax_t)th->th_offset.frac, 2266 (intmax_t)th->th_boottime.sec, (uintmax_t)th->th_boottime.frac); 2267 } 2268 #endif 2269