1 /*- 2 * ---------------------------------------------------------------------------- 3 * "THE BEER-WARE LICENSE" (Revision 42): 4 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 5 * can do whatever you want with this stuff. If we meet some day, and you think 6 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 7 * ---------------------------------------------------------------------------- 8 * 9 * Copyright (c) 2011 The FreeBSD Foundation 10 * All rights reserved. 11 * 12 * Portions of this software were developed by Julien Ridoux at the University 13 * of Melbourne under sponsorship from the FreeBSD Foundation. 14 */ 15 16 #include <sys/cdefs.h> 17 __FBSDID("$FreeBSD$"); 18 19 #include "opt_compat.h" 20 #include "opt_ntp.h" 21 #include "opt_ffclock.h" 22 23 #include <sys/param.h> 24 #include <sys/kernel.h> 25 #include <sys/limits.h> 26 #ifdef FFCLOCK 27 #include <sys/lock.h> 28 #include <sys/mutex.h> 29 #endif 30 #include <sys/sysctl.h> 31 #include <sys/syslog.h> 32 #include <sys/systm.h> 33 #include <sys/timeffc.h> 34 #include <sys/timepps.h> 35 #include <sys/timetc.h> 36 #include <sys/timex.h> 37 #include <sys/vdso.h> 38 39 /* 40 * A large step happens on boot. This constant detects such steps. 41 * It is relatively small so that ntp_update_second gets called enough 42 * in the typical 'missed a couple of seconds' case, but doesn't loop 43 * forever when the time step is large. 44 */ 45 #define LARGE_STEP 200 46 47 /* 48 * Implement a dummy timecounter which we can use until we get a real one 49 * in the air. This allows the console and other early stuff to use 50 * time services. 51 */ 52 53 static u_int 54 dummy_get_timecount(struct timecounter *tc) 55 { 56 static u_int now; 57 58 return (++now); 59 } 60 61 static struct timecounter dummy_timecounter = { 62 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 63 }; 64 65 struct timehands { 66 /* These fields must be initialized by the driver. */ 67 struct timecounter *th_counter; 68 int64_t th_adjustment; 69 uint64_t th_scale; 70 u_int th_offset_count; 71 struct bintime th_offset; 72 struct timeval th_microtime; 73 struct timespec th_nanotime; 74 /* Fields not to be copied in tc_windup start with th_generation. */ 75 volatile u_int th_generation; 76 struct timehands *th_next; 77 }; 78 79 static struct timehands th0; 80 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0}; 81 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9}; 82 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8}; 83 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7}; 84 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6}; 85 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5}; 86 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4}; 87 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3}; 88 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2}; 89 static struct timehands th0 = { 90 &dummy_timecounter, 91 0, 92 (uint64_t)-1 / 1000000, 93 0, 94 {1, 0}, 95 {0, 0}, 96 {0, 0}, 97 1, 98 &th1 99 }; 100 101 static struct timehands *volatile timehands = &th0; 102 struct timecounter *timecounter = &dummy_timecounter; 103 static struct timecounter *timecounters = &dummy_timecounter; 104 105 int tc_min_ticktock_freq = 1; 106 107 volatile time_t time_second = 1; 108 volatile time_t time_uptime = 1; 109 110 struct bintime boottimebin; 111 struct timeval boottime; 112 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 113 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD, 114 NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime"); 115 116 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, ""); 117 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, ""); 118 119 static int timestepwarnings; 120 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW, 121 ×tepwarnings, 0, "Log time steps"); 122 123 struct bintime bt_timethreshold; 124 struct bintime bt_tickthreshold; 125 sbintime_t sbt_timethreshold; 126 sbintime_t sbt_tickthreshold; 127 struct bintime tc_tick_bt; 128 sbintime_t tc_tick_sbt; 129 int tc_precexp; 130 int tc_timepercentage = TC_DEFAULTPERC; 131 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 132 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 133 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 134 sysctl_kern_timecounter_adjprecision, "I", 135 "Allowed time interval deviation in percents"); 136 137 static void tc_windup(void); 138 static void cpu_tick_calibrate(int); 139 140 void dtrace_getnanotime(struct timespec *tsp); 141 142 static int 143 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 144 { 145 #ifndef __mips__ 146 #ifdef SCTL_MASK32 147 int tv[2]; 148 149 if (req->flags & SCTL_MASK32) { 150 tv[0] = boottime.tv_sec; 151 tv[1] = boottime.tv_usec; 152 return SYSCTL_OUT(req, tv, sizeof(tv)); 153 } else 154 #endif 155 #endif 156 return SYSCTL_OUT(req, &boottime, sizeof(boottime)); 157 } 158 159 static int 160 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 161 { 162 u_int ncount; 163 struct timecounter *tc = arg1; 164 165 ncount = tc->tc_get_timecount(tc); 166 return sysctl_handle_int(oidp, &ncount, 0, req); 167 } 168 169 static int 170 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 171 { 172 uint64_t freq; 173 struct timecounter *tc = arg1; 174 175 freq = tc->tc_frequency; 176 return sysctl_handle_64(oidp, &freq, 0, req); 177 } 178 179 /* 180 * Return the difference between the timehands' counter value now and what 181 * was when we copied it to the timehands' offset_count. 182 */ 183 static __inline u_int 184 tc_delta(struct timehands *th) 185 { 186 struct timecounter *tc; 187 188 tc = th->th_counter; 189 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 190 tc->tc_counter_mask); 191 } 192 193 /* 194 * Functions for reading the time. We have to loop until we are sure that 195 * the timehands that we operated on was not updated under our feet. See 196 * the comment in <sys/time.h> for a description of these 12 functions. 197 */ 198 199 #ifdef FFCLOCK 200 void 201 fbclock_binuptime(struct bintime *bt) 202 { 203 struct timehands *th; 204 unsigned int gen; 205 206 do { 207 th = timehands; 208 gen = th->th_generation; 209 *bt = th->th_offset; 210 bintime_addx(bt, th->th_scale * tc_delta(th)); 211 } while (gen == 0 || gen != th->th_generation); 212 } 213 214 void 215 fbclock_nanouptime(struct timespec *tsp) 216 { 217 struct bintime bt; 218 219 fbclock_binuptime(&bt); 220 bintime2timespec(&bt, tsp); 221 } 222 223 void 224 fbclock_microuptime(struct timeval *tvp) 225 { 226 struct bintime bt; 227 228 fbclock_binuptime(&bt); 229 bintime2timeval(&bt, tvp); 230 } 231 232 void 233 fbclock_bintime(struct bintime *bt) 234 { 235 236 fbclock_binuptime(bt); 237 bintime_add(bt, &boottimebin); 238 } 239 240 void 241 fbclock_nanotime(struct timespec *tsp) 242 { 243 struct bintime bt; 244 245 fbclock_bintime(&bt); 246 bintime2timespec(&bt, tsp); 247 } 248 249 void 250 fbclock_microtime(struct timeval *tvp) 251 { 252 struct bintime bt; 253 254 fbclock_bintime(&bt); 255 bintime2timeval(&bt, tvp); 256 } 257 258 void 259 fbclock_getbinuptime(struct bintime *bt) 260 { 261 struct timehands *th; 262 unsigned int gen; 263 264 do { 265 th = timehands; 266 gen = th->th_generation; 267 *bt = th->th_offset; 268 } while (gen == 0 || gen != th->th_generation); 269 } 270 271 void 272 fbclock_getnanouptime(struct timespec *tsp) 273 { 274 struct timehands *th; 275 unsigned int gen; 276 277 do { 278 th = timehands; 279 gen = th->th_generation; 280 bintime2timespec(&th->th_offset, tsp); 281 } while (gen == 0 || gen != th->th_generation); 282 } 283 284 void 285 fbclock_getmicrouptime(struct timeval *tvp) 286 { 287 struct timehands *th; 288 unsigned int gen; 289 290 do { 291 th = timehands; 292 gen = th->th_generation; 293 bintime2timeval(&th->th_offset, tvp); 294 } while (gen == 0 || gen != th->th_generation); 295 } 296 297 void 298 fbclock_getbintime(struct bintime *bt) 299 { 300 struct timehands *th; 301 unsigned int gen; 302 303 do { 304 th = timehands; 305 gen = th->th_generation; 306 *bt = th->th_offset; 307 } while (gen == 0 || gen != th->th_generation); 308 bintime_add(bt, &boottimebin); 309 } 310 311 void 312 fbclock_getnanotime(struct timespec *tsp) 313 { 314 struct timehands *th; 315 unsigned int gen; 316 317 do { 318 th = timehands; 319 gen = th->th_generation; 320 *tsp = th->th_nanotime; 321 } while (gen == 0 || gen != th->th_generation); 322 } 323 324 void 325 fbclock_getmicrotime(struct timeval *tvp) 326 { 327 struct timehands *th; 328 unsigned int gen; 329 330 do { 331 th = timehands; 332 gen = th->th_generation; 333 *tvp = th->th_microtime; 334 } while (gen == 0 || gen != th->th_generation); 335 } 336 #else /* !FFCLOCK */ 337 void 338 binuptime(struct bintime *bt) 339 { 340 struct timehands *th; 341 u_int gen; 342 343 do { 344 th = timehands; 345 gen = th->th_generation; 346 *bt = th->th_offset; 347 bintime_addx(bt, th->th_scale * tc_delta(th)); 348 } while (gen == 0 || gen != th->th_generation); 349 } 350 351 void 352 nanouptime(struct timespec *tsp) 353 { 354 struct bintime bt; 355 356 binuptime(&bt); 357 bintime2timespec(&bt, tsp); 358 } 359 360 void 361 microuptime(struct timeval *tvp) 362 { 363 struct bintime bt; 364 365 binuptime(&bt); 366 bintime2timeval(&bt, tvp); 367 } 368 369 void 370 bintime(struct bintime *bt) 371 { 372 373 binuptime(bt); 374 bintime_add(bt, &boottimebin); 375 } 376 377 void 378 nanotime(struct timespec *tsp) 379 { 380 struct bintime bt; 381 382 bintime(&bt); 383 bintime2timespec(&bt, tsp); 384 } 385 386 void 387 microtime(struct timeval *tvp) 388 { 389 struct bintime bt; 390 391 bintime(&bt); 392 bintime2timeval(&bt, tvp); 393 } 394 395 void 396 getbinuptime(struct bintime *bt) 397 { 398 struct timehands *th; 399 u_int gen; 400 401 do { 402 th = timehands; 403 gen = th->th_generation; 404 *bt = th->th_offset; 405 } while (gen == 0 || gen != th->th_generation); 406 } 407 408 void 409 getnanouptime(struct timespec *tsp) 410 { 411 struct timehands *th; 412 u_int gen; 413 414 do { 415 th = timehands; 416 gen = th->th_generation; 417 bintime2timespec(&th->th_offset, tsp); 418 } while (gen == 0 || gen != th->th_generation); 419 } 420 421 void 422 getmicrouptime(struct timeval *tvp) 423 { 424 struct timehands *th; 425 u_int gen; 426 427 do { 428 th = timehands; 429 gen = th->th_generation; 430 bintime2timeval(&th->th_offset, tvp); 431 } while (gen == 0 || gen != th->th_generation); 432 } 433 434 void 435 getbintime(struct bintime *bt) 436 { 437 struct timehands *th; 438 u_int gen; 439 440 do { 441 th = timehands; 442 gen = th->th_generation; 443 *bt = th->th_offset; 444 } while (gen == 0 || gen != th->th_generation); 445 bintime_add(bt, &boottimebin); 446 } 447 448 void 449 getnanotime(struct timespec *tsp) 450 { 451 struct timehands *th; 452 u_int gen; 453 454 do { 455 th = timehands; 456 gen = th->th_generation; 457 *tsp = th->th_nanotime; 458 } while (gen == 0 || gen != th->th_generation); 459 } 460 461 void 462 getmicrotime(struct timeval *tvp) 463 { 464 struct timehands *th; 465 u_int gen; 466 467 do { 468 th = timehands; 469 gen = th->th_generation; 470 *tvp = th->th_microtime; 471 } while (gen == 0 || gen != th->th_generation); 472 } 473 #endif /* FFCLOCK */ 474 475 #ifdef FFCLOCK 476 /* 477 * Support for feed-forward synchronization algorithms. This is heavily inspired 478 * by the timehands mechanism but kept independent from it. *_windup() functions 479 * have some connection to avoid accessing the timecounter hardware more than 480 * necessary. 481 */ 482 483 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 484 struct ffclock_estimate ffclock_estimate; 485 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 486 uint32_t ffclock_status; /* Feed-forward clock status. */ 487 int8_t ffclock_updated; /* New estimates are available. */ 488 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 489 490 struct fftimehands { 491 struct ffclock_estimate cest; 492 struct bintime tick_time; 493 struct bintime tick_time_lerp; 494 ffcounter tick_ffcount; 495 uint64_t period_lerp; 496 volatile uint8_t gen; 497 struct fftimehands *next; 498 }; 499 500 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 501 502 static struct fftimehands ffth[10]; 503 static struct fftimehands *volatile fftimehands = ffth; 504 505 static void 506 ffclock_init(void) 507 { 508 struct fftimehands *cur; 509 struct fftimehands *last; 510 511 memset(ffth, 0, sizeof(ffth)); 512 513 last = ffth + NUM_ELEMENTS(ffth) - 1; 514 for (cur = ffth; cur < last; cur++) 515 cur->next = cur + 1; 516 last->next = ffth; 517 518 ffclock_updated = 0; 519 ffclock_status = FFCLOCK_STA_UNSYNC; 520 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 521 } 522 523 /* 524 * Reset the feed-forward clock estimates. Called from inittodr() to get things 525 * kick started and uses the timecounter nominal frequency as a first period 526 * estimate. Note: this function may be called several time just after boot. 527 * Note: this is the only function that sets the value of boot time for the 528 * monotonic (i.e. uptime) version of the feed-forward clock. 529 */ 530 void 531 ffclock_reset_clock(struct timespec *ts) 532 { 533 struct timecounter *tc; 534 struct ffclock_estimate cest; 535 536 tc = timehands->th_counter; 537 memset(&cest, 0, sizeof(struct ffclock_estimate)); 538 539 timespec2bintime(ts, &ffclock_boottime); 540 timespec2bintime(ts, &(cest.update_time)); 541 ffclock_read_counter(&cest.update_ffcount); 542 cest.leapsec_next = 0; 543 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 544 cest.errb_abs = 0; 545 cest.errb_rate = 0; 546 cest.status = FFCLOCK_STA_UNSYNC; 547 cest.leapsec_total = 0; 548 cest.leapsec = 0; 549 550 mtx_lock(&ffclock_mtx); 551 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 552 ffclock_updated = INT8_MAX; 553 mtx_unlock(&ffclock_mtx); 554 555 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 556 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 557 (unsigned long)ts->tv_nsec); 558 } 559 560 /* 561 * Sub-routine to convert a time interval measured in RAW counter units to time 562 * in seconds stored in bintime format. 563 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 564 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 565 * extra cycles. 566 */ 567 static void 568 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 569 { 570 struct bintime bt2; 571 ffcounter delta, delta_max; 572 573 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 574 bintime_clear(bt); 575 do { 576 if (ffdelta > delta_max) 577 delta = delta_max; 578 else 579 delta = ffdelta; 580 bt2.sec = 0; 581 bt2.frac = period; 582 bintime_mul(&bt2, (unsigned int)delta); 583 bintime_add(bt, &bt2); 584 ffdelta -= delta; 585 } while (ffdelta > 0); 586 } 587 588 /* 589 * Update the fftimehands. 590 * Push the tick ffcount and time(s) forward based on current clock estimate. 591 * The conversion from ffcounter to bintime relies on the difference clock 592 * principle, whose accuracy relies on computing small time intervals. If a new 593 * clock estimate has been passed by the synchronisation daemon, make it 594 * current, and compute the linear interpolation for monotonic time if needed. 595 */ 596 static void 597 ffclock_windup(unsigned int delta) 598 { 599 struct ffclock_estimate *cest; 600 struct fftimehands *ffth; 601 struct bintime bt, gap_lerp; 602 ffcounter ffdelta; 603 uint64_t frac; 604 unsigned int polling; 605 uint8_t forward_jump, ogen; 606 607 /* 608 * Pick the next timehand, copy current ffclock estimates and move tick 609 * times and counter forward. 610 */ 611 forward_jump = 0; 612 ffth = fftimehands->next; 613 ogen = ffth->gen; 614 ffth->gen = 0; 615 cest = &ffth->cest; 616 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 617 ffdelta = (ffcounter)delta; 618 ffth->period_lerp = fftimehands->period_lerp; 619 620 ffth->tick_time = fftimehands->tick_time; 621 ffclock_convert_delta(ffdelta, cest->period, &bt); 622 bintime_add(&ffth->tick_time, &bt); 623 624 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 625 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 626 bintime_add(&ffth->tick_time_lerp, &bt); 627 628 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 629 630 /* 631 * Assess the status of the clock, if the last update is too old, it is 632 * likely the synchronisation daemon is dead and the clock is free 633 * running. 634 */ 635 if (ffclock_updated == 0) { 636 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 637 ffclock_convert_delta(ffdelta, cest->period, &bt); 638 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 639 ffclock_status |= FFCLOCK_STA_UNSYNC; 640 } 641 642 /* 643 * If available, grab updated clock estimates and make them current. 644 * Recompute time at this tick using the updated estimates. The clock 645 * estimates passed the feed-forward synchronisation daemon may result 646 * in time conversion that is not monotonically increasing (just after 647 * the update). time_lerp is a particular linear interpolation over the 648 * synchronisation algo polling period that ensures monotonicity for the 649 * clock ids requesting it. 650 */ 651 if (ffclock_updated > 0) { 652 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 653 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 654 ffth->tick_time = cest->update_time; 655 ffclock_convert_delta(ffdelta, cest->period, &bt); 656 bintime_add(&ffth->tick_time, &bt); 657 658 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 659 if (ffclock_updated == INT8_MAX) 660 ffth->tick_time_lerp = ffth->tick_time; 661 662 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 663 forward_jump = 1; 664 else 665 forward_jump = 0; 666 667 bintime_clear(&gap_lerp); 668 if (forward_jump) { 669 gap_lerp = ffth->tick_time; 670 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 671 } else { 672 gap_lerp = ffth->tick_time_lerp; 673 bintime_sub(&gap_lerp, &ffth->tick_time); 674 } 675 676 /* 677 * The reset from the RTC clock may be far from accurate, and 678 * reducing the gap between real time and interpolated time 679 * could take a very long time if the interpolated clock insists 680 * on strict monotonicity. The clock is reset under very strict 681 * conditions (kernel time is known to be wrong and 682 * synchronization daemon has been restarted recently. 683 * ffclock_boottime absorbs the jump to ensure boot time is 684 * correct and uptime functions stay consistent. 685 */ 686 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 687 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 688 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 689 if (forward_jump) 690 bintime_add(&ffclock_boottime, &gap_lerp); 691 else 692 bintime_sub(&ffclock_boottime, &gap_lerp); 693 ffth->tick_time_lerp = ffth->tick_time; 694 bintime_clear(&gap_lerp); 695 } 696 697 ffclock_status = cest->status; 698 ffth->period_lerp = cest->period; 699 700 /* 701 * Compute corrected period used for the linear interpolation of 702 * time. The rate of linear interpolation is capped to 5000PPM 703 * (5ms/s). 704 */ 705 if (bintime_isset(&gap_lerp)) { 706 ffdelta = cest->update_ffcount; 707 ffdelta -= fftimehands->cest.update_ffcount; 708 ffclock_convert_delta(ffdelta, cest->period, &bt); 709 polling = bt.sec; 710 bt.sec = 0; 711 bt.frac = 5000000 * (uint64_t)18446744073LL; 712 bintime_mul(&bt, polling); 713 if (bintime_cmp(&gap_lerp, &bt, >)) 714 gap_lerp = bt; 715 716 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 717 frac = 0; 718 if (gap_lerp.sec > 0) { 719 frac -= 1; 720 frac /= ffdelta / gap_lerp.sec; 721 } 722 frac += gap_lerp.frac / ffdelta; 723 724 if (forward_jump) 725 ffth->period_lerp += frac; 726 else 727 ffth->period_lerp -= frac; 728 } 729 730 ffclock_updated = 0; 731 } 732 if (++ogen == 0) 733 ogen = 1; 734 ffth->gen = ogen; 735 fftimehands = ffth; 736 } 737 738 /* 739 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 740 * the old and new hardware counter cannot be read simultaneously. tc_windup() 741 * does read the two counters 'back to back', but a few cycles are effectively 742 * lost, and not accumulated in tick_ffcount. This is a fairly radical 743 * operation for a feed-forward synchronization daemon, and it is its job to not 744 * pushing irrelevant data to the kernel. Because there is no locking here, 745 * simply force to ignore pending or next update to give daemon a chance to 746 * realize the counter has changed. 747 */ 748 static void 749 ffclock_change_tc(struct timehands *th) 750 { 751 struct fftimehands *ffth; 752 struct ffclock_estimate *cest; 753 struct timecounter *tc; 754 uint8_t ogen; 755 756 tc = th->th_counter; 757 ffth = fftimehands->next; 758 ogen = ffth->gen; 759 ffth->gen = 0; 760 761 cest = &ffth->cest; 762 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 763 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 764 cest->errb_abs = 0; 765 cest->errb_rate = 0; 766 cest->status |= FFCLOCK_STA_UNSYNC; 767 768 ffth->tick_ffcount = fftimehands->tick_ffcount; 769 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 770 ffth->tick_time = fftimehands->tick_time; 771 ffth->period_lerp = cest->period; 772 773 /* Do not lock but ignore next update from synchronization daemon. */ 774 ffclock_updated--; 775 776 if (++ogen == 0) 777 ogen = 1; 778 ffth->gen = ogen; 779 fftimehands = ffth; 780 } 781 782 /* 783 * Retrieve feed-forward counter and time of last kernel tick. 784 */ 785 void 786 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 787 { 788 struct fftimehands *ffth; 789 uint8_t gen; 790 791 /* 792 * No locking but check generation has not changed. Also need to make 793 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 794 */ 795 do { 796 ffth = fftimehands; 797 gen = ffth->gen; 798 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 799 *bt = ffth->tick_time_lerp; 800 else 801 *bt = ffth->tick_time; 802 *ffcount = ffth->tick_ffcount; 803 } while (gen == 0 || gen != ffth->gen); 804 } 805 806 /* 807 * Absolute clock conversion. Low level function to convert ffcounter to 808 * bintime. The ffcounter is converted using the current ffclock period estimate 809 * or the "interpolated period" to ensure monotonicity. 810 * NOTE: this conversion may have been deferred, and the clock updated since the 811 * hardware counter has been read. 812 */ 813 void 814 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 815 { 816 struct fftimehands *ffth; 817 struct bintime bt2; 818 ffcounter ffdelta; 819 uint8_t gen; 820 821 /* 822 * No locking but check generation has not changed. Also need to make 823 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 824 */ 825 do { 826 ffth = fftimehands; 827 gen = ffth->gen; 828 if (ffcount > ffth->tick_ffcount) 829 ffdelta = ffcount - ffth->tick_ffcount; 830 else 831 ffdelta = ffth->tick_ffcount - ffcount; 832 833 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 834 *bt = ffth->tick_time_lerp; 835 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 836 } else { 837 *bt = ffth->tick_time; 838 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 839 } 840 841 if (ffcount > ffth->tick_ffcount) 842 bintime_add(bt, &bt2); 843 else 844 bintime_sub(bt, &bt2); 845 } while (gen == 0 || gen != ffth->gen); 846 } 847 848 /* 849 * Difference clock conversion. 850 * Low level function to Convert a time interval measured in RAW counter units 851 * into bintime. The difference clock allows measuring small intervals much more 852 * reliably than the absolute clock. 853 */ 854 void 855 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 856 { 857 struct fftimehands *ffth; 858 uint8_t gen; 859 860 /* No locking but check generation has not changed. */ 861 do { 862 ffth = fftimehands; 863 gen = ffth->gen; 864 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 865 } while (gen == 0 || gen != ffth->gen); 866 } 867 868 /* 869 * Access to current ffcounter value. 870 */ 871 void 872 ffclock_read_counter(ffcounter *ffcount) 873 { 874 struct timehands *th; 875 struct fftimehands *ffth; 876 unsigned int gen, delta; 877 878 /* 879 * ffclock_windup() called from tc_windup(), safe to rely on 880 * th->th_generation only, for correct delta and ffcounter. 881 */ 882 do { 883 th = timehands; 884 gen = th->th_generation; 885 ffth = fftimehands; 886 delta = tc_delta(th); 887 *ffcount = ffth->tick_ffcount; 888 } while (gen == 0 || gen != th->th_generation); 889 890 *ffcount += delta; 891 } 892 893 void 894 binuptime(struct bintime *bt) 895 { 896 897 binuptime_fromclock(bt, sysclock_active); 898 } 899 900 void 901 nanouptime(struct timespec *tsp) 902 { 903 904 nanouptime_fromclock(tsp, sysclock_active); 905 } 906 907 void 908 microuptime(struct timeval *tvp) 909 { 910 911 microuptime_fromclock(tvp, sysclock_active); 912 } 913 914 void 915 bintime(struct bintime *bt) 916 { 917 918 bintime_fromclock(bt, sysclock_active); 919 } 920 921 void 922 nanotime(struct timespec *tsp) 923 { 924 925 nanotime_fromclock(tsp, sysclock_active); 926 } 927 928 void 929 microtime(struct timeval *tvp) 930 { 931 932 microtime_fromclock(tvp, sysclock_active); 933 } 934 935 void 936 getbinuptime(struct bintime *bt) 937 { 938 939 getbinuptime_fromclock(bt, sysclock_active); 940 } 941 942 void 943 getnanouptime(struct timespec *tsp) 944 { 945 946 getnanouptime_fromclock(tsp, sysclock_active); 947 } 948 949 void 950 getmicrouptime(struct timeval *tvp) 951 { 952 953 getmicrouptime_fromclock(tvp, sysclock_active); 954 } 955 956 void 957 getbintime(struct bintime *bt) 958 { 959 960 getbintime_fromclock(bt, sysclock_active); 961 } 962 963 void 964 getnanotime(struct timespec *tsp) 965 { 966 967 getnanotime_fromclock(tsp, sysclock_active); 968 } 969 970 void 971 getmicrotime(struct timeval *tvp) 972 { 973 974 getmicrouptime_fromclock(tvp, sysclock_active); 975 } 976 977 #endif /* FFCLOCK */ 978 979 /* 980 * This is a clone of getnanotime and used for walltimestamps. 981 * The dtrace_ prefix prevents fbt from creating probes for 982 * it so walltimestamp can be safely used in all fbt probes. 983 */ 984 void 985 dtrace_getnanotime(struct timespec *tsp) 986 { 987 struct timehands *th; 988 u_int gen; 989 990 do { 991 th = timehands; 992 gen = th->th_generation; 993 *tsp = th->th_nanotime; 994 } while (gen == 0 || gen != th->th_generation); 995 } 996 997 /* 998 * System clock currently providing time to the system. Modifiable via sysctl 999 * when the FFCLOCK option is defined. 1000 */ 1001 int sysclock_active = SYSCLOCK_FBCK; 1002 1003 /* Internal NTP status and error estimates. */ 1004 extern int time_status; 1005 extern long time_esterror; 1006 1007 /* 1008 * Take a snapshot of sysclock data which can be used to compare system clocks 1009 * and generate timestamps after the fact. 1010 */ 1011 void 1012 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 1013 { 1014 struct fbclock_info *fbi; 1015 struct timehands *th; 1016 struct bintime bt; 1017 unsigned int delta, gen; 1018 #ifdef FFCLOCK 1019 ffcounter ffcount; 1020 struct fftimehands *ffth; 1021 struct ffclock_info *ffi; 1022 struct ffclock_estimate cest; 1023 1024 ffi = &clock_snap->ff_info; 1025 #endif 1026 1027 fbi = &clock_snap->fb_info; 1028 delta = 0; 1029 1030 do { 1031 th = timehands; 1032 gen = th->th_generation; 1033 fbi->th_scale = th->th_scale; 1034 fbi->tick_time = th->th_offset; 1035 #ifdef FFCLOCK 1036 ffth = fftimehands; 1037 ffi->tick_time = ffth->tick_time_lerp; 1038 ffi->tick_time_lerp = ffth->tick_time_lerp; 1039 ffi->period = ffth->cest.period; 1040 ffi->period_lerp = ffth->period_lerp; 1041 clock_snap->ffcount = ffth->tick_ffcount; 1042 cest = ffth->cest; 1043 #endif 1044 if (!fast) 1045 delta = tc_delta(th); 1046 } while (gen == 0 || gen != th->th_generation); 1047 1048 clock_snap->delta = delta; 1049 clock_snap->sysclock_active = sysclock_active; 1050 1051 /* Record feedback clock status and error. */ 1052 clock_snap->fb_info.status = time_status; 1053 /* XXX: Very crude estimate of feedback clock error. */ 1054 bt.sec = time_esterror / 1000000; 1055 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1056 (uint64_t)18446744073709ULL; 1057 clock_snap->fb_info.error = bt; 1058 1059 #ifdef FFCLOCK 1060 if (!fast) 1061 clock_snap->ffcount += delta; 1062 1063 /* Record feed-forward clock leap second adjustment. */ 1064 ffi->leapsec_adjustment = cest.leapsec_total; 1065 if (clock_snap->ffcount > cest.leapsec_next) 1066 ffi->leapsec_adjustment -= cest.leapsec; 1067 1068 /* Record feed-forward clock status and error. */ 1069 clock_snap->ff_info.status = cest.status; 1070 ffcount = clock_snap->ffcount - cest.update_ffcount; 1071 ffclock_convert_delta(ffcount, cest.period, &bt); 1072 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1073 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1074 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1075 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1076 clock_snap->ff_info.error = bt; 1077 #endif 1078 } 1079 1080 /* 1081 * Convert a sysclock snapshot into a struct bintime based on the specified 1082 * clock source and flags. 1083 */ 1084 int 1085 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1086 int whichclock, uint32_t flags) 1087 { 1088 #ifdef FFCLOCK 1089 struct bintime bt2; 1090 uint64_t period; 1091 #endif 1092 1093 switch (whichclock) { 1094 case SYSCLOCK_FBCK: 1095 *bt = cs->fb_info.tick_time; 1096 1097 /* If snapshot was created with !fast, delta will be >0. */ 1098 if (cs->delta > 0) 1099 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1100 1101 if ((flags & FBCLOCK_UPTIME) == 0) 1102 bintime_add(bt, &boottimebin); 1103 break; 1104 #ifdef FFCLOCK 1105 case SYSCLOCK_FFWD: 1106 if (flags & FFCLOCK_LERP) { 1107 *bt = cs->ff_info.tick_time_lerp; 1108 period = cs->ff_info.period_lerp; 1109 } else { 1110 *bt = cs->ff_info.tick_time; 1111 period = cs->ff_info.period; 1112 } 1113 1114 /* If snapshot was created with !fast, delta will be >0. */ 1115 if (cs->delta > 0) { 1116 ffclock_convert_delta(cs->delta, period, &bt2); 1117 bintime_add(bt, &bt2); 1118 } 1119 1120 /* Leap second adjustment. */ 1121 if (flags & FFCLOCK_LEAPSEC) 1122 bt->sec -= cs->ff_info.leapsec_adjustment; 1123 1124 /* Boot time adjustment, for uptime/monotonic clocks. */ 1125 if (flags & FFCLOCK_UPTIME) 1126 bintime_sub(bt, &ffclock_boottime); 1127 break; 1128 #endif 1129 default: 1130 return (EINVAL); 1131 break; 1132 } 1133 1134 return (0); 1135 } 1136 1137 /* 1138 * Initialize a new timecounter and possibly use it. 1139 */ 1140 void 1141 tc_init(struct timecounter *tc) 1142 { 1143 u_int u; 1144 struct sysctl_oid *tc_root; 1145 1146 u = tc->tc_frequency / tc->tc_counter_mask; 1147 /* XXX: We need some margin here, 10% is a guess */ 1148 u *= 11; 1149 u /= 10; 1150 if (u > hz && tc->tc_quality >= 0) { 1151 tc->tc_quality = -2000; 1152 if (bootverbose) { 1153 printf("Timecounter \"%s\" frequency %ju Hz", 1154 tc->tc_name, (uintmax_t)tc->tc_frequency); 1155 printf(" -- Insufficient hz, needs at least %u\n", u); 1156 } 1157 } else if (tc->tc_quality >= 0 || bootverbose) { 1158 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1159 tc->tc_name, (uintmax_t)tc->tc_frequency, 1160 tc->tc_quality); 1161 } 1162 1163 tc->tc_next = timecounters; 1164 timecounters = tc; 1165 /* 1166 * Set up sysctl tree for this counter. 1167 */ 1168 tc_root = SYSCTL_ADD_NODE(NULL, 1169 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1170 CTLFLAG_RW, 0, "timecounter description"); 1171 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1172 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1173 "mask for implemented bits"); 1174 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1175 "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc), 1176 sysctl_kern_timecounter_get, "IU", "current timecounter value"); 1177 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1178 "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc), 1179 sysctl_kern_timecounter_freq, "QU", "timecounter frequency"); 1180 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1181 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1182 "goodness of time counter"); 1183 /* 1184 * Never automatically use a timecounter with negative quality. 1185 * Even though we run on the dummy counter, switching here may be 1186 * worse since this timecounter may not be monotonous. 1187 */ 1188 if (tc->tc_quality < 0) 1189 return; 1190 if (tc->tc_quality < timecounter->tc_quality) 1191 return; 1192 if (tc->tc_quality == timecounter->tc_quality && 1193 tc->tc_frequency < timecounter->tc_frequency) 1194 return; 1195 (void)tc->tc_get_timecount(tc); 1196 (void)tc->tc_get_timecount(tc); 1197 timecounter = tc; 1198 } 1199 1200 /* Report the frequency of the current timecounter. */ 1201 uint64_t 1202 tc_getfrequency(void) 1203 { 1204 1205 return (timehands->th_counter->tc_frequency); 1206 } 1207 1208 /* 1209 * Step our concept of UTC. This is done by modifying our estimate of 1210 * when we booted. 1211 * XXX: not locked. 1212 */ 1213 void 1214 tc_setclock(struct timespec *ts) 1215 { 1216 struct timespec tbef, taft; 1217 struct bintime bt, bt2; 1218 1219 cpu_tick_calibrate(1); 1220 nanotime(&tbef); 1221 timespec2bintime(ts, &bt); 1222 binuptime(&bt2); 1223 bintime_sub(&bt, &bt2); 1224 bintime_add(&bt2, &boottimebin); 1225 boottimebin = bt; 1226 bintime2timeval(&bt, &boottime); 1227 1228 /* XXX fiddle all the little crinkly bits around the fiords... */ 1229 tc_windup(); 1230 nanotime(&taft); 1231 if (timestepwarnings) { 1232 log(LOG_INFO, 1233 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1234 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1235 (intmax_t)taft.tv_sec, taft.tv_nsec, 1236 (intmax_t)ts->tv_sec, ts->tv_nsec); 1237 } 1238 cpu_tick_calibrate(1); 1239 } 1240 1241 /* 1242 * Initialize the next struct timehands in the ring and make 1243 * it the active timehands. Along the way we might switch to a different 1244 * timecounter and/or do seconds processing in NTP. Slightly magic. 1245 */ 1246 static void 1247 tc_windup(void) 1248 { 1249 struct bintime bt; 1250 struct timehands *th, *tho; 1251 uint64_t scale; 1252 u_int delta, ncount, ogen; 1253 int i; 1254 time_t t; 1255 1256 /* 1257 * Make the next timehands a copy of the current one, but do not 1258 * overwrite the generation or next pointer. While we update 1259 * the contents, the generation must be zero. 1260 */ 1261 tho = timehands; 1262 th = tho->th_next; 1263 ogen = th->th_generation; 1264 th->th_generation = 0; 1265 bcopy(tho, th, offsetof(struct timehands, th_generation)); 1266 1267 /* 1268 * Capture a timecounter delta on the current timecounter and if 1269 * changing timecounters, a counter value from the new timecounter. 1270 * Update the offset fields accordingly. 1271 */ 1272 delta = tc_delta(th); 1273 if (th->th_counter != timecounter) 1274 ncount = timecounter->tc_get_timecount(timecounter); 1275 else 1276 ncount = 0; 1277 #ifdef FFCLOCK 1278 ffclock_windup(delta); 1279 #endif 1280 th->th_offset_count += delta; 1281 th->th_offset_count &= th->th_counter->tc_counter_mask; 1282 while (delta > th->th_counter->tc_frequency) { 1283 /* Eat complete unadjusted seconds. */ 1284 delta -= th->th_counter->tc_frequency; 1285 th->th_offset.sec++; 1286 } 1287 if ((delta > th->th_counter->tc_frequency / 2) && 1288 (th->th_scale * delta < ((uint64_t)1 << 63))) { 1289 /* The product th_scale * delta just barely overflows. */ 1290 th->th_offset.sec++; 1291 } 1292 bintime_addx(&th->th_offset, th->th_scale * delta); 1293 1294 /* 1295 * Hardware latching timecounters may not generate interrupts on 1296 * PPS events, so instead we poll them. There is a finite risk that 1297 * the hardware might capture a count which is later than the one we 1298 * got above, and therefore possibly in the next NTP second which might 1299 * have a different rate than the current NTP second. It doesn't 1300 * matter in practice. 1301 */ 1302 if (tho->th_counter->tc_poll_pps) 1303 tho->th_counter->tc_poll_pps(tho->th_counter); 1304 1305 /* 1306 * Deal with NTP second processing. The for loop normally 1307 * iterates at most once, but in extreme situations it might 1308 * keep NTP sane if timeouts are not run for several seconds. 1309 * At boot, the time step can be large when the TOD hardware 1310 * has been read, so on really large steps, we call 1311 * ntp_update_second only twice. We need to call it twice in 1312 * case we missed a leap second. 1313 */ 1314 bt = th->th_offset; 1315 bintime_add(&bt, &boottimebin); 1316 i = bt.sec - tho->th_microtime.tv_sec; 1317 if (i > LARGE_STEP) 1318 i = 2; 1319 for (; i > 0; i--) { 1320 t = bt.sec; 1321 ntp_update_second(&th->th_adjustment, &bt.sec); 1322 if (bt.sec != t) 1323 boottimebin.sec += bt.sec - t; 1324 } 1325 /* Update the UTC timestamps used by the get*() functions. */ 1326 /* XXX shouldn't do this here. Should force non-`get' versions. */ 1327 bintime2timeval(&bt, &th->th_microtime); 1328 bintime2timespec(&bt, &th->th_nanotime); 1329 1330 /* Now is a good time to change timecounters. */ 1331 if (th->th_counter != timecounter) { 1332 #ifndef __arm__ 1333 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0) 1334 cpu_disable_c2_sleep++; 1335 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 1336 cpu_disable_c2_sleep--; 1337 #endif 1338 th->th_counter = timecounter; 1339 th->th_offset_count = ncount; 1340 tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 1341 (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1342 #ifdef FFCLOCK 1343 ffclock_change_tc(th); 1344 #endif 1345 } 1346 1347 /*- 1348 * Recalculate the scaling factor. We want the number of 1/2^64 1349 * fractions of a second per period of the hardware counter, taking 1350 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1351 * processing provides us with. 1352 * 1353 * The th_adjustment is nanoseconds per second with 32 bit binary 1354 * fraction and we want 64 bit binary fraction of second: 1355 * 1356 * x = a * 2^32 / 10^9 = a * 4.294967296 1357 * 1358 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1359 * we can only multiply by about 850 without overflowing, that 1360 * leaves no suitably precise fractions for multiply before divide. 1361 * 1362 * Divide before multiply with a fraction of 2199/512 results in a 1363 * systematic undercompensation of 10PPM of th_adjustment. On a 1364 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1365 * 1366 * We happily sacrifice the lowest of the 64 bits of our result 1367 * to the goddess of code clarity. 1368 * 1369 */ 1370 scale = (uint64_t)1 << 63; 1371 scale += (th->th_adjustment / 1024) * 2199; 1372 scale /= th->th_counter->tc_frequency; 1373 th->th_scale = scale * 2; 1374 1375 /* 1376 * Now that the struct timehands is again consistent, set the new 1377 * generation number, making sure to not make it zero. 1378 */ 1379 if (++ogen == 0) 1380 ogen = 1; 1381 th->th_generation = ogen; 1382 1383 /* Go live with the new struct timehands. */ 1384 #ifdef FFCLOCK 1385 switch (sysclock_active) { 1386 case SYSCLOCK_FBCK: 1387 #endif 1388 time_second = th->th_microtime.tv_sec; 1389 time_uptime = th->th_offset.sec; 1390 #ifdef FFCLOCK 1391 break; 1392 case SYSCLOCK_FFWD: 1393 time_second = fftimehands->tick_time_lerp.sec; 1394 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1395 break; 1396 } 1397 #endif 1398 1399 timehands = th; 1400 timekeep_push_vdso(); 1401 } 1402 1403 /* Report or change the active timecounter hardware. */ 1404 static int 1405 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1406 { 1407 char newname[32]; 1408 struct timecounter *newtc, *tc; 1409 int error; 1410 1411 tc = timecounter; 1412 strlcpy(newname, tc->tc_name, sizeof(newname)); 1413 1414 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1415 if (error != 0 || req->newptr == NULL || 1416 strcmp(newname, tc->tc_name) == 0) 1417 return (error); 1418 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1419 if (strcmp(newname, newtc->tc_name) != 0) 1420 continue; 1421 1422 /* Warm up new timecounter. */ 1423 (void)newtc->tc_get_timecount(newtc); 1424 (void)newtc->tc_get_timecount(newtc); 1425 1426 timecounter = newtc; 1427 1428 /* 1429 * The vdso timehands update is deferred until the next 1430 * 'tc_windup()'. 1431 * 1432 * This is prudent given that 'timekeep_push_vdso()' does not 1433 * use any locking and that it can be called in hard interrupt 1434 * context via 'tc_windup()'. 1435 */ 1436 return (0); 1437 } 1438 return (EINVAL); 1439 } 1440 1441 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW, 1442 0, 0, sysctl_kern_timecounter_hardware, "A", 1443 "Timecounter hardware selected"); 1444 1445 1446 /* Report or change the active timecounter hardware. */ 1447 static int 1448 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1449 { 1450 char buf[32], *spc; 1451 struct timecounter *tc; 1452 int error; 1453 1454 spc = ""; 1455 error = 0; 1456 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) { 1457 sprintf(buf, "%s%s(%d)", 1458 spc, tc->tc_name, tc->tc_quality); 1459 error = SYSCTL_OUT(req, buf, strlen(buf)); 1460 spc = " "; 1461 } 1462 return (error); 1463 } 1464 1465 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD, 1466 0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected"); 1467 1468 /* 1469 * RFC 2783 PPS-API implementation. 1470 */ 1471 1472 static int 1473 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1474 { 1475 int err, timo; 1476 pps_seq_t aseq, cseq; 1477 struct timeval tv; 1478 1479 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1480 return (EINVAL); 1481 1482 /* 1483 * If no timeout is requested, immediately return whatever values were 1484 * most recently captured. If timeout seconds is -1, that's a request 1485 * to block without a timeout. WITNESS won't let us sleep forever 1486 * without a lock (we really don't need a lock), so just repeatedly 1487 * sleep a long time. 1488 */ 1489 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1490 if (fapi->timeout.tv_sec == -1) 1491 timo = 0x7fffffff; 1492 else { 1493 tv.tv_sec = fapi->timeout.tv_sec; 1494 tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1495 timo = tvtohz(&tv); 1496 } 1497 aseq = pps->ppsinfo.assert_sequence; 1498 cseq = pps->ppsinfo.clear_sequence; 1499 while (aseq == pps->ppsinfo.assert_sequence && 1500 cseq == pps->ppsinfo.clear_sequence) { 1501 err = tsleep(pps, PCATCH, "ppsfch", timo); 1502 if (err == EWOULDBLOCK && fapi->timeout.tv_sec == -1) { 1503 continue; 1504 } else if (err != 0) { 1505 return (err); 1506 } 1507 } 1508 } 1509 1510 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1511 fapi->pps_info_buf = pps->ppsinfo; 1512 1513 return (0); 1514 } 1515 1516 int 1517 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1518 { 1519 pps_params_t *app; 1520 struct pps_fetch_args *fapi; 1521 #ifdef FFCLOCK 1522 struct pps_fetch_ffc_args *fapi_ffc; 1523 #endif 1524 #ifdef PPS_SYNC 1525 struct pps_kcbind_args *kapi; 1526 #endif 1527 1528 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1529 switch (cmd) { 1530 case PPS_IOC_CREATE: 1531 return (0); 1532 case PPS_IOC_DESTROY: 1533 return (0); 1534 case PPS_IOC_SETPARAMS: 1535 app = (pps_params_t *)data; 1536 if (app->mode & ~pps->ppscap) 1537 return (EINVAL); 1538 #ifdef FFCLOCK 1539 /* Ensure only a single clock is selected for ffc timestamp. */ 1540 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1541 return (EINVAL); 1542 #endif 1543 pps->ppsparam = *app; 1544 return (0); 1545 case PPS_IOC_GETPARAMS: 1546 app = (pps_params_t *)data; 1547 *app = pps->ppsparam; 1548 app->api_version = PPS_API_VERS_1; 1549 return (0); 1550 case PPS_IOC_GETCAP: 1551 *(int*)data = pps->ppscap; 1552 return (0); 1553 case PPS_IOC_FETCH: 1554 fapi = (struct pps_fetch_args *)data; 1555 return (pps_fetch(fapi, pps)); 1556 #ifdef FFCLOCK 1557 case PPS_IOC_FETCH_FFCOUNTER: 1558 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1559 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1560 PPS_TSFMT_TSPEC) 1561 return (EINVAL); 1562 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1563 return (EOPNOTSUPP); 1564 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1565 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1566 /* Overwrite timestamps if feedback clock selected. */ 1567 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1568 case PPS_TSCLK_FBCK: 1569 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1570 pps->ppsinfo.assert_timestamp; 1571 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1572 pps->ppsinfo.clear_timestamp; 1573 break; 1574 case PPS_TSCLK_FFWD: 1575 break; 1576 default: 1577 break; 1578 } 1579 return (0); 1580 #endif /* FFCLOCK */ 1581 case PPS_IOC_KCBIND: 1582 #ifdef PPS_SYNC 1583 kapi = (struct pps_kcbind_args *)data; 1584 /* XXX Only root should be able to do this */ 1585 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1586 return (EINVAL); 1587 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1588 return (EINVAL); 1589 if (kapi->edge & ~pps->ppscap) 1590 return (EINVAL); 1591 pps->kcmode = kapi->edge; 1592 return (0); 1593 #else 1594 return (EOPNOTSUPP); 1595 #endif 1596 default: 1597 return (ENOIOCTL); 1598 } 1599 } 1600 1601 void 1602 pps_init(struct pps_state *pps) 1603 { 1604 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1605 if (pps->ppscap & PPS_CAPTUREASSERT) 1606 pps->ppscap |= PPS_OFFSETASSERT; 1607 if (pps->ppscap & PPS_CAPTURECLEAR) 1608 pps->ppscap |= PPS_OFFSETCLEAR; 1609 #ifdef FFCLOCK 1610 pps->ppscap |= PPS_TSCLK_MASK; 1611 #endif 1612 } 1613 1614 void 1615 pps_capture(struct pps_state *pps) 1616 { 1617 struct timehands *th; 1618 1619 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1620 th = timehands; 1621 pps->capgen = th->th_generation; 1622 pps->capth = th; 1623 #ifdef FFCLOCK 1624 pps->capffth = fftimehands; 1625 #endif 1626 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1627 if (pps->capgen != th->th_generation) 1628 pps->capgen = 0; 1629 } 1630 1631 void 1632 pps_event(struct pps_state *pps, int event) 1633 { 1634 struct bintime bt; 1635 struct timespec ts, *tsp, *osp; 1636 u_int tcount, *pcount; 1637 int foff, fhard; 1638 pps_seq_t *pseq; 1639 #ifdef FFCLOCK 1640 struct timespec *tsp_ffc; 1641 pps_seq_t *pseq_ffc; 1642 ffcounter *ffcount; 1643 #endif 1644 1645 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1646 /* If the timecounter was wound up underneath us, bail out. */ 1647 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation) 1648 return; 1649 1650 /* Things would be easier with arrays. */ 1651 if (event == PPS_CAPTUREASSERT) { 1652 tsp = &pps->ppsinfo.assert_timestamp; 1653 osp = &pps->ppsparam.assert_offset; 1654 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1655 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1656 pcount = &pps->ppscount[0]; 1657 pseq = &pps->ppsinfo.assert_sequence; 1658 #ifdef FFCLOCK 1659 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1660 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1661 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1662 #endif 1663 } else { 1664 tsp = &pps->ppsinfo.clear_timestamp; 1665 osp = &pps->ppsparam.clear_offset; 1666 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1667 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1668 pcount = &pps->ppscount[1]; 1669 pseq = &pps->ppsinfo.clear_sequence; 1670 #ifdef FFCLOCK 1671 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1672 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1673 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1674 #endif 1675 } 1676 1677 /* 1678 * If the timecounter changed, we cannot compare the count values, so 1679 * we have to drop the rest of the PPS-stuff until the next event. 1680 */ 1681 if (pps->ppstc != pps->capth->th_counter) { 1682 pps->ppstc = pps->capth->th_counter; 1683 *pcount = pps->capcount; 1684 pps->ppscount[2] = pps->capcount; 1685 return; 1686 } 1687 1688 /* Convert the count to a timespec. */ 1689 tcount = pps->capcount - pps->capth->th_offset_count; 1690 tcount &= pps->capth->th_counter->tc_counter_mask; 1691 bt = pps->capth->th_offset; 1692 bintime_addx(&bt, pps->capth->th_scale * tcount); 1693 bintime_add(&bt, &boottimebin); 1694 bintime2timespec(&bt, &ts); 1695 1696 /* If the timecounter was wound up underneath us, bail out. */ 1697 if (pps->capgen != pps->capth->th_generation) 1698 return; 1699 1700 *pcount = pps->capcount; 1701 (*pseq)++; 1702 *tsp = ts; 1703 1704 if (foff) { 1705 timespecadd(tsp, osp); 1706 if (tsp->tv_nsec < 0) { 1707 tsp->tv_nsec += 1000000000; 1708 tsp->tv_sec -= 1; 1709 } 1710 } 1711 1712 #ifdef FFCLOCK 1713 *ffcount = pps->capffth->tick_ffcount + tcount; 1714 bt = pps->capffth->tick_time; 1715 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1716 bintime_add(&bt, &pps->capffth->tick_time); 1717 bintime2timespec(&bt, &ts); 1718 (*pseq_ffc)++; 1719 *tsp_ffc = ts; 1720 #endif 1721 1722 #ifdef PPS_SYNC 1723 if (fhard) { 1724 uint64_t scale; 1725 1726 /* 1727 * Feed the NTP PLL/FLL. 1728 * The FLL wants to know how many (hardware) nanoseconds 1729 * elapsed since the previous event. 1730 */ 1731 tcount = pps->capcount - pps->ppscount[2]; 1732 pps->ppscount[2] = pps->capcount; 1733 tcount &= pps->capth->th_counter->tc_counter_mask; 1734 scale = (uint64_t)1 << 63; 1735 scale /= pps->capth->th_counter->tc_frequency; 1736 scale *= 2; 1737 bt.sec = 0; 1738 bt.frac = 0; 1739 bintime_addx(&bt, scale * tcount); 1740 bintime2timespec(&bt, &ts); 1741 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1742 } 1743 #endif 1744 1745 /* Wakeup anyone sleeping in pps_fetch(). */ 1746 wakeup(pps); 1747 } 1748 1749 /* 1750 * Timecounters need to be updated every so often to prevent the hardware 1751 * counter from overflowing. Updating also recalculates the cached values 1752 * used by the get*() family of functions, so their precision depends on 1753 * the update frequency. 1754 */ 1755 1756 static int tc_tick; 1757 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1758 "Approximate number of hardclock ticks in a millisecond"); 1759 1760 void 1761 tc_ticktock(int cnt) 1762 { 1763 static int count; 1764 1765 count += cnt; 1766 if (count < tc_tick) 1767 return; 1768 count = 0; 1769 tc_windup(); 1770 } 1771 1772 static void __inline 1773 tc_adjprecision(void) 1774 { 1775 int t; 1776 1777 if (tc_timepercentage > 0) { 1778 t = (99 + tc_timepercentage) / tc_timepercentage; 1779 tc_precexp = fls(t + (t >> 1)) - 1; 1780 FREQ2BT(hz / tc_tick, &bt_timethreshold); 1781 FREQ2BT(hz, &bt_tickthreshold); 1782 bintime_shift(&bt_timethreshold, tc_precexp); 1783 bintime_shift(&bt_tickthreshold, tc_precexp); 1784 } else { 1785 tc_precexp = 31; 1786 bt_timethreshold.sec = INT_MAX; 1787 bt_timethreshold.frac = ~(uint64_t)0; 1788 bt_tickthreshold = bt_timethreshold; 1789 } 1790 sbt_timethreshold = bttosbt(bt_timethreshold); 1791 sbt_tickthreshold = bttosbt(bt_tickthreshold); 1792 } 1793 1794 static int 1795 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 1796 { 1797 int error, val; 1798 1799 val = tc_timepercentage; 1800 error = sysctl_handle_int(oidp, &val, 0, req); 1801 if (error != 0 || req->newptr == NULL) 1802 return (error); 1803 tc_timepercentage = val; 1804 if (cold) 1805 goto done; 1806 tc_adjprecision(); 1807 done: 1808 return (0); 1809 } 1810 1811 static void 1812 inittimecounter(void *dummy) 1813 { 1814 u_int p; 1815 int tick_rate; 1816 1817 /* 1818 * Set the initial timeout to 1819 * max(1, <approx. number of hardclock ticks in a millisecond>). 1820 * People should probably not use the sysctl to set the timeout 1821 * to smaller than its inital value, since that value is the 1822 * smallest reasonable one. If they want better timestamps they 1823 * should use the non-"get"* functions. 1824 */ 1825 if (hz > 1000) 1826 tc_tick = (hz + 500) / 1000; 1827 else 1828 tc_tick = 1; 1829 tc_adjprecision(); 1830 FREQ2BT(hz, &tick_bt); 1831 tick_sbt = bttosbt(tick_bt); 1832 tick_rate = hz / tc_tick; 1833 FREQ2BT(tick_rate, &tc_tick_bt); 1834 tc_tick_sbt = bttosbt(tc_tick_bt); 1835 p = (tc_tick * 1000000) / hz; 1836 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 1837 1838 #ifdef FFCLOCK 1839 ffclock_init(); 1840 #endif 1841 /* warm up new timecounter (again) and get rolling. */ 1842 (void)timecounter->tc_get_timecount(timecounter); 1843 (void)timecounter->tc_get_timecount(timecounter); 1844 tc_windup(); 1845 } 1846 1847 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 1848 1849 /* Cpu tick handling -------------------------------------------------*/ 1850 1851 static int cpu_tick_variable; 1852 static uint64_t cpu_tick_frequency; 1853 1854 static uint64_t 1855 tc_cpu_ticks(void) 1856 { 1857 static uint64_t base; 1858 static unsigned last; 1859 unsigned u; 1860 struct timecounter *tc; 1861 1862 tc = timehands->th_counter; 1863 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 1864 if (u < last) 1865 base += (uint64_t)tc->tc_counter_mask + 1; 1866 last = u; 1867 return (u + base); 1868 } 1869 1870 void 1871 cpu_tick_calibration(void) 1872 { 1873 static time_t last_calib; 1874 1875 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 1876 cpu_tick_calibrate(0); 1877 last_calib = time_uptime; 1878 } 1879 } 1880 1881 /* 1882 * This function gets called every 16 seconds on only one designated 1883 * CPU in the system from hardclock() via cpu_tick_calibration()(). 1884 * 1885 * Whenever the real time clock is stepped we get called with reset=1 1886 * to make sure we handle suspend/resume and similar events correctly. 1887 */ 1888 1889 static void 1890 cpu_tick_calibrate(int reset) 1891 { 1892 static uint64_t c_last; 1893 uint64_t c_this, c_delta; 1894 static struct bintime t_last; 1895 struct bintime t_this, t_delta; 1896 uint32_t divi; 1897 1898 if (reset) { 1899 /* The clock was stepped, abort & reset */ 1900 t_last.sec = 0; 1901 return; 1902 } 1903 1904 /* we don't calibrate fixed rate cputicks */ 1905 if (!cpu_tick_variable) 1906 return; 1907 1908 getbinuptime(&t_this); 1909 c_this = cpu_ticks(); 1910 if (t_last.sec != 0) { 1911 c_delta = c_this - c_last; 1912 t_delta = t_this; 1913 bintime_sub(&t_delta, &t_last); 1914 /* 1915 * Headroom: 1916 * 2^(64-20) / 16[s] = 1917 * 2^(44) / 16[s] = 1918 * 17.592.186.044.416 / 16 = 1919 * 1.099.511.627.776 [Hz] 1920 */ 1921 divi = t_delta.sec << 20; 1922 divi |= t_delta.frac >> (64 - 20); 1923 c_delta <<= 20; 1924 c_delta /= divi; 1925 if (c_delta > cpu_tick_frequency) { 1926 if (0 && bootverbose) 1927 printf("cpu_tick increased to %ju Hz\n", 1928 c_delta); 1929 cpu_tick_frequency = c_delta; 1930 } 1931 } 1932 c_last = c_this; 1933 t_last = t_this; 1934 } 1935 1936 void 1937 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 1938 { 1939 1940 if (func == NULL) { 1941 cpu_ticks = tc_cpu_ticks; 1942 } else { 1943 cpu_tick_frequency = freq; 1944 cpu_tick_variable = var; 1945 cpu_ticks = func; 1946 } 1947 } 1948 1949 uint64_t 1950 cpu_tickrate(void) 1951 { 1952 1953 if (cpu_ticks == tc_cpu_ticks) 1954 return (tc_getfrequency()); 1955 return (cpu_tick_frequency); 1956 } 1957 1958 /* 1959 * We need to be slightly careful converting cputicks to microseconds. 1960 * There is plenty of margin in 64 bits of microseconds (half a million 1961 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 1962 * before divide conversion (to retain precision) we find that the 1963 * margin shrinks to 1.5 hours (one millionth of 146y). 1964 * With a three prong approach we never lose significant bits, no 1965 * matter what the cputick rate and length of timeinterval is. 1966 */ 1967 1968 uint64_t 1969 cputick2usec(uint64_t tick) 1970 { 1971 1972 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 1973 return (tick / (cpu_tickrate() / 1000000LL)); 1974 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 1975 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 1976 else 1977 return ((tick * 1000000LL) / cpu_tickrate()); 1978 } 1979 1980 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 1981 1982 static int vdso_th_enable = 1; 1983 static int 1984 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 1985 { 1986 int old_vdso_th_enable, error; 1987 1988 old_vdso_th_enable = vdso_th_enable; 1989 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 1990 if (error != 0) 1991 return (error); 1992 vdso_th_enable = old_vdso_th_enable; 1993 return (0); 1994 } 1995 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 1996 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 1997 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 1998 1999 uint32_t 2000 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2001 { 2002 struct timehands *th; 2003 uint32_t enabled; 2004 2005 th = timehands; 2006 vdso_th->th_algo = VDSO_TH_ALGO_1; 2007 vdso_th->th_scale = th->th_scale; 2008 vdso_th->th_offset_count = th->th_offset_count; 2009 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2010 vdso_th->th_offset = th->th_offset; 2011 vdso_th->th_boottime = boottimebin; 2012 enabled = cpu_fill_vdso_timehands(vdso_th, th->th_counter); 2013 if (!vdso_th_enable) 2014 enabled = 0; 2015 return (enabled); 2016 } 2017 2018 #ifdef COMPAT_FREEBSD32 2019 uint32_t 2020 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2021 { 2022 struct timehands *th; 2023 uint32_t enabled; 2024 2025 th = timehands; 2026 vdso_th32->th_algo = VDSO_TH_ALGO_1; 2027 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2028 vdso_th32->th_offset_count = th->th_offset_count; 2029 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2030 vdso_th32->th_offset.sec = th->th_offset.sec; 2031 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 2032 vdso_th32->th_boottime.sec = boottimebin.sec; 2033 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac; 2034 enabled = cpu_fill_vdso_timehands32(vdso_th32, th->th_counter); 2035 if (!vdso_th_enable) 2036 enabled = 0; 2037 return (enabled); 2038 } 2039 #endif 2040