1 /*- 2 * ---------------------------------------------------------------------------- 3 * "THE BEER-WARE LICENSE" (Revision 42): 4 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 5 * can do whatever you want with this stuff. If we meet some day, and you think 6 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 7 * ---------------------------------------------------------------------------- 8 * 9 * Copyright (c) 2011 The FreeBSD Foundation 10 * All rights reserved. 11 * 12 * Portions of this software were developed by Julien Ridoux at the University 13 * of Melbourne under sponsorship from the FreeBSD Foundation. 14 */ 15 16 #include <sys/cdefs.h> 17 __FBSDID("$FreeBSD$"); 18 19 #include "opt_compat.h" 20 #include "opt_ntp.h" 21 #include "opt_ffclock.h" 22 23 #include <sys/param.h> 24 #include <sys/kernel.h> 25 #include <sys/limits.h> 26 #include <sys/lock.h> 27 #include <sys/mutex.h> 28 #include <sys/sbuf.h> 29 #include <sys/sysctl.h> 30 #include <sys/syslog.h> 31 #include <sys/systm.h> 32 #include <sys/timeffc.h> 33 #include <sys/timepps.h> 34 #include <sys/timetc.h> 35 #include <sys/timex.h> 36 #include <sys/vdso.h> 37 38 /* 39 * A large step happens on boot. This constant detects such steps. 40 * It is relatively small so that ntp_update_second gets called enough 41 * in the typical 'missed a couple of seconds' case, but doesn't loop 42 * forever when the time step is large. 43 */ 44 #define LARGE_STEP 200 45 46 /* 47 * Implement a dummy timecounter which we can use until we get a real one 48 * in the air. This allows the console and other early stuff to use 49 * time services. 50 */ 51 52 static u_int 53 dummy_get_timecount(struct timecounter *tc) 54 { 55 static u_int now; 56 57 return (++now); 58 } 59 60 static struct timecounter dummy_timecounter = { 61 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 62 }; 63 64 struct timehands { 65 /* These fields must be initialized by the driver. */ 66 struct timecounter *th_counter; 67 int64_t th_adjustment; 68 uint64_t th_scale; 69 u_int th_offset_count; 70 struct bintime th_offset; 71 struct bintime th_bintime; 72 struct timeval th_microtime; 73 struct timespec th_nanotime; 74 struct bintime th_boottime; 75 /* Fields not to be copied in tc_windup start with th_generation. */ 76 u_int th_generation; 77 struct timehands *th_next; 78 }; 79 80 static struct timehands th0; 81 static struct timehands th1 = { 82 .th_next = &th0 83 }; 84 static struct timehands th0 = { 85 .th_counter = &dummy_timecounter, 86 .th_scale = (uint64_t)-1 / 1000000, 87 .th_offset = { .sec = 1 }, 88 .th_generation = 1, 89 .th_next = &th1 90 }; 91 92 static struct timehands *volatile timehands = &th0; 93 struct timecounter *timecounter = &dummy_timecounter; 94 static struct timecounter *timecounters = &dummy_timecounter; 95 96 int tc_min_ticktock_freq = 1; 97 98 volatile time_t time_second = 1; 99 volatile time_t time_uptime = 1; 100 101 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 102 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD, 103 NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime"); 104 105 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, ""); 106 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, ""); 107 108 static int timestepwarnings; 109 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW, 110 ×tepwarnings, 0, "Log time steps"); 111 112 struct bintime bt_timethreshold; 113 struct bintime bt_tickthreshold; 114 sbintime_t sbt_timethreshold; 115 sbintime_t sbt_tickthreshold; 116 struct bintime tc_tick_bt; 117 sbintime_t tc_tick_sbt; 118 int tc_precexp; 119 int tc_timepercentage = TC_DEFAULTPERC; 120 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 121 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 122 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 123 sysctl_kern_timecounter_adjprecision, "I", 124 "Allowed time interval deviation in percents"); 125 126 static int tc_chosen; /* Non-zero if a specific tc was chosen via sysctl. */ 127 128 static void tc_windup(struct bintime *new_boottimebin); 129 static void cpu_tick_calibrate(int); 130 131 void dtrace_getnanotime(struct timespec *tsp); 132 133 static int 134 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 135 { 136 struct timeval boottime; 137 138 getboottime(&boottime); 139 140 #ifndef __mips__ 141 #ifdef SCTL_MASK32 142 int tv[2]; 143 144 if (req->flags & SCTL_MASK32) { 145 tv[0] = boottime.tv_sec; 146 tv[1] = boottime.tv_usec; 147 return (SYSCTL_OUT(req, tv, sizeof(tv))); 148 } 149 #endif 150 #endif 151 return (SYSCTL_OUT(req, &boottime, sizeof(boottime))); 152 } 153 154 static int 155 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 156 { 157 u_int ncount; 158 struct timecounter *tc = arg1; 159 160 ncount = tc->tc_get_timecount(tc); 161 return (sysctl_handle_int(oidp, &ncount, 0, req)); 162 } 163 164 static int 165 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 166 { 167 uint64_t freq; 168 struct timecounter *tc = arg1; 169 170 freq = tc->tc_frequency; 171 return (sysctl_handle_64(oidp, &freq, 0, req)); 172 } 173 174 /* 175 * Return the difference between the timehands' counter value now and what 176 * was when we copied it to the timehands' offset_count. 177 */ 178 static __inline u_int 179 tc_delta(struct timehands *th) 180 { 181 struct timecounter *tc; 182 183 tc = th->th_counter; 184 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 185 tc->tc_counter_mask); 186 } 187 188 /* 189 * Functions for reading the time. We have to loop until we are sure that 190 * the timehands that we operated on was not updated under our feet. See 191 * the comment in <sys/time.h> for a description of these 12 functions. 192 */ 193 194 #ifdef FFCLOCK 195 void 196 fbclock_binuptime(struct bintime *bt) 197 { 198 struct timehands *th; 199 unsigned int gen; 200 201 do { 202 th = timehands; 203 gen = atomic_load_acq_int(&th->th_generation); 204 *bt = th->th_offset; 205 bintime_addx(bt, th->th_scale * tc_delta(th)); 206 atomic_thread_fence_acq(); 207 } while (gen == 0 || gen != th->th_generation); 208 } 209 210 void 211 fbclock_nanouptime(struct timespec *tsp) 212 { 213 struct bintime bt; 214 215 fbclock_binuptime(&bt); 216 bintime2timespec(&bt, tsp); 217 } 218 219 void 220 fbclock_microuptime(struct timeval *tvp) 221 { 222 struct bintime bt; 223 224 fbclock_binuptime(&bt); 225 bintime2timeval(&bt, tvp); 226 } 227 228 void 229 fbclock_bintime(struct bintime *bt) 230 { 231 struct timehands *th; 232 unsigned int gen; 233 234 do { 235 th = timehands; 236 gen = atomic_load_acq_int(&th->th_generation); 237 *bt = th->th_bintime; 238 bintime_addx(bt, th->th_scale * tc_delta(th)); 239 atomic_thread_fence_acq(); 240 } while (gen == 0 || gen != th->th_generation); 241 } 242 243 void 244 fbclock_nanotime(struct timespec *tsp) 245 { 246 struct bintime bt; 247 248 fbclock_bintime(&bt); 249 bintime2timespec(&bt, tsp); 250 } 251 252 void 253 fbclock_microtime(struct timeval *tvp) 254 { 255 struct bintime bt; 256 257 fbclock_bintime(&bt); 258 bintime2timeval(&bt, tvp); 259 } 260 261 void 262 fbclock_getbinuptime(struct bintime *bt) 263 { 264 struct timehands *th; 265 unsigned int gen; 266 267 do { 268 th = timehands; 269 gen = atomic_load_acq_int(&th->th_generation); 270 *bt = th->th_offset; 271 atomic_thread_fence_acq(); 272 } while (gen == 0 || gen != th->th_generation); 273 } 274 275 void 276 fbclock_getnanouptime(struct timespec *tsp) 277 { 278 struct timehands *th; 279 unsigned int gen; 280 281 do { 282 th = timehands; 283 gen = atomic_load_acq_int(&th->th_generation); 284 bintime2timespec(&th->th_offset, tsp); 285 atomic_thread_fence_acq(); 286 } while (gen == 0 || gen != th->th_generation); 287 } 288 289 void 290 fbclock_getmicrouptime(struct timeval *tvp) 291 { 292 struct timehands *th; 293 unsigned int gen; 294 295 do { 296 th = timehands; 297 gen = atomic_load_acq_int(&th->th_generation); 298 bintime2timeval(&th->th_offset, tvp); 299 atomic_thread_fence_acq(); 300 } while (gen == 0 || gen != th->th_generation); 301 } 302 303 void 304 fbclock_getbintime(struct bintime *bt) 305 { 306 struct timehands *th; 307 unsigned int gen; 308 309 do { 310 th = timehands; 311 gen = atomic_load_acq_int(&th->th_generation); 312 *bt = th->th_bintime; 313 atomic_thread_fence_acq(); 314 } while (gen == 0 || gen != th->th_generation); 315 } 316 317 void 318 fbclock_getnanotime(struct timespec *tsp) 319 { 320 struct timehands *th; 321 unsigned int gen; 322 323 do { 324 th = timehands; 325 gen = atomic_load_acq_int(&th->th_generation); 326 *tsp = th->th_nanotime; 327 atomic_thread_fence_acq(); 328 } while (gen == 0 || gen != th->th_generation); 329 } 330 331 void 332 fbclock_getmicrotime(struct timeval *tvp) 333 { 334 struct timehands *th; 335 unsigned int gen; 336 337 do { 338 th = timehands; 339 gen = atomic_load_acq_int(&th->th_generation); 340 *tvp = th->th_microtime; 341 atomic_thread_fence_acq(); 342 } while (gen == 0 || gen != th->th_generation); 343 } 344 #else /* !FFCLOCK */ 345 void 346 binuptime(struct bintime *bt) 347 { 348 struct timehands *th; 349 u_int gen; 350 351 do { 352 th = timehands; 353 gen = atomic_load_acq_int(&th->th_generation); 354 *bt = th->th_offset; 355 bintime_addx(bt, th->th_scale * tc_delta(th)); 356 atomic_thread_fence_acq(); 357 } while (gen == 0 || gen != th->th_generation); 358 } 359 360 void 361 nanouptime(struct timespec *tsp) 362 { 363 struct bintime bt; 364 365 binuptime(&bt); 366 bintime2timespec(&bt, tsp); 367 } 368 369 void 370 microuptime(struct timeval *tvp) 371 { 372 struct bintime bt; 373 374 binuptime(&bt); 375 bintime2timeval(&bt, tvp); 376 } 377 378 void 379 bintime(struct bintime *bt) 380 { 381 struct timehands *th; 382 u_int gen; 383 384 do { 385 th = timehands; 386 gen = atomic_load_acq_int(&th->th_generation); 387 *bt = th->th_bintime; 388 bintime_addx(bt, th->th_scale * tc_delta(th)); 389 atomic_thread_fence_acq(); 390 } while (gen == 0 || gen != th->th_generation); 391 } 392 393 void 394 nanotime(struct timespec *tsp) 395 { 396 struct bintime bt; 397 398 bintime(&bt); 399 bintime2timespec(&bt, tsp); 400 } 401 402 void 403 microtime(struct timeval *tvp) 404 { 405 struct bintime bt; 406 407 bintime(&bt); 408 bintime2timeval(&bt, tvp); 409 } 410 411 void 412 getbinuptime(struct bintime *bt) 413 { 414 struct timehands *th; 415 u_int gen; 416 417 do { 418 th = timehands; 419 gen = atomic_load_acq_int(&th->th_generation); 420 *bt = th->th_offset; 421 atomic_thread_fence_acq(); 422 } while (gen == 0 || gen != th->th_generation); 423 } 424 425 void 426 getnanouptime(struct timespec *tsp) 427 { 428 struct timehands *th; 429 u_int gen; 430 431 do { 432 th = timehands; 433 gen = atomic_load_acq_int(&th->th_generation); 434 bintime2timespec(&th->th_offset, tsp); 435 atomic_thread_fence_acq(); 436 } while (gen == 0 || gen != th->th_generation); 437 } 438 439 void 440 getmicrouptime(struct timeval *tvp) 441 { 442 struct timehands *th; 443 u_int gen; 444 445 do { 446 th = timehands; 447 gen = atomic_load_acq_int(&th->th_generation); 448 bintime2timeval(&th->th_offset, tvp); 449 atomic_thread_fence_acq(); 450 } while (gen == 0 || gen != th->th_generation); 451 } 452 453 void 454 getbintime(struct bintime *bt) 455 { 456 struct timehands *th; 457 u_int gen; 458 459 do { 460 th = timehands; 461 gen = atomic_load_acq_int(&th->th_generation); 462 *bt = th->th_bintime; 463 atomic_thread_fence_acq(); 464 } while (gen == 0 || gen != th->th_generation); 465 } 466 467 void 468 getnanotime(struct timespec *tsp) 469 { 470 struct timehands *th; 471 u_int gen; 472 473 do { 474 th = timehands; 475 gen = atomic_load_acq_int(&th->th_generation); 476 *tsp = th->th_nanotime; 477 atomic_thread_fence_acq(); 478 } while (gen == 0 || gen != th->th_generation); 479 } 480 481 void 482 getmicrotime(struct timeval *tvp) 483 { 484 struct timehands *th; 485 u_int gen; 486 487 do { 488 th = timehands; 489 gen = atomic_load_acq_int(&th->th_generation); 490 *tvp = th->th_microtime; 491 atomic_thread_fence_acq(); 492 } while (gen == 0 || gen != th->th_generation); 493 } 494 #endif /* FFCLOCK */ 495 496 void 497 getboottime(struct timeval *boottime) 498 { 499 struct bintime boottimebin; 500 501 getboottimebin(&boottimebin); 502 bintime2timeval(&boottimebin, boottime); 503 } 504 505 void 506 getboottimebin(struct bintime *boottimebin) 507 { 508 struct timehands *th; 509 u_int gen; 510 511 do { 512 th = timehands; 513 gen = atomic_load_acq_int(&th->th_generation); 514 *boottimebin = th->th_boottime; 515 atomic_thread_fence_acq(); 516 } while (gen == 0 || gen != th->th_generation); 517 } 518 519 #ifdef FFCLOCK 520 /* 521 * Support for feed-forward synchronization algorithms. This is heavily inspired 522 * by the timehands mechanism but kept independent from it. *_windup() functions 523 * have some connection to avoid accessing the timecounter hardware more than 524 * necessary. 525 */ 526 527 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 528 struct ffclock_estimate ffclock_estimate; 529 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 530 uint32_t ffclock_status; /* Feed-forward clock status. */ 531 int8_t ffclock_updated; /* New estimates are available. */ 532 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 533 534 struct fftimehands { 535 struct ffclock_estimate cest; 536 struct bintime tick_time; 537 struct bintime tick_time_lerp; 538 ffcounter tick_ffcount; 539 uint64_t period_lerp; 540 volatile uint8_t gen; 541 struct fftimehands *next; 542 }; 543 544 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 545 546 static struct fftimehands ffth[10]; 547 static struct fftimehands *volatile fftimehands = ffth; 548 549 static void 550 ffclock_init(void) 551 { 552 struct fftimehands *cur; 553 struct fftimehands *last; 554 555 memset(ffth, 0, sizeof(ffth)); 556 557 last = ffth + NUM_ELEMENTS(ffth) - 1; 558 for (cur = ffth; cur < last; cur++) 559 cur->next = cur + 1; 560 last->next = ffth; 561 562 ffclock_updated = 0; 563 ffclock_status = FFCLOCK_STA_UNSYNC; 564 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 565 } 566 567 /* 568 * Reset the feed-forward clock estimates. Called from inittodr() to get things 569 * kick started and uses the timecounter nominal frequency as a first period 570 * estimate. Note: this function may be called several time just after boot. 571 * Note: this is the only function that sets the value of boot time for the 572 * monotonic (i.e. uptime) version of the feed-forward clock. 573 */ 574 void 575 ffclock_reset_clock(struct timespec *ts) 576 { 577 struct timecounter *tc; 578 struct ffclock_estimate cest; 579 580 tc = timehands->th_counter; 581 memset(&cest, 0, sizeof(struct ffclock_estimate)); 582 583 timespec2bintime(ts, &ffclock_boottime); 584 timespec2bintime(ts, &(cest.update_time)); 585 ffclock_read_counter(&cest.update_ffcount); 586 cest.leapsec_next = 0; 587 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 588 cest.errb_abs = 0; 589 cest.errb_rate = 0; 590 cest.status = FFCLOCK_STA_UNSYNC; 591 cest.leapsec_total = 0; 592 cest.leapsec = 0; 593 594 mtx_lock(&ffclock_mtx); 595 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 596 ffclock_updated = INT8_MAX; 597 mtx_unlock(&ffclock_mtx); 598 599 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 600 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 601 (unsigned long)ts->tv_nsec); 602 } 603 604 /* 605 * Sub-routine to convert a time interval measured in RAW counter units to time 606 * in seconds stored in bintime format. 607 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 608 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 609 * extra cycles. 610 */ 611 static void 612 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 613 { 614 struct bintime bt2; 615 ffcounter delta, delta_max; 616 617 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 618 bintime_clear(bt); 619 do { 620 if (ffdelta > delta_max) 621 delta = delta_max; 622 else 623 delta = ffdelta; 624 bt2.sec = 0; 625 bt2.frac = period; 626 bintime_mul(&bt2, (unsigned int)delta); 627 bintime_add(bt, &bt2); 628 ffdelta -= delta; 629 } while (ffdelta > 0); 630 } 631 632 /* 633 * Update the fftimehands. 634 * Push the tick ffcount and time(s) forward based on current clock estimate. 635 * The conversion from ffcounter to bintime relies on the difference clock 636 * principle, whose accuracy relies on computing small time intervals. If a new 637 * clock estimate has been passed by the synchronisation daemon, make it 638 * current, and compute the linear interpolation for monotonic time if needed. 639 */ 640 static void 641 ffclock_windup(unsigned int delta) 642 { 643 struct ffclock_estimate *cest; 644 struct fftimehands *ffth; 645 struct bintime bt, gap_lerp; 646 ffcounter ffdelta; 647 uint64_t frac; 648 unsigned int polling; 649 uint8_t forward_jump, ogen; 650 651 /* 652 * Pick the next timehand, copy current ffclock estimates and move tick 653 * times and counter forward. 654 */ 655 forward_jump = 0; 656 ffth = fftimehands->next; 657 ogen = ffth->gen; 658 ffth->gen = 0; 659 cest = &ffth->cest; 660 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 661 ffdelta = (ffcounter)delta; 662 ffth->period_lerp = fftimehands->period_lerp; 663 664 ffth->tick_time = fftimehands->tick_time; 665 ffclock_convert_delta(ffdelta, cest->period, &bt); 666 bintime_add(&ffth->tick_time, &bt); 667 668 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 669 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 670 bintime_add(&ffth->tick_time_lerp, &bt); 671 672 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 673 674 /* 675 * Assess the status of the clock, if the last update is too old, it is 676 * likely the synchronisation daemon is dead and the clock is free 677 * running. 678 */ 679 if (ffclock_updated == 0) { 680 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 681 ffclock_convert_delta(ffdelta, cest->period, &bt); 682 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 683 ffclock_status |= FFCLOCK_STA_UNSYNC; 684 } 685 686 /* 687 * If available, grab updated clock estimates and make them current. 688 * Recompute time at this tick using the updated estimates. The clock 689 * estimates passed the feed-forward synchronisation daemon may result 690 * in time conversion that is not monotonically increasing (just after 691 * the update). time_lerp is a particular linear interpolation over the 692 * synchronisation algo polling period that ensures monotonicity for the 693 * clock ids requesting it. 694 */ 695 if (ffclock_updated > 0) { 696 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 697 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 698 ffth->tick_time = cest->update_time; 699 ffclock_convert_delta(ffdelta, cest->period, &bt); 700 bintime_add(&ffth->tick_time, &bt); 701 702 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 703 if (ffclock_updated == INT8_MAX) 704 ffth->tick_time_lerp = ffth->tick_time; 705 706 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 707 forward_jump = 1; 708 else 709 forward_jump = 0; 710 711 bintime_clear(&gap_lerp); 712 if (forward_jump) { 713 gap_lerp = ffth->tick_time; 714 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 715 } else { 716 gap_lerp = ffth->tick_time_lerp; 717 bintime_sub(&gap_lerp, &ffth->tick_time); 718 } 719 720 /* 721 * The reset from the RTC clock may be far from accurate, and 722 * reducing the gap between real time and interpolated time 723 * could take a very long time if the interpolated clock insists 724 * on strict monotonicity. The clock is reset under very strict 725 * conditions (kernel time is known to be wrong and 726 * synchronization daemon has been restarted recently. 727 * ffclock_boottime absorbs the jump to ensure boot time is 728 * correct and uptime functions stay consistent. 729 */ 730 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 731 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 732 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 733 if (forward_jump) 734 bintime_add(&ffclock_boottime, &gap_lerp); 735 else 736 bintime_sub(&ffclock_boottime, &gap_lerp); 737 ffth->tick_time_lerp = ffth->tick_time; 738 bintime_clear(&gap_lerp); 739 } 740 741 ffclock_status = cest->status; 742 ffth->period_lerp = cest->period; 743 744 /* 745 * Compute corrected period used for the linear interpolation of 746 * time. The rate of linear interpolation is capped to 5000PPM 747 * (5ms/s). 748 */ 749 if (bintime_isset(&gap_lerp)) { 750 ffdelta = cest->update_ffcount; 751 ffdelta -= fftimehands->cest.update_ffcount; 752 ffclock_convert_delta(ffdelta, cest->period, &bt); 753 polling = bt.sec; 754 bt.sec = 0; 755 bt.frac = 5000000 * (uint64_t)18446744073LL; 756 bintime_mul(&bt, polling); 757 if (bintime_cmp(&gap_lerp, &bt, >)) 758 gap_lerp = bt; 759 760 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 761 frac = 0; 762 if (gap_lerp.sec > 0) { 763 frac -= 1; 764 frac /= ffdelta / gap_lerp.sec; 765 } 766 frac += gap_lerp.frac / ffdelta; 767 768 if (forward_jump) 769 ffth->period_lerp += frac; 770 else 771 ffth->period_lerp -= frac; 772 } 773 774 ffclock_updated = 0; 775 } 776 if (++ogen == 0) 777 ogen = 1; 778 ffth->gen = ogen; 779 fftimehands = ffth; 780 } 781 782 /* 783 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 784 * the old and new hardware counter cannot be read simultaneously. tc_windup() 785 * does read the two counters 'back to back', but a few cycles are effectively 786 * lost, and not accumulated in tick_ffcount. This is a fairly radical 787 * operation for a feed-forward synchronization daemon, and it is its job to not 788 * pushing irrelevant data to the kernel. Because there is no locking here, 789 * simply force to ignore pending or next update to give daemon a chance to 790 * realize the counter has changed. 791 */ 792 static void 793 ffclock_change_tc(struct timehands *th) 794 { 795 struct fftimehands *ffth; 796 struct ffclock_estimate *cest; 797 struct timecounter *tc; 798 uint8_t ogen; 799 800 tc = th->th_counter; 801 ffth = fftimehands->next; 802 ogen = ffth->gen; 803 ffth->gen = 0; 804 805 cest = &ffth->cest; 806 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 807 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 808 cest->errb_abs = 0; 809 cest->errb_rate = 0; 810 cest->status |= FFCLOCK_STA_UNSYNC; 811 812 ffth->tick_ffcount = fftimehands->tick_ffcount; 813 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 814 ffth->tick_time = fftimehands->tick_time; 815 ffth->period_lerp = cest->period; 816 817 /* Do not lock but ignore next update from synchronization daemon. */ 818 ffclock_updated--; 819 820 if (++ogen == 0) 821 ogen = 1; 822 ffth->gen = ogen; 823 fftimehands = ffth; 824 } 825 826 /* 827 * Retrieve feed-forward counter and time of last kernel tick. 828 */ 829 void 830 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 831 { 832 struct fftimehands *ffth; 833 uint8_t gen; 834 835 /* 836 * No locking but check generation has not changed. Also need to make 837 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 838 */ 839 do { 840 ffth = fftimehands; 841 gen = ffth->gen; 842 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 843 *bt = ffth->tick_time_lerp; 844 else 845 *bt = ffth->tick_time; 846 *ffcount = ffth->tick_ffcount; 847 } while (gen == 0 || gen != ffth->gen); 848 } 849 850 /* 851 * Absolute clock conversion. Low level function to convert ffcounter to 852 * bintime. The ffcounter is converted using the current ffclock period estimate 853 * or the "interpolated period" to ensure monotonicity. 854 * NOTE: this conversion may have been deferred, and the clock updated since the 855 * hardware counter has been read. 856 */ 857 void 858 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 859 { 860 struct fftimehands *ffth; 861 struct bintime bt2; 862 ffcounter ffdelta; 863 uint8_t gen; 864 865 /* 866 * No locking but check generation has not changed. Also need to make 867 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 868 */ 869 do { 870 ffth = fftimehands; 871 gen = ffth->gen; 872 if (ffcount > ffth->tick_ffcount) 873 ffdelta = ffcount - ffth->tick_ffcount; 874 else 875 ffdelta = ffth->tick_ffcount - ffcount; 876 877 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 878 *bt = ffth->tick_time_lerp; 879 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 880 } else { 881 *bt = ffth->tick_time; 882 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 883 } 884 885 if (ffcount > ffth->tick_ffcount) 886 bintime_add(bt, &bt2); 887 else 888 bintime_sub(bt, &bt2); 889 } while (gen == 0 || gen != ffth->gen); 890 } 891 892 /* 893 * Difference clock conversion. 894 * Low level function to Convert a time interval measured in RAW counter units 895 * into bintime. The difference clock allows measuring small intervals much more 896 * reliably than the absolute clock. 897 */ 898 void 899 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 900 { 901 struct fftimehands *ffth; 902 uint8_t gen; 903 904 /* No locking but check generation has not changed. */ 905 do { 906 ffth = fftimehands; 907 gen = ffth->gen; 908 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 909 } while (gen == 0 || gen != ffth->gen); 910 } 911 912 /* 913 * Access to current ffcounter value. 914 */ 915 void 916 ffclock_read_counter(ffcounter *ffcount) 917 { 918 struct timehands *th; 919 struct fftimehands *ffth; 920 unsigned int gen, delta; 921 922 /* 923 * ffclock_windup() called from tc_windup(), safe to rely on 924 * th->th_generation only, for correct delta and ffcounter. 925 */ 926 do { 927 th = timehands; 928 gen = atomic_load_acq_int(&th->th_generation); 929 ffth = fftimehands; 930 delta = tc_delta(th); 931 *ffcount = ffth->tick_ffcount; 932 atomic_thread_fence_acq(); 933 } while (gen == 0 || gen != th->th_generation); 934 935 *ffcount += delta; 936 } 937 938 void 939 binuptime(struct bintime *bt) 940 { 941 942 binuptime_fromclock(bt, sysclock_active); 943 } 944 945 void 946 nanouptime(struct timespec *tsp) 947 { 948 949 nanouptime_fromclock(tsp, sysclock_active); 950 } 951 952 void 953 microuptime(struct timeval *tvp) 954 { 955 956 microuptime_fromclock(tvp, sysclock_active); 957 } 958 959 void 960 bintime(struct bintime *bt) 961 { 962 963 bintime_fromclock(bt, sysclock_active); 964 } 965 966 void 967 nanotime(struct timespec *tsp) 968 { 969 970 nanotime_fromclock(tsp, sysclock_active); 971 } 972 973 void 974 microtime(struct timeval *tvp) 975 { 976 977 microtime_fromclock(tvp, sysclock_active); 978 } 979 980 void 981 getbinuptime(struct bintime *bt) 982 { 983 984 getbinuptime_fromclock(bt, sysclock_active); 985 } 986 987 void 988 getnanouptime(struct timespec *tsp) 989 { 990 991 getnanouptime_fromclock(tsp, sysclock_active); 992 } 993 994 void 995 getmicrouptime(struct timeval *tvp) 996 { 997 998 getmicrouptime_fromclock(tvp, sysclock_active); 999 } 1000 1001 void 1002 getbintime(struct bintime *bt) 1003 { 1004 1005 getbintime_fromclock(bt, sysclock_active); 1006 } 1007 1008 void 1009 getnanotime(struct timespec *tsp) 1010 { 1011 1012 getnanotime_fromclock(tsp, sysclock_active); 1013 } 1014 1015 void 1016 getmicrotime(struct timeval *tvp) 1017 { 1018 1019 getmicrouptime_fromclock(tvp, sysclock_active); 1020 } 1021 1022 #endif /* FFCLOCK */ 1023 1024 /* 1025 * This is a clone of getnanotime and used for walltimestamps. 1026 * The dtrace_ prefix prevents fbt from creating probes for 1027 * it so walltimestamp can be safely used in all fbt probes. 1028 */ 1029 void 1030 dtrace_getnanotime(struct timespec *tsp) 1031 { 1032 struct timehands *th; 1033 u_int gen; 1034 1035 do { 1036 th = timehands; 1037 gen = atomic_load_acq_int(&th->th_generation); 1038 *tsp = th->th_nanotime; 1039 atomic_thread_fence_acq(); 1040 } while (gen == 0 || gen != th->th_generation); 1041 } 1042 1043 /* 1044 * System clock currently providing time to the system. Modifiable via sysctl 1045 * when the FFCLOCK option is defined. 1046 */ 1047 int sysclock_active = SYSCLOCK_FBCK; 1048 1049 /* Internal NTP status and error estimates. */ 1050 extern int time_status; 1051 extern long time_esterror; 1052 1053 /* 1054 * Take a snapshot of sysclock data which can be used to compare system clocks 1055 * and generate timestamps after the fact. 1056 */ 1057 void 1058 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 1059 { 1060 struct fbclock_info *fbi; 1061 struct timehands *th; 1062 struct bintime bt; 1063 unsigned int delta, gen; 1064 #ifdef FFCLOCK 1065 ffcounter ffcount; 1066 struct fftimehands *ffth; 1067 struct ffclock_info *ffi; 1068 struct ffclock_estimate cest; 1069 1070 ffi = &clock_snap->ff_info; 1071 #endif 1072 1073 fbi = &clock_snap->fb_info; 1074 delta = 0; 1075 1076 do { 1077 th = timehands; 1078 gen = atomic_load_acq_int(&th->th_generation); 1079 fbi->th_scale = th->th_scale; 1080 fbi->tick_time = th->th_offset; 1081 #ifdef FFCLOCK 1082 ffth = fftimehands; 1083 ffi->tick_time = ffth->tick_time_lerp; 1084 ffi->tick_time_lerp = ffth->tick_time_lerp; 1085 ffi->period = ffth->cest.period; 1086 ffi->period_lerp = ffth->period_lerp; 1087 clock_snap->ffcount = ffth->tick_ffcount; 1088 cest = ffth->cest; 1089 #endif 1090 if (!fast) 1091 delta = tc_delta(th); 1092 atomic_thread_fence_acq(); 1093 } while (gen == 0 || gen != th->th_generation); 1094 1095 clock_snap->delta = delta; 1096 clock_snap->sysclock_active = sysclock_active; 1097 1098 /* Record feedback clock status and error. */ 1099 clock_snap->fb_info.status = time_status; 1100 /* XXX: Very crude estimate of feedback clock error. */ 1101 bt.sec = time_esterror / 1000000; 1102 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1103 (uint64_t)18446744073709ULL; 1104 clock_snap->fb_info.error = bt; 1105 1106 #ifdef FFCLOCK 1107 if (!fast) 1108 clock_snap->ffcount += delta; 1109 1110 /* Record feed-forward clock leap second adjustment. */ 1111 ffi->leapsec_adjustment = cest.leapsec_total; 1112 if (clock_snap->ffcount > cest.leapsec_next) 1113 ffi->leapsec_adjustment -= cest.leapsec; 1114 1115 /* Record feed-forward clock status and error. */ 1116 clock_snap->ff_info.status = cest.status; 1117 ffcount = clock_snap->ffcount - cest.update_ffcount; 1118 ffclock_convert_delta(ffcount, cest.period, &bt); 1119 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1120 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1121 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1122 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1123 clock_snap->ff_info.error = bt; 1124 #endif 1125 } 1126 1127 /* 1128 * Convert a sysclock snapshot into a struct bintime based on the specified 1129 * clock source and flags. 1130 */ 1131 int 1132 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1133 int whichclock, uint32_t flags) 1134 { 1135 struct bintime boottimebin; 1136 #ifdef FFCLOCK 1137 struct bintime bt2; 1138 uint64_t period; 1139 #endif 1140 1141 switch (whichclock) { 1142 case SYSCLOCK_FBCK: 1143 *bt = cs->fb_info.tick_time; 1144 1145 /* If snapshot was created with !fast, delta will be >0. */ 1146 if (cs->delta > 0) 1147 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1148 1149 if ((flags & FBCLOCK_UPTIME) == 0) { 1150 getboottimebin(&boottimebin); 1151 bintime_add(bt, &boottimebin); 1152 } 1153 break; 1154 #ifdef FFCLOCK 1155 case SYSCLOCK_FFWD: 1156 if (flags & FFCLOCK_LERP) { 1157 *bt = cs->ff_info.tick_time_lerp; 1158 period = cs->ff_info.period_lerp; 1159 } else { 1160 *bt = cs->ff_info.tick_time; 1161 period = cs->ff_info.period; 1162 } 1163 1164 /* If snapshot was created with !fast, delta will be >0. */ 1165 if (cs->delta > 0) { 1166 ffclock_convert_delta(cs->delta, period, &bt2); 1167 bintime_add(bt, &bt2); 1168 } 1169 1170 /* Leap second adjustment. */ 1171 if (flags & FFCLOCK_LEAPSEC) 1172 bt->sec -= cs->ff_info.leapsec_adjustment; 1173 1174 /* Boot time adjustment, for uptime/monotonic clocks. */ 1175 if (flags & FFCLOCK_UPTIME) 1176 bintime_sub(bt, &ffclock_boottime); 1177 break; 1178 #endif 1179 default: 1180 return (EINVAL); 1181 break; 1182 } 1183 1184 return (0); 1185 } 1186 1187 /* 1188 * Initialize a new timecounter and possibly use it. 1189 */ 1190 void 1191 tc_init(struct timecounter *tc) 1192 { 1193 u_int u; 1194 struct sysctl_oid *tc_root; 1195 1196 u = tc->tc_frequency / tc->tc_counter_mask; 1197 /* XXX: We need some margin here, 10% is a guess */ 1198 u *= 11; 1199 u /= 10; 1200 if (u > hz && tc->tc_quality >= 0) { 1201 tc->tc_quality = -2000; 1202 if (bootverbose) { 1203 printf("Timecounter \"%s\" frequency %ju Hz", 1204 tc->tc_name, (uintmax_t)tc->tc_frequency); 1205 printf(" -- Insufficient hz, needs at least %u\n", u); 1206 } 1207 } else if (tc->tc_quality >= 0 || bootverbose) { 1208 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1209 tc->tc_name, (uintmax_t)tc->tc_frequency, 1210 tc->tc_quality); 1211 } 1212 1213 tc->tc_next = timecounters; 1214 timecounters = tc; 1215 /* 1216 * Set up sysctl tree for this counter. 1217 */ 1218 tc_root = SYSCTL_ADD_NODE(NULL, 1219 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1220 CTLFLAG_RW, 0, "timecounter description"); 1221 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1222 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1223 "mask for implemented bits"); 1224 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1225 "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc), 1226 sysctl_kern_timecounter_get, "IU", "current timecounter value"); 1227 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1228 "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc), 1229 sysctl_kern_timecounter_freq, "QU", "timecounter frequency"); 1230 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1231 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1232 "goodness of time counter"); 1233 /* 1234 * Do not automatically switch if the current tc was specifically 1235 * chosen. Never automatically use a timecounter with negative quality. 1236 * Even though we run on the dummy counter, switching here may be 1237 * worse since this timecounter may not be monotonic. 1238 */ 1239 if (tc_chosen) 1240 return; 1241 if (tc->tc_quality < 0) 1242 return; 1243 if (tc->tc_quality < timecounter->tc_quality) 1244 return; 1245 if (tc->tc_quality == timecounter->tc_quality && 1246 tc->tc_frequency < timecounter->tc_frequency) 1247 return; 1248 (void)tc->tc_get_timecount(tc); 1249 (void)tc->tc_get_timecount(tc); 1250 timecounter = tc; 1251 } 1252 1253 /* Report the frequency of the current timecounter. */ 1254 uint64_t 1255 tc_getfrequency(void) 1256 { 1257 1258 return (timehands->th_counter->tc_frequency); 1259 } 1260 1261 static struct mtx tc_setclock_mtx; 1262 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN); 1263 1264 /* 1265 * Step our concept of UTC. This is done by modifying our estimate of 1266 * when we booted. 1267 */ 1268 void 1269 tc_setclock(struct timespec *ts) 1270 { 1271 struct timespec tbef, taft; 1272 struct bintime bt, bt2; 1273 1274 timespec2bintime(ts, &bt); 1275 nanotime(&tbef); 1276 mtx_lock_spin(&tc_setclock_mtx); 1277 cpu_tick_calibrate(1); 1278 binuptime(&bt2); 1279 bintime_sub(&bt, &bt2); 1280 1281 /* XXX fiddle all the little crinkly bits around the fiords... */ 1282 tc_windup(&bt); 1283 mtx_unlock_spin(&tc_setclock_mtx); 1284 if (timestepwarnings) { 1285 nanotime(&taft); 1286 log(LOG_INFO, 1287 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1288 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1289 (intmax_t)taft.tv_sec, taft.tv_nsec, 1290 (intmax_t)ts->tv_sec, ts->tv_nsec); 1291 } 1292 } 1293 1294 /* 1295 * Initialize the next struct timehands in the ring and make 1296 * it the active timehands. Along the way we might switch to a different 1297 * timecounter and/or do seconds processing in NTP. Slightly magic. 1298 */ 1299 static void 1300 tc_windup(struct bintime *new_boottimebin) 1301 { 1302 struct bintime bt; 1303 struct timehands *th, *tho; 1304 uint64_t scale; 1305 u_int delta, ncount, ogen; 1306 int i; 1307 time_t t; 1308 1309 /* 1310 * Make the next timehands a copy of the current one, but do 1311 * not overwrite the generation or next pointer. While we 1312 * update the contents, the generation must be zero. We need 1313 * to ensure that the zero generation is visible before the 1314 * data updates become visible, which requires release fence. 1315 * For similar reasons, re-reading of the generation after the 1316 * data is read should use acquire fence. 1317 */ 1318 tho = timehands; 1319 th = tho->th_next; 1320 ogen = th->th_generation; 1321 th->th_generation = 0; 1322 atomic_thread_fence_rel(); 1323 bcopy(tho, th, offsetof(struct timehands, th_generation)); 1324 if (new_boottimebin != NULL) 1325 th->th_boottime = *new_boottimebin; 1326 1327 /* 1328 * Capture a timecounter delta on the current timecounter and if 1329 * changing timecounters, a counter value from the new timecounter. 1330 * Update the offset fields accordingly. 1331 */ 1332 delta = tc_delta(th); 1333 if (th->th_counter != timecounter) 1334 ncount = timecounter->tc_get_timecount(timecounter); 1335 else 1336 ncount = 0; 1337 #ifdef FFCLOCK 1338 ffclock_windup(delta); 1339 #endif 1340 th->th_offset_count += delta; 1341 th->th_offset_count &= th->th_counter->tc_counter_mask; 1342 while (delta > th->th_counter->tc_frequency) { 1343 /* Eat complete unadjusted seconds. */ 1344 delta -= th->th_counter->tc_frequency; 1345 th->th_offset.sec++; 1346 } 1347 if ((delta > th->th_counter->tc_frequency / 2) && 1348 (th->th_scale * delta < ((uint64_t)1 << 63))) { 1349 /* The product th_scale * delta just barely overflows. */ 1350 th->th_offset.sec++; 1351 } 1352 bintime_addx(&th->th_offset, th->th_scale * delta); 1353 1354 /* 1355 * Hardware latching timecounters may not generate interrupts on 1356 * PPS events, so instead we poll them. There is a finite risk that 1357 * the hardware might capture a count which is later than the one we 1358 * got above, and therefore possibly in the next NTP second which might 1359 * have a different rate than the current NTP second. It doesn't 1360 * matter in practice. 1361 */ 1362 if (tho->th_counter->tc_poll_pps) 1363 tho->th_counter->tc_poll_pps(tho->th_counter); 1364 1365 /* 1366 * Deal with NTP second processing. The for loop normally 1367 * iterates at most once, but in extreme situations it might 1368 * keep NTP sane if timeouts are not run for several seconds. 1369 * At boot, the time step can be large when the TOD hardware 1370 * has been read, so on really large steps, we call 1371 * ntp_update_second only twice. We need to call it twice in 1372 * case we missed a leap second. 1373 */ 1374 bt = th->th_offset; 1375 bintime_add(&bt, &th->th_boottime); 1376 i = bt.sec - tho->th_microtime.tv_sec; 1377 if (i > LARGE_STEP) 1378 i = 2; 1379 for (; i > 0; i--) { 1380 t = bt.sec; 1381 ntp_update_second(&th->th_adjustment, &bt.sec); 1382 if (bt.sec != t) 1383 th->th_boottime.sec += bt.sec - t; 1384 } 1385 th->th_bintime = th->th_offset; 1386 bintime_add(&th->th_bintime, &th->th_boottime); 1387 /* Update the UTC timestamps used by the get*() functions. */ 1388 /* XXX shouldn't do this here. Should force non-`get' versions. */ 1389 bintime2timeval(&bt, &th->th_microtime); 1390 bintime2timespec(&bt, &th->th_nanotime); 1391 1392 /* Now is a good time to change timecounters. */ 1393 if (th->th_counter != timecounter) { 1394 #ifndef __arm__ 1395 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0) 1396 cpu_disable_c2_sleep++; 1397 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 1398 cpu_disable_c2_sleep--; 1399 #endif 1400 th->th_counter = timecounter; 1401 th->th_offset_count = ncount; 1402 tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 1403 (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1404 #ifdef FFCLOCK 1405 ffclock_change_tc(th); 1406 #endif 1407 } 1408 1409 /*- 1410 * Recalculate the scaling factor. We want the number of 1/2^64 1411 * fractions of a second per period of the hardware counter, taking 1412 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1413 * processing provides us with. 1414 * 1415 * The th_adjustment is nanoseconds per second with 32 bit binary 1416 * fraction and we want 64 bit binary fraction of second: 1417 * 1418 * x = a * 2^32 / 10^9 = a * 4.294967296 1419 * 1420 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1421 * we can only multiply by about 850 without overflowing, that 1422 * leaves no suitably precise fractions for multiply before divide. 1423 * 1424 * Divide before multiply with a fraction of 2199/512 results in a 1425 * systematic undercompensation of 10PPM of th_adjustment. On a 1426 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1427 * 1428 * We happily sacrifice the lowest of the 64 bits of our result 1429 * to the goddess of code clarity. 1430 * 1431 */ 1432 scale = (uint64_t)1 << 63; 1433 scale += (th->th_adjustment / 1024) * 2199; 1434 scale /= th->th_counter->tc_frequency; 1435 th->th_scale = scale * 2; 1436 1437 /* 1438 * Now that the struct timehands is again consistent, set the new 1439 * generation number, making sure to not make it zero. 1440 */ 1441 if (++ogen == 0) 1442 ogen = 1; 1443 atomic_store_rel_int(&th->th_generation, ogen); 1444 1445 /* Go live with the new struct timehands. */ 1446 #ifdef FFCLOCK 1447 switch (sysclock_active) { 1448 case SYSCLOCK_FBCK: 1449 #endif 1450 time_second = th->th_microtime.tv_sec; 1451 time_uptime = th->th_offset.sec; 1452 #ifdef FFCLOCK 1453 break; 1454 case SYSCLOCK_FFWD: 1455 time_second = fftimehands->tick_time_lerp.sec; 1456 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1457 break; 1458 } 1459 #endif 1460 1461 timehands = th; 1462 timekeep_push_vdso(); 1463 } 1464 1465 /* Report or change the active timecounter hardware. */ 1466 static int 1467 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1468 { 1469 char newname[32]; 1470 struct timecounter *newtc, *tc; 1471 int error; 1472 1473 tc = timecounter; 1474 strlcpy(newname, tc->tc_name, sizeof(newname)); 1475 1476 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1477 if (error != 0 || req->newptr == NULL) 1478 return (error); 1479 /* Record that the tc in use now was specifically chosen. */ 1480 tc_chosen = 1; 1481 if (strcmp(newname, tc->tc_name) == 0) 1482 return (0); 1483 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1484 if (strcmp(newname, newtc->tc_name) != 0) 1485 continue; 1486 1487 /* Warm up new timecounter. */ 1488 (void)newtc->tc_get_timecount(newtc); 1489 (void)newtc->tc_get_timecount(newtc); 1490 1491 timecounter = newtc; 1492 1493 /* 1494 * The vdso timehands update is deferred until the next 1495 * 'tc_windup()'. 1496 * 1497 * This is prudent given that 'timekeep_push_vdso()' does not 1498 * use any locking and that it can be called in hard interrupt 1499 * context via 'tc_windup()'. 1500 */ 1501 return (0); 1502 } 1503 return (EINVAL); 1504 } 1505 1506 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW, 1507 0, 0, sysctl_kern_timecounter_hardware, "A", 1508 "Timecounter hardware selected"); 1509 1510 1511 /* Report the available timecounter hardware. */ 1512 static int 1513 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1514 { 1515 struct sbuf sb; 1516 struct timecounter *tc; 1517 int error; 1518 1519 sbuf_new_for_sysctl(&sb, NULL, 0, req); 1520 for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 1521 if (tc != timecounters) 1522 sbuf_putc(&sb, ' '); 1523 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality); 1524 } 1525 error = sbuf_finish(&sb); 1526 sbuf_delete(&sb); 1527 return (error); 1528 } 1529 1530 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD, 1531 0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected"); 1532 1533 /* 1534 * RFC 2783 PPS-API implementation. 1535 */ 1536 1537 /* 1538 * Return true if the driver is aware of the abi version extensions in the 1539 * pps_state structure, and it supports at least the given abi version number. 1540 */ 1541 static inline int 1542 abi_aware(struct pps_state *pps, int vers) 1543 { 1544 1545 return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers); 1546 } 1547 1548 static int 1549 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1550 { 1551 int err, timo; 1552 pps_seq_t aseq, cseq; 1553 struct timeval tv; 1554 1555 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1556 return (EINVAL); 1557 1558 /* 1559 * If no timeout is requested, immediately return whatever values were 1560 * most recently captured. If timeout seconds is -1, that's a request 1561 * to block without a timeout. WITNESS won't let us sleep forever 1562 * without a lock (we really don't need a lock), so just repeatedly 1563 * sleep a long time. 1564 */ 1565 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1566 if (fapi->timeout.tv_sec == -1) 1567 timo = 0x7fffffff; 1568 else { 1569 tv.tv_sec = fapi->timeout.tv_sec; 1570 tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1571 timo = tvtohz(&tv); 1572 } 1573 aseq = pps->ppsinfo.assert_sequence; 1574 cseq = pps->ppsinfo.clear_sequence; 1575 while (aseq == pps->ppsinfo.assert_sequence && 1576 cseq == pps->ppsinfo.clear_sequence) { 1577 if (abi_aware(pps, 1) && pps->driver_mtx != NULL) { 1578 if (pps->flags & PPSFLAG_MTX_SPIN) { 1579 err = msleep_spin(pps, pps->driver_mtx, 1580 "ppsfch", timo); 1581 } else { 1582 err = msleep(pps, pps->driver_mtx, PCATCH, 1583 "ppsfch", timo); 1584 } 1585 } else { 1586 err = tsleep(pps, PCATCH, "ppsfch", timo); 1587 } 1588 if (err == EWOULDBLOCK) { 1589 if (fapi->timeout.tv_sec == -1) { 1590 continue; 1591 } else { 1592 return (ETIMEDOUT); 1593 } 1594 } else if (err != 0) { 1595 return (err); 1596 } 1597 } 1598 } 1599 1600 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1601 fapi->pps_info_buf = pps->ppsinfo; 1602 1603 return (0); 1604 } 1605 1606 int 1607 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1608 { 1609 pps_params_t *app; 1610 struct pps_fetch_args *fapi; 1611 #ifdef FFCLOCK 1612 struct pps_fetch_ffc_args *fapi_ffc; 1613 #endif 1614 #ifdef PPS_SYNC 1615 struct pps_kcbind_args *kapi; 1616 #endif 1617 1618 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1619 switch (cmd) { 1620 case PPS_IOC_CREATE: 1621 return (0); 1622 case PPS_IOC_DESTROY: 1623 return (0); 1624 case PPS_IOC_SETPARAMS: 1625 app = (pps_params_t *)data; 1626 if (app->mode & ~pps->ppscap) 1627 return (EINVAL); 1628 #ifdef FFCLOCK 1629 /* Ensure only a single clock is selected for ffc timestamp. */ 1630 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1631 return (EINVAL); 1632 #endif 1633 pps->ppsparam = *app; 1634 return (0); 1635 case PPS_IOC_GETPARAMS: 1636 app = (pps_params_t *)data; 1637 *app = pps->ppsparam; 1638 app->api_version = PPS_API_VERS_1; 1639 return (0); 1640 case PPS_IOC_GETCAP: 1641 *(int*)data = pps->ppscap; 1642 return (0); 1643 case PPS_IOC_FETCH: 1644 fapi = (struct pps_fetch_args *)data; 1645 return (pps_fetch(fapi, pps)); 1646 #ifdef FFCLOCK 1647 case PPS_IOC_FETCH_FFCOUNTER: 1648 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1649 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1650 PPS_TSFMT_TSPEC) 1651 return (EINVAL); 1652 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1653 return (EOPNOTSUPP); 1654 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1655 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1656 /* Overwrite timestamps if feedback clock selected. */ 1657 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1658 case PPS_TSCLK_FBCK: 1659 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1660 pps->ppsinfo.assert_timestamp; 1661 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1662 pps->ppsinfo.clear_timestamp; 1663 break; 1664 case PPS_TSCLK_FFWD: 1665 break; 1666 default: 1667 break; 1668 } 1669 return (0); 1670 #endif /* FFCLOCK */ 1671 case PPS_IOC_KCBIND: 1672 #ifdef PPS_SYNC 1673 kapi = (struct pps_kcbind_args *)data; 1674 /* XXX Only root should be able to do this */ 1675 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1676 return (EINVAL); 1677 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1678 return (EINVAL); 1679 if (kapi->edge & ~pps->ppscap) 1680 return (EINVAL); 1681 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) | 1682 (pps->kcmode & KCMODE_ABIFLAG); 1683 return (0); 1684 #else 1685 return (EOPNOTSUPP); 1686 #endif 1687 default: 1688 return (ENOIOCTL); 1689 } 1690 } 1691 1692 void 1693 pps_init(struct pps_state *pps) 1694 { 1695 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1696 if (pps->ppscap & PPS_CAPTUREASSERT) 1697 pps->ppscap |= PPS_OFFSETASSERT; 1698 if (pps->ppscap & PPS_CAPTURECLEAR) 1699 pps->ppscap |= PPS_OFFSETCLEAR; 1700 #ifdef FFCLOCK 1701 pps->ppscap |= PPS_TSCLK_MASK; 1702 #endif 1703 pps->kcmode &= ~KCMODE_ABIFLAG; 1704 } 1705 1706 void 1707 pps_init_abi(struct pps_state *pps) 1708 { 1709 1710 pps_init(pps); 1711 if (pps->driver_abi > 0) { 1712 pps->kcmode |= KCMODE_ABIFLAG; 1713 pps->kernel_abi = PPS_ABI_VERSION; 1714 } 1715 } 1716 1717 void 1718 pps_capture(struct pps_state *pps) 1719 { 1720 struct timehands *th; 1721 1722 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1723 th = timehands; 1724 pps->capgen = atomic_load_acq_int(&th->th_generation); 1725 pps->capth = th; 1726 #ifdef FFCLOCK 1727 pps->capffth = fftimehands; 1728 #endif 1729 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1730 atomic_thread_fence_acq(); 1731 if (pps->capgen != th->th_generation) 1732 pps->capgen = 0; 1733 } 1734 1735 void 1736 pps_event(struct pps_state *pps, int event) 1737 { 1738 struct bintime bt; 1739 struct timespec ts, *tsp, *osp; 1740 u_int tcount, *pcount; 1741 int foff; 1742 pps_seq_t *pseq; 1743 #ifdef FFCLOCK 1744 struct timespec *tsp_ffc; 1745 pps_seq_t *pseq_ffc; 1746 ffcounter *ffcount; 1747 #endif 1748 #ifdef PPS_SYNC 1749 int fhard; 1750 #endif 1751 1752 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1753 /* Nothing to do if not currently set to capture this event type. */ 1754 if ((event & pps->ppsparam.mode) == 0) 1755 return; 1756 /* If the timecounter was wound up underneath us, bail out. */ 1757 if (pps->capgen == 0 || pps->capgen != 1758 atomic_load_acq_int(&pps->capth->th_generation)) 1759 return; 1760 1761 /* Things would be easier with arrays. */ 1762 if (event == PPS_CAPTUREASSERT) { 1763 tsp = &pps->ppsinfo.assert_timestamp; 1764 osp = &pps->ppsparam.assert_offset; 1765 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1766 #ifdef PPS_SYNC 1767 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1768 #endif 1769 pcount = &pps->ppscount[0]; 1770 pseq = &pps->ppsinfo.assert_sequence; 1771 #ifdef FFCLOCK 1772 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1773 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1774 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1775 #endif 1776 } else { 1777 tsp = &pps->ppsinfo.clear_timestamp; 1778 osp = &pps->ppsparam.clear_offset; 1779 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1780 #ifdef PPS_SYNC 1781 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1782 #endif 1783 pcount = &pps->ppscount[1]; 1784 pseq = &pps->ppsinfo.clear_sequence; 1785 #ifdef FFCLOCK 1786 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1787 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1788 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1789 #endif 1790 } 1791 1792 /* 1793 * If the timecounter changed, we cannot compare the count values, so 1794 * we have to drop the rest of the PPS-stuff until the next event. 1795 */ 1796 if (pps->ppstc != pps->capth->th_counter) { 1797 pps->ppstc = pps->capth->th_counter; 1798 *pcount = pps->capcount; 1799 pps->ppscount[2] = pps->capcount; 1800 return; 1801 } 1802 1803 /* Convert the count to a timespec. */ 1804 tcount = pps->capcount - pps->capth->th_offset_count; 1805 tcount &= pps->capth->th_counter->tc_counter_mask; 1806 bt = pps->capth->th_bintime; 1807 bintime_addx(&bt, pps->capth->th_scale * tcount); 1808 bintime2timespec(&bt, &ts); 1809 1810 /* If the timecounter was wound up underneath us, bail out. */ 1811 atomic_thread_fence_acq(); 1812 if (pps->capgen != pps->capth->th_generation) 1813 return; 1814 1815 *pcount = pps->capcount; 1816 (*pseq)++; 1817 *tsp = ts; 1818 1819 if (foff) { 1820 timespecadd(tsp, osp); 1821 if (tsp->tv_nsec < 0) { 1822 tsp->tv_nsec += 1000000000; 1823 tsp->tv_sec -= 1; 1824 } 1825 } 1826 1827 #ifdef FFCLOCK 1828 *ffcount = pps->capffth->tick_ffcount + tcount; 1829 bt = pps->capffth->tick_time; 1830 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1831 bintime_add(&bt, &pps->capffth->tick_time); 1832 bintime2timespec(&bt, &ts); 1833 (*pseq_ffc)++; 1834 *tsp_ffc = ts; 1835 #endif 1836 1837 #ifdef PPS_SYNC 1838 if (fhard) { 1839 uint64_t scale; 1840 1841 /* 1842 * Feed the NTP PLL/FLL. 1843 * The FLL wants to know how many (hardware) nanoseconds 1844 * elapsed since the previous event. 1845 */ 1846 tcount = pps->capcount - pps->ppscount[2]; 1847 pps->ppscount[2] = pps->capcount; 1848 tcount &= pps->capth->th_counter->tc_counter_mask; 1849 scale = (uint64_t)1 << 63; 1850 scale /= pps->capth->th_counter->tc_frequency; 1851 scale *= 2; 1852 bt.sec = 0; 1853 bt.frac = 0; 1854 bintime_addx(&bt, scale * tcount); 1855 bintime2timespec(&bt, &ts); 1856 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1857 } 1858 #endif 1859 1860 /* Wakeup anyone sleeping in pps_fetch(). */ 1861 wakeup(pps); 1862 } 1863 1864 /* 1865 * Timecounters need to be updated every so often to prevent the hardware 1866 * counter from overflowing. Updating also recalculates the cached values 1867 * used by the get*() family of functions, so their precision depends on 1868 * the update frequency. 1869 */ 1870 1871 static int tc_tick; 1872 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1873 "Approximate number of hardclock ticks in a millisecond"); 1874 1875 void 1876 tc_ticktock(int cnt) 1877 { 1878 static int count; 1879 1880 if (mtx_trylock_spin(&tc_setclock_mtx)) { 1881 count += cnt; 1882 if (count >= tc_tick) { 1883 count = 0; 1884 tc_windup(NULL); 1885 } 1886 mtx_unlock_spin(&tc_setclock_mtx); 1887 } 1888 } 1889 1890 static void __inline 1891 tc_adjprecision(void) 1892 { 1893 int t; 1894 1895 if (tc_timepercentage > 0) { 1896 t = (99 + tc_timepercentage) / tc_timepercentage; 1897 tc_precexp = fls(t + (t >> 1)) - 1; 1898 FREQ2BT(hz / tc_tick, &bt_timethreshold); 1899 FREQ2BT(hz, &bt_tickthreshold); 1900 bintime_shift(&bt_timethreshold, tc_precexp); 1901 bintime_shift(&bt_tickthreshold, tc_precexp); 1902 } else { 1903 tc_precexp = 31; 1904 bt_timethreshold.sec = INT_MAX; 1905 bt_timethreshold.frac = ~(uint64_t)0; 1906 bt_tickthreshold = bt_timethreshold; 1907 } 1908 sbt_timethreshold = bttosbt(bt_timethreshold); 1909 sbt_tickthreshold = bttosbt(bt_tickthreshold); 1910 } 1911 1912 static int 1913 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 1914 { 1915 int error, val; 1916 1917 val = tc_timepercentage; 1918 error = sysctl_handle_int(oidp, &val, 0, req); 1919 if (error != 0 || req->newptr == NULL) 1920 return (error); 1921 tc_timepercentage = val; 1922 if (cold) 1923 goto done; 1924 tc_adjprecision(); 1925 done: 1926 return (0); 1927 } 1928 1929 static void 1930 inittimecounter(void *dummy) 1931 { 1932 u_int p; 1933 int tick_rate; 1934 1935 /* 1936 * Set the initial timeout to 1937 * max(1, <approx. number of hardclock ticks in a millisecond>). 1938 * People should probably not use the sysctl to set the timeout 1939 * to smaller than its initial value, since that value is the 1940 * smallest reasonable one. If they want better timestamps they 1941 * should use the non-"get"* functions. 1942 */ 1943 if (hz > 1000) 1944 tc_tick = (hz + 500) / 1000; 1945 else 1946 tc_tick = 1; 1947 tc_adjprecision(); 1948 FREQ2BT(hz, &tick_bt); 1949 tick_sbt = bttosbt(tick_bt); 1950 tick_rate = hz / tc_tick; 1951 FREQ2BT(tick_rate, &tc_tick_bt); 1952 tc_tick_sbt = bttosbt(tc_tick_bt); 1953 p = (tc_tick * 1000000) / hz; 1954 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 1955 1956 #ifdef FFCLOCK 1957 ffclock_init(); 1958 #endif 1959 /* warm up new timecounter (again) and get rolling. */ 1960 (void)timecounter->tc_get_timecount(timecounter); 1961 (void)timecounter->tc_get_timecount(timecounter); 1962 mtx_lock_spin(&tc_setclock_mtx); 1963 tc_windup(NULL); 1964 mtx_unlock_spin(&tc_setclock_mtx); 1965 } 1966 1967 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 1968 1969 /* Cpu tick handling -------------------------------------------------*/ 1970 1971 static int cpu_tick_variable; 1972 static uint64_t cpu_tick_frequency; 1973 1974 static DPCPU_DEFINE(uint64_t, tc_cpu_ticks_base); 1975 static DPCPU_DEFINE(unsigned, tc_cpu_ticks_last); 1976 1977 static uint64_t 1978 tc_cpu_ticks(void) 1979 { 1980 struct timecounter *tc; 1981 uint64_t res, *base; 1982 unsigned u, *last; 1983 1984 critical_enter(); 1985 base = DPCPU_PTR(tc_cpu_ticks_base); 1986 last = DPCPU_PTR(tc_cpu_ticks_last); 1987 tc = timehands->th_counter; 1988 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 1989 if (u < *last) 1990 *base += (uint64_t)tc->tc_counter_mask + 1; 1991 *last = u; 1992 res = u + *base; 1993 critical_exit(); 1994 return (res); 1995 } 1996 1997 void 1998 cpu_tick_calibration(void) 1999 { 2000 static time_t last_calib; 2001 2002 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 2003 cpu_tick_calibrate(0); 2004 last_calib = time_uptime; 2005 } 2006 } 2007 2008 /* 2009 * This function gets called every 16 seconds on only one designated 2010 * CPU in the system from hardclock() via cpu_tick_calibration()(). 2011 * 2012 * Whenever the real time clock is stepped we get called with reset=1 2013 * to make sure we handle suspend/resume and similar events correctly. 2014 */ 2015 2016 static void 2017 cpu_tick_calibrate(int reset) 2018 { 2019 static uint64_t c_last; 2020 uint64_t c_this, c_delta; 2021 static struct bintime t_last; 2022 struct bintime t_this, t_delta; 2023 uint32_t divi; 2024 2025 if (reset) { 2026 /* The clock was stepped, abort & reset */ 2027 t_last.sec = 0; 2028 return; 2029 } 2030 2031 /* we don't calibrate fixed rate cputicks */ 2032 if (!cpu_tick_variable) 2033 return; 2034 2035 getbinuptime(&t_this); 2036 c_this = cpu_ticks(); 2037 if (t_last.sec != 0) { 2038 c_delta = c_this - c_last; 2039 t_delta = t_this; 2040 bintime_sub(&t_delta, &t_last); 2041 /* 2042 * Headroom: 2043 * 2^(64-20) / 16[s] = 2044 * 2^(44) / 16[s] = 2045 * 17.592.186.044.416 / 16 = 2046 * 1.099.511.627.776 [Hz] 2047 */ 2048 divi = t_delta.sec << 20; 2049 divi |= t_delta.frac >> (64 - 20); 2050 c_delta <<= 20; 2051 c_delta /= divi; 2052 if (c_delta > cpu_tick_frequency) { 2053 if (0 && bootverbose) 2054 printf("cpu_tick increased to %ju Hz\n", 2055 c_delta); 2056 cpu_tick_frequency = c_delta; 2057 } 2058 } 2059 c_last = c_this; 2060 t_last = t_this; 2061 } 2062 2063 void 2064 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 2065 { 2066 2067 if (func == NULL) { 2068 cpu_ticks = tc_cpu_ticks; 2069 } else { 2070 cpu_tick_frequency = freq; 2071 cpu_tick_variable = var; 2072 cpu_ticks = func; 2073 } 2074 } 2075 2076 uint64_t 2077 cpu_tickrate(void) 2078 { 2079 2080 if (cpu_ticks == tc_cpu_ticks) 2081 return (tc_getfrequency()); 2082 return (cpu_tick_frequency); 2083 } 2084 2085 /* 2086 * We need to be slightly careful converting cputicks to microseconds. 2087 * There is plenty of margin in 64 bits of microseconds (half a million 2088 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 2089 * before divide conversion (to retain precision) we find that the 2090 * margin shrinks to 1.5 hours (one millionth of 146y). 2091 * With a three prong approach we never lose significant bits, no 2092 * matter what the cputick rate and length of timeinterval is. 2093 */ 2094 2095 uint64_t 2096 cputick2usec(uint64_t tick) 2097 { 2098 2099 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 2100 return (tick / (cpu_tickrate() / 1000000LL)); 2101 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 2102 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 2103 else 2104 return ((tick * 1000000LL) / cpu_tickrate()); 2105 } 2106 2107 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 2108 2109 static int vdso_th_enable = 1; 2110 static int 2111 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 2112 { 2113 int old_vdso_th_enable, error; 2114 2115 old_vdso_th_enable = vdso_th_enable; 2116 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 2117 if (error != 0) 2118 return (error); 2119 vdso_th_enable = old_vdso_th_enable; 2120 return (0); 2121 } 2122 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 2123 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 2124 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 2125 2126 uint32_t 2127 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2128 { 2129 struct timehands *th; 2130 uint32_t enabled; 2131 2132 th = timehands; 2133 vdso_th->th_algo = VDSO_TH_ALGO_1; 2134 vdso_th->th_scale = th->th_scale; 2135 vdso_th->th_offset_count = th->th_offset_count; 2136 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2137 vdso_th->th_offset = th->th_offset; 2138 vdso_th->th_boottime = th->th_boottime; 2139 enabled = cpu_fill_vdso_timehands(vdso_th, th->th_counter); 2140 if (!vdso_th_enable) 2141 enabled = 0; 2142 return (enabled); 2143 } 2144 2145 #ifdef COMPAT_FREEBSD32 2146 uint32_t 2147 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2148 { 2149 struct timehands *th; 2150 uint32_t enabled; 2151 2152 th = timehands; 2153 vdso_th32->th_algo = VDSO_TH_ALGO_1; 2154 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2155 vdso_th32->th_offset_count = th->th_offset_count; 2156 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2157 vdso_th32->th_offset.sec = th->th_offset.sec; 2158 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 2159 vdso_th32->th_boottime.sec = th->th_boottime.sec; 2160 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac; 2161 enabled = cpu_fill_vdso_timehands32(vdso_th32, th->th_counter); 2162 if (!vdso_th_enable) 2163 enabled = 0; 2164 return (enabled); 2165 } 2166 #endif 2167