1 /*- 2 * ---------------------------------------------------------------------------- 3 * "THE BEER-WARE LICENSE" (Revision 42): 4 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 5 * can do whatever you want with this stuff. If we meet some day, and you think 6 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 7 * ---------------------------------------------------------------------------- 8 * 9 * Copyright (c) 2011 The FreeBSD Foundation 10 * All rights reserved. 11 * 12 * Portions of this software were developed by Julien Ridoux at the University 13 * of Melbourne under sponsorship from the FreeBSD Foundation. 14 */ 15 16 #include <sys/cdefs.h> 17 __FBSDID("$FreeBSD$"); 18 19 #include "opt_compat.h" 20 #include "opt_ntp.h" 21 #include "opt_ffclock.h" 22 23 #include <sys/param.h> 24 #include <sys/kernel.h> 25 #include <sys/limits.h> 26 #include <sys/lock.h> 27 #include <sys/mutex.h> 28 #include <sys/sbuf.h> 29 #include <sys/sysctl.h> 30 #include <sys/syslog.h> 31 #include <sys/systm.h> 32 #include <sys/timeffc.h> 33 #include <sys/timepps.h> 34 #include <sys/timetc.h> 35 #include <sys/timex.h> 36 #include <sys/vdso.h> 37 38 /* 39 * A large step happens on boot. This constant detects such steps. 40 * It is relatively small so that ntp_update_second gets called enough 41 * in the typical 'missed a couple of seconds' case, but doesn't loop 42 * forever when the time step is large. 43 */ 44 #define LARGE_STEP 200 45 46 /* 47 * Implement a dummy timecounter which we can use until we get a real one 48 * in the air. This allows the console and other early stuff to use 49 * time services. 50 */ 51 52 static u_int 53 dummy_get_timecount(struct timecounter *tc) 54 { 55 static u_int now; 56 57 return (++now); 58 } 59 60 static struct timecounter dummy_timecounter = { 61 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 62 }; 63 64 struct timehands { 65 /* These fields must be initialized by the driver. */ 66 struct timecounter *th_counter; 67 int64_t th_adjustment; 68 uint64_t th_scale; 69 u_int th_offset_count; 70 struct bintime th_offset; 71 struct timeval th_microtime; 72 struct timespec th_nanotime; 73 /* Fields not to be copied in tc_windup start with th_generation. */ 74 u_int th_generation; 75 struct timehands *th_next; 76 }; 77 78 static struct timehands th0; 79 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0}; 80 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9}; 81 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8}; 82 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7}; 83 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6}; 84 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5}; 85 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4}; 86 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3}; 87 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2}; 88 static struct timehands th0 = { 89 &dummy_timecounter, 90 0, 91 (uint64_t)-1 / 1000000, 92 0, 93 {1, 0}, 94 {0, 0}, 95 {0, 0}, 96 1, 97 &th1 98 }; 99 100 static struct timehands *volatile timehands = &th0; 101 struct timecounter *timecounter = &dummy_timecounter; 102 static struct timecounter *timecounters = &dummy_timecounter; 103 104 int tc_min_ticktock_freq = 1; 105 106 volatile time_t time_second = 1; 107 volatile time_t time_uptime = 1; 108 109 struct bintime boottimebin; 110 struct timeval boottime; 111 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 112 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD, 113 NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime"); 114 115 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, ""); 116 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, ""); 117 118 static int timestepwarnings; 119 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW, 120 ×tepwarnings, 0, "Log time steps"); 121 122 struct bintime bt_timethreshold; 123 struct bintime bt_tickthreshold; 124 sbintime_t sbt_timethreshold; 125 sbintime_t sbt_tickthreshold; 126 struct bintime tc_tick_bt; 127 sbintime_t tc_tick_sbt; 128 int tc_precexp; 129 int tc_timepercentage = TC_DEFAULTPERC; 130 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 131 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 132 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 133 sysctl_kern_timecounter_adjprecision, "I", 134 "Allowed time interval deviation in percents"); 135 136 static void tc_windup(void); 137 static void cpu_tick_calibrate(int); 138 139 void dtrace_getnanotime(struct timespec *tsp); 140 141 static int 142 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 143 { 144 #ifndef __mips__ 145 #ifdef SCTL_MASK32 146 int tv[2]; 147 148 if (req->flags & SCTL_MASK32) { 149 tv[0] = boottime.tv_sec; 150 tv[1] = boottime.tv_usec; 151 return SYSCTL_OUT(req, tv, sizeof(tv)); 152 } else 153 #endif 154 #endif 155 return SYSCTL_OUT(req, &boottime, sizeof(boottime)); 156 } 157 158 static int 159 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 160 { 161 u_int ncount; 162 struct timecounter *tc = arg1; 163 164 ncount = tc->tc_get_timecount(tc); 165 return sysctl_handle_int(oidp, &ncount, 0, req); 166 } 167 168 static int 169 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 170 { 171 uint64_t freq; 172 struct timecounter *tc = arg1; 173 174 freq = tc->tc_frequency; 175 return sysctl_handle_64(oidp, &freq, 0, req); 176 } 177 178 /* 179 * Return the difference between the timehands' counter value now and what 180 * was when we copied it to the timehands' offset_count. 181 */ 182 static __inline u_int 183 tc_delta(struct timehands *th) 184 { 185 struct timecounter *tc; 186 187 tc = th->th_counter; 188 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 189 tc->tc_counter_mask); 190 } 191 192 static inline u_int 193 tc_getgen(struct timehands *th) 194 { 195 196 #ifdef SMP 197 return (atomic_load_acq_int(&th->th_generation)); 198 #else 199 u_int gen; 200 201 gen = th->th_generation; 202 __compiler_membar(); 203 return (gen); 204 #endif 205 } 206 207 static inline void 208 tc_setgen(struct timehands *th, u_int newgen) 209 { 210 211 #ifdef SMP 212 atomic_store_rel_int(&th->th_generation, newgen); 213 #else 214 __compiler_membar(); 215 th->th_generation = newgen; 216 #endif 217 } 218 219 /* 220 * Functions for reading the time. We have to loop until we are sure that 221 * the timehands that we operated on was not updated under our feet. See 222 * the comment in <sys/time.h> for a description of these 12 functions. 223 */ 224 225 #ifdef FFCLOCK 226 void 227 fbclock_binuptime(struct bintime *bt) 228 { 229 struct timehands *th; 230 unsigned int gen; 231 232 do { 233 th = timehands; 234 gen = tc_getgen(th); 235 *bt = th->th_offset; 236 bintime_addx(bt, th->th_scale * tc_delta(th)); 237 } while (gen == 0 || gen != tc_getgen(th)); 238 } 239 240 void 241 fbclock_nanouptime(struct timespec *tsp) 242 { 243 struct bintime bt; 244 245 fbclock_binuptime(&bt); 246 bintime2timespec(&bt, tsp); 247 } 248 249 void 250 fbclock_microuptime(struct timeval *tvp) 251 { 252 struct bintime bt; 253 254 fbclock_binuptime(&bt); 255 bintime2timeval(&bt, tvp); 256 } 257 258 void 259 fbclock_bintime(struct bintime *bt) 260 { 261 262 fbclock_binuptime(bt); 263 bintime_add(bt, &boottimebin); 264 } 265 266 void 267 fbclock_nanotime(struct timespec *tsp) 268 { 269 struct bintime bt; 270 271 fbclock_bintime(&bt); 272 bintime2timespec(&bt, tsp); 273 } 274 275 void 276 fbclock_microtime(struct timeval *tvp) 277 { 278 struct bintime bt; 279 280 fbclock_bintime(&bt); 281 bintime2timeval(&bt, tvp); 282 } 283 284 void 285 fbclock_getbinuptime(struct bintime *bt) 286 { 287 struct timehands *th; 288 unsigned int gen; 289 290 do { 291 th = timehands; 292 gen = tc_getgen(th); 293 *bt = th->th_offset; 294 } while (gen == 0 || gen != tc_getgen(th)); 295 } 296 297 void 298 fbclock_getnanouptime(struct timespec *tsp) 299 { 300 struct timehands *th; 301 unsigned int gen; 302 303 do { 304 th = timehands; 305 gen = tc_getgen(th); 306 bintime2timespec(&th->th_offset, tsp); 307 } while (gen == 0 || gen != tc_getgen(th)); 308 } 309 310 void 311 fbclock_getmicrouptime(struct timeval *tvp) 312 { 313 struct timehands *th; 314 unsigned int gen; 315 316 do { 317 th = timehands; 318 gen = tc_getgen(th); 319 bintime2timeval(&th->th_offset, tvp); 320 } while (gen == 0 || gen != tc_getgen(th)); 321 } 322 323 void 324 fbclock_getbintime(struct bintime *bt) 325 { 326 struct timehands *th; 327 unsigned int gen; 328 329 do { 330 th = timehands; 331 gen = tc_getgen(th); 332 *bt = th->th_offset; 333 } while (gen == 0 || gen != tc_getgen(th)); 334 bintime_add(bt, &boottimebin); 335 } 336 337 void 338 fbclock_getnanotime(struct timespec *tsp) 339 { 340 struct timehands *th; 341 unsigned int gen; 342 343 do { 344 th = timehands; 345 gen = tc_getgen(th); 346 *tsp = th->th_nanotime; 347 } while (gen == 0 || gen != tc_getgen(th)); 348 } 349 350 void 351 fbclock_getmicrotime(struct timeval *tvp) 352 { 353 struct timehands *th; 354 unsigned int gen; 355 356 do { 357 th = timehands; 358 gen = tc_getgen(th); 359 *tvp = th->th_microtime; 360 } while (gen == 0 || gen != tc_getgen(th)); 361 } 362 #else /* !FFCLOCK */ 363 void 364 binuptime(struct bintime *bt) 365 { 366 struct timehands *th; 367 u_int gen; 368 369 do { 370 th = timehands; 371 gen = tc_getgen(th); 372 *bt = th->th_offset; 373 bintime_addx(bt, th->th_scale * tc_delta(th)); 374 } while (gen == 0 || gen != tc_getgen(th)); 375 } 376 377 void 378 nanouptime(struct timespec *tsp) 379 { 380 struct bintime bt; 381 382 binuptime(&bt); 383 bintime2timespec(&bt, tsp); 384 } 385 386 void 387 microuptime(struct timeval *tvp) 388 { 389 struct bintime bt; 390 391 binuptime(&bt); 392 bintime2timeval(&bt, tvp); 393 } 394 395 void 396 bintime(struct bintime *bt) 397 { 398 399 binuptime(bt); 400 bintime_add(bt, &boottimebin); 401 } 402 403 void 404 nanotime(struct timespec *tsp) 405 { 406 struct bintime bt; 407 408 bintime(&bt); 409 bintime2timespec(&bt, tsp); 410 } 411 412 void 413 microtime(struct timeval *tvp) 414 { 415 struct bintime bt; 416 417 bintime(&bt); 418 bintime2timeval(&bt, tvp); 419 } 420 421 void 422 getbinuptime(struct bintime *bt) 423 { 424 struct timehands *th; 425 u_int gen; 426 427 do { 428 th = timehands; 429 gen = tc_getgen(th); 430 *bt = th->th_offset; 431 } while (gen == 0 || gen != tc_getgen(th)); 432 } 433 434 void 435 getnanouptime(struct timespec *tsp) 436 { 437 struct timehands *th; 438 u_int gen; 439 440 do { 441 th = timehands; 442 gen = tc_getgen(th); 443 bintime2timespec(&th->th_offset, tsp); 444 } while (gen == 0 || gen != tc_getgen(th)); 445 } 446 447 void 448 getmicrouptime(struct timeval *tvp) 449 { 450 struct timehands *th; 451 u_int gen; 452 453 do { 454 th = timehands; 455 gen = tc_getgen(th); 456 bintime2timeval(&th->th_offset, tvp); 457 } while (gen == 0 || gen != tc_getgen(th)); 458 } 459 460 void 461 getbintime(struct bintime *bt) 462 { 463 struct timehands *th; 464 u_int gen; 465 466 do { 467 th = timehands; 468 gen = tc_getgen(th); 469 *bt = th->th_offset; 470 } while (gen == 0 || gen != tc_getgen(th)); 471 bintime_add(bt, &boottimebin); 472 } 473 474 void 475 getnanotime(struct timespec *tsp) 476 { 477 struct timehands *th; 478 u_int gen; 479 480 do { 481 th = timehands; 482 gen = tc_getgen(th); 483 *tsp = th->th_nanotime; 484 } while (gen == 0 || gen != tc_getgen(th)); 485 } 486 487 void 488 getmicrotime(struct timeval *tvp) 489 { 490 struct timehands *th; 491 u_int gen; 492 493 do { 494 th = timehands; 495 gen = tc_getgen(th); 496 *tvp = th->th_microtime; 497 } while (gen == 0 || gen != tc_getgen(th)); 498 } 499 #endif /* FFCLOCK */ 500 501 #ifdef FFCLOCK 502 /* 503 * Support for feed-forward synchronization algorithms. This is heavily inspired 504 * by the timehands mechanism but kept independent from it. *_windup() functions 505 * have some connection to avoid accessing the timecounter hardware more than 506 * necessary. 507 */ 508 509 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 510 struct ffclock_estimate ffclock_estimate; 511 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 512 uint32_t ffclock_status; /* Feed-forward clock status. */ 513 int8_t ffclock_updated; /* New estimates are available. */ 514 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 515 516 struct fftimehands { 517 struct ffclock_estimate cest; 518 struct bintime tick_time; 519 struct bintime tick_time_lerp; 520 ffcounter tick_ffcount; 521 uint64_t period_lerp; 522 volatile uint8_t gen; 523 struct fftimehands *next; 524 }; 525 526 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 527 528 static struct fftimehands ffth[10]; 529 static struct fftimehands *volatile fftimehands = ffth; 530 531 static void 532 ffclock_init(void) 533 { 534 struct fftimehands *cur; 535 struct fftimehands *last; 536 537 memset(ffth, 0, sizeof(ffth)); 538 539 last = ffth + NUM_ELEMENTS(ffth) - 1; 540 for (cur = ffth; cur < last; cur++) 541 cur->next = cur + 1; 542 last->next = ffth; 543 544 ffclock_updated = 0; 545 ffclock_status = FFCLOCK_STA_UNSYNC; 546 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 547 } 548 549 /* 550 * Reset the feed-forward clock estimates. Called from inittodr() to get things 551 * kick started and uses the timecounter nominal frequency as a first period 552 * estimate. Note: this function may be called several time just after boot. 553 * Note: this is the only function that sets the value of boot time for the 554 * monotonic (i.e. uptime) version of the feed-forward clock. 555 */ 556 void 557 ffclock_reset_clock(struct timespec *ts) 558 { 559 struct timecounter *tc; 560 struct ffclock_estimate cest; 561 562 tc = timehands->th_counter; 563 memset(&cest, 0, sizeof(struct ffclock_estimate)); 564 565 timespec2bintime(ts, &ffclock_boottime); 566 timespec2bintime(ts, &(cest.update_time)); 567 ffclock_read_counter(&cest.update_ffcount); 568 cest.leapsec_next = 0; 569 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 570 cest.errb_abs = 0; 571 cest.errb_rate = 0; 572 cest.status = FFCLOCK_STA_UNSYNC; 573 cest.leapsec_total = 0; 574 cest.leapsec = 0; 575 576 mtx_lock(&ffclock_mtx); 577 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 578 ffclock_updated = INT8_MAX; 579 mtx_unlock(&ffclock_mtx); 580 581 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 582 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 583 (unsigned long)ts->tv_nsec); 584 } 585 586 /* 587 * Sub-routine to convert a time interval measured in RAW counter units to time 588 * in seconds stored in bintime format. 589 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 590 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 591 * extra cycles. 592 */ 593 static void 594 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 595 { 596 struct bintime bt2; 597 ffcounter delta, delta_max; 598 599 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 600 bintime_clear(bt); 601 do { 602 if (ffdelta > delta_max) 603 delta = delta_max; 604 else 605 delta = ffdelta; 606 bt2.sec = 0; 607 bt2.frac = period; 608 bintime_mul(&bt2, (unsigned int)delta); 609 bintime_add(bt, &bt2); 610 ffdelta -= delta; 611 } while (ffdelta > 0); 612 } 613 614 /* 615 * Update the fftimehands. 616 * Push the tick ffcount and time(s) forward based on current clock estimate. 617 * The conversion from ffcounter to bintime relies on the difference clock 618 * principle, whose accuracy relies on computing small time intervals. If a new 619 * clock estimate has been passed by the synchronisation daemon, make it 620 * current, and compute the linear interpolation for monotonic time if needed. 621 */ 622 static void 623 ffclock_windup(unsigned int delta) 624 { 625 struct ffclock_estimate *cest; 626 struct fftimehands *ffth; 627 struct bintime bt, gap_lerp; 628 ffcounter ffdelta; 629 uint64_t frac; 630 unsigned int polling; 631 uint8_t forward_jump, ogen; 632 633 /* 634 * Pick the next timehand, copy current ffclock estimates and move tick 635 * times and counter forward. 636 */ 637 forward_jump = 0; 638 ffth = fftimehands->next; 639 ogen = ffth->gen; 640 ffth->gen = 0; 641 cest = &ffth->cest; 642 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 643 ffdelta = (ffcounter)delta; 644 ffth->period_lerp = fftimehands->period_lerp; 645 646 ffth->tick_time = fftimehands->tick_time; 647 ffclock_convert_delta(ffdelta, cest->period, &bt); 648 bintime_add(&ffth->tick_time, &bt); 649 650 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 651 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 652 bintime_add(&ffth->tick_time_lerp, &bt); 653 654 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 655 656 /* 657 * Assess the status of the clock, if the last update is too old, it is 658 * likely the synchronisation daemon is dead and the clock is free 659 * running. 660 */ 661 if (ffclock_updated == 0) { 662 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 663 ffclock_convert_delta(ffdelta, cest->period, &bt); 664 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 665 ffclock_status |= FFCLOCK_STA_UNSYNC; 666 } 667 668 /* 669 * If available, grab updated clock estimates and make them current. 670 * Recompute time at this tick using the updated estimates. The clock 671 * estimates passed the feed-forward synchronisation daemon may result 672 * in time conversion that is not monotonically increasing (just after 673 * the update). time_lerp is a particular linear interpolation over the 674 * synchronisation algo polling period that ensures monotonicity for the 675 * clock ids requesting it. 676 */ 677 if (ffclock_updated > 0) { 678 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 679 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 680 ffth->tick_time = cest->update_time; 681 ffclock_convert_delta(ffdelta, cest->period, &bt); 682 bintime_add(&ffth->tick_time, &bt); 683 684 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 685 if (ffclock_updated == INT8_MAX) 686 ffth->tick_time_lerp = ffth->tick_time; 687 688 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 689 forward_jump = 1; 690 else 691 forward_jump = 0; 692 693 bintime_clear(&gap_lerp); 694 if (forward_jump) { 695 gap_lerp = ffth->tick_time; 696 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 697 } else { 698 gap_lerp = ffth->tick_time_lerp; 699 bintime_sub(&gap_lerp, &ffth->tick_time); 700 } 701 702 /* 703 * The reset from the RTC clock may be far from accurate, and 704 * reducing the gap between real time and interpolated time 705 * could take a very long time if the interpolated clock insists 706 * on strict monotonicity. The clock is reset under very strict 707 * conditions (kernel time is known to be wrong and 708 * synchronization daemon has been restarted recently. 709 * ffclock_boottime absorbs the jump to ensure boot time is 710 * correct and uptime functions stay consistent. 711 */ 712 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 713 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 714 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 715 if (forward_jump) 716 bintime_add(&ffclock_boottime, &gap_lerp); 717 else 718 bintime_sub(&ffclock_boottime, &gap_lerp); 719 ffth->tick_time_lerp = ffth->tick_time; 720 bintime_clear(&gap_lerp); 721 } 722 723 ffclock_status = cest->status; 724 ffth->period_lerp = cest->period; 725 726 /* 727 * Compute corrected period used for the linear interpolation of 728 * time. The rate of linear interpolation is capped to 5000PPM 729 * (5ms/s). 730 */ 731 if (bintime_isset(&gap_lerp)) { 732 ffdelta = cest->update_ffcount; 733 ffdelta -= fftimehands->cest.update_ffcount; 734 ffclock_convert_delta(ffdelta, cest->period, &bt); 735 polling = bt.sec; 736 bt.sec = 0; 737 bt.frac = 5000000 * (uint64_t)18446744073LL; 738 bintime_mul(&bt, polling); 739 if (bintime_cmp(&gap_lerp, &bt, >)) 740 gap_lerp = bt; 741 742 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 743 frac = 0; 744 if (gap_lerp.sec > 0) { 745 frac -= 1; 746 frac /= ffdelta / gap_lerp.sec; 747 } 748 frac += gap_lerp.frac / ffdelta; 749 750 if (forward_jump) 751 ffth->period_lerp += frac; 752 else 753 ffth->period_lerp -= frac; 754 } 755 756 ffclock_updated = 0; 757 } 758 if (++ogen == 0) 759 ogen = 1; 760 ffth->gen = ogen; 761 fftimehands = ffth; 762 } 763 764 /* 765 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 766 * the old and new hardware counter cannot be read simultaneously. tc_windup() 767 * does read the two counters 'back to back', but a few cycles are effectively 768 * lost, and not accumulated in tick_ffcount. This is a fairly radical 769 * operation for a feed-forward synchronization daemon, and it is its job to not 770 * pushing irrelevant data to the kernel. Because there is no locking here, 771 * simply force to ignore pending or next update to give daemon a chance to 772 * realize the counter has changed. 773 */ 774 static void 775 ffclock_change_tc(struct timehands *th) 776 { 777 struct fftimehands *ffth; 778 struct ffclock_estimate *cest; 779 struct timecounter *tc; 780 uint8_t ogen; 781 782 tc = th->th_counter; 783 ffth = fftimehands->next; 784 ogen = ffth->gen; 785 ffth->gen = 0; 786 787 cest = &ffth->cest; 788 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 789 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 790 cest->errb_abs = 0; 791 cest->errb_rate = 0; 792 cest->status |= FFCLOCK_STA_UNSYNC; 793 794 ffth->tick_ffcount = fftimehands->tick_ffcount; 795 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 796 ffth->tick_time = fftimehands->tick_time; 797 ffth->period_lerp = cest->period; 798 799 /* Do not lock but ignore next update from synchronization daemon. */ 800 ffclock_updated--; 801 802 if (++ogen == 0) 803 ogen = 1; 804 ffth->gen = ogen; 805 fftimehands = ffth; 806 } 807 808 /* 809 * Retrieve feed-forward counter and time of last kernel tick. 810 */ 811 void 812 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 813 { 814 struct fftimehands *ffth; 815 uint8_t gen; 816 817 /* 818 * No locking but check generation has not changed. Also need to make 819 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 820 */ 821 do { 822 ffth = fftimehands; 823 gen = ffth->gen; 824 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 825 *bt = ffth->tick_time_lerp; 826 else 827 *bt = ffth->tick_time; 828 *ffcount = ffth->tick_ffcount; 829 } while (gen == 0 || gen != ffth->gen); 830 } 831 832 /* 833 * Absolute clock conversion. Low level function to convert ffcounter to 834 * bintime. The ffcounter is converted using the current ffclock period estimate 835 * or the "interpolated period" to ensure monotonicity. 836 * NOTE: this conversion may have been deferred, and the clock updated since the 837 * hardware counter has been read. 838 */ 839 void 840 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 841 { 842 struct fftimehands *ffth; 843 struct bintime bt2; 844 ffcounter ffdelta; 845 uint8_t gen; 846 847 /* 848 * No locking but check generation has not changed. Also need to make 849 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 850 */ 851 do { 852 ffth = fftimehands; 853 gen = ffth->gen; 854 if (ffcount > ffth->tick_ffcount) 855 ffdelta = ffcount - ffth->tick_ffcount; 856 else 857 ffdelta = ffth->tick_ffcount - ffcount; 858 859 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 860 *bt = ffth->tick_time_lerp; 861 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 862 } else { 863 *bt = ffth->tick_time; 864 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 865 } 866 867 if (ffcount > ffth->tick_ffcount) 868 bintime_add(bt, &bt2); 869 else 870 bintime_sub(bt, &bt2); 871 } while (gen == 0 || gen != ffth->gen); 872 } 873 874 /* 875 * Difference clock conversion. 876 * Low level function to Convert a time interval measured in RAW counter units 877 * into bintime. The difference clock allows measuring small intervals much more 878 * reliably than the absolute clock. 879 */ 880 void 881 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 882 { 883 struct fftimehands *ffth; 884 uint8_t gen; 885 886 /* No locking but check generation has not changed. */ 887 do { 888 ffth = fftimehands; 889 gen = ffth->gen; 890 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 891 } while (gen == 0 || gen != ffth->gen); 892 } 893 894 /* 895 * Access to current ffcounter value. 896 */ 897 void 898 ffclock_read_counter(ffcounter *ffcount) 899 { 900 struct timehands *th; 901 struct fftimehands *ffth; 902 unsigned int gen, delta; 903 904 /* 905 * ffclock_windup() called from tc_windup(), safe to rely on 906 * th->th_generation only, for correct delta and ffcounter. 907 */ 908 do { 909 th = timehands; 910 gen = tc_getgen(th); 911 ffth = fftimehands; 912 delta = tc_delta(th); 913 *ffcount = ffth->tick_ffcount; 914 } while (gen == 0 || gen != tc_getgen(th)); 915 916 *ffcount += delta; 917 } 918 919 void 920 binuptime(struct bintime *bt) 921 { 922 923 binuptime_fromclock(bt, sysclock_active); 924 } 925 926 void 927 nanouptime(struct timespec *tsp) 928 { 929 930 nanouptime_fromclock(tsp, sysclock_active); 931 } 932 933 void 934 microuptime(struct timeval *tvp) 935 { 936 937 microuptime_fromclock(tvp, sysclock_active); 938 } 939 940 void 941 bintime(struct bintime *bt) 942 { 943 944 bintime_fromclock(bt, sysclock_active); 945 } 946 947 void 948 nanotime(struct timespec *tsp) 949 { 950 951 nanotime_fromclock(tsp, sysclock_active); 952 } 953 954 void 955 microtime(struct timeval *tvp) 956 { 957 958 microtime_fromclock(tvp, sysclock_active); 959 } 960 961 void 962 getbinuptime(struct bintime *bt) 963 { 964 965 getbinuptime_fromclock(bt, sysclock_active); 966 } 967 968 void 969 getnanouptime(struct timespec *tsp) 970 { 971 972 getnanouptime_fromclock(tsp, sysclock_active); 973 } 974 975 void 976 getmicrouptime(struct timeval *tvp) 977 { 978 979 getmicrouptime_fromclock(tvp, sysclock_active); 980 } 981 982 void 983 getbintime(struct bintime *bt) 984 { 985 986 getbintime_fromclock(bt, sysclock_active); 987 } 988 989 void 990 getnanotime(struct timespec *tsp) 991 { 992 993 getnanotime_fromclock(tsp, sysclock_active); 994 } 995 996 void 997 getmicrotime(struct timeval *tvp) 998 { 999 1000 getmicrouptime_fromclock(tvp, sysclock_active); 1001 } 1002 1003 #endif /* FFCLOCK */ 1004 1005 /* 1006 * This is a clone of getnanotime and used for walltimestamps. 1007 * The dtrace_ prefix prevents fbt from creating probes for 1008 * it so walltimestamp can be safely used in all fbt probes. 1009 */ 1010 void 1011 dtrace_getnanotime(struct timespec *tsp) 1012 { 1013 struct timehands *th; 1014 u_int gen; 1015 1016 do { 1017 th = timehands; 1018 gen = tc_getgen(th); 1019 *tsp = th->th_nanotime; 1020 } while (gen == 0 || gen != tc_getgen(th)); 1021 } 1022 1023 /* 1024 * System clock currently providing time to the system. Modifiable via sysctl 1025 * when the FFCLOCK option is defined. 1026 */ 1027 int sysclock_active = SYSCLOCK_FBCK; 1028 1029 /* Internal NTP status and error estimates. */ 1030 extern int time_status; 1031 extern long time_esterror; 1032 1033 /* 1034 * Take a snapshot of sysclock data which can be used to compare system clocks 1035 * and generate timestamps after the fact. 1036 */ 1037 void 1038 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 1039 { 1040 struct fbclock_info *fbi; 1041 struct timehands *th; 1042 struct bintime bt; 1043 unsigned int delta, gen; 1044 #ifdef FFCLOCK 1045 ffcounter ffcount; 1046 struct fftimehands *ffth; 1047 struct ffclock_info *ffi; 1048 struct ffclock_estimate cest; 1049 1050 ffi = &clock_snap->ff_info; 1051 #endif 1052 1053 fbi = &clock_snap->fb_info; 1054 delta = 0; 1055 1056 do { 1057 th = timehands; 1058 gen = tc_getgen(th); 1059 fbi->th_scale = th->th_scale; 1060 fbi->tick_time = th->th_offset; 1061 #ifdef FFCLOCK 1062 ffth = fftimehands; 1063 ffi->tick_time = ffth->tick_time_lerp; 1064 ffi->tick_time_lerp = ffth->tick_time_lerp; 1065 ffi->period = ffth->cest.period; 1066 ffi->period_lerp = ffth->period_lerp; 1067 clock_snap->ffcount = ffth->tick_ffcount; 1068 cest = ffth->cest; 1069 #endif 1070 if (!fast) 1071 delta = tc_delta(th); 1072 } while (gen == 0 || gen != tc_getgen(th)); 1073 1074 clock_snap->delta = delta; 1075 clock_snap->sysclock_active = sysclock_active; 1076 1077 /* Record feedback clock status and error. */ 1078 clock_snap->fb_info.status = time_status; 1079 /* XXX: Very crude estimate of feedback clock error. */ 1080 bt.sec = time_esterror / 1000000; 1081 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1082 (uint64_t)18446744073709ULL; 1083 clock_snap->fb_info.error = bt; 1084 1085 #ifdef FFCLOCK 1086 if (!fast) 1087 clock_snap->ffcount += delta; 1088 1089 /* Record feed-forward clock leap second adjustment. */ 1090 ffi->leapsec_adjustment = cest.leapsec_total; 1091 if (clock_snap->ffcount > cest.leapsec_next) 1092 ffi->leapsec_adjustment -= cest.leapsec; 1093 1094 /* Record feed-forward clock status and error. */ 1095 clock_snap->ff_info.status = cest.status; 1096 ffcount = clock_snap->ffcount - cest.update_ffcount; 1097 ffclock_convert_delta(ffcount, cest.period, &bt); 1098 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1099 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1100 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1101 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1102 clock_snap->ff_info.error = bt; 1103 #endif 1104 } 1105 1106 /* 1107 * Convert a sysclock snapshot into a struct bintime based on the specified 1108 * clock source and flags. 1109 */ 1110 int 1111 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1112 int whichclock, uint32_t flags) 1113 { 1114 #ifdef FFCLOCK 1115 struct bintime bt2; 1116 uint64_t period; 1117 #endif 1118 1119 switch (whichclock) { 1120 case SYSCLOCK_FBCK: 1121 *bt = cs->fb_info.tick_time; 1122 1123 /* If snapshot was created with !fast, delta will be >0. */ 1124 if (cs->delta > 0) 1125 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1126 1127 if ((flags & FBCLOCK_UPTIME) == 0) 1128 bintime_add(bt, &boottimebin); 1129 break; 1130 #ifdef FFCLOCK 1131 case SYSCLOCK_FFWD: 1132 if (flags & FFCLOCK_LERP) { 1133 *bt = cs->ff_info.tick_time_lerp; 1134 period = cs->ff_info.period_lerp; 1135 } else { 1136 *bt = cs->ff_info.tick_time; 1137 period = cs->ff_info.period; 1138 } 1139 1140 /* If snapshot was created with !fast, delta will be >0. */ 1141 if (cs->delta > 0) { 1142 ffclock_convert_delta(cs->delta, period, &bt2); 1143 bintime_add(bt, &bt2); 1144 } 1145 1146 /* Leap second adjustment. */ 1147 if (flags & FFCLOCK_LEAPSEC) 1148 bt->sec -= cs->ff_info.leapsec_adjustment; 1149 1150 /* Boot time adjustment, for uptime/monotonic clocks. */ 1151 if (flags & FFCLOCK_UPTIME) 1152 bintime_sub(bt, &ffclock_boottime); 1153 break; 1154 #endif 1155 default: 1156 return (EINVAL); 1157 break; 1158 } 1159 1160 return (0); 1161 } 1162 1163 /* 1164 * Initialize a new timecounter and possibly use it. 1165 */ 1166 void 1167 tc_init(struct timecounter *tc) 1168 { 1169 u_int u; 1170 struct sysctl_oid *tc_root; 1171 1172 u = tc->tc_frequency / tc->tc_counter_mask; 1173 /* XXX: We need some margin here, 10% is a guess */ 1174 u *= 11; 1175 u /= 10; 1176 if (u > hz && tc->tc_quality >= 0) { 1177 tc->tc_quality = -2000; 1178 if (bootverbose) { 1179 printf("Timecounter \"%s\" frequency %ju Hz", 1180 tc->tc_name, (uintmax_t)tc->tc_frequency); 1181 printf(" -- Insufficient hz, needs at least %u\n", u); 1182 } 1183 } else if (tc->tc_quality >= 0 || bootverbose) { 1184 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1185 tc->tc_name, (uintmax_t)tc->tc_frequency, 1186 tc->tc_quality); 1187 } 1188 1189 tc->tc_next = timecounters; 1190 timecounters = tc; 1191 /* 1192 * Set up sysctl tree for this counter. 1193 */ 1194 tc_root = SYSCTL_ADD_NODE(NULL, 1195 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1196 CTLFLAG_RW, 0, "timecounter description"); 1197 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1198 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1199 "mask for implemented bits"); 1200 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1201 "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc), 1202 sysctl_kern_timecounter_get, "IU", "current timecounter value"); 1203 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1204 "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc), 1205 sysctl_kern_timecounter_freq, "QU", "timecounter frequency"); 1206 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1207 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1208 "goodness of time counter"); 1209 /* 1210 * Never automatically use a timecounter with negative quality. 1211 * Even though we run on the dummy counter, switching here may be 1212 * worse since this timecounter may not be monotonous. 1213 */ 1214 if (tc->tc_quality < 0) 1215 return; 1216 if (tc->tc_quality < timecounter->tc_quality) 1217 return; 1218 if (tc->tc_quality == timecounter->tc_quality && 1219 tc->tc_frequency < timecounter->tc_frequency) 1220 return; 1221 (void)tc->tc_get_timecount(tc); 1222 (void)tc->tc_get_timecount(tc); 1223 timecounter = tc; 1224 } 1225 1226 /* Report the frequency of the current timecounter. */ 1227 uint64_t 1228 tc_getfrequency(void) 1229 { 1230 1231 return (timehands->th_counter->tc_frequency); 1232 } 1233 1234 /* 1235 * Step our concept of UTC. This is done by modifying our estimate of 1236 * when we booted. 1237 * XXX: not locked. 1238 */ 1239 void 1240 tc_setclock(struct timespec *ts) 1241 { 1242 struct timespec tbef, taft; 1243 struct bintime bt, bt2; 1244 1245 cpu_tick_calibrate(1); 1246 nanotime(&tbef); 1247 timespec2bintime(ts, &bt); 1248 binuptime(&bt2); 1249 bintime_sub(&bt, &bt2); 1250 bintime_add(&bt2, &boottimebin); 1251 boottimebin = bt; 1252 bintime2timeval(&bt, &boottime); 1253 1254 /* XXX fiddle all the little crinkly bits around the fiords... */ 1255 tc_windup(); 1256 nanotime(&taft); 1257 if (timestepwarnings) { 1258 log(LOG_INFO, 1259 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1260 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1261 (intmax_t)taft.tv_sec, taft.tv_nsec, 1262 (intmax_t)ts->tv_sec, ts->tv_nsec); 1263 } 1264 cpu_tick_calibrate(1); 1265 } 1266 1267 /* 1268 * Initialize the next struct timehands in the ring and make 1269 * it the active timehands. Along the way we might switch to a different 1270 * timecounter and/or do seconds processing in NTP. Slightly magic. 1271 */ 1272 static void 1273 tc_windup(void) 1274 { 1275 struct bintime bt; 1276 struct timehands *th, *tho; 1277 uint64_t scale; 1278 u_int delta, ncount, ogen; 1279 int i; 1280 time_t t; 1281 1282 /* 1283 * Make the next timehands a copy of the current one, but do not 1284 * overwrite the generation or next pointer. While we update 1285 * the contents, the generation must be zero. 1286 */ 1287 tho = timehands; 1288 th = tho->th_next; 1289 ogen = th->th_generation; 1290 tc_setgen(th, 0); 1291 bcopy(tho, th, offsetof(struct timehands, th_generation)); 1292 1293 /* 1294 * Capture a timecounter delta on the current timecounter and if 1295 * changing timecounters, a counter value from the new timecounter. 1296 * Update the offset fields accordingly. 1297 */ 1298 delta = tc_delta(th); 1299 if (th->th_counter != timecounter) 1300 ncount = timecounter->tc_get_timecount(timecounter); 1301 else 1302 ncount = 0; 1303 #ifdef FFCLOCK 1304 ffclock_windup(delta); 1305 #endif 1306 th->th_offset_count += delta; 1307 th->th_offset_count &= th->th_counter->tc_counter_mask; 1308 while (delta > th->th_counter->tc_frequency) { 1309 /* Eat complete unadjusted seconds. */ 1310 delta -= th->th_counter->tc_frequency; 1311 th->th_offset.sec++; 1312 } 1313 if ((delta > th->th_counter->tc_frequency / 2) && 1314 (th->th_scale * delta < ((uint64_t)1 << 63))) { 1315 /* The product th_scale * delta just barely overflows. */ 1316 th->th_offset.sec++; 1317 } 1318 bintime_addx(&th->th_offset, th->th_scale * delta); 1319 1320 /* 1321 * Hardware latching timecounters may not generate interrupts on 1322 * PPS events, so instead we poll them. There is a finite risk that 1323 * the hardware might capture a count which is later than the one we 1324 * got above, and therefore possibly in the next NTP second which might 1325 * have a different rate than the current NTP second. It doesn't 1326 * matter in practice. 1327 */ 1328 if (tho->th_counter->tc_poll_pps) 1329 tho->th_counter->tc_poll_pps(tho->th_counter); 1330 1331 /* 1332 * Deal with NTP second processing. The for loop normally 1333 * iterates at most once, but in extreme situations it might 1334 * keep NTP sane if timeouts are not run for several seconds. 1335 * At boot, the time step can be large when the TOD hardware 1336 * has been read, so on really large steps, we call 1337 * ntp_update_second only twice. We need to call it twice in 1338 * case we missed a leap second. 1339 */ 1340 bt = th->th_offset; 1341 bintime_add(&bt, &boottimebin); 1342 i = bt.sec - tho->th_microtime.tv_sec; 1343 if (i > LARGE_STEP) 1344 i = 2; 1345 for (; i > 0; i--) { 1346 t = bt.sec; 1347 ntp_update_second(&th->th_adjustment, &bt.sec); 1348 if (bt.sec != t) 1349 boottimebin.sec += bt.sec - t; 1350 } 1351 /* Update the UTC timestamps used by the get*() functions. */ 1352 /* XXX shouldn't do this here. Should force non-`get' versions. */ 1353 bintime2timeval(&bt, &th->th_microtime); 1354 bintime2timespec(&bt, &th->th_nanotime); 1355 1356 /* Now is a good time to change timecounters. */ 1357 if (th->th_counter != timecounter) { 1358 #ifndef __arm__ 1359 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0) 1360 cpu_disable_c2_sleep++; 1361 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 1362 cpu_disable_c2_sleep--; 1363 #endif 1364 th->th_counter = timecounter; 1365 th->th_offset_count = ncount; 1366 tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 1367 (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1368 #ifdef FFCLOCK 1369 ffclock_change_tc(th); 1370 #endif 1371 } 1372 1373 /*- 1374 * Recalculate the scaling factor. We want the number of 1/2^64 1375 * fractions of a second per period of the hardware counter, taking 1376 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1377 * processing provides us with. 1378 * 1379 * The th_adjustment is nanoseconds per second with 32 bit binary 1380 * fraction and we want 64 bit binary fraction of second: 1381 * 1382 * x = a * 2^32 / 10^9 = a * 4.294967296 1383 * 1384 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1385 * we can only multiply by about 850 without overflowing, that 1386 * leaves no suitably precise fractions for multiply before divide. 1387 * 1388 * Divide before multiply with a fraction of 2199/512 results in a 1389 * systematic undercompensation of 10PPM of th_adjustment. On a 1390 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1391 * 1392 * We happily sacrifice the lowest of the 64 bits of our result 1393 * to the goddess of code clarity. 1394 * 1395 */ 1396 scale = (uint64_t)1 << 63; 1397 scale += (th->th_adjustment / 1024) * 2199; 1398 scale /= th->th_counter->tc_frequency; 1399 th->th_scale = scale * 2; 1400 1401 /* 1402 * Now that the struct timehands is again consistent, set the new 1403 * generation number, making sure to not make it zero. 1404 */ 1405 if (++ogen == 0) 1406 ogen = 1; 1407 tc_setgen(th, ogen); 1408 1409 /* Go live with the new struct timehands. */ 1410 #ifdef FFCLOCK 1411 switch (sysclock_active) { 1412 case SYSCLOCK_FBCK: 1413 #endif 1414 time_second = th->th_microtime.tv_sec; 1415 time_uptime = th->th_offset.sec; 1416 #ifdef FFCLOCK 1417 break; 1418 case SYSCLOCK_FFWD: 1419 time_second = fftimehands->tick_time_lerp.sec; 1420 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1421 break; 1422 } 1423 #endif 1424 1425 timehands = th; 1426 timekeep_push_vdso(); 1427 } 1428 1429 /* Report or change the active timecounter hardware. */ 1430 static int 1431 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1432 { 1433 char newname[32]; 1434 struct timecounter *newtc, *tc; 1435 int error; 1436 1437 tc = timecounter; 1438 strlcpy(newname, tc->tc_name, sizeof(newname)); 1439 1440 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1441 if (error != 0 || req->newptr == NULL || 1442 strcmp(newname, tc->tc_name) == 0) 1443 return (error); 1444 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1445 if (strcmp(newname, newtc->tc_name) != 0) 1446 continue; 1447 1448 /* Warm up new timecounter. */ 1449 (void)newtc->tc_get_timecount(newtc); 1450 (void)newtc->tc_get_timecount(newtc); 1451 1452 timecounter = newtc; 1453 1454 /* 1455 * The vdso timehands update is deferred until the next 1456 * 'tc_windup()'. 1457 * 1458 * This is prudent given that 'timekeep_push_vdso()' does not 1459 * use any locking and that it can be called in hard interrupt 1460 * context via 'tc_windup()'. 1461 */ 1462 return (0); 1463 } 1464 return (EINVAL); 1465 } 1466 1467 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW, 1468 0, 0, sysctl_kern_timecounter_hardware, "A", 1469 "Timecounter hardware selected"); 1470 1471 1472 /* Report or change the active timecounter hardware. */ 1473 static int 1474 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1475 { 1476 struct sbuf sb; 1477 struct timecounter *tc; 1478 int error; 1479 1480 sbuf_new_for_sysctl(&sb, NULL, 0, req); 1481 for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 1482 if (tc != timecounters) 1483 sbuf_putc(&sb, ' '); 1484 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality); 1485 } 1486 error = sbuf_finish(&sb); 1487 sbuf_delete(&sb); 1488 return (error); 1489 } 1490 1491 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD, 1492 0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected"); 1493 1494 /* 1495 * RFC 2783 PPS-API implementation. 1496 */ 1497 1498 /* 1499 * Return true if the driver is aware of the abi version extensions in the 1500 * pps_state structure, and it supports at least the given abi version number. 1501 */ 1502 static inline int 1503 abi_aware(struct pps_state *pps, int vers) 1504 { 1505 1506 return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers); 1507 } 1508 1509 static int 1510 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1511 { 1512 int err, timo; 1513 pps_seq_t aseq, cseq; 1514 struct timeval tv; 1515 1516 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1517 return (EINVAL); 1518 1519 /* 1520 * If no timeout is requested, immediately return whatever values were 1521 * most recently captured. If timeout seconds is -1, that's a request 1522 * to block without a timeout. WITNESS won't let us sleep forever 1523 * without a lock (we really don't need a lock), so just repeatedly 1524 * sleep a long time. 1525 */ 1526 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1527 if (fapi->timeout.tv_sec == -1) 1528 timo = 0x7fffffff; 1529 else { 1530 tv.tv_sec = fapi->timeout.tv_sec; 1531 tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1532 timo = tvtohz(&tv); 1533 } 1534 aseq = pps->ppsinfo.assert_sequence; 1535 cseq = pps->ppsinfo.clear_sequence; 1536 while (aseq == pps->ppsinfo.assert_sequence && 1537 cseq == pps->ppsinfo.clear_sequence) { 1538 if (abi_aware(pps, 1) && pps->driver_mtx != NULL) { 1539 if (pps->flags & PPSFLAG_MTX_SPIN) { 1540 err = msleep_spin(pps, pps->driver_mtx, 1541 "ppsfch", timo); 1542 } else { 1543 err = msleep(pps, pps->driver_mtx, PCATCH, 1544 "ppsfch", timo); 1545 } 1546 } else { 1547 err = tsleep(pps, PCATCH, "ppsfch", timo); 1548 } 1549 if (err == EWOULDBLOCK && fapi->timeout.tv_sec == -1) { 1550 continue; 1551 } else if (err != 0) { 1552 return (err); 1553 } 1554 } 1555 } 1556 1557 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1558 fapi->pps_info_buf = pps->ppsinfo; 1559 1560 return (0); 1561 } 1562 1563 int 1564 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1565 { 1566 pps_params_t *app; 1567 struct pps_fetch_args *fapi; 1568 #ifdef FFCLOCK 1569 struct pps_fetch_ffc_args *fapi_ffc; 1570 #endif 1571 #ifdef PPS_SYNC 1572 struct pps_kcbind_args *kapi; 1573 #endif 1574 1575 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1576 switch (cmd) { 1577 case PPS_IOC_CREATE: 1578 return (0); 1579 case PPS_IOC_DESTROY: 1580 return (0); 1581 case PPS_IOC_SETPARAMS: 1582 app = (pps_params_t *)data; 1583 if (app->mode & ~pps->ppscap) 1584 return (EINVAL); 1585 #ifdef FFCLOCK 1586 /* Ensure only a single clock is selected for ffc timestamp. */ 1587 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1588 return (EINVAL); 1589 #endif 1590 pps->ppsparam = *app; 1591 return (0); 1592 case PPS_IOC_GETPARAMS: 1593 app = (pps_params_t *)data; 1594 *app = pps->ppsparam; 1595 app->api_version = PPS_API_VERS_1; 1596 return (0); 1597 case PPS_IOC_GETCAP: 1598 *(int*)data = pps->ppscap; 1599 return (0); 1600 case PPS_IOC_FETCH: 1601 fapi = (struct pps_fetch_args *)data; 1602 return (pps_fetch(fapi, pps)); 1603 #ifdef FFCLOCK 1604 case PPS_IOC_FETCH_FFCOUNTER: 1605 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1606 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1607 PPS_TSFMT_TSPEC) 1608 return (EINVAL); 1609 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1610 return (EOPNOTSUPP); 1611 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1612 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1613 /* Overwrite timestamps if feedback clock selected. */ 1614 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1615 case PPS_TSCLK_FBCK: 1616 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1617 pps->ppsinfo.assert_timestamp; 1618 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1619 pps->ppsinfo.clear_timestamp; 1620 break; 1621 case PPS_TSCLK_FFWD: 1622 break; 1623 default: 1624 break; 1625 } 1626 return (0); 1627 #endif /* FFCLOCK */ 1628 case PPS_IOC_KCBIND: 1629 #ifdef PPS_SYNC 1630 kapi = (struct pps_kcbind_args *)data; 1631 /* XXX Only root should be able to do this */ 1632 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1633 return (EINVAL); 1634 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1635 return (EINVAL); 1636 if (kapi->edge & ~pps->ppscap) 1637 return (EINVAL); 1638 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) | 1639 (pps->kcmode & KCMODE_ABIFLAG); 1640 return (0); 1641 #else 1642 return (EOPNOTSUPP); 1643 #endif 1644 default: 1645 return (ENOIOCTL); 1646 } 1647 } 1648 1649 void 1650 pps_init(struct pps_state *pps) 1651 { 1652 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1653 if (pps->ppscap & PPS_CAPTUREASSERT) 1654 pps->ppscap |= PPS_OFFSETASSERT; 1655 if (pps->ppscap & PPS_CAPTURECLEAR) 1656 pps->ppscap |= PPS_OFFSETCLEAR; 1657 #ifdef FFCLOCK 1658 pps->ppscap |= PPS_TSCLK_MASK; 1659 #endif 1660 pps->kcmode &= ~KCMODE_ABIFLAG; 1661 } 1662 1663 void 1664 pps_init_abi(struct pps_state *pps) 1665 { 1666 1667 pps_init(pps); 1668 if (pps->driver_abi > 0) { 1669 pps->kcmode |= KCMODE_ABIFLAG; 1670 pps->kernel_abi = PPS_ABI_VERSION; 1671 } 1672 } 1673 1674 void 1675 pps_capture(struct pps_state *pps) 1676 { 1677 struct timehands *th; 1678 1679 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1680 th = timehands; 1681 pps->capgen = tc_getgen(th); 1682 pps->capth = th; 1683 #ifdef FFCLOCK 1684 pps->capffth = fftimehands; 1685 #endif 1686 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1687 if (pps->capgen != tc_getgen(th)) 1688 pps->capgen = 0; 1689 } 1690 1691 void 1692 pps_event(struct pps_state *pps, int event) 1693 { 1694 struct bintime bt; 1695 struct timespec ts, *tsp, *osp; 1696 u_int tcount, *pcount; 1697 int foff, fhard; 1698 pps_seq_t *pseq; 1699 #ifdef FFCLOCK 1700 struct timespec *tsp_ffc; 1701 pps_seq_t *pseq_ffc; 1702 ffcounter *ffcount; 1703 #endif 1704 1705 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1706 /* If the timecounter was wound up underneath us, bail out. */ 1707 if (pps->capgen == 0 || pps->capgen != tc_getgen(pps->capth)) 1708 return; 1709 1710 /* Things would be easier with arrays. */ 1711 if (event == PPS_CAPTUREASSERT) { 1712 tsp = &pps->ppsinfo.assert_timestamp; 1713 osp = &pps->ppsparam.assert_offset; 1714 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1715 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1716 pcount = &pps->ppscount[0]; 1717 pseq = &pps->ppsinfo.assert_sequence; 1718 #ifdef FFCLOCK 1719 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1720 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1721 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1722 #endif 1723 } else { 1724 tsp = &pps->ppsinfo.clear_timestamp; 1725 osp = &pps->ppsparam.clear_offset; 1726 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1727 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1728 pcount = &pps->ppscount[1]; 1729 pseq = &pps->ppsinfo.clear_sequence; 1730 #ifdef FFCLOCK 1731 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1732 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1733 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1734 #endif 1735 } 1736 1737 /* 1738 * If the timecounter changed, we cannot compare the count values, so 1739 * we have to drop the rest of the PPS-stuff until the next event. 1740 */ 1741 if (pps->ppstc != pps->capth->th_counter) { 1742 pps->ppstc = pps->capth->th_counter; 1743 *pcount = pps->capcount; 1744 pps->ppscount[2] = pps->capcount; 1745 return; 1746 } 1747 1748 /* Convert the count to a timespec. */ 1749 tcount = pps->capcount - pps->capth->th_offset_count; 1750 tcount &= pps->capth->th_counter->tc_counter_mask; 1751 bt = pps->capth->th_offset; 1752 bintime_addx(&bt, pps->capth->th_scale * tcount); 1753 bintime_add(&bt, &boottimebin); 1754 bintime2timespec(&bt, &ts); 1755 1756 /* If the timecounter was wound up underneath us, bail out. */ 1757 if (pps->capgen != tc_getgen(pps->capth)) 1758 return; 1759 1760 *pcount = pps->capcount; 1761 (*pseq)++; 1762 *tsp = ts; 1763 1764 if (foff) { 1765 timespecadd(tsp, osp); 1766 if (tsp->tv_nsec < 0) { 1767 tsp->tv_nsec += 1000000000; 1768 tsp->tv_sec -= 1; 1769 } 1770 } 1771 1772 #ifdef FFCLOCK 1773 *ffcount = pps->capffth->tick_ffcount + tcount; 1774 bt = pps->capffth->tick_time; 1775 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1776 bintime_add(&bt, &pps->capffth->tick_time); 1777 bintime2timespec(&bt, &ts); 1778 (*pseq_ffc)++; 1779 *tsp_ffc = ts; 1780 #endif 1781 1782 #ifdef PPS_SYNC 1783 if (fhard) { 1784 uint64_t scale; 1785 1786 /* 1787 * Feed the NTP PLL/FLL. 1788 * The FLL wants to know how many (hardware) nanoseconds 1789 * elapsed since the previous event. 1790 */ 1791 tcount = pps->capcount - pps->ppscount[2]; 1792 pps->ppscount[2] = pps->capcount; 1793 tcount &= pps->capth->th_counter->tc_counter_mask; 1794 scale = (uint64_t)1 << 63; 1795 scale /= pps->capth->th_counter->tc_frequency; 1796 scale *= 2; 1797 bt.sec = 0; 1798 bt.frac = 0; 1799 bintime_addx(&bt, scale * tcount); 1800 bintime2timespec(&bt, &ts); 1801 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1802 } 1803 #endif 1804 1805 /* Wakeup anyone sleeping in pps_fetch(). */ 1806 wakeup(pps); 1807 } 1808 1809 /* 1810 * Timecounters need to be updated every so often to prevent the hardware 1811 * counter from overflowing. Updating also recalculates the cached values 1812 * used by the get*() family of functions, so their precision depends on 1813 * the update frequency. 1814 */ 1815 1816 static int tc_tick; 1817 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1818 "Approximate number of hardclock ticks in a millisecond"); 1819 1820 void 1821 tc_ticktock(int cnt) 1822 { 1823 static int count; 1824 1825 count += cnt; 1826 if (count < tc_tick) 1827 return; 1828 count = 0; 1829 tc_windup(); 1830 } 1831 1832 static void __inline 1833 tc_adjprecision(void) 1834 { 1835 int t; 1836 1837 if (tc_timepercentage > 0) { 1838 t = (99 + tc_timepercentage) / tc_timepercentage; 1839 tc_precexp = fls(t + (t >> 1)) - 1; 1840 FREQ2BT(hz / tc_tick, &bt_timethreshold); 1841 FREQ2BT(hz, &bt_tickthreshold); 1842 bintime_shift(&bt_timethreshold, tc_precexp); 1843 bintime_shift(&bt_tickthreshold, tc_precexp); 1844 } else { 1845 tc_precexp = 31; 1846 bt_timethreshold.sec = INT_MAX; 1847 bt_timethreshold.frac = ~(uint64_t)0; 1848 bt_tickthreshold = bt_timethreshold; 1849 } 1850 sbt_timethreshold = bttosbt(bt_timethreshold); 1851 sbt_tickthreshold = bttosbt(bt_tickthreshold); 1852 } 1853 1854 static int 1855 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 1856 { 1857 int error, val; 1858 1859 val = tc_timepercentage; 1860 error = sysctl_handle_int(oidp, &val, 0, req); 1861 if (error != 0 || req->newptr == NULL) 1862 return (error); 1863 tc_timepercentage = val; 1864 if (cold) 1865 goto done; 1866 tc_adjprecision(); 1867 done: 1868 return (0); 1869 } 1870 1871 static void 1872 inittimecounter(void *dummy) 1873 { 1874 u_int p; 1875 int tick_rate; 1876 1877 /* 1878 * Set the initial timeout to 1879 * max(1, <approx. number of hardclock ticks in a millisecond>). 1880 * People should probably not use the sysctl to set the timeout 1881 * to smaller than its inital value, since that value is the 1882 * smallest reasonable one. If they want better timestamps they 1883 * should use the non-"get"* functions. 1884 */ 1885 if (hz > 1000) 1886 tc_tick = (hz + 500) / 1000; 1887 else 1888 tc_tick = 1; 1889 tc_adjprecision(); 1890 FREQ2BT(hz, &tick_bt); 1891 tick_sbt = bttosbt(tick_bt); 1892 tick_rate = hz / tc_tick; 1893 FREQ2BT(tick_rate, &tc_tick_bt); 1894 tc_tick_sbt = bttosbt(tc_tick_bt); 1895 p = (tc_tick * 1000000) / hz; 1896 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 1897 1898 #ifdef FFCLOCK 1899 ffclock_init(); 1900 #endif 1901 /* warm up new timecounter (again) and get rolling. */ 1902 (void)timecounter->tc_get_timecount(timecounter); 1903 (void)timecounter->tc_get_timecount(timecounter); 1904 tc_windup(); 1905 } 1906 1907 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 1908 1909 /* Cpu tick handling -------------------------------------------------*/ 1910 1911 static int cpu_tick_variable; 1912 static uint64_t cpu_tick_frequency; 1913 1914 static uint64_t 1915 tc_cpu_ticks(void) 1916 { 1917 static uint64_t base; 1918 static unsigned last; 1919 unsigned u; 1920 struct timecounter *tc; 1921 1922 tc = timehands->th_counter; 1923 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 1924 if (u < last) 1925 base += (uint64_t)tc->tc_counter_mask + 1; 1926 last = u; 1927 return (u + base); 1928 } 1929 1930 void 1931 cpu_tick_calibration(void) 1932 { 1933 static time_t last_calib; 1934 1935 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 1936 cpu_tick_calibrate(0); 1937 last_calib = time_uptime; 1938 } 1939 } 1940 1941 /* 1942 * This function gets called every 16 seconds on only one designated 1943 * CPU in the system from hardclock() via cpu_tick_calibration()(). 1944 * 1945 * Whenever the real time clock is stepped we get called with reset=1 1946 * to make sure we handle suspend/resume and similar events correctly. 1947 */ 1948 1949 static void 1950 cpu_tick_calibrate(int reset) 1951 { 1952 static uint64_t c_last; 1953 uint64_t c_this, c_delta; 1954 static struct bintime t_last; 1955 struct bintime t_this, t_delta; 1956 uint32_t divi; 1957 1958 if (reset) { 1959 /* The clock was stepped, abort & reset */ 1960 t_last.sec = 0; 1961 return; 1962 } 1963 1964 /* we don't calibrate fixed rate cputicks */ 1965 if (!cpu_tick_variable) 1966 return; 1967 1968 getbinuptime(&t_this); 1969 c_this = cpu_ticks(); 1970 if (t_last.sec != 0) { 1971 c_delta = c_this - c_last; 1972 t_delta = t_this; 1973 bintime_sub(&t_delta, &t_last); 1974 /* 1975 * Headroom: 1976 * 2^(64-20) / 16[s] = 1977 * 2^(44) / 16[s] = 1978 * 17.592.186.044.416 / 16 = 1979 * 1.099.511.627.776 [Hz] 1980 */ 1981 divi = t_delta.sec << 20; 1982 divi |= t_delta.frac >> (64 - 20); 1983 c_delta <<= 20; 1984 c_delta /= divi; 1985 if (c_delta > cpu_tick_frequency) { 1986 if (0 && bootverbose) 1987 printf("cpu_tick increased to %ju Hz\n", 1988 c_delta); 1989 cpu_tick_frequency = c_delta; 1990 } 1991 } 1992 c_last = c_this; 1993 t_last = t_this; 1994 } 1995 1996 void 1997 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 1998 { 1999 2000 if (func == NULL) { 2001 cpu_ticks = tc_cpu_ticks; 2002 } else { 2003 cpu_tick_frequency = freq; 2004 cpu_tick_variable = var; 2005 cpu_ticks = func; 2006 } 2007 } 2008 2009 uint64_t 2010 cpu_tickrate(void) 2011 { 2012 2013 if (cpu_ticks == tc_cpu_ticks) 2014 return (tc_getfrequency()); 2015 return (cpu_tick_frequency); 2016 } 2017 2018 /* 2019 * We need to be slightly careful converting cputicks to microseconds. 2020 * There is plenty of margin in 64 bits of microseconds (half a million 2021 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 2022 * before divide conversion (to retain precision) we find that the 2023 * margin shrinks to 1.5 hours (one millionth of 146y). 2024 * With a three prong approach we never lose significant bits, no 2025 * matter what the cputick rate and length of timeinterval is. 2026 */ 2027 2028 uint64_t 2029 cputick2usec(uint64_t tick) 2030 { 2031 2032 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 2033 return (tick / (cpu_tickrate() / 1000000LL)); 2034 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 2035 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 2036 else 2037 return ((tick * 1000000LL) / cpu_tickrate()); 2038 } 2039 2040 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 2041 2042 static int vdso_th_enable = 1; 2043 static int 2044 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 2045 { 2046 int old_vdso_th_enable, error; 2047 2048 old_vdso_th_enable = vdso_th_enable; 2049 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 2050 if (error != 0) 2051 return (error); 2052 vdso_th_enable = old_vdso_th_enable; 2053 return (0); 2054 } 2055 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 2056 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 2057 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 2058 2059 uint32_t 2060 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2061 { 2062 struct timehands *th; 2063 uint32_t enabled; 2064 2065 th = timehands; 2066 vdso_th->th_algo = VDSO_TH_ALGO_1; 2067 vdso_th->th_scale = th->th_scale; 2068 vdso_th->th_offset_count = th->th_offset_count; 2069 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2070 vdso_th->th_offset = th->th_offset; 2071 vdso_th->th_boottime = boottimebin; 2072 enabled = cpu_fill_vdso_timehands(vdso_th, th->th_counter); 2073 if (!vdso_th_enable) 2074 enabled = 0; 2075 return (enabled); 2076 } 2077 2078 #ifdef COMPAT_FREEBSD32 2079 uint32_t 2080 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2081 { 2082 struct timehands *th; 2083 uint32_t enabled; 2084 2085 th = timehands; 2086 vdso_th32->th_algo = VDSO_TH_ALGO_1; 2087 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2088 vdso_th32->th_offset_count = th->th_offset_count; 2089 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2090 vdso_th32->th_offset.sec = th->th_offset.sec; 2091 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 2092 vdso_th32->th_boottime.sec = boottimebin.sec; 2093 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac; 2094 enabled = cpu_fill_vdso_timehands32(vdso_th32, th->th_counter); 2095 if (!vdso_th_enable) 2096 enabled = 0; 2097 return (enabled); 2098 } 2099 #endif 2100