1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 39 * $Id: kern_clock.c,v 1.25 1996/06/23 17:40:42 bde Exp $ 40 */ 41 42 /* Portions of this software are covered by the following: */ 43 /****************************************************************************** 44 * * 45 * Copyright (c) David L. Mills 1993, 1994 * 46 * * 47 * Permission to use, copy, modify, and distribute this software and its * 48 * documentation for any purpose and without fee is hereby granted, provided * 49 * that the above copyright notice appears in all copies and that both the * 50 * copyright notice and this permission notice appear in supporting * 51 * documentation, and that the name University of Delaware not be used in * 52 * advertising or publicity pertaining to distribution of the software * 53 * without specific, written prior permission. The University of Delaware * 54 * makes no representations about the suitability this software for any * 55 * purpose. It is provided "as is" without express or implied warranty. * 56 * * 57 *****************************************************************************/ 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/dkstat.h> 62 #include <sys/callout.h> 63 #include <sys/kernel.h> 64 #include <sys/proc.h> 65 #include <sys/resourcevar.h> 66 #include <sys/signalvar.h> 67 #include <sys/timex.h> 68 #include <vm/vm.h> 69 #include <vm/vm_param.h> 70 #include <vm/vm_prot.h> 71 #include <vm/lock.h> 72 #include <vm/pmap.h> 73 #include <vm/vm_map.h> 74 #include <sys/sysctl.h> 75 76 #include <machine/cpu.h> 77 #include <machine/clock.h> 78 79 #ifdef GPROF 80 #include <sys/gmon.h> 81 #endif 82 83 static void initclocks __P((void *dummy)); 84 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 85 86 /* Exported to machdep.c. */ 87 struct callout *callfree, *callout; 88 89 static struct callout calltodo; 90 91 /* Some of these don't belong here, but it's easiest to concentrate them. */ 92 static long cp_time[CPUSTATES]; 93 long dk_seek[DK_NDRIVE]; 94 static long dk_time[DK_NDRIVE]; 95 long dk_wds[DK_NDRIVE]; 96 long dk_wpms[DK_NDRIVE]; 97 long dk_xfer[DK_NDRIVE]; 98 99 int dk_busy; 100 int dk_ndrive = 0; 101 char dk_names[DK_NDRIVE][DK_NAMELEN]; 102 103 long tk_cancc; 104 long tk_nin; 105 long tk_nout; 106 long tk_rawcc; 107 108 /* 109 * Clock handling routines. 110 * 111 * This code is written to operate with two timers that run independently of 112 * each other. The main clock, running hz times per second, is used to keep 113 * track of real time. The second timer handles kernel and user profiling, 114 * and does resource use estimation. If the second timer is programmable, 115 * it is randomized to avoid aliasing between the two clocks. For example, 116 * the randomization prevents an adversary from always giving up the cpu 117 * just before its quantum expires. Otherwise, it would never accumulate 118 * cpu ticks. The mean frequency of the second timer is stathz. 119 * 120 * If no second timer exists, stathz will be zero; in this case we drive 121 * profiling and statistics off the main clock. This WILL NOT be accurate; 122 * do not do it unless absolutely necessary. 123 * 124 * The statistics clock may (or may not) be run at a higher rate while 125 * profiling. This profile clock runs at profhz. We require that profhz 126 * be an integral multiple of stathz. 127 * 128 * If the statistics clock is running fast, it must be divided by the ratio 129 * profhz/stathz for statistics. (For profiling, every tick counts.) 130 */ 131 132 /* 133 * TODO: 134 * allocate more timeout table slots when table overflows. 135 */ 136 137 /* 138 * Bump a timeval by a small number of usec's. 139 */ 140 #define BUMPTIME(t, usec) { \ 141 register volatile struct timeval *tp = (t); \ 142 register long us; \ 143 \ 144 tp->tv_usec = us = tp->tv_usec + (usec); \ 145 if (us >= 1000000) { \ 146 tp->tv_usec = us - 1000000; \ 147 tp->tv_sec++; \ 148 } \ 149 } 150 151 int stathz; 152 int profhz; 153 static int profprocs; 154 int ticks; 155 static int psdiv, pscnt; /* prof => stat divider */ 156 int psratio; /* ratio: prof / stat */ 157 158 volatile struct timeval time; 159 volatile struct timeval mono_time; 160 161 /* 162 * Phase-lock loop (PLL) definitions 163 * 164 * The following variables are read and set by the ntp_adjtime() system 165 * call. 166 * 167 * time_state shows the state of the system clock, with values defined 168 * in the timex.h header file. 169 * 170 * time_status shows the status of the system clock, with bits defined 171 * in the timex.h header file. 172 * 173 * time_offset is used by the PLL to adjust the system time in small 174 * increments. 175 * 176 * time_constant determines the bandwidth or "stiffness" of the PLL. 177 * 178 * time_tolerance determines maximum frequency error or tolerance of the 179 * CPU clock oscillator and is a property of the architecture; however, 180 * in principle it could change as result of the presence of external 181 * discipline signals, for instance. 182 * 183 * time_precision is usually equal to the kernel tick variable; however, 184 * in cases where a precision clock counter or external clock is 185 * available, the resolution can be much less than this and depend on 186 * whether the external clock is working or not. 187 * 188 * time_maxerror is initialized by a ntp_adjtime() call and increased by 189 * the kernel once each second to reflect the maximum error 190 * bound growth. 191 * 192 * time_esterror is set and read by the ntp_adjtime() call, but 193 * otherwise not used by the kernel. 194 */ 195 int time_status = STA_UNSYNC; /* clock status bits */ 196 int time_state = TIME_OK; /* clock state */ 197 long time_offset = 0; /* time offset (us) */ 198 long time_constant = 0; /* pll time constant */ 199 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 200 long time_precision = 1; /* clock precision (us) */ 201 long time_maxerror = MAXPHASE; /* maximum error (us) */ 202 long time_esterror = MAXPHASE; /* estimated error (us) */ 203 204 /* 205 * The following variables establish the state of the PLL and the 206 * residual time and frequency offset of the local clock. The scale 207 * factors are defined in the timex.h header file. 208 * 209 * time_phase and time_freq are the phase increment and the frequency 210 * increment, respectively, of the kernel time variable at each tick of 211 * the clock. 212 * 213 * time_freq is set via ntp_adjtime() from a value stored in a file when 214 * the synchronization daemon is first started. Its value is retrieved 215 * via ntp_adjtime() and written to the file about once per hour by the 216 * daemon. 217 * 218 * time_adj is the adjustment added to the value of tick at each timer 219 * interrupt and is recomputed at each timer interrupt. 220 * 221 * time_reftime is the second's portion of the system time on the last 222 * call to ntp_adjtime(). It is used to adjust the time_freq variable 223 * and to increase the time_maxerror as the time since last update 224 * increases. 225 */ 226 static long time_phase = 0; /* phase offset (scaled us) */ 227 long time_freq = 0; /* frequency offset (scaled ppm) */ 228 static long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 229 static long time_reftime = 0; /* time at last adjustment (s) */ 230 231 #ifdef PPS_SYNC 232 /* 233 * The following variables are used only if the if the kernel PPS 234 * discipline code is configured (PPS_SYNC). The scale factors are 235 * defined in the timex.h header file. 236 * 237 * pps_time contains the time at each calibration interval, as read by 238 * microtime(). 239 * 240 * pps_offset is the time offset produced by the time median filter 241 * pps_tf[], while pps_jitter is the dispersion measured by this 242 * filter. 243 * 244 * pps_freq is the frequency offset produced by the frequency median 245 * filter pps_ff[], while pps_stabil is the dispersion measured by 246 * this filter. 247 * 248 * pps_usec is latched from a high resolution counter or external clock 249 * at pps_time. Here we want the hardware counter contents only, not the 250 * contents plus the time_tv.usec as usual. 251 * 252 * pps_valid counts the number of seconds since the last PPS update. It 253 * is used as a watchdog timer to disable the PPS discipline should the 254 * PPS signal be lost. 255 * 256 * pps_glitch counts the number of seconds since the beginning of an 257 * offset burst more than tick/2 from current nominal offset. It is used 258 * mainly to suppress error bursts due to priority conflicts between the 259 * PPS interrupt and timer interrupt. 260 * 261 * pps_count counts the seconds of the calibration interval, the 262 * duration of which is pps_shift in powers of two. 263 * 264 * pps_intcnt counts the calibration intervals for use in the interval- 265 * adaptation algorithm. It's just too complicated for words. 266 */ 267 struct timeval pps_time; /* kernel time at last interval */ 268 long pps_offset = 0; /* pps time offset (us) */ 269 long pps_jitter = MAXTIME; /* pps time dispersion (jitter) (us) */ 270 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 271 long pps_freq = 0; /* frequency offset (scaled ppm) */ 272 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 273 long pps_ff[] = {0, 0, 0}; /* frequency offset median filter */ 274 long pps_usec = 0; /* microsec counter at last interval */ 275 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 276 int pps_glitch = 0; /* pps signal glitch counter */ 277 int pps_count = 0; /* calibration interval counter (s) */ 278 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 279 int pps_intcnt = 0; /* intervals at current duration */ 280 281 /* 282 * PPS signal quality monitors 283 * 284 * pps_jitcnt counts the seconds that have been discarded because the 285 * jitter measured by the time median filter exceeds the limit MAXTIME 286 * (100 us). 287 * 288 * pps_calcnt counts the frequency calibration intervals, which are 289 * variable from 4 s to 256 s. 290 * 291 * pps_errcnt counts the calibration intervals which have been discarded 292 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 293 * calibration interval jitter exceeds two ticks. 294 * 295 * pps_stbcnt counts the calibration intervals that have been discarded 296 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 297 */ 298 long pps_jitcnt = 0; /* jitter limit exceeded */ 299 long pps_calcnt = 0; /* calibration intervals */ 300 long pps_errcnt = 0; /* calibration errors */ 301 long pps_stbcnt = 0; /* stability limit exceeded */ 302 #endif /* PPS_SYNC */ 303 304 /* XXX none of this stuff works under FreeBSD */ 305 #ifdef EXT_CLOCK 306 /* 307 * External clock definitions 308 * 309 * The following definitions and declarations are used only if an 310 * external clock (HIGHBALL or TPRO) is configured on the system. 311 */ 312 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 313 314 /* 315 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 316 * interrupt and decremented once each second. 317 */ 318 int clock_count = 0; /* CPU clock counter */ 319 320 #ifdef HIGHBALL 321 /* 322 * The clock_offset and clock_cpu variables are used by the HIGHBALL 323 * interface. The clock_offset variable defines the offset between 324 * system time and the HIGBALL counters. The clock_cpu variable contains 325 * the offset between the system clock and the HIGHBALL clock for use in 326 * disciplining the kernel time variable. 327 */ 328 extern struct timeval clock_offset; /* Highball clock offset */ 329 long clock_cpu = 0; /* CPU clock adjust */ 330 #endif /* HIGHBALL */ 331 #endif /* EXT_CLOCK */ 332 333 /* 334 * hardupdate() - local clock update 335 * 336 * This routine is called by ntp_adjtime() to update the local clock 337 * phase and frequency. This is used to implement an adaptive-parameter, 338 * first-order, type-II phase-lock loop. The code computes new time and 339 * frequency offsets each time it is called. The hardclock() routine 340 * amortizes these offsets at each tick interrupt. If the kernel PPS 341 * discipline code is configured (PPS_SYNC), the PPS signal itself 342 * determines the new time offset, instead of the calling argument. 343 * Presumably, calls to ntp_adjtime() occur only when the caller 344 * believes the local clock is valid within some bound (+-128 ms with 345 * NTP). If the caller's time is far different than the PPS time, an 346 * argument will ensue, and it's not clear who will lose. 347 * 348 * For default SHIFT_UPDATE = 12, the offset is limited to +-512 ms, the 349 * maximum interval between updates is 4096 s and the maximum frequency 350 * offset is +-31.25 ms/s. 351 * 352 * Note: splclock() is in effect. 353 */ 354 void 355 hardupdate(offset) 356 long offset; 357 { 358 long ltemp, mtemp; 359 360 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 361 return; 362 ltemp = offset; 363 #ifdef PPS_SYNC 364 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 365 ltemp = pps_offset; 366 #endif /* PPS_SYNC */ 367 if (ltemp > MAXPHASE) 368 time_offset = MAXPHASE << SHIFT_UPDATE; 369 else if (ltemp < -MAXPHASE) 370 time_offset = -(MAXPHASE << SHIFT_UPDATE); 371 else 372 time_offset = ltemp << SHIFT_UPDATE; 373 mtemp = time.tv_sec - time_reftime; 374 time_reftime = time.tv_sec; 375 if (mtemp > MAXSEC) 376 mtemp = 0; 377 378 /* ugly multiply should be replaced */ 379 if (ltemp < 0) 380 time_freq -= (-ltemp * mtemp) >> (time_constant + 381 time_constant + SHIFT_KF - SHIFT_USEC); 382 else 383 time_freq += (ltemp * mtemp) >> (time_constant + 384 time_constant + SHIFT_KF - SHIFT_USEC); 385 if (time_freq > time_tolerance) 386 time_freq = time_tolerance; 387 else if (time_freq < -time_tolerance) 388 time_freq = -time_tolerance; 389 } 390 391 392 393 /* 394 * Initialize clock frequencies and start both clocks running. 395 */ 396 /* ARGSUSED*/ 397 static void 398 initclocks(dummy) 399 void *dummy; 400 { 401 register int i; 402 403 /* 404 * Set divisors to 1 (normal case) and let the machine-specific 405 * code do its bit. 406 */ 407 psdiv = pscnt = 1; 408 cpu_initclocks(); 409 410 /* 411 * Compute profhz/stathz, and fix profhz if needed. 412 */ 413 i = stathz ? stathz : hz; 414 if (profhz == 0) 415 profhz = i; 416 psratio = profhz / i; 417 } 418 419 /* 420 * The real-time timer, interrupting hz times per second. 421 */ 422 void 423 hardclock(frame) 424 register struct clockframe *frame; 425 { 426 register struct callout *p1; 427 register struct proc *p; 428 register int needsoft; 429 430 /* 431 * Update real-time timeout queue. 432 * At front of queue are some number of events which are ``due''. 433 * The time to these is <= 0 and if negative represents the 434 * number of ticks which have passed since it was supposed to happen. 435 * The rest of the q elements (times > 0) are events yet to happen, 436 * where the time for each is given as a delta from the previous. 437 * Decrementing just the first of these serves to decrement the time 438 * to all events. 439 */ 440 needsoft = 0; 441 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) { 442 if (--p1->c_time > 0) 443 break; 444 needsoft = 1; 445 if (p1->c_time == 0) 446 break; 447 } 448 449 p = curproc; 450 if (p) { 451 register struct pstats *pstats; 452 453 /* 454 * Run current process's virtual and profile time, as needed. 455 */ 456 pstats = p->p_stats; 457 if (CLKF_USERMODE(frame) && 458 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 459 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 460 psignal(p, SIGVTALRM); 461 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 462 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 463 psignal(p, SIGPROF); 464 } 465 466 /* 467 * If no separate statistics clock is available, run it from here. 468 */ 469 if (stathz == 0) 470 statclock(frame); 471 472 /* 473 * Increment the time-of-day. 474 */ 475 ticks++; 476 { 477 int time_update; 478 struct timeval newtime = time; 479 long ltemp; 480 481 if (timedelta == 0) { 482 time_update = CPU_THISTICKLEN(tick); 483 } else { 484 time_update = CPU_THISTICKLEN(tick) + tickdelta; 485 timedelta -= tickdelta; 486 } 487 BUMPTIME(&mono_time, time_update); 488 489 /* 490 * Compute the phase adjustment. If the low-order bits 491 * (time_phase) of the update overflow, bump the high-order bits 492 * (time_update). 493 */ 494 time_phase += time_adj; 495 if (time_phase <= -FINEUSEC) { 496 ltemp = -time_phase >> SHIFT_SCALE; 497 time_phase += ltemp << SHIFT_SCALE; 498 time_update -= ltemp; 499 } 500 else if (time_phase >= FINEUSEC) { 501 ltemp = time_phase >> SHIFT_SCALE; 502 time_phase -= ltemp << SHIFT_SCALE; 503 time_update += ltemp; 504 } 505 506 newtime.tv_usec += time_update; 507 /* 508 * On rollover of the second the phase adjustment to be used for 509 * the next second is calculated. Also, the maximum error is 510 * increased by the tolerance. If the PPS frequency discipline 511 * code is present, the phase is increased to compensate for the 512 * CPU clock oscillator frequency error. 513 * 514 * With SHIFT_SCALE = 23, the maximum frequency adjustment is 515 * +-256 us per tick, or 25.6 ms/s at a clock frequency of 100 516 * Hz. The time contribution is shifted right a minimum of two 517 * bits, while the frequency contribution is a right shift. 518 * Thus, overflow is prevented if the frequency contribution is 519 * limited to half the maximum or 15.625 ms/s. 520 */ 521 if (newtime.tv_usec >= 1000000) { 522 newtime.tv_usec -= 1000000; 523 newtime.tv_sec++; 524 time_maxerror += time_tolerance >> SHIFT_USEC; 525 if (time_offset < 0) { 526 ltemp = -time_offset >> 527 (SHIFT_KG + time_constant); 528 time_offset += ltemp; 529 time_adj = -ltemp << 530 (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); 531 } else { 532 ltemp = time_offset >> 533 (SHIFT_KG + time_constant); 534 time_offset -= ltemp; 535 time_adj = ltemp << 536 (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); 537 } 538 #ifdef PPS_SYNC 539 /* 540 * Gnaw on the watchdog counter and update the frequency 541 * computed by the pll and the PPS signal. 542 */ 543 pps_valid++; 544 if (pps_valid == PPS_VALID) { 545 pps_jitter = MAXTIME; 546 pps_stabil = MAXFREQ; 547 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 548 STA_PPSWANDER | STA_PPSERROR); 549 } 550 ltemp = time_freq + pps_freq; 551 #else 552 ltemp = time_freq; 553 #endif /* PPS_SYNC */ 554 if (ltemp < 0) 555 time_adj -= -ltemp >> 556 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 557 else 558 time_adj += ltemp >> 559 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 560 561 /* 562 * When the CPU clock oscillator frequency is not a 563 * power of two in Hz, the SHIFT_HZ is only an 564 * approximate scale factor. In the SunOS kernel, this 565 * results in a PLL gain factor of 1/1.28 = 0.78 what it 566 * should be. In the following code the overall gain is 567 * increased by a factor of 1.25, which results in a 568 * residual error less than 3 percent. 569 */ 570 /* Same thing applies for FreeBSD --GAW */ 571 if (hz == 100) { 572 if (time_adj < 0) 573 time_adj -= -time_adj >> 2; 574 else 575 time_adj += time_adj >> 2; 576 } 577 578 /* XXX - this is really bogus, but can't be fixed until 579 xntpd's idea of the system clock is fixed to know how 580 the user wants leap seconds handled; in the mean time, 581 we assume that users of NTP are running without proper 582 leap second support (this is now the default anyway) */ 583 /* 584 * Leap second processing. If in leap-insert state at 585 * the end of the day, the system clock is set back one 586 * second; if in leap-delete state, the system clock is 587 * set ahead one second. The microtime() routine or 588 * external clock driver will insure that reported time 589 * is always monotonic. The ugly divides should be 590 * replaced. 591 */ 592 switch (time_state) { 593 594 case TIME_OK: 595 if (time_status & STA_INS) 596 time_state = TIME_INS; 597 else if (time_status & STA_DEL) 598 time_state = TIME_DEL; 599 break; 600 601 case TIME_INS: 602 if (newtime.tv_sec % 86400 == 0) { 603 newtime.tv_sec--; 604 time_state = TIME_OOP; 605 } 606 break; 607 608 case TIME_DEL: 609 if ((newtime.tv_sec + 1) % 86400 == 0) { 610 newtime.tv_sec++; 611 time_state = TIME_WAIT; 612 } 613 break; 614 615 case TIME_OOP: 616 time_state = TIME_WAIT; 617 break; 618 619 case TIME_WAIT: 620 if (!(time_status & (STA_INS | STA_DEL))) 621 time_state = TIME_OK; 622 } 623 } 624 CPU_CLOCKUPDATE(&time, &newtime); 625 } 626 627 /* 628 * Process callouts at a very low cpu priority, so we don't keep the 629 * relatively high clock interrupt priority any longer than necessary. 630 */ 631 if (needsoft) { 632 if (CLKF_BASEPRI(frame)) { 633 /* 634 * Save the overhead of a software interrupt; 635 * it will happen as soon as we return, so do it now. 636 */ 637 (void)splsoftclock(); 638 softclock(); 639 } else 640 setsoftclock(); 641 } 642 } 643 644 /* 645 * Software (low priority) clock interrupt. 646 * Run periodic events from timeout queue. 647 */ 648 /*ARGSUSED*/ 649 void 650 softclock() 651 { 652 register struct callout *c; 653 register void *arg; 654 register void (*func) __P((void *)); 655 register int s; 656 657 s = splhigh(); 658 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) { 659 func = c->c_func; 660 arg = c->c_arg; 661 calltodo.c_next = c->c_next; 662 c->c_next = callfree; 663 callfree = c; 664 splx(s); 665 (*func)(arg); 666 (void) splhigh(); 667 } 668 splx(s); 669 } 670 671 /* 672 * timeout -- 673 * Execute a function after a specified length of time. 674 * 675 * untimeout -- 676 * Cancel previous timeout function call. 677 * 678 * See AT&T BCI Driver Reference Manual for specification. This 679 * implementation differs from that one in that no identification 680 * value is returned from timeout, rather, the original arguments 681 * to timeout are used to identify entries for untimeout. 682 */ 683 void 684 timeout(ftn, arg, ticks) 685 timeout_t ftn; 686 void *arg; 687 register int ticks; 688 { 689 register struct callout *new, *p, *t; 690 register int s; 691 692 if (ticks <= 0) 693 ticks = 1; 694 695 /* Lock out the clock. */ 696 s = splhigh(); 697 698 /* Fill in the next free callout structure. */ 699 if (callfree == NULL) 700 panic("timeout table full"); 701 new = callfree; 702 callfree = new->c_next; 703 new->c_arg = arg; 704 new->c_func = ftn; 705 706 /* 707 * The time for each event is stored as a difference from the time 708 * of the previous event on the queue. Walk the queue, correcting 709 * the ticks argument for queue entries passed. Correct the ticks 710 * value for the queue entry immediately after the insertion point 711 * as well. Watch out for negative c_time values; these represent 712 * overdue events. 713 */ 714 for (p = &calltodo; 715 (t = p->c_next) != NULL && ticks > t->c_time; p = t) 716 if (t->c_time > 0) 717 ticks -= t->c_time; 718 new->c_time = ticks; 719 if (t != NULL) 720 t->c_time -= ticks; 721 722 /* Insert the new entry into the queue. */ 723 p->c_next = new; 724 new->c_next = t; 725 splx(s); 726 } 727 728 void 729 untimeout(ftn, arg) 730 timeout_t ftn; 731 void *arg; 732 { 733 register struct callout *p, *t; 734 register int s; 735 736 s = splhigh(); 737 for (p = &calltodo; (t = p->c_next) != NULL; p = t) 738 if (t->c_func == ftn && t->c_arg == arg) { 739 /* Increment next entry's tick count. */ 740 if (t->c_next && t->c_time > 0) 741 t->c_next->c_time += t->c_time; 742 743 /* Move entry from callout queue to callfree queue. */ 744 p->c_next = t->c_next; 745 t->c_next = callfree; 746 callfree = t; 747 break; 748 } 749 splx(s); 750 } 751 752 /* 753 * Compute number of hz until specified time. Used to 754 * compute third argument to timeout() from an absolute time. 755 */ 756 int 757 hzto(tv) 758 struct timeval *tv; 759 { 760 register unsigned long ticks; 761 register long sec, usec; 762 int s; 763 764 /* 765 * If the number of usecs in the whole seconds part of the time 766 * difference fits in a long, then the total number of usecs will 767 * fit in an unsigned long. Compute the total and convert it to 768 * ticks, rounding up and adding 1 to allow for the current tick 769 * to expire. Rounding also depends on unsigned long arithmetic 770 * to avoid overflow. 771 * 772 * Otherwise, if the number of ticks in the whole seconds part of 773 * the time difference fits in a long, then convert the parts to 774 * ticks separately and add, using similar rounding methods and 775 * overflow avoidance. This method would work in the previous 776 * case but it is slightly slower and assumes that hz is integral. 777 * 778 * Otherwise, round the time difference down to the maximum 779 * representable value. 780 * 781 * If ints have 32 bits, then the maximum value for any timeout in 782 * 10ms ticks is 248 days. 783 */ 784 s = splclock(); 785 sec = tv->tv_sec - time.tv_sec; 786 usec = tv->tv_usec - time.tv_usec; 787 splx(s); 788 if (usec < 0) { 789 sec--; 790 usec += 1000000; 791 } 792 if (sec < 0) { 793 #ifdef DIAGNOSTIC 794 printf("hzto: negative time difference %ld sec %ld usec\n", 795 sec, usec); 796 #endif 797 ticks = 1; 798 } else if (sec <= LONG_MAX / 1000000) 799 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 800 / tick + 1; 801 else if (sec <= LONG_MAX / hz) 802 ticks = sec * hz 803 + ((unsigned long)usec + (tick - 1)) / tick + 1; 804 else 805 ticks = LONG_MAX; 806 if (ticks > INT_MAX) 807 ticks = INT_MAX; 808 return (ticks); 809 } 810 811 /* 812 * Start profiling on a process. 813 * 814 * Kernel profiling passes proc0 which never exits and hence 815 * keeps the profile clock running constantly. 816 */ 817 void 818 startprofclock(p) 819 register struct proc *p; 820 { 821 int s; 822 823 if ((p->p_flag & P_PROFIL) == 0) { 824 p->p_flag |= P_PROFIL; 825 if (++profprocs == 1 && stathz != 0) { 826 s = splstatclock(); 827 psdiv = pscnt = psratio; 828 setstatclockrate(profhz); 829 splx(s); 830 } 831 } 832 } 833 834 /* 835 * Stop profiling on a process. 836 */ 837 void 838 stopprofclock(p) 839 register struct proc *p; 840 { 841 int s; 842 843 if (p->p_flag & P_PROFIL) { 844 p->p_flag &= ~P_PROFIL; 845 if (--profprocs == 0 && stathz != 0) { 846 s = splstatclock(); 847 psdiv = pscnt = 1; 848 setstatclockrate(stathz); 849 splx(s); 850 } 851 } 852 } 853 854 /* 855 * Statistics clock. Grab profile sample, and if divider reaches 0, 856 * do process and kernel statistics. 857 */ 858 void 859 statclock(frame) 860 register struct clockframe *frame; 861 { 862 #ifdef GPROF 863 register struct gmonparam *g; 864 #endif 865 register struct proc *p; 866 register int i; 867 struct pstats *pstats; 868 long rss; 869 struct rusage *ru; 870 struct vmspace *vm; 871 872 if (CLKF_USERMODE(frame)) { 873 p = curproc; 874 if (p->p_flag & P_PROFIL) 875 addupc_intr(p, CLKF_PC(frame), 1); 876 if (--pscnt > 0) 877 return; 878 /* 879 * Came from user mode; CPU was in user state. 880 * If this process is being profiled record the tick. 881 */ 882 p->p_uticks++; 883 if (p->p_nice > NZERO) 884 cp_time[CP_NICE]++; 885 else 886 cp_time[CP_USER]++; 887 } else { 888 #ifdef GPROF 889 /* 890 * Kernel statistics are just like addupc_intr, only easier. 891 */ 892 g = &_gmonparam; 893 if (g->state == GMON_PROF_ON) { 894 i = CLKF_PC(frame) - g->lowpc; 895 if (i < g->textsize) { 896 i /= HISTFRACTION * sizeof(*g->kcount); 897 g->kcount[i]++; 898 } 899 } 900 #endif 901 if (--pscnt > 0) 902 return; 903 /* 904 * Came from kernel mode, so we were: 905 * - handling an interrupt, 906 * - doing syscall or trap work on behalf of the current 907 * user process, or 908 * - spinning in the idle loop. 909 * Whichever it is, charge the time as appropriate. 910 * Note that we charge interrupts to the current process, 911 * regardless of whether they are ``for'' that process, 912 * so that we know how much of its real time was spent 913 * in ``non-process'' (i.e., interrupt) work. 914 */ 915 p = curproc; 916 if (CLKF_INTR(frame)) { 917 if (p != NULL) 918 p->p_iticks++; 919 cp_time[CP_INTR]++; 920 } else if (p != NULL) { 921 p->p_sticks++; 922 cp_time[CP_SYS]++; 923 } else 924 cp_time[CP_IDLE]++; 925 } 926 pscnt = psdiv; 927 928 /* 929 * We maintain statistics shown by user-level statistics 930 * programs: the amount of time in each cpu state, and 931 * the amount of time each of DK_NDRIVE ``drives'' is busy. 932 * 933 * XXX should either run linked list of drives, or (better) 934 * grab timestamps in the start & done code. 935 */ 936 for (i = 0; i < DK_NDRIVE; i++) 937 if (dk_busy & (1 << i)) 938 dk_time[i]++; 939 940 /* 941 * We adjust the priority of the current process. The priority of 942 * a process gets worse as it accumulates CPU time. The cpu usage 943 * estimator (p_estcpu) is increased here. The formula for computing 944 * priorities (in kern_synch.c) will compute a different value each 945 * time p_estcpu increases by 4. The cpu usage estimator ramps up 946 * quite quickly when the process is running (linearly), and decays 947 * away exponentially, at a rate which is proportionally slower when 948 * the system is busy. The basic principal is that the system will 949 * 90% forget that the process used a lot of CPU time in 5 * loadav 950 * seconds. This causes the system to favor processes which haven't 951 * run much recently, and to round-robin among other processes. 952 */ 953 if (p != NULL) { 954 p->p_cpticks++; 955 if (++p->p_estcpu == 0) 956 p->p_estcpu--; 957 if ((p->p_estcpu & 3) == 0) { 958 resetpriority(p); 959 if (p->p_priority >= PUSER) 960 p->p_priority = p->p_usrpri; 961 } 962 963 /* Update resource usage integrals and maximums. */ 964 if ((pstats = p->p_stats) != NULL && 965 (ru = &pstats->p_ru) != NULL && 966 (vm = p->p_vmspace) != NULL) { 967 ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024; 968 ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024; 969 ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024; 970 rss = vm->vm_pmap.pm_stats.resident_count * 971 PAGE_SIZE / 1024; 972 if (ru->ru_maxrss < rss) 973 ru->ru_maxrss = rss; 974 } 975 } 976 } 977 978 /* 979 * Return information about system clocks. 980 */ 981 static int 982 sysctl_kern_clockrate SYSCTL_HANDLER_ARGS 983 { 984 struct clockinfo clkinfo; 985 /* 986 * Construct clockinfo structure. 987 */ 988 clkinfo.hz = hz; 989 clkinfo.tick = tick; 990 clkinfo.profhz = profhz; 991 clkinfo.stathz = stathz ? stathz : hz; 992 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 993 } 994 995 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 996 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 997 998 /*#ifdef PPS_SYNC*/ 999 #if 0 1000 /* This code is completely bogus; if anybody ever wants to use it, get 1001 * the current version from Dave Mills. */ 1002 1003 /* 1004 * hardpps() - discipline CPU clock oscillator to external pps signal 1005 * 1006 * This routine is called at each PPS interrupt in order to discipline 1007 * the CPU clock oscillator to the PPS signal. It integrates successive 1008 * phase differences between the two oscillators and calculates the 1009 * frequency offset. This is used in hardclock() to discipline the CPU 1010 * clock oscillator so that intrinsic frequency error is cancelled out. 1011 * The code requires the caller to capture the time and hardware 1012 * counter value at the designated PPS signal transition. 1013 */ 1014 void 1015 hardpps(tvp, usec) 1016 struct timeval *tvp; /* time at PPS */ 1017 long usec; /* hardware counter at PPS */ 1018 { 1019 long u_usec, v_usec, bigtick; 1020 long cal_sec, cal_usec; 1021 1022 /* 1023 * During the calibration interval adjust the starting time when 1024 * the tick overflows. At the end of the interval compute the 1025 * duration of the interval and the difference of the hardware 1026 * counters at the beginning and end of the interval. This code 1027 * is deliciously complicated by the fact valid differences may 1028 * exceed the value of tick when using long calibration 1029 * intervals and small ticks. Note that the counter can be 1030 * greater than tick if caught at just the wrong instant, but 1031 * the values returned and used here are correct. 1032 */ 1033 bigtick = (long)tick << SHIFT_USEC; 1034 pps_usec -= ntp_pll.ybar; 1035 if (pps_usec >= bigtick) 1036 pps_usec -= bigtick; 1037 if (pps_usec < 0) 1038 pps_usec += bigtick; 1039 pps_time.tv_sec++; 1040 pps_count++; 1041 if (pps_count < (1 << pps_shift)) 1042 return; 1043 pps_count = 0; 1044 ntp_pll.calcnt++; 1045 u_usec = usec << SHIFT_USEC; 1046 v_usec = pps_usec - u_usec; 1047 if (v_usec >= bigtick >> 1) 1048 v_usec -= bigtick; 1049 if (v_usec < -(bigtick >> 1)) 1050 v_usec += bigtick; 1051 if (v_usec < 0) 1052 v_usec = -(-v_usec >> ntp_pll.shift); 1053 else 1054 v_usec = v_usec >> ntp_pll.shift; 1055 pps_usec = u_usec; 1056 cal_sec = tvp->tv_sec; 1057 cal_usec = tvp->tv_usec; 1058 cal_sec -= pps_time.tv_sec; 1059 cal_usec -= pps_time.tv_usec; 1060 if (cal_usec < 0) { 1061 cal_usec += 1000000; 1062 cal_sec--; 1063 } 1064 pps_time = *tvp; 1065 1066 /* 1067 * Check for lost interrupts, noise, excessive jitter and 1068 * excessive frequency error. The number of timer ticks during 1069 * the interval may vary +-1 tick. Add to this a margin of one 1070 * tick for the PPS signal jitter and maximum frequency 1071 * deviation. If the limits are exceeded, the calibration 1072 * interval is reset to the minimum and we start over. 1073 */ 1074 u_usec = (long)tick << 1; 1075 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1076 || (cal_sec == 0 && cal_usec < u_usec)) 1077 || v_usec > ntp_pll.tolerance || v_usec < -ntp_pll.tolerance) { 1078 ntp_pll.jitcnt++; 1079 ntp_pll.shift = NTP_PLL.SHIFT; 1080 pps_dispinc = PPS_DISPINC; 1081 ntp_pll.intcnt = 0; 1082 return; 1083 } 1084 1085 /* 1086 * A three-stage median filter is used to help deglitch the pps 1087 * signal. The median sample becomes the offset estimate; the 1088 * difference between the other two samples becomes the 1089 * dispersion estimate. 1090 */ 1091 pps_mf[2] = pps_mf[1]; 1092 pps_mf[1] = pps_mf[0]; 1093 pps_mf[0] = v_usec; 1094 if (pps_mf[0] > pps_mf[1]) { 1095 if (pps_mf[1] > pps_mf[2]) { 1096 u_usec = pps_mf[1]; /* 0 1 2 */ 1097 v_usec = pps_mf[0] - pps_mf[2]; 1098 } else if (pps_mf[2] > pps_mf[0]) { 1099 u_usec = pps_mf[0]; /* 2 0 1 */ 1100 v_usec = pps_mf[2] - pps_mf[1]; 1101 } else { 1102 u_usec = pps_mf[2]; /* 0 2 1 */ 1103 v_usec = pps_mf[0] - pps_mf[1]; 1104 } 1105 } else { 1106 if (pps_mf[1] < pps_mf[2]) { 1107 u_usec = pps_mf[1]; /* 2 1 0 */ 1108 v_usec = pps_mf[2] - pps_mf[0]; 1109 } else if (pps_mf[2] < pps_mf[0]) { 1110 u_usec = pps_mf[0]; /* 1 0 2 */ 1111 v_usec = pps_mf[1] - pps_mf[2]; 1112 } else { 1113 u_usec = pps_mf[2]; /* 1 2 0 */ 1114 v_usec = pps_mf[1] - pps_mf[0]; 1115 } 1116 } 1117 1118 /* 1119 * Here the dispersion average is updated. If it is less than 1120 * the threshold pps_dispmax, the frequency average is updated 1121 * as well, but clamped to the tolerance. 1122 */ 1123 v_usec = (v_usec >> 1) - ntp_pll.disp; 1124 if (v_usec < 0) 1125 ntp_pll.disp -= -v_usec >> PPS_AVG; 1126 else 1127 ntp_pll.disp += v_usec >> PPS_AVG; 1128 if (ntp_pll.disp > pps_dispmax) { 1129 ntp_pll.discnt++; 1130 return; 1131 } 1132 if (u_usec < 0) { 1133 ntp_pll.ybar -= -u_usec >> PPS_AVG; 1134 if (ntp_pll.ybar < -ntp_pll.tolerance) 1135 ntp_pll.ybar = -ntp_pll.tolerance; 1136 u_usec = -u_usec; 1137 } else { 1138 ntp_pll.ybar += u_usec >> PPS_AVG; 1139 if (ntp_pll.ybar > ntp_pll.tolerance) 1140 ntp_pll.ybar = ntp_pll.tolerance; 1141 } 1142 1143 /* 1144 * Here the calibration interval is adjusted. If the maximum 1145 * time difference is greater than tick/4, reduce the interval 1146 * by half. If this is not the case for four consecutive 1147 * intervals, double the interval. 1148 */ 1149 if (u_usec << ntp_pll.shift > bigtick >> 2) { 1150 ntp_pll.intcnt = 0; 1151 if (ntp_pll.shift > NTP_PLL.SHIFT) { 1152 ntp_pll.shift--; 1153 pps_dispinc <<= 1; 1154 } 1155 } else if (ntp_pll.intcnt >= 4) { 1156 ntp_pll.intcnt = 0; 1157 if (ntp_pll.shift < NTP_PLL.SHIFTMAX) { 1158 ntp_pll.shift++; 1159 pps_dispinc >>= 1; 1160 } 1161 } else 1162 ntp_pll.intcnt++; 1163 } 1164 #endif /* PPS_SYNC */ 1165