xref: /freebsd/sys/kern/kern_tc.c (revision dce6e6518b85561495cff38a3074a69d29d58a55)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  */
9 
10 #include <sys/cdefs.h>
11 __FBSDID("$FreeBSD$");
12 
13 #include "opt_ntp.h"
14 
15 #include <sys/param.h>
16 #include <sys/kernel.h>
17 #include <sys/sysctl.h>
18 #include <sys/systm.h>
19 #include <sys/timepps.h>
20 #include <sys/timetc.h>
21 #include <sys/timex.h>
22 
23 /*
24  * a large step happens on boot.  This constant detects such
25  * a steps.  It is relatively small so that ntp_update_second gets called
26  * enough in the typical 'missed a couple of seconds' case, but doesn't
27  * loop forever when the time step is large.
28  */
29 #define LARGE_STEP	200
30 
31 /*
32  * Implement a dummy timecounter which we can use until we get a real one
33  * in the air.  This allows the console and other early stuff to use
34  * time services.
35  */
36 
37 static u_int
38 dummy_get_timecount(struct timecounter *tc)
39 {
40 	static u_int now;
41 
42 	return (++now);
43 }
44 
45 static struct timecounter dummy_timecounter = {
46 	dummy_get_timecount, 0, ~0u, 1000000, "dummy",
47 };
48 
49 struct timehands {
50 	/* These fields must be initialized by the driver. */
51 	struct timecounter	*th_counter;
52 	int64_t			th_adjustment;
53 	u_int64_t		th_scale;
54 	u_int	 		th_offset_count;
55 	struct bintime		th_offset;
56 	struct timeval		th_microtime;
57 	struct timespec		th_nanotime;
58 	/* Fields not to be copied in tc_windup start with th_generation. */
59 	volatile u_int		th_generation;
60 	struct timehands	*th_next;
61 };
62 
63 extern struct timehands th0;
64 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
65 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
66 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
67 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
68 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
69 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
70 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
71 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
72 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
73 static struct timehands th0 = {
74 	&dummy_timecounter,
75 	0,
76 	(uint64_t)-1 / 1000000,
77 	0,
78 	{1, 0},
79 	{0, 0},
80 	{0, 0},
81 	1,
82 	&th1
83 };
84 
85 static struct timehands *volatile timehands = &th0;
86 struct timecounter *timecounter = &dummy_timecounter;
87 static struct timecounter *timecounters = &dummy_timecounter;
88 
89 time_t time_second = 1;
90 time_t time_uptime = 0;
91 
92 static struct bintime boottimebin;
93 struct timeval boottime;
94 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
95     &boottime, timeval, "System boottime");
96 
97 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
98 
99 #define TC_STATS(foo) \
100 	static u_int foo; \
101 	SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
102 	struct __hack
103 
104 TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
105 TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
106 TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
107 TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
108 TC_STATS(nsetclock);
109 
110 #undef TC_STATS
111 
112 static void tc_windup(void);
113 
114 /*
115  * Return the difference between the timehands' counter value now and what
116  * was when we copied it to the timehands' offset_count.
117  */
118 static __inline u_int
119 tc_delta(struct timehands *th)
120 {
121 	struct timecounter *tc;
122 
123 	tc = th->th_counter;
124 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
125 	    tc->tc_counter_mask);
126 }
127 
128 /*
129  * Functions for reading the time.  We have to loop until we are sure that
130  * the timehands that we operated on was not updated under our feet.  See
131  * the comment in <sys/time.h> for a description of these 12 functions.
132  */
133 
134 void
135 binuptime(struct bintime *bt)
136 {
137 	struct timehands *th;
138 	u_int gen;
139 
140 	nbinuptime++;
141 	do {
142 		th = timehands;
143 		gen = th->th_generation;
144 		*bt = th->th_offset;
145 		bintime_addx(bt, th->th_scale * tc_delta(th));
146 	} while (gen == 0 || gen != th->th_generation);
147 }
148 
149 void
150 nanouptime(struct timespec *tsp)
151 {
152 	struct bintime bt;
153 
154 	nnanouptime++;
155 	binuptime(&bt);
156 	bintime2timespec(&bt, tsp);
157 }
158 
159 void
160 microuptime(struct timeval *tvp)
161 {
162 	struct bintime bt;
163 
164 	nmicrouptime++;
165 	binuptime(&bt);
166 	bintime2timeval(&bt, tvp);
167 }
168 
169 void
170 bintime(struct bintime *bt)
171 {
172 
173 	nbintime++;
174 	binuptime(bt);
175 	bintime_add(bt, &boottimebin);
176 }
177 
178 void
179 nanotime(struct timespec *tsp)
180 {
181 	struct bintime bt;
182 
183 	nnanotime++;
184 	bintime(&bt);
185 	bintime2timespec(&bt, tsp);
186 }
187 
188 void
189 microtime(struct timeval *tvp)
190 {
191 	struct bintime bt;
192 
193 	nmicrotime++;
194 	bintime(&bt);
195 	bintime2timeval(&bt, tvp);
196 }
197 
198 void
199 getbinuptime(struct bintime *bt)
200 {
201 	struct timehands *th;
202 	u_int gen;
203 
204 	ngetbinuptime++;
205 	do {
206 		th = timehands;
207 		gen = th->th_generation;
208 		*bt = th->th_offset;
209 	} while (gen == 0 || gen != th->th_generation);
210 }
211 
212 void
213 getnanouptime(struct timespec *tsp)
214 {
215 	struct timehands *th;
216 	u_int gen;
217 
218 	ngetnanouptime++;
219 	do {
220 		th = timehands;
221 		gen = th->th_generation;
222 		bintime2timespec(&th->th_offset, tsp);
223 	} while (gen == 0 || gen != th->th_generation);
224 }
225 
226 void
227 getmicrouptime(struct timeval *tvp)
228 {
229 	struct timehands *th;
230 	u_int gen;
231 
232 	ngetmicrouptime++;
233 	do {
234 		th = timehands;
235 		gen = th->th_generation;
236 		bintime2timeval(&th->th_offset, tvp);
237 	} while (gen == 0 || gen != th->th_generation);
238 }
239 
240 void
241 getbintime(struct bintime *bt)
242 {
243 	struct timehands *th;
244 	u_int gen;
245 
246 	ngetbintime++;
247 	do {
248 		th = timehands;
249 		gen = th->th_generation;
250 		*bt = th->th_offset;
251 	} while (gen == 0 || gen != th->th_generation);
252 	bintime_add(bt, &boottimebin);
253 }
254 
255 void
256 getnanotime(struct timespec *tsp)
257 {
258 	struct timehands *th;
259 	u_int gen;
260 
261 	ngetnanotime++;
262 	do {
263 		th = timehands;
264 		gen = th->th_generation;
265 		*tsp = th->th_nanotime;
266 	} while (gen == 0 || gen != th->th_generation);
267 }
268 
269 void
270 getmicrotime(struct timeval *tvp)
271 {
272 	struct timehands *th;
273 	u_int gen;
274 
275 	ngetmicrotime++;
276 	do {
277 		th = timehands;
278 		gen = th->th_generation;
279 		*tvp = th->th_microtime;
280 	} while (gen == 0 || gen != th->th_generation);
281 }
282 
283 /*
284  * Initialize a new timecounter.
285  * We should really try to rank the timecounters and intelligently determine
286  * if the new timecounter is better than the current one.  This is subject
287  * to further study.  For now always use the new timecounter.
288  */
289 void
290 tc_init(struct timecounter *tc)
291 {
292 	unsigned u;
293 
294 	printf("Timecounter \"%s\"  frequency %ju Hz",
295 	    tc->tc_name, (intmax_t)tc->tc_frequency);
296 
297 	u = tc->tc_frequency / tc->tc_counter_mask;
298 	if (u > hz) {
299 		printf(" -- Insufficient hz, needs at least %u\n", u);
300 		return;
301 	}
302 	tc->tc_next = timecounters;
303 	timecounters = tc;
304 	printf("\n");
305 	(void)tc->tc_get_timecount(tc);
306 	(void)tc->tc_get_timecount(tc);
307 	timecounter = tc;
308 }
309 
310 /* Report the frequency of the current timecounter. */
311 u_int64_t
312 tc_getfrequency(void)
313 {
314 
315 	return (timehands->th_counter->tc_frequency);
316 }
317 
318 /*
319  * Step our concept of UTC.  This is done by modifying our estimate of
320  * when we booted.  XXX: needs futher work.
321  */
322 void
323 tc_setclock(struct timespec *ts)
324 {
325 	struct timespec ts2;
326 
327 	nsetclock++;
328 	nanouptime(&ts2);
329 	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
330 	/* XXX boottime should probably be a timespec. */
331 	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
332 	if (boottime.tv_usec < 0) {
333 		boottime.tv_usec += 1000000;
334 		boottime.tv_sec--;
335 	}
336 	timeval2bintime(&boottime, &boottimebin);
337 
338 	/* XXX fiddle all the little crinkly bits around the fiords... */
339 	tc_windup();
340 }
341 
342 /*
343  * Initialize the next struct timehands in the ring and make
344  * it the active timehands.  Along the way we might switch to a different
345  * timecounter and/or do seconds processing in NTP.  Slightly magic.
346  */
347 static void
348 tc_windup(void)
349 {
350 	struct bintime bt;
351 	struct timehands *th, *tho;
352 	u_int64_t scale;
353 	u_int delta, ncount, ogen;
354 	int i;
355 	time_t t;
356 
357 	/*
358 	 * Make the next timehands a copy of the current one, but do not
359 	 * overwrite the generation or next pointer.  While we update
360 	 * the contents, the generation must be zero.
361 	 */
362 	tho = timehands;
363 	th = tho->th_next;
364 	ogen = th->th_generation;
365 	th->th_generation = 0;
366 	bcopy(tho, th, offsetof(struct timehands, th_generation));
367 
368 	/*
369 	 * Capture a timecounter delta on the current timecounter and if
370 	 * changing timecounters, a counter value from the new timecounter.
371 	 * Update the offset fields accordingly.
372 	 */
373 	delta = tc_delta(th);
374 	if (th->th_counter != timecounter)
375 		ncount = timecounter->tc_get_timecount(timecounter);
376 	else
377 		ncount = 0;
378 	th->th_offset_count += delta;
379 	th->th_offset_count &= th->th_counter->tc_counter_mask;
380 	bintime_addx(&th->th_offset, th->th_scale * delta);
381 
382 	/*
383 	 * Hardware latching timecounters may not generate interrupts on
384 	 * PPS events, so instead we poll them.  There is a finite risk that
385 	 * the hardware might capture a count which is later than the one we
386 	 * got above, and therefore possibly in the next NTP second which might
387 	 * have a different rate than the current NTP second.  It doesn't
388 	 * matter in practice.
389 	 */
390 	if (tho->th_counter->tc_poll_pps)
391 		tho->th_counter->tc_poll_pps(tho->th_counter);
392 
393  	/*
394 	 * Compute the UTC time, before any leapsecond adjustments, are
395 	 * made.
396 	 */
397 	bt = th->th_offset;
398 	bintime_add(&bt, &boottimebin);
399 
400 	/*
401 	 * Deal with NTP second processing.  The for loop normally only
402 	 * iterates once, but in extreme situations it might keep NTP sane
403 	 * if timeouts are not run for several seconds.  At boot, the
404 	 * time step can be large when the TOD hardware has been read, so
405 	 * on really large steps, we call ntp_update_second only once.
406 	 */
407 	for (i = bt.sec - tho->th_microtime.tv_sec; i > 0; i--) {
408 		t = bt.sec;
409 		ntp_update_second(&th->th_adjustment, &bt.sec);
410 		if (bt.sec != t)
411 			boottimebin.sec += bt.sec - t;
412 		if (i > LARGE_STEP)
413 			break;
414 	}
415 
416 	/* Now is a good time to change timecounters. */
417 	if (th->th_counter != timecounter) {
418 		th->th_counter = timecounter;
419 		th->th_offset_count = ncount;
420 	}
421 
422 	/*-
423 	 * Recalculate the scaling factor.  We want the number of 1/2^64
424 	 * fractions of a second per period of the hardware counter, taking
425 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
426 	 * processing provides us with.
427 	 *
428 	 * The th_adjustment is nanoseconds per second with 32 bit binary
429 	 * fraction and we want 64 bit binary fraction of second:
430 	 *
431 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
432 	 *
433 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
434 	 * we can only multiply by about 850 without overflowing, but that
435 	 * leaves suitably precise fractions for multiply before divide.
436 	 *
437 	 * Divide before multiply with a fraction of 2199/512 results in a
438 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
439 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
440  	 *
441 	 * We happily sacrifice the lowest of the 64 bits of our result
442 	 * to the goddess of code clarity.
443 	 *
444 	 */
445 	scale = (u_int64_t)1 << 63;
446 	scale += (th->th_adjustment / 1024) * 2199;
447 	scale /= th->th_counter->tc_frequency;
448 	th->th_scale = scale * 2;
449 
450 	bintime2timeval(&bt, &th->th_microtime);
451 	bintime2timespec(&bt, &th->th_nanotime);
452 
453 	/*
454 	 * Now that the struct timehands is again consistent, set the new
455 	 * generation number, making sure to not make it zero.
456 	 */
457 	if (++ogen == 0)
458 		ogen = 1;
459 	th->th_generation = ogen;
460 
461 	/* Go live with the new struct timehands. */
462 	time_second = th->th_microtime.tv_sec;
463 	time_uptime = th->th_offset.sec;
464 	timehands = th;
465 }
466 
467 /* Report or change the active timecounter hardware. */
468 static int
469 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
470 {
471 	char newname[32];
472 	struct timecounter *newtc, *tc;
473 	int error;
474 
475 	tc = timecounter;
476 	strlcpy(newname, tc->tc_name, sizeof(newname));
477 
478 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
479 	if (error != 0 || req->newptr == NULL ||
480 	    strcmp(newname, tc->tc_name) == 0)
481 		return (error);
482 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
483 		if (strcmp(newname, newtc->tc_name) != 0)
484 			continue;
485 
486 		/* Warm up new timecounter. */
487 		(void)newtc->tc_get_timecount(newtc);
488 		(void)newtc->tc_get_timecount(newtc);
489 
490 		timecounter = newtc;
491 		return (0);
492 	}
493 	return (EINVAL);
494 }
495 
496 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
497     0, 0, sysctl_kern_timecounter_hardware, "A", "");
498 
499 /*
500  * RFC 2783 PPS-API implementation.
501  */
502 
503 int
504 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
505 {
506 	pps_params_t *app;
507 	struct pps_fetch_args *fapi;
508 #ifdef PPS_SYNC
509 	struct pps_kcbind_args *kapi;
510 #endif
511 
512 	switch (cmd) {
513 	case PPS_IOC_CREATE:
514 		return (0);
515 	case PPS_IOC_DESTROY:
516 		return (0);
517 	case PPS_IOC_SETPARAMS:
518 		app = (pps_params_t *)data;
519 		if (app->mode & ~pps->ppscap)
520 			return (EINVAL);
521 		pps->ppsparam = *app;
522 		return (0);
523 	case PPS_IOC_GETPARAMS:
524 		app = (pps_params_t *)data;
525 		*app = pps->ppsparam;
526 		app->api_version = PPS_API_VERS_1;
527 		return (0);
528 	case PPS_IOC_GETCAP:
529 		*(int*)data = pps->ppscap;
530 		return (0);
531 	case PPS_IOC_FETCH:
532 		fapi = (struct pps_fetch_args *)data;
533 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
534 			return (EINVAL);
535 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
536 			return (EOPNOTSUPP);
537 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
538 		fapi->pps_info_buf = pps->ppsinfo;
539 		return (0);
540 	case PPS_IOC_KCBIND:
541 #ifdef PPS_SYNC
542 		kapi = (struct pps_kcbind_args *)data;
543 		/* XXX Only root should be able to do this */
544 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
545 			return (EINVAL);
546 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
547 			return (EINVAL);
548 		if (kapi->edge & ~pps->ppscap)
549 			return (EINVAL);
550 		pps->kcmode = kapi->edge;
551 		return (0);
552 #else
553 		return (EOPNOTSUPP);
554 #endif
555 	default:
556 		return (ENOTTY);
557 	}
558 }
559 
560 void
561 pps_init(struct pps_state *pps)
562 {
563 	pps->ppscap |= PPS_TSFMT_TSPEC;
564 	if (pps->ppscap & PPS_CAPTUREASSERT)
565 		pps->ppscap |= PPS_OFFSETASSERT;
566 	if (pps->ppscap & PPS_CAPTURECLEAR)
567 		pps->ppscap |= PPS_OFFSETCLEAR;
568 }
569 
570 void
571 pps_capture(struct pps_state *pps)
572 {
573 	struct timehands *th;
574 
575 	th = timehands;
576 	pps->capgen = th->th_generation;
577 	pps->capth = th;
578 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
579 	if (pps->capgen != th->th_generation)
580 		pps->capgen = 0;
581 }
582 
583 void
584 pps_event(struct pps_state *pps, int event)
585 {
586 	struct bintime bt;
587 	struct timespec ts, *tsp, *osp;
588 	u_int tcount, *pcount;
589 	int foff, fhard;
590 	pps_seq_t *pseq;
591 
592 	/* If the timecounter was wound up underneath us, bail out. */
593 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
594 		return;
595 
596 	/* Things would be easier with arrays. */
597 	if (event == PPS_CAPTUREASSERT) {
598 		tsp = &pps->ppsinfo.assert_timestamp;
599 		osp = &pps->ppsparam.assert_offset;
600 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
601 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
602 		pcount = &pps->ppscount[0];
603 		pseq = &pps->ppsinfo.assert_sequence;
604 	} else {
605 		tsp = &pps->ppsinfo.clear_timestamp;
606 		osp = &pps->ppsparam.clear_offset;
607 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
608 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
609 		pcount = &pps->ppscount[1];
610 		pseq = &pps->ppsinfo.clear_sequence;
611 	}
612 
613 	/*
614 	 * If the timecounter changed, we cannot compare the count values, so
615 	 * we have to drop the rest of the PPS-stuff until the next event.
616 	 */
617 	if (pps->ppstc != pps->capth->th_counter) {
618 		pps->ppstc = pps->capth->th_counter;
619 		*pcount = pps->capcount;
620 		pps->ppscount[2] = pps->capcount;
621 		return;
622 	}
623 
624 	/* Return if nothing really happened. */
625 	if (*pcount == pps->capcount)
626 		return;
627 
628 	/* Convert the count to a timespec. */
629 	tcount = pps->capcount - pps->capth->th_offset_count;
630 	tcount &= pps->capth->th_counter->tc_counter_mask;
631 	bt = pps->capth->th_offset;
632 	bintime_addx(&bt, pps->capth->th_scale * tcount);
633 	bintime_add(&bt, &boottimebin);
634 	bintime2timespec(&bt, &ts);
635 
636 	/* If the timecounter was wound up underneath us, bail out. */
637 	if (pps->capgen != pps->capth->th_generation)
638 		return;
639 
640 	*pcount = pps->capcount;
641 	(*pseq)++;
642 	*tsp = ts;
643 
644 	if (foff) {
645 		timespecadd(tsp, osp);
646 		if (tsp->tv_nsec < 0) {
647 			tsp->tv_nsec += 1000000000;
648 			tsp->tv_sec -= 1;
649 		}
650 	}
651 #ifdef PPS_SYNC
652 	if (fhard) {
653 		u_int64_t scale;
654 
655 		/*
656 		 * Feed the NTP PLL/FLL.
657 		 * The FLL wants to know how many (hardware) nanoseconds
658 		 * elapsed since the previous event.
659 		 */
660 		tcount = pps->capcount - pps->ppscount[2];
661 		pps->ppscount[2] = pps->capcount;
662 		tcount &= pps->capth->th_counter->tc_counter_mask;
663 		scale = (u_int64_t)1 << 63;
664 		scale /= pps->capth->th_counter->tc_frequency;
665 		scale *= 2;
666 		bt.sec = 0;
667 		bt.frac = 0;
668 		bintime_addx(&bt, scale * tcount);
669 		bintime2timespec(&bt, &ts);
670 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
671 	}
672 #endif
673 }
674 
675 /*
676  * Timecounters need to be updated every so often to prevent the hardware
677  * counter from overflowing.  Updating also recalculates the cached values
678  * used by the get*() family of functions, so their precision depends on
679  * the update frequency.
680  */
681 
682 static int tc_tick;
683 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
684 
685 void
686 tc_ticktock(void)
687 {
688 	static int count;
689 
690 	if (++count < tc_tick)
691 		return;
692 	count = 0;
693 	tc_windup();
694 }
695 
696 static void
697 inittimecounter(void *dummy)
698 {
699 	u_int p;
700 
701 	/*
702 	 * Set the initial timeout to
703 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
704 	 * People should probably not use the sysctl to set the timeout
705 	 * to smaller than its inital value, since that value is the
706 	 * smallest reasonable one.  If they want better timestamps they
707 	 * should use the non-"get"* functions.
708 	 */
709 	if (hz > 1000)
710 		tc_tick = (hz + 500) / 1000;
711 	else
712 		tc_tick = 1;
713 	p = (tc_tick * 1000000) / hz;
714 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
715 
716 	/* warm up new timecounter (again) and get rolling. */
717 	(void)timecounter->tc_get_timecount(timecounter);
718 	(void)timecounter->tc_get_timecount(timecounter);
719 }
720 
721 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
722