1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 39 * $Id: kern_clock.c,v 1.27 1996/10/10 10:25:03 bde Exp $ 40 */ 41 42 /* Portions of this software are covered by the following: */ 43 /****************************************************************************** 44 * * 45 * Copyright (c) David L. Mills 1993, 1994 * 46 * * 47 * Permission to use, copy, modify, and distribute this software and its * 48 * documentation for any purpose and without fee is hereby granted, provided * 49 * that the above copyright notice appears in all copies and that both the * 50 * copyright notice and this permission notice appear in supporting * 51 * documentation, and that the name University of Delaware not be used in * 52 * advertising or publicity pertaining to distribution of the software * 53 * without specific, written prior permission. The University of Delaware * 54 * makes no representations about the suitability this software for any * 55 * purpose. It is provided "as is" without express or implied warranty. * 56 * * 57 *****************************************************************************/ 58 59 #include "opt_cpu.h" /* XXX */ 60 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/dkstat.h> 64 #include <sys/callout.h> 65 #include <sys/kernel.h> 66 #include <sys/proc.h> 67 #include <sys/resourcevar.h> 68 #include <sys/signalvar.h> 69 #include <sys/timex.h> 70 #include <vm/vm.h> 71 #include <vm/vm_param.h> 72 #include <vm/vm_prot.h> 73 #include <vm/lock.h> 74 #include <vm/pmap.h> 75 #include <vm/vm_map.h> 76 #include <sys/sysctl.h> 77 78 #include <machine/cpu.h> 79 #define CLOCK_HAIR /* XXX */ 80 #include <machine/clock.h> 81 82 #ifdef GPROF 83 #include <sys/gmon.h> 84 #endif 85 86 static void initclocks __P((void *dummy)); 87 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 88 89 /* Exported to machdep.c. */ 90 struct callout *callfree, *callout; 91 92 static struct callout calltodo; 93 94 /* Some of these don't belong here, but it's easiest to concentrate them. */ 95 static long cp_time[CPUSTATES]; 96 long dk_seek[DK_NDRIVE]; 97 static long dk_time[DK_NDRIVE]; 98 long dk_wds[DK_NDRIVE]; 99 long dk_wpms[DK_NDRIVE]; 100 long dk_xfer[DK_NDRIVE]; 101 102 int dk_busy; 103 int dk_ndrive = 0; 104 char dk_names[DK_NDRIVE][DK_NAMELEN]; 105 106 long tk_cancc; 107 long tk_nin; 108 long tk_nout; 109 long tk_rawcc; 110 111 /* 112 * Clock handling routines. 113 * 114 * This code is written to operate with two timers that run independently of 115 * each other. The main clock, running hz times per second, is used to keep 116 * track of real time. The second timer handles kernel and user profiling, 117 * and does resource use estimation. If the second timer is programmable, 118 * it is randomized to avoid aliasing between the two clocks. For example, 119 * the randomization prevents an adversary from always giving up the cpu 120 * just before its quantum expires. Otherwise, it would never accumulate 121 * cpu ticks. The mean frequency of the second timer is stathz. 122 * 123 * If no second timer exists, stathz will be zero; in this case we drive 124 * profiling and statistics off the main clock. This WILL NOT be accurate; 125 * do not do it unless absolutely necessary. 126 * 127 * The statistics clock may (or may not) be run at a higher rate while 128 * profiling. This profile clock runs at profhz. We require that profhz 129 * be an integral multiple of stathz. 130 * 131 * If the statistics clock is running fast, it must be divided by the ratio 132 * profhz/stathz for statistics. (For profiling, every tick counts.) 133 */ 134 135 /* 136 * TODO: 137 * allocate more timeout table slots when table overflows. 138 */ 139 140 /* 141 * Bump a timeval by a small number of usec's. 142 */ 143 #define BUMPTIME(t, usec) { \ 144 register volatile struct timeval *tp = (t); \ 145 register long us; \ 146 \ 147 tp->tv_usec = us = tp->tv_usec + (usec); \ 148 if (us >= 1000000) { \ 149 tp->tv_usec = us - 1000000; \ 150 tp->tv_sec++; \ 151 } \ 152 } 153 154 int stathz; 155 int profhz; 156 static int profprocs; 157 int ticks; 158 static int psdiv, pscnt; /* prof => stat divider */ 159 int psratio; /* ratio: prof / stat */ 160 161 volatile struct timeval time; 162 volatile struct timeval mono_time; 163 164 /* 165 * Phase-lock loop (PLL) definitions 166 * 167 * The following variables are read and set by the ntp_adjtime() system 168 * call. 169 * 170 * time_state shows the state of the system clock, with values defined 171 * in the timex.h header file. 172 * 173 * time_status shows the status of the system clock, with bits defined 174 * in the timex.h header file. 175 * 176 * time_offset is used by the PLL to adjust the system time in small 177 * increments. 178 * 179 * time_constant determines the bandwidth or "stiffness" of the PLL. 180 * 181 * time_tolerance determines maximum frequency error or tolerance of the 182 * CPU clock oscillator and is a property of the architecture; however, 183 * in principle it could change as result of the presence of external 184 * discipline signals, for instance. 185 * 186 * time_precision is usually equal to the kernel tick variable; however, 187 * in cases where a precision clock counter or external clock is 188 * available, the resolution can be much less than this and depend on 189 * whether the external clock is working or not. 190 * 191 * time_maxerror is initialized by a ntp_adjtime() call and increased by 192 * the kernel once each second to reflect the maximum error 193 * bound growth. 194 * 195 * time_esterror is set and read by the ntp_adjtime() call, but 196 * otherwise not used by the kernel. 197 */ 198 int time_status = STA_UNSYNC; /* clock status bits */ 199 int time_state = TIME_OK; /* clock state */ 200 long time_offset = 0; /* time offset (us) */ 201 long time_constant = 0; /* pll time constant */ 202 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 203 long time_precision = 1; /* clock precision (us) */ 204 long time_maxerror = MAXPHASE; /* maximum error (us) */ 205 long time_esterror = MAXPHASE; /* estimated error (us) */ 206 207 /* 208 * The following variables establish the state of the PLL and the 209 * residual time and frequency offset of the local clock. The scale 210 * factors are defined in the timex.h header file. 211 * 212 * time_phase and time_freq are the phase increment and the frequency 213 * increment, respectively, of the kernel time variable at each tick of 214 * the clock. 215 * 216 * time_freq is set via ntp_adjtime() from a value stored in a file when 217 * the synchronization daemon is first started. Its value is retrieved 218 * via ntp_adjtime() and written to the file about once per hour by the 219 * daemon. 220 * 221 * time_adj is the adjustment added to the value of tick at each timer 222 * interrupt and is recomputed at each timer interrupt. 223 * 224 * time_reftime is the second's portion of the system time on the last 225 * call to ntp_adjtime(). It is used to adjust the time_freq variable 226 * and to increase the time_maxerror as the time since last update 227 * increases. 228 */ 229 static long time_phase = 0; /* phase offset (scaled us) */ 230 long time_freq = 0; /* frequency offset (scaled ppm) */ 231 static long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 232 static long time_reftime = 0; /* time at last adjustment (s) */ 233 234 #ifdef PPS_SYNC 235 /* 236 * The following variables are used only if the if the kernel PPS 237 * discipline code is configured (PPS_SYNC). The scale factors are 238 * defined in the timex.h header file. 239 * 240 * pps_time contains the time at each calibration interval, as read by 241 * microtime(). 242 * 243 * pps_offset is the time offset produced by the time median filter 244 * pps_tf[], while pps_jitter is the dispersion measured by this 245 * filter. 246 * 247 * pps_freq is the frequency offset produced by the frequency median 248 * filter pps_ff[], while pps_stabil is the dispersion measured by 249 * this filter. 250 * 251 * pps_usec is latched from a high resolution counter or external clock 252 * at pps_time. Here we want the hardware counter contents only, not the 253 * contents plus the time_tv.usec as usual. 254 * 255 * pps_valid counts the number of seconds since the last PPS update. It 256 * is used as a watchdog timer to disable the PPS discipline should the 257 * PPS signal be lost. 258 * 259 * pps_glitch counts the number of seconds since the beginning of an 260 * offset burst more than tick/2 from current nominal offset. It is used 261 * mainly to suppress error bursts due to priority conflicts between the 262 * PPS interrupt and timer interrupt. 263 * 264 * pps_count counts the seconds of the calibration interval, the 265 * duration of which is pps_shift in powers of two. 266 * 267 * pps_intcnt counts the calibration intervals for use in the interval- 268 * adaptation algorithm. It's just too complicated for words. 269 */ 270 struct timeval pps_time; /* kernel time at last interval */ 271 long pps_offset = 0; /* pps time offset (us) */ 272 long pps_jitter = MAXTIME; /* pps time dispersion (jitter) (us) */ 273 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 274 long pps_freq = 0; /* frequency offset (scaled ppm) */ 275 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 276 long pps_ff[] = {0, 0, 0}; /* frequency offset median filter */ 277 long pps_usec = 0; /* microsec counter at last interval */ 278 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 279 int pps_glitch = 0; /* pps signal glitch counter */ 280 int pps_count = 0; /* calibration interval counter (s) */ 281 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 282 int pps_intcnt = 0; /* intervals at current duration */ 283 284 /* 285 * PPS signal quality monitors 286 * 287 * pps_jitcnt counts the seconds that have been discarded because the 288 * jitter measured by the time median filter exceeds the limit MAXTIME 289 * (100 us). 290 * 291 * pps_calcnt counts the frequency calibration intervals, which are 292 * variable from 4 s to 256 s. 293 * 294 * pps_errcnt counts the calibration intervals which have been discarded 295 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 296 * calibration interval jitter exceeds two ticks. 297 * 298 * pps_stbcnt counts the calibration intervals that have been discarded 299 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 300 */ 301 long pps_jitcnt = 0; /* jitter limit exceeded */ 302 long pps_calcnt = 0; /* calibration intervals */ 303 long pps_errcnt = 0; /* calibration errors */ 304 long pps_stbcnt = 0; /* stability limit exceeded */ 305 #endif /* PPS_SYNC */ 306 307 /* XXX none of this stuff works under FreeBSD */ 308 #ifdef EXT_CLOCK 309 /* 310 * External clock definitions 311 * 312 * The following definitions and declarations are used only if an 313 * external clock (HIGHBALL or TPRO) is configured on the system. 314 */ 315 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 316 317 /* 318 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 319 * interrupt and decremented once each second. 320 */ 321 int clock_count = 0; /* CPU clock counter */ 322 323 #ifdef HIGHBALL 324 /* 325 * The clock_offset and clock_cpu variables are used by the HIGHBALL 326 * interface. The clock_offset variable defines the offset between 327 * system time and the HIGBALL counters. The clock_cpu variable contains 328 * the offset between the system clock and the HIGHBALL clock for use in 329 * disciplining the kernel time variable. 330 */ 331 extern struct timeval clock_offset; /* Highball clock offset */ 332 long clock_cpu = 0; /* CPU clock adjust */ 333 #endif /* HIGHBALL */ 334 #endif /* EXT_CLOCK */ 335 336 /* 337 * hardupdate() - local clock update 338 * 339 * This routine is called by ntp_adjtime() to update the local clock 340 * phase and frequency. This is used to implement an adaptive-parameter, 341 * first-order, type-II phase-lock loop. The code computes new time and 342 * frequency offsets each time it is called. The hardclock() routine 343 * amortizes these offsets at each tick interrupt. If the kernel PPS 344 * discipline code is configured (PPS_SYNC), the PPS signal itself 345 * determines the new time offset, instead of the calling argument. 346 * Presumably, calls to ntp_adjtime() occur only when the caller 347 * believes the local clock is valid within some bound (+-128 ms with 348 * NTP). If the caller's time is far different than the PPS time, an 349 * argument will ensue, and it's not clear who will lose. 350 * 351 * For default SHIFT_UPDATE = 12, the offset is limited to +-512 ms, the 352 * maximum interval between updates is 4096 s and the maximum frequency 353 * offset is +-31.25 ms/s. 354 * 355 * Note: splclock() is in effect. 356 */ 357 void 358 hardupdate(offset) 359 long offset; 360 { 361 long ltemp, mtemp; 362 363 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 364 return; 365 ltemp = offset; 366 #ifdef PPS_SYNC 367 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 368 ltemp = pps_offset; 369 #endif /* PPS_SYNC */ 370 if (ltemp > MAXPHASE) 371 time_offset = MAXPHASE << SHIFT_UPDATE; 372 else if (ltemp < -MAXPHASE) 373 time_offset = -(MAXPHASE << SHIFT_UPDATE); 374 else 375 time_offset = ltemp << SHIFT_UPDATE; 376 mtemp = time.tv_sec - time_reftime; 377 time_reftime = time.tv_sec; 378 if (mtemp > MAXSEC) 379 mtemp = 0; 380 381 /* ugly multiply should be replaced */ 382 if (ltemp < 0) 383 time_freq -= (-ltemp * mtemp) >> (time_constant + 384 time_constant + SHIFT_KF - SHIFT_USEC); 385 else 386 time_freq += (ltemp * mtemp) >> (time_constant + 387 time_constant + SHIFT_KF - SHIFT_USEC); 388 if (time_freq > time_tolerance) 389 time_freq = time_tolerance; 390 else if (time_freq < -time_tolerance) 391 time_freq = -time_tolerance; 392 } 393 394 395 396 /* 397 * Initialize clock frequencies and start both clocks running. 398 */ 399 /* ARGSUSED*/ 400 static void 401 initclocks(dummy) 402 void *dummy; 403 { 404 register int i; 405 406 /* 407 * Set divisors to 1 (normal case) and let the machine-specific 408 * code do its bit. 409 */ 410 psdiv = pscnt = 1; 411 cpu_initclocks(); 412 413 /* 414 * Compute profhz/stathz, and fix profhz if needed. 415 */ 416 i = stathz ? stathz : hz; 417 if (profhz == 0) 418 profhz = i; 419 psratio = profhz / i; 420 } 421 422 /* 423 * The real-time timer, interrupting hz times per second. 424 */ 425 void 426 hardclock(frame) 427 register struct clockframe *frame; 428 { 429 register struct callout *p1; 430 register struct proc *p; 431 register int needsoft; 432 433 /* 434 * Update real-time timeout queue. 435 * At front of queue are some number of events which are ``due''. 436 * The time to these is <= 0 and if negative represents the 437 * number of ticks which have passed since it was supposed to happen. 438 * The rest of the q elements (times > 0) are events yet to happen, 439 * where the time for each is given as a delta from the previous. 440 * Decrementing just the first of these serves to decrement the time 441 * to all events. 442 */ 443 needsoft = 0; 444 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) { 445 if (--p1->c_time > 0) 446 break; 447 needsoft = 1; 448 if (p1->c_time == 0) 449 break; 450 } 451 452 p = curproc; 453 if (p) { 454 register struct pstats *pstats; 455 456 /* 457 * Run current process's virtual and profile time, as needed. 458 */ 459 pstats = p->p_stats; 460 if (CLKF_USERMODE(frame) && 461 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 462 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 463 psignal(p, SIGVTALRM); 464 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 465 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 466 psignal(p, SIGPROF); 467 } 468 469 /* 470 * If no separate statistics clock is available, run it from here. 471 */ 472 if (stathz == 0) 473 statclock(frame); 474 475 /* 476 * Increment the time-of-day. 477 */ 478 ticks++; 479 { 480 int time_update; 481 struct timeval newtime = time; 482 long ltemp; 483 484 if (timedelta == 0) { 485 time_update = CPU_THISTICKLEN(tick); 486 } else { 487 time_update = CPU_THISTICKLEN(tick) + tickdelta; 488 timedelta -= tickdelta; 489 } 490 BUMPTIME(&mono_time, time_update); 491 492 /* 493 * Compute the phase adjustment. If the low-order bits 494 * (time_phase) of the update overflow, bump the high-order bits 495 * (time_update). 496 */ 497 time_phase += time_adj; 498 if (time_phase <= -FINEUSEC) { 499 ltemp = -time_phase >> SHIFT_SCALE; 500 time_phase += ltemp << SHIFT_SCALE; 501 time_update -= ltemp; 502 } 503 else if (time_phase >= FINEUSEC) { 504 ltemp = time_phase >> SHIFT_SCALE; 505 time_phase -= ltemp << SHIFT_SCALE; 506 time_update += ltemp; 507 } 508 509 newtime.tv_usec += time_update; 510 /* 511 * On rollover of the second the phase adjustment to be used for 512 * the next second is calculated. Also, the maximum error is 513 * increased by the tolerance. If the PPS frequency discipline 514 * code is present, the phase is increased to compensate for the 515 * CPU clock oscillator frequency error. 516 * 517 * With SHIFT_SCALE = 23, the maximum frequency adjustment is 518 * +-256 us per tick, or 25.6 ms/s at a clock frequency of 100 519 * Hz. The time contribution is shifted right a minimum of two 520 * bits, while the frequency contribution is a right shift. 521 * Thus, overflow is prevented if the frequency contribution is 522 * limited to half the maximum or 15.625 ms/s. 523 */ 524 if (newtime.tv_usec >= 1000000) { 525 newtime.tv_usec -= 1000000; 526 newtime.tv_sec++; 527 time_maxerror += time_tolerance >> SHIFT_USEC; 528 if (time_offset < 0) { 529 ltemp = -time_offset >> 530 (SHIFT_KG + time_constant); 531 time_offset += ltemp; 532 time_adj = -ltemp << 533 (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); 534 } else { 535 ltemp = time_offset >> 536 (SHIFT_KG + time_constant); 537 time_offset -= ltemp; 538 time_adj = ltemp << 539 (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); 540 } 541 #ifdef PPS_SYNC 542 /* 543 * Gnaw on the watchdog counter and update the frequency 544 * computed by the pll and the PPS signal. 545 */ 546 pps_valid++; 547 if (pps_valid == PPS_VALID) { 548 pps_jitter = MAXTIME; 549 pps_stabil = MAXFREQ; 550 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 551 STA_PPSWANDER | STA_PPSERROR); 552 } 553 ltemp = time_freq + pps_freq; 554 #else 555 ltemp = time_freq; 556 #endif /* PPS_SYNC */ 557 if (ltemp < 0) 558 time_adj -= -ltemp >> 559 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 560 else 561 time_adj += ltemp >> 562 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 563 564 /* 565 * When the CPU clock oscillator frequency is not a 566 * power of two in Hz, the SHIFT_HZ is only an 567 * approximate scale factor. In the SunOS kernel, this 568 * results in a PLL gain factor of 1/1.28 = 0.78 what it 569 * should be. In the following code the overall gain is 570 * increased by a factor of 1.25, which results in a 571 * residual error less than 3 percent. 572 */ 573 /* Same thing applies for FreeBSD --GAW */ 574 if (hz == 100) { 575 if (time_adj < 0) 576 time_adj -= -time_adj >> 2; 577 else 578 time_adj += time_adj >> 2; 579 } 580 581 /* XXX - this is really bogus, but can't be fixed until 582 xntpd's idea of the system clock is fixed to know how 583 the user wants leap seconds handled; in the mean time, 584 we assume that users of NTP are running without proper 585 leap second support (this is now the default anyway) */ 586 /* 587 * Leap second processing. If in leap-insert state at 588 * the end of the day, the system clock is set back one 589 * second; if in leap-delete state, the system clock is 590 * set ahead one second. The microtime() routine or 591 * external clock driver will insure that reported time 592 * is always monotonic. The ugly divides should be 593 * replaced. 594 */ 595 switch (time_state) { 596 597 case TIME_OK: 598 if (time_status & STA_INS) 599 time_state = TIME_INS; 600 else if (time_status & STA_DEL) 601 time_state = TIME_DEL; 602 break; 603 604 case TIME_INS: 605 if (newtime.tv_sec % 86400 == 0) { 606 newtime.tv_sec--; 607 time_state = TIME_OOP; 608 } 609 break; 610 611 case TIME_DEL: 612 if ((newtime.tv_sec + 1) % 86400 == 0) { 613 newtime.tv_sec++; 614 time_state = TIME_WAIT; 615 } 616 break; 617 618 case TIME_OOP: 619 time_state = TIME_WAIT; 620 break; 621 622 case TIME_WAIT: 623 if (!(time_status & (STA_INS | STA_DEL))) 624 time_state = TIME_OK; 625 } 626 } 627 CPU_CLOCKUPDATE(&time, &newtime); 628 } 629 630 /* 631 * Process callouts at a very low cpu priority, so we don't keep the 632 * relatively high clock interrupt priority any longer than necessary. 633 */ 634 if (needsoft) { 635 if (CLKF_BASEPRI(frame)) { 636 /* 637 * Save the overhead of a software interrupt; 638 * it will happen as soon as we return, so do it now. 639 */ 640 (void)splsoftclock(); 641 softclock(); 642 } else 643 setsoftclock(); 644 } 645 } 646 647 /* 648 * Software (low priority) clock interrupt. 649 * Run periodic events from timeout queue. 650 */ 651 /*ARGSUSED*/ 652 void 653 softclock() 654 { 655 register struct callout *c; 656 register void *arg; 657 register void (*func) __P((void *)); 658 register int s; 659 660 s = splhigh(); 661 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) { 662 func = c->c_func; 663 arg = c->c_arg; 664 calltodo.c_next = c->c_next; 665 c->c_next = callfree; 666 callfree = c; 667 splx(s); 668 (*func)(arg); 669 (void) splhigh(); 670 } 671 splx(s); 672 } 673 674 /* 675 * timeout -- 676 * Execute a function after a specified length of time. 677 * 678 * untimeout -- 679 * Cancel previous timeout function call. 680 * 681 * See AT&T BCI Driver Reference Manual for specification. This 682 * implementation differs from that one in that no identification 683 * value is returned from timeout, rather, the original arguments 684 * to timeout are used to identify entries for untimeout. 685 */ 686 void 687 timeout(ftn, arg, ticks) 688 timeout_t ftn; 689 void *arg; 690 register int ticks; 691 { 692 register struct callout *new, *p, *t; 693 register int s; 694 695 if (ticks <= 0) 696 ticks = 1; 697 698 /* Lock out the clock. */ 699 s = splhigh(); 700 701 /* Fill in the next free callout structure. */ 702 if (callfree == NULL) 703 panic("timeout table full"); 704 new = callfree; 705 callfree = new->c_next; 706 new->c_arg = arg; 707 new->c_func = ftn; 708 709 /* 710 * The time for each event is stored as a difference from the time 711 * of the previous event on the queue. Walk the queue, correcting 712 * the ticks argument for queue entries passed. Correct the ticks 713 * value for the queue entry immediately after the insertion point 714 * as well. Watch out for negative c_time values; these represent 715 * overdue events. 716 */ 717 for (p = &calltodo; 718 (t = p->c_next) != NULL && ticks > t->c_time; p = t) 719 if (t->c_time > 0) 720 ticks -= t->c_time; 721 new->c_time = ticks; 722 if (t != NULL) 723 t->c_time -= ticks; 724 725 /* Insert the new entry into the queue. */ 726 p->c_next = new; 727 new->c_next = t; 728 splx(s); 729 } 730 731 void 732 untimeout(ftn, arg) 733 timeout_t ftn; 734 void *arg; 735 { 736 register struct callout *p, *t; 737 register int s; 738 739 s = splhigh(); 740 for (p = &calltodo; (t = p->c_next) != NULL; p = t) 741 if (t->c_func == ftn && t->c_arg == arg) { 742 /* Increment next entry's tick count. */ 743 if (t->c_next && t->c_time > 0) 744 t->c_next->c_time += t->c_time; 745 746 /* Move entry from callout queue to callfree queue. */ 747 p->c_next = t->c_next; 748 t->c_next = callfree; 749 callfree = t; 750 break; 751 } 752 splx(s); 753 } 754 755 /* 756 * Compute number of hz until specified time. Used to 757 * compute third argument to timeout() from an absolute time. 758 */ 759 int 760 hzto(tv) 761 struct timeval *tv; 762 { 763 register unsigned long ticks; 764 register long sec, usec; 765 int s; 766 767 /* 768 * If the number of usecs in the whole seconds part of the time 769 * difference fits in a long, then the total number of usecs will 770 * fit in an unsigned long. Compute the total and convert it to 771 * ticks, rounding up and adding 1 to allow for the current tick 772 * to expire. Rounding also depends on unsigned long arithmetic 773 * to avoid overflow. 774 * 775 * Otherwise, if the number of ticks in the whole seconds part of 776 * the time difference fits in a long, then convert the parts to 777 * ticks separately and add, using similar rounding methods and 778 * overflow avoidance. This method would work in the previous 779 * case but it is slightly slower and assumes that hz is integral. 780 * 781 * Otherwise, round the time difference down to the maximum 782 * representable value. 783 * 784 * If ints have 32 bits, then the maximum value for any timeout in 785 * 10ms ticks is 248 days. 786 */ 787 s = splclock(); 788 sec = tv->tv_sec - time.tv_sec; 789 usec = tv->tv_usec - time.tv_usec; 790 splx(s); 791 if (usec < 0) { 792 sec--; 793 usec += 1000000; 794 } 795 if (sec < 0) { 796 #ifdef DIAGNOSTIC 797 printf("hzto: negative time difference %ld sec %ld usec\n", 798 sec, usec); 799 #endif 800 ticks = 1; 801 } else if (sec <= LONG_MAX / 1000000) 802 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 803 / tick + 1; 804 else if (sec <= LONG_MAX / hz) 805 ticks = sec * hz 806 + ((unsigned long)usec + (tick - 1)) / tick + 1; 807 else 808 ticks = LONG_MAX; 809 if (ticks > INT_MAX) 810 ticks = INT_MAX; 811 return (ticks); 812 } 813 814 /* 815 * Start profiling on a process. 816 * 817 * Kernel profiling passes proc0 which never exits and hence 818 * keeps the profile clock running constantly. 819 */ 820 void 821 startprofclock(p) 822 register struct proc *p; 823 { 824 int s; 825 826 if ((p->p_flag & P_PROFIL) == 0) { 827 p->p_flag |= P_PROFIL; 828 if (++profprocs == 1 && stathz != 0) { 829 s = splstatclock(); 830 psdiv = pscnt = psratio; 831 setstatclockrate(profhz); 832 splx(s); 833 } 834 } 835 } 836 837 /* 838 * Stop profiling on a process. 839 */ 840 void 841 stopprofclock(p) 842 register struct proc *p; 843 { 844 int s; 845 846 if (p->p_flag & P_PROFIL) { 847 p->p_flag &= ~P_PROFIL; 848 if (--profprocs == 0 && stathz != 0) { 849 s = splstatclock(); 850 psdiv = pscnt = 1; 851 setstatclockrate(stathz); 852 splx(s); 853 } 854 } 855 } 856 857 /* 858 * Statistics clock. Grab profile sample, and if divider reaches 0, 859 * do process and kernel statistics. 860 */ 861 void 862 statclock(frame) 863 register struct clockframe *frame; 864 { 865 #ifdef GPROF 866 register struct gmonparam *g; 867 #endif 868 register struct proc *p; 869 register int i; 870 struct pstats *pstats; 871 long rss; 872 struct rusage *ru; 873 struct vmspace *vm; 874 875 if (CLKF_USERMODE(frame)) { 876 p = curproc; 877 if (p->p_flag & P_PROFIL) 878 addupc_intr(p, CLKF_PC(frame), 1); 879 if (--pscnt > 0) 880 return; 881 /* 882 * Came from user mode; CPU was in user state. 883 * If this process is being profiled record the tick. 884 */ 885 p->p_uticks++; 886 if (p->p_nice > NZERO) 887 cp_time[CP_NICE]++; 888 else 889 cp_time[CP_USER]++; 890 } else { 891 #ifdef GPROF 892 /* 893 * Kernel statistics are just like addupc_intr, only easier. 894 */ 895 g = &_gmonparam; 896 if (g->state == GMON_PROF_ON) { 897 i = CLKF_PC(frame) - g->lowpc; 898 if (i < g->textsize) { 899 i /= HISTFRACTION * sizeof(*g->kcount); 900 g->kcount[i]++; 901 } 902 } 903 #endif 904 if (--pscnt > 0) 905 return; 906 /* 907 * Came from kernel mode, so we were: 908 * - handling an interrupt, 909 * - doing syscall or trap work on behalf of the current 910 * user process, or 911 * - spinning in the idle loop. 912 * Whichever it is, charge the time as appropriate. 913 * Note that we charge interrupts to the current process, 914 * regardless of whether they are ``for'' that process, 915 * so that we know how much of its real time was spent 916 * in ``non-process'' (i.e., interrupt) work. 917 */ 918 p = curproc; 919 if (CLKF_INTR(frame)) { 920 if (p != NULL) 921 p->p_iticks++; 922 cp_time[CP_INTR]++; 923 } else if (p != NULL) { 924 p->p_sticks++; 925 cp_time[CP_SYS]++; 926 } else 927 cp_time[CP_IDLE]++; 928 } 929 pscnt = psdiv; 930 931 /* 932 * We maintain statistics shown by user-level statistics 933 * programs: the amount of time in each cpu state, and 934 * the amount of time each of DK_NDRIVE ``drives'' is busy. 935 * 936 * XXX should either run linked list of drives, or (better) 937 * grab timestamps in the start & done code. 938 */ 939 for (i = 0; i < DK_NDRIVE; i++) 940 if (dk_busy & (1 << i)) 941 dk_time[i]++; 942 943 /* 944 * We adjust the priority of the current process. The priority of 945 * a process gets worse as it accumulates CPU time. The cpu usage 946 * estimator (p_estcpu) is increased here. The formula for computing 947 * priorities (in kern_synch.c) will compute a different value each 948 * time p_estcpu increases by 4. The cpu usage estimator ramps up 949 * quite quickly when the process is running (linearly), and decays 950 * away exponentially, at a rate which is proportionally slower when 951 * the system is busy. The basic principal is that the system will 952 * 90% forget that the process used a lot of CPU time in 5 * loadav 953 * seconds. This causes the system to favor processes which haven't 954 * run much recently, and to round-robin among other processes. 955 */ 956 if (p != NULL) { 957 p->p_cpticks++; 958 if (++p->p_estcpu == 0) 959 p->p_estcpu--; 960 if ((p->p_estcpu & 3) == 0) { 961 resetpriority(p); 962 if (p->p_priority >= PUSER) 963 p->p_priority = p->p_usrpri; 964 } 965 966 /* Update resource usage integrals and maximums. */ 967 if ((pstats = p->p_stats) != NULL && 968 (ru = &pstats->p_ru) != NULL && 969 (vm = p->p_vmspace) != NULL) { 970 ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024; 971 ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024; 972 ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024; 973 rss = vm->vm_pmap.pm_stats.resident_count * 974 PAGE_SIZE / 1024; 975 if (ru->ru_maxrss < rss) 976 ru->ru_maxrss = rss; 977 } 978 } 979 } 980 981 /* 982 * Return information about system clocks. 983 */ 984 static int 985 sysctl_kern_clockrate SYSCTL_HANDLER_ARGS 986 { 987 struct clockinfo clkinfo; 988 /* 989 * Construct clockinfo structure. 990 */ 991 clkinfo.hz = hz; 992 clkinfo.tick = tick; 993 clkinfo.profhz = profhz; 994 clkinfo.stathz = stathz ? stathz : hz; 995 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 996 } 997 998 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 999 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 1000 1001 /*#ifdef PPS_SYNC*/ 1002 #if 0 1003 /* This code is completely bogus; if anybody ever wants to use it, get 1004 * the current version from Dave Mills. */ 1005 1006 /* 1007 * hardpps() - discipline CPU clock oscillator to external pps signal 1008 * 1009 * This routine is called at each PPS interrupt in order to discipline 1010 * the CPU clock oscillator to the PPS signal. It integrates successive 1011 * phase differences between the two oscillators and calculates the 1012 * frequency offset. This is used in hardclock() to discipline the CPU 1013 * clock oscillator so that intrinsic frequency error is cancelled out. 1014 * The code requires the caller to capture the time and hardware 1015 * counter value at the designated PPS signal transition. 1016 */ 1017 void 1018 hardpps(tvp, usec) 1019 struct timeval *tvp; /* time at PPS */ 1020 long usec; /* hardware counter at PPS */ 1021 { 1022 long u_usec, v_usec, bigtick; 1023 long cal_sec, cal_usec; 1024 1025 /* 1026 * During the calibration interval adjust the starting time when 1027 * the tick overflows. At the end of the interval compute the 1028 * duration of the interval and the difference of the hardware 1029 * counters at the beginning and end of the interval. This code 1030 * is deliciously complicated by the fact valid differences may 1031 * exceed the value of tick when using long calibration 1032 * intervals and small ticks. Note that the counter can be 1033 * greater than tick if caught at just the wrong instant, but 1034 * the values returned and used here are correct. 1035 */ 1036 bigtick = (long)tick << SHIFT_USEC; 1037 pps_usec -= ntp_pll.ybar; 1038 if (pps_usec >= bigtick) 1039 pps_usec -= bigtick; 1040 if (pps_usec < 0) 1041 pps_usec += bigtick; 1042 pps_time.tv_sec++; 1043 pps_count++; 1044 if (pps_count < (1 << pps_shift)) 1045 return; 1046 pps_count = 0; 1047 ntp_pll.calcnt++; 1048 u_usec = usec << SHIFT_USEC; 1049 v_usec = pps_usec - u_usec; 1050 if (v_usec >= bigtick >> 1) 1051 v_usec -= bigtick; 1052 if (v_usec < -(bigtick >> 1)) 1053 v_usec += bigtick; 1054 if (v_usec < 0) 1055 v_usec = -(-v_usec >> ntp_pll.shift); 1056 else 1057 v_usec = v_usec >> ntp_pll.shift; 1058 pps_usec = u_usec; 1059 cal_sec = tvp->tv_sec; 1060 cal_usec = tvp->tv_usec; 1061 cal_sec -= pps_time.tv_sec; 1062 cal_usec -= pps_time.tv_usec; 1063 if (cal_usec < 0) { 1064 cal_usec += 1000000; 1065 cal_sec--; 1066 } 1067 pps_time = *tvp; 1068 1069 /* 1070 * Check for lost interrupts, noise, excessive jitter and 1071 * excessive frequency error. The number of timer ticks during 1072 * the interval may vary +-1 tick. Add to this a margin of one 1073 * tick for the PPS signal jitter and maximum frequency 1074 * deviation. If the limits are exceeded, the calibration 1075 * interval is reset to the minimum and we start over. 1076 */ 1077 u_usec = (long)tick << 1; 1078 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1079 || (cal_sec == 0 && cal_usec < u_usec)) 1080 || v_usec > ntp_pll.tolerance || v_usec < -ntp_pll.tolerance) { 1081 ntp_pll.jitcnt++; 1082 ntp_pll.shift = NTP_PLL.SHIFT; 1083 pps_dispinc = PPS_DISPINC; 1084 ntp_pll.intcnt = 0; 1085 return; 1086 } 1087 1088 /* 1089 * A three-stage median filter is used to help deglitch the pps 1090 * signal. The median sample becomes the offset estimate; the 1091 * difference between the other two samples becomes the 1092 * dispersion estimate. 1093 */ 1094 pps_mf[2] = pps_mf[1]; 1095 pps_mf[1] = pps_mf[0]; 1096 pps_mf[0] = v_usec; 1097 if (pps_mf[0] > pps_mf[1]) { 1098 if (pps_mf[1] > pps_mf[2]) { 1099 u_usec = pps_mf[1]; /* 0 1 2 */ 1100 v_usec = pps_mf[0] - pps_mf[2]; 1101 } else if (pps_mf[2] > pps_mf[0]) { 1102 u_usec = pps_mf[0]; /* 2 0 1 */ 1103 v_usec = pps_mf[2] - pps_mf[1]; 1104 } else { 1105 u_usec = pps_mf[2]; /* 0 2 1 */ 1106 v_usec = pps_mf[0] - pps_mf[1]; 1107 } 1108 } else { 1109 if (pps_mf[1] < pps_mf[2]) { 1110 u_usec = pps_mf[1]; /* 2 1 0 */ 1111 v_usec = pps_mf[2] - pps_mf[0]; 1112 } else if (pps_mf[2] < pps_mf[0]) { 1113 u_usec = pps_mf[0]; /* 1 0 2 */ 1114 v_usec = pps_mf[1] - pps_mf[2]; 1115 } else { 1116 u_usec = pps_mf[2]; /* 1 2 0 */ 1117 v_usec = pps_mf[1] - pps_mf[0]; 1118 } 1119 } 1120 1121 /* 1122 * Here the dispersion average is updated. If it is less than 1123 * the threshold pps_dispmax, the frequency average is updated 1124 * as well, but clamped to the tolerance. 1125 */ 1126 v_usec = (v_usec >> 1) - ntp_pll.disp; 1127 if (v_usec < 0) 1128 ntp_pll.disp -= -v_usec >> PPS_AVG; 1129 else 1130 ntp_pll.disp += v_usec >> PPS_AVG; 1131 if (ntp_pll.disp > pps_dispmax) { 1132 ntp_pll.discnt++; 1133 return; 1134 } 1135 if (u_usec < 0) { 1136 ntp_pll.ybar -= -u_usec >> PPS_AVG; 1137 if (ntp_pll.ybar < -ntp_pll.tolerance) 1138 ntp_pll.ybar = -ntp_pll.tolerance; 1139 u_usec = -u_usec; 1140 } else { 1141 ntp_pll.ybar += u_usec >> PPS_AVG; 1142 if (ntp_pll.ybar > ntp_pll.tolerance) 1143 ntp_pll.ybar = ntp_pll.tolerance; 1144 } 1145 1146 /* 1147 * Here the calibration interval is adjusted. If the maximum 1148 * time difference is greater than tick/4, reduce the interval 1149 * by half. If this is not the case for four consecutive 1150 * intervals, double the interval. 1151 */ 1152 if (u_usec << ntp_pll.shift > bigtick >> 2) { 1153 ntp_pll.intcnt = 0; 1154 if (ntp_pll.shift > NTP_PLL.SHIFT) { 1155 ntp_pll.shift--; 1156 pps_dispinc <<= 1; 1157 } 1158 } else if (ntp_pll.intcnt >= 4) { 1159 ntp_pll.intcnt = 0; 1160 if (ntp_pll.shift < NTP_PLL.SHIFTMAX) { 1161 ntp_pll.shift++; 1162 pps_dispinc >>= 1; 1163 } 1164 } else 1165 ntp_pll.intcnt++; 1166 } 1167 #endif /* PPS_SYNC */ 1168