xref: /freebsd/sys/kern/kern_tc.c (revision b52b9d56d4e96089873a75f9e29062eec19fabba)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * $FreeBSD$
10  */
11 
12 #include "opt_ntp.h"
13 
14 #include <sys/param.h>
15 #include <sys/kernel.h>
16 #include <sys/sysctl.h>
17 #include <sys/systm.h>
18 #include <sys/timepps.h>
19 #include <sys/timetc.h>
20 #include <sys/timex.h>
21 
22 /*
23  * Implement a dummy timecounter which we can use until we get a real one
24  * in the air.  This allows the console and other early stuff to use
25  * time services.
26  */
27 
28 static u_int
29 dummy_get_timecount(struct timecounter *tc)
30 {
31 	static u_int now;
32 
33 	return (++now);
34 }
35 
36 static struct timecounter dummy_timecounter = {
37 	dummy_get_timecount, 0, ~0u, 1000000, "dummy",
38 };
39 
40 struct timehands {
41 	/* These fields must be initialized by the driver. */
42 	struct timecounter	*th_counter;
43 	int64_t			th_adjustment;
44 	u_int64_t		th_scale;
45 	u_int	 		th_offset_count;
46 	struct bintime		th_offset;
47 	struct timeval		th_microtime;
48 	struct timespec		th_nanotime;
49 	/* Fields not to be copied in tc_windup start with th_generation. */
50 	volatile u_int		th_generation;
51 	struct timehands	*th_next;
52 };
53 
54 extern struct timehands th0;
55 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
56 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
57 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
58 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
59 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
60 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
61 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
62 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
63 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
64 static struct timehands th0 = {
65 	&dummy_timecounter,
66 	0,
67 	(uint64_t)-1 / 1000000,
68 	0,
69 	{1, 0},
70 	{0, 0},
71 	{0, 0},
72 	1,
73 	&th1
74 };
75 
76 static struct timehands *volatile timehands = &th0;
77 struct timecounter *timecounter = &dummy_timecounter;
78 static struct timecounter *timecounters = &dummy_timecounter;
79 
80 time_t time_second = 1;
81 
82 static struct bintime boottimebin;
83 struct timeval boottime;
84 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
85     &boottime, timeval, "System boottime");
86 
87 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
88 
89 #define TC_STATS(foo) \
90 	static u_int foo; \
91 	SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
92 	struct __hack
93 
94 TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
95 TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
96 TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
97 TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
98 
99 #undef TC_STATS
100 
101 static void tc_windup(void);
102 
103 /*
104  * Return the difference between the timehands' counter value now and what
105  * was when we copied it to the timehands' offset_count.
106  */
107 static __inline u_int
108 tc_delta(struct timehands *th)
109 {
110 	struct timecounter *tc;
111 
112 	tc = th->th_counter;
113 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
114 	    tc->tc_counter_mask);
115 }
116 
117 /*
118  * Functions for reading the time.  We have to loop until we are sure that
119  * the timehands that we operated on was not updated under our feet.  See
120  * the comment in <sys/time.h> for a description of these 12 functions.
121  */
122 
123 void
124 binuptime(struct bintime *bt)
125 {
126 	struct timehands *th;
127 	u_int gen;
128 
129 	nbinuptime++;
130 	do {
131 		th = timehands;
132 		gen = th->th_generation;
133 		*bt = th->th_offset;
134 		bintime_addx(bt, th->th_scale * tc_delta(th));
135 	} while (gen == 0 || gen != th->th_generation);
136 }
137 
138 void
139 nanouptime(struct timespec *tsp)
140 {
141 	struct bintime bt;
142 
143 	nnanouptime++;
144 	binuptime(&bt);
145 	bintime2timespec(&bt, tsp);
146 }
147 
148 void
149 microuptime(struct timeval *tvp)
150 {
151 	struct bintime bt;
152 
153 	nmicrouptime++;
154 	binuptime(&bt);
155 	bintime2timeval(&bt, tvp);
156 }
157 
158 void
159 bintime(struct bintime *bt)
160 {
161 
162 	nbintime++;
163 	binuptime(bt);
164 	bintime_add(bt, &boottimebin);
165 }
166 
167 void
168 nanotime(struct timespec *tsp)
169 {
170 	struct bintime bt;
171 
172 	nnanotime++;
173 	bintime(&bt);
174 	bintime2timespec(&bt, tsp);
175 }
176 
177 void
178 microtime(struct timeval *tvp)
179 {
180 	struct bintime bt;
181 
182 	nmicrotime++;
183 	bintime(&bt);
184 	bintime2timeval(&bt, tvp);
185 }
186 
187 void
188 getbinuptime(struct bintime *bt)
189 {
190 	struct timehands *th;
191 	u_int gen;
192 
193 	ngetbinuptime++;
194 	do {
195 		th = timehands;
196 		gen = th->th_generation;
197 		*bt = th->th_offset;
198 	} while (gen == 0 || gen != th->th_generation);
199 }
200 
201 void
202 getnanouptime(struct timespec *tsp)
203 {
204 	struct timehands *th;
205 	u_int gen;
206 
207 	ngetnanouptime++;
208 	do {
209 		th = timehands;
210 		gen = th->th_generation;
211 		bintime2timespec(&th->th_offset, tsp);
212 	} while (gen == 0 || gen != th->th_generation);
213 }
214 
215 void
216 getmicrouptime(struct timeval *tvp)
217 {
218 	struct timehands *th;
219 	u_int gen;
220 
221 	ngetmicrouptime++;
222 	do {
223 		th = timehands;
224 		gen = th->th_generation;
225 		bintime2timeval(&th->th_offset, tvp);
226 	} while (gen == 0 || gen != th->th_generation);
227 }
228 
229 void
230 getbintime(struct bintime *bt)
231 {
232 	struct timehands *th;
233 	u_int gen;
234 
235 	ngetbintime++;
236 	do {
237 		th = timehands;
238 		gen = th->th_generation;
239 		*bt = th->th_offset;
240 	} while (gen == 0 || gen != th->th_generation);
241 	bintime_add(bt, &boottimebin);
242 }
243 
244 void
245 getnanotime(struct timespec *tsp)
246 {
247 	struct timehands *th;
248 	u_int gen;
249 
250 	ngetnanotime++;
251 	do {
252 		th = timehands;
253 		gen = th->th_generation;
254 		*tsp = th->th_nanotime;
255 	} while (gen == 0 || gen != th->th_generation);
256 }
257 
258 void
259 getmicrotime(struct timeval *tvp)
260 {
261 	struct timehands *th;
262 	u_int gen;
263 
264 	ngetmicrotime++;
265 	do {
266 		th = timehands;
267 		gen = th->th_generation;
268 		*tvp = th->th_microtime;
269 	} while (gen == 0 || gen != th->th_generation);
270 }
271 
272 /*
273  * Initialize a new timecounter.
274  * We should really try to rank the timecounters and intelligently determine
275  * if the new timecounter is better than the current one.  This is subject
276  * to further study.  For now always use the new timecounter.
277  */
278 void
279 tc_init(struct timecounter *tc)
280 {
281 
282 	tc->tc_next = timecounters;
283 	timecounters = tc;
284 	printf("Timecounter \"%s\"  frequency %lu Hz\n",
285 	    tc->tc_name, (u_long)tc->tc_frequency);
286 	(void)tc->tc_get_timecount(tc);
287 	(void)tc->tc_get_timecount(tc);
288 	timecounter = tc;
289 }
290 
291 /* Report the frequency of the current timecounter. */
292 u_int32_t
293 tc_getfrequency(void)
294 {
295 
296 	return (timehands->th_counter->tc_frequency);
297 }
298 
299 /*
300  * Step our concept of GMT.  This is done by modifying our estimate of
301  * when we booted.  XXX: needs futher work.
302  */
303 void
304 tc_setclock(struct timespec *ts)
305 {
306 	struct timespec ts2;
307 
308 	nanouptime(&ts2);
309 	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
310 	/* XXX boottime should probably be a timespec. */
311 	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
312 	if (boottime.tv_usec < 0) {
313 		boottime.tv_usec += 1000000;
314 		boottime.tv_sec--;
315 	}
316 	timeval2bintime(&boottime, &boottimebin);
317 
318 	/* XXX fiddle all the little crinkly bits around the fiords... */
319 	tc_windup();
320 }
321 
322 /*
323  * Initialize the next struct timehands in the ring and make
324  * it the active timehands.  Along the way we might switch to a different
325  * timecounter and/or do seconds processing in NTP.  Slightly magic.
326  */
327 static void
328 tc_windup(void)
329 {
330 	struct bintime bt;
331 	struct timehands *th, *tho;
332 	u_int64_t scale;
333 	u_int delta, ncount, ogen;
334 	int i;
335 
336 	/*
337 	 * Make the next timehands a copy of the current one, but do not
338 	 * overwrite the generation or next pointer.  While we update
339 	 * the contents, the generation must be zero.
340 	 */
341 	tho = timehands;
342 	th = tho->th_next;
343 	ogen = th->th_generation;
344 	th->th_generation = 0;
345 	bcopy(tho, th, offsetof(struct timehands, th_generation));
346 
347 	/*
348 	 * Capture a timecounter delta on the current timecounter and if
349 	 * changing timecounters, a counter value from the new timecounter.
350 	 * Update the offset fields accordingly.
351 	 */
352 	delta = tc_delta(th);
353 	if (th->th_counter != timecounter)
354 		ncount = timecounter->tc_get_timecount(timecounter);
355 	else
356 		ncount = 0;
357 	th->th_offset_count += delta;
358 	th->th_offset_count &= th->th_counter->tc_counter_mask;
359 	bintime_addx(&th->th_offset, th->th_scale * delta);
360 
361 	/*
362 	 * Hardware latching timecounters may not generate interrupts on
363 	 * PPS events, so instead we poll them.  There is a finite risk that
364 	 * the hardware might capture a count which is later than the one we
365 	 * got above, and therefore possibly in the next NTP second which might
366 	 * have a different rate than the current NTP second.  It doesn't
367 	 * matter in practice.
368 	 */
369 	if (tho->th_counter->tc_poll_pps)
370 		tho->th_counter->tc_poll_pps(tho->th_counter);
371 
372 	/*
373 	 * Deal with NTP second processing.  The for loop normally only
374 	 * iterates once, but in extreme situations it might keep NTP sane
375 	 * if timeouts are not run for several seconds.
376 	 */
377 	for (i = th->th_offset.sec - tho->th_offset.sec; i > 0; i--)
378 		ntp_update_second(&th->th_adjustment, &th->th_offset.sec);
379 
380 	/* Now is a good time to change timecounters. */
381 	if (th->th_counter != timecounter) {
382 		th->th_counter = timecounter;
383 		th->th_offset_count = ncount;
384 	}
385 
386 	/*-
387 	 * Recalculate the scaling factor.  We want the number of 1/2^64
388 	 * fractions of a second per period of the hardware counter, taking
389 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
390 	 * processing provides us with.
391 	 *
392 	 * The th_adjustment is nanoseconds per second with 32 bit binary
393 	 * fraction and want 64 bit binary fraction of second:
394 	 *
395 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
396 	 *
397 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
398 	 * we can only multiply by about 850 without overflowing, but that
399 	 * leaves suitably precise fractions for multiply before divide.
400 	 *
401 	 * Divide before multiply with a fraction of 2199/512 results in a
402 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
403 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
404  	 *
405 	 * We happily sacrifice the lowest of the 64 bits of our result
406 	 * to the goddess of code clarity.
407 	 *
408 	 */
409 	scale = (u_int64_t)1 << 63;
410 	scale += (th->th_adjustment / 1024) * 2199;
411 	scale /= th->th_counter->tc_frequency;
412 	th->th_scale = scale * 2;
413 
414 	/* Update the GMT timestamps used for the get*() functions. */
415 	bt = th->th_offset;
416 	bintime_add(&bt, &boottimebin);
417 	bintime2timeval(&bt, &th->th_microtime);
418 	bintime2timespec(&bt, &th->th_nanotime);
419 
420 	/*
421 	 * Now that the struct timehands is again consistent, set the new
422 	 * generation number, making sure to not make it zero.
423 	 */
424 	if (++ogen == 0)
425 		ogen = 1;
426 	th->th_generation = ogen;
427 
428 	/* Go live with the new struct timehands. */
429 	time_second = th->th_microtime.tv_sec;
430 	timehands = th;
431 }
432 
433 /* Report or change the active timecounter hardware. */
434 static int
435 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
436 {
437 	char newname[32];
438 	struct timecounter *newtc, *tc;
439 	int error;
440 
441 	tc = timecounter;
442 	strncpy(newname, tc->tc_name, sizeof(newname));
443 	newname[sizeof(newname) - 1] = '\0';
444 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
445 	if (error != 0 || req->newptr == NULL ||
446 	    strcmp(newname, tc->tc_name) == 0)
447 		return (error);
448 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
449 		if (strcmp(newname, newtc->tc_name) != 0)
450 			continue;
451 
452 		/* Warm up new timecounter. */
453 		(void)newtc->tc_get_timecount(newtc);
454 		(void)newtc->tc_get_timecount(newtc);
455 
456 		timecounter = newtc;
457 		return (0);
458 	}
459 	return (EINVAL);
460 }
461 
462 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
463     0, 0, sysctl_kern_timecounter_hardware, "A", "");
464 
465 /*
466  * RFC 2783 PPS-API implementation.
467  */
468 
469 int
470 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
471 {
472 	pps_params_t *app;
473 	struct pps_fetch_args *fapi;
474 #ifdef PPS_SYNC
475 	struct pps_kcbind_args *kapi;
476 #endif
477 
478 	switch (cmd) {
479 	case PPS_IOC_CREATE:
480 		return (0);
481 	case PPS_IOC_DESTROY:
482 		return (0);
483 	case PPS_IOC_SETPARAMS:
484 		app = (pps_params_t *)data;
485 		if (app->mode & ~pps->ppscap)
486 			return (EINVAL);
487 		pps->ppsparam = *app;
488 		return (0);
489 	case PPS_IOC_GETPARAMS:
490 		app = (pps_params_t *)data;
491 		*app = pps->ppsparam;
492 		app->api_version = PPS_API_VERS_1;
493 		return (0);
494 	case PPS_IOC_GETCAP:
495 		*(int*)data = pps->ppscap;
496 		return (0);
497 	case PPS_IOC_FETCH:
498 		fapi = (struct pps_fetch_args *)data;
499 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
500 			return (EINVAL);
501 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
502 			return (EOPNOTSUPP);
503 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
504 		fapi->pps_info_buf = pps->ppsinfo;
505 		return (0);
506 	case PPS_IOC_KCBIND:
507 #ifdef PPS_SYNC
508 		kapi = (struct pps_kcbind_args *)data;
509 		/* XXX Only root should be able to do this */
510 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
511 			return (EINVAL);
512 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
513 			return (EINVAL);
514 		if (kapi->edge & ~pps->ppscap)
515 			return (EINVAL);
516 		pps->kcmode = kapi->edge;
517 		return (0);
518 #else
519 		return (EOPNOTSUPP);
520 #endif
521 	default:
522 		return (ENOTTY);
523 	}
524 }
525 
526 void
527 pps_init(struct pps_state *pps)
528 {
529 	pps->ppscap |= PPS_TSFMT_TSPEC;
530 	if (pps->ppscap & PPS_CAPTUREASSERT)
531 		pps->ppscap |= PPS_OFFSETASSERT;
532 	if (pps->ppscap & PPS_CAPTURECLEAR)
533 		pps->ppscap |= PPS_OFFSETCLEAR;
534 }
535 
536 void
537 pps_capture(struct pps_state *pps)
538 {
539 	struct timehands *th;
540 
541 	th = timehands;
542 	pps->capgen = th->th_generation;
543 	pps->capth = th;
544 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
545 	if (pps->capgen != th->th_generation)
546 		pps->capgen = 0;
547 }
548 
549 void
550 pps_event(struct pps_state *pps, int event)
551 {
552 	struct bintime bt;
553 	struct timespec ts, *tsp, *osp;
554 	u_int tcount, *pcount;
555 	int foff, fhard;
556 	pps_seq_t *pseq;
557 
558 	/* If the timecounter was wound up underneath us, bail out. */
559 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
560 		return;
561 
562 	/* Things would be easier with arrays. */
563 	if (event == PPS_CAPTUREASSERT) {
564 		tsp = &pps->ppsinfo.assert_timestamp;
565 		osp = &pps->ppsparam.assert_offset;
566 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
567 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
568 		pcount = &pps->ppscount[0];
569 		pseq = &pps->ppsinfo.assert_sequence;
570 	} else {
571 		tsp = &pps->ppsinfo.clear_timestamp;
572 		osp = &pps->ppsparam.clear_offset;
573 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
574 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
575 		pcount = &pps->ppscount[1];
576 		pseq = &pps->ppsinfo.clear_sequence;
577 	}
578 
579 	/*
580 	 * If the timecounter changed, we cannot compare the count values, so
581 	 * we have to drop the rest of the PPS-stuff until the next event.
582 	 */
583 	if (pps->ppstc != pps->capth->th_counter) {
584 		pps->ppstc = pps->capth->th_counter;
585 		*pcount = pps->capcount;
586 		pps->ppscount[2] = pps->capcount;
587 		return;
588 	}
589 
590 	/* Return if nothing really happened. */
591 	if (*pcount == pps->capcount)
592 		return;
593 
594 	/* Convert the count to a timespec. */
595 	tcount = pps->capcount - pps->capth->th_offset_count;
596 	tcount &= pps->capth->th_counter->tc_counter_mask;
597 	bt = pps->capth->th_offset;
598 	bintime_addx(&bt, pps->capth->th_scale * tcount);
599 	bintime_add(&bt, &boottimebin);
600 	bintime2timespec(&bt, &ts);
601 
602 	/* If the timecounter was wound up underneath us, bail out. */
603 	if (pps->capgen != pps->capth->th_generation)
604 		return;
605 
606 	*pcount = pps->capcount;
607 	(*pseq)++;
608 	*tsp = ts;
609 
610 	if (foff) {
611 		timespecadd(tsp, osp);
612 		if (tsp->tv_nsec < 0) {
613 			tsp->tv_nsec += 1000000000;
614 			tsp->tv_sec -= 1;
615 		}
616 	}
617 #ifdef PPS_SYNC
618 	if (fhard) {
619 		/*
620 		 * Feed the NTP PLL/FLL.
621 		 * The FLL wants to know how many nanoseconds elapsed since
622 		 * the previous event.
623 		 * I have never been able to convince myself that this code
624 		 * is actually correct:  Using th_scale is bound to contain
625 		 * a phase correction component from userland, when running
626 		 * as FLL, so the number hardpps() gets is not meaningful IMO.
627 		 */
628 		tcount = pps->capcount - pps->ppscount[2];
629 		pps->ppscount[2] = pps->capcount;
630 		tcount &= pps->capth->th_counter->tc_counter_mask;
631 		bt.sec = 0;
632 		bt.frac = 0;
633 		bintime_addx(&bt, pps->capth->th_scale * tcount);
634 		bintime2timespec(&bt, &ts);
635 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
636 	}
637 #endif
638 }
639 
640 /*
641  * Timecounters need to be updated every so often to prevent the hardware
642  * counter from overflowing.  Updating also recalculates the cached values
643  * used by the get*() family of functions, so their precision depends on
644  * the update frequency.
645  */
646 
647 static int tc_tick;
648 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tick, 0, "");
649 
650 static void
651 tc_ticktock(void *dummy)
652 {
653 
654 	tc_windup();
655 	timeout(tc_ticktock, NULL, tc_tick);
656 }
657 
658 static void
659 inittimecounter(void *dummy)
660 {
661 	u_int p;
662 
663 	/*
664 	 * Set the initial timeout to
665 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
666 	 * People should probably not use the sysctl to set the timeout
667 	 * to smaller than its inital value, since that value is the
668 	 * smallest reasonable one.  If they want better timestamps they
669 	 * should use the non-"get"* functions.
670 	 */
671 	if (hz > 1000)
672 		tc_tick = (hz + 500) / 1000;
673 	else
674 		tc_tick = 1;
675 	p = (tc_tick * 1000000) / hz;
676 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
677 
678 	/* warm up new timecounter (again) and get rolling. */
679 	(void)timecounter->tc_get_timecount(timecounter);
680 	(void)timecounter->tc_get_timecount(timecounter);
681 	tc_ticktock(NULL);
682 }
683 
684 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_FIRST, inittimecounter, NULL)
685