1 /*- 2 * SPDX-License-Identifier: Beerware 3 * 4 * ---------------------------------------------------------------------------- 5 * "THE BEER-WARE LICENSE" (Revision 42): 6 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 7 * can do whatever you want with this stuff. If we meet some day, and you think 8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 9 * ---------------------------------------------------------------------------- 10 * 11 * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation 12 * All rights reserved. 13 * 14 * Portions of this software were developed by Julien Ridoux at the University 15 * of Melbourne under sponsorship from the FreeBSD Foundation. 16 * 17 * Portions of this software were developed by Konstantin Belousov 18 * under sponsorship from the FreeBSD Foundation. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include "opt_ntp.h" 25 #include "opt_ffclock.h" 26 27 #include <sys/param.h> 28 #include <sys/kernel.h> 29 #include <sys/limits.h> 30 #include <sys/lock.h> 31 #include <sys/mutex.h> 32 #include <sys/proc.h> 33 #include <sys/sbuf.h> 34 #include <sys/sleepqueue.h> 35 #include <sys/sysctl.h> 36 #include <sys/syslog.h> 37 #include <sys/systm.h> 38 #include <sys/timeffc.h> 39 #include <sys/timepps.h> 40 #include <sys/timetc.h> 41 #include <sys/timex.h> 42 #include <sys/vdso.h> 43 44 /* 45 * A large step happens on boot. This constant detects such steps. 46 * It is relatively small so that ntp_update_second gets called enough 47 * in the typical 'missed a couple of seconds' case, but doesn't loop 48 * forever when the time step is large. 49 */ 50 #define LARGE_STEP 200 51 52 /* 53 * Implement a dummy timecounter which we can use until we get a real one 54 * in the air. This allows the console and other early stuff to use 55 * time services. 56 */ 57 58 static u_int 59 dummy_get_timecount(struct timecounter *tc) 60 { 61 static u_int now; 62 63 return (++now); 64 } 65 66 static struct timecounter dummy_timecounter = { 67 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 68 }; 69 70 struct timehands { 71 /* These fields must be initialized by the driver. */ 72 struct timecounter *th_counter; 73 int64_t th_adjustment; 74 uint64_t th_scale; 75 u_int th_large_delta; 76 u_int th_offset_count; 77 struct bintime th_offset; 78 struct bintime th_bintime; 79 struct timeval th_microtime; 80 struct timespec th_nanotime; 81 struct bintime th_boottime; 82 /* Fields not to be copied in tc_windup start with th_generation. */ 83 u_int th_generation; 84 struct timehands *th_next; 85 }; 86 87 static struct timehands ths[16] = { 88 [0] = { 89 .th_counter = &dummy_timecounter, 90 .th_scale = (uint64_t)-1 / 1000000, 91 .th_large_delta = 1000000, 92 .th_offset = { .sec = 1 }, 93 .th_generation = 1, 94 }, 95 }; 96 97 static struct timehands *volatile timehands = &ths[0]; 98 struct timecounter *timecounter = &dummy_timecounter; 99 static struct timecounter *timecounters = &dummy_timecounter; 100 101 int tc_min_ticktock_freq = 1; 102 103 volatile time_t time_second = 1; 104 volatile time_t time_uptime = 1; 105 106 /* 107 * The system time is always computed by summing the estimated boot time and the 108 * system uptime. The timehands track boot time, but it changes when the system 109 * time is set by the user, stepped by ntpd or adjusted when resuming. It 110 * is set to new_time - uptime. 111 */ 112 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 113 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, 114 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 115 sysctl_kern_boottime, "S,timeval", 116 "Estimated system boottime"); 117 118 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 119 ""); 120 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, 121 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 122 ""); 123 124 static int timestepwarnings; 125 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW, 126 ×tepwarnings, 0, "Log time steps"); 127 128 static int timehands_count = 2; 129 SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count, 130 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 131 &timehands_count, 0, "Count of timehands in rotation"); 132 133 struct bintime bt_timethreshold; 134 struct bintime bt_tickthreshold; 135 sbintime_t sbt_timethreshold; 136 sbintime_t sbt_tickthreshold; 137 struct bintime tc_tick_bt; 138 sbintime_t tc_tick_sbt; 139 int tc_precexp; 140 int tc_timepercentage = TC_DEFAULTPERC; 141 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 142 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 143 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 144 sysctl_kern_timecounter_adjprecision, "I", 145 "Allowed time interval deviation in percents"); 146 147 volatile int rtc_generation = 1; 148 149 static int tc_chosen; /* Non-zero if a specific tc was chosen via sysctl. */ 150 static char tc_from_tunable[16]; 151 152 static void tc_windup(struct bintime *new_boottimebin); 153 static void cpu_tick_calibrate(int); 154 155 void dtrace_getnanotime(struct timespec *tsp); 156 void dtrace_getnanouptime(struct timespec *tsp); 157 158 static int 159 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 160 { 161 struct timeval boottime; 162 163 getboottime(&boottime); 164 165 /* i386 is the only arch which uses a 32bits time_t */ 166 #ifdef __amd64__ 167 #ifdef SCTL_MASK32 168 int tv[2]; 169 170 if (req->flags & SCTL_MASK32) { 171 tv[0] = boottime.tv_sec; 172 tv[1] = boottime.tv_usec; 173 return (SYSCTL_OUT(req, tv, sizeof(tv))); 174 } 175 #endif 176 #endif 177 return (SYSCTL_OUT(req, &boottime, sizeof(boottime))); 178 } 179 180 static int 181 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 182 { 183 u_int ncount; 184 struct timecounter *tc = arg1; 185 186 ncount = tc->tc_get_timecount(tc); 187 return (sysctl_handle_int(oidp, &ncount, 0, req)); 188 } 189 190 static int 191 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 192 { 193 uint64_t freq; 194 struct timecounter *tc = arg1; 195 196 freq = tc->tc_frequency; 197 return (sysctl_handle_64(oidp, &freq, 0, req)); 198 } 199 200 /* 201 * Return the difference between the timehands' counter value now and what 202 * was when we copied it to the timehands' offset_count. 203 */ 204 static __inline u_int 205 tc_delta(struct timehands *th) 206 { 207 struct timecounter *tc; 208 209 tc = th->th_counter; 210 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 211 tc->tc_counter_mask); 212 } 213 214 /* 215 * Functions for reading the time. We have to loop until we are sure that 216 * the timehands that we operated on was not updated under our feet. See 217 * the comment in <sys/time.h> for a description of these 12 functions. 218 */ 219 220 static __inline void 221 bintime_off(struct bintime *bt, u_int off) 222 { 223 struct timehands *th; 224 struct bintime *btp; 225 uint64_t scale, x; 226 u_int delta, gen, large_delta; 227 228 do { 229 th = timehands; 230 gen = atomic_load_acq_int(&th->th_generation); 231 btp = (struct bintime *)((vm_offset_t)th + off); 232 *bt = *btp; 233 scale = th->th_scale; 234 delta = tc_delta(th); 235 large_delta = th->th_large_delta; 236 atomic_thread_fence_acq(); 237 } while (gen == 0 || gen != th->th_generation); 238 239 if (__predict_false(delta >= large_delta)) { 240 /* Avoid overflow for scale * delta. */ 241 x = (scale >> 32) * delta; 242 bt->sec += x >> 32; 243 bintime_addx(bt, x << 32); 244 bintime_addx(bt, (scale & 0xffffffff) * delta); 245 } else { 246 bintime_addx(bt, scale * delta); 247 } 248 } 249 #define GETTHBINTIME(dst, member) \ 250 do { \ 251 _Static_assert(_Generic(((struct timehands *)NULL)->member, \ 252 struct bintime: 1, default: 0) == 1, \ 253 "struct timehands member is not of struct bintime type"); \ 254 bintime_off(dst, __offsetof(struct timehands, member)); \ 255 } while (0) 256 257 static __inline void 258 getthmember(void *out, size_t out_size, u_int off) 259 { 260 struct timehands *th; 261 u_int gen; 262 263 do { 264 th = timehands; 265 gen = atomic_load_acq_int(&th->th_generation); 266 memcpy(out, (char *)th + off, out_size); 267 atomic_thread_fence_acq(); 268 } while (gen == 0 || gen != th->th_generation); 269 } 270 #define GETTHMEMBER(dst, member) \ 271 do { \ 272 _Static_assert(_Generic(*dst, \ 273 __typeof(((struct timehands *)NULL)->member): 1, \ 274 default: 0) == 1, \ 275 "*dst and struct timehands member have different types"); \ 276 getthmember(dst, sizeof(*dst), __offsetof(struct timehands, \ 277 member)); \ 278 } while (0) 279 280 #ifdef FFCLOCK 281 void 282 fbclock_binuptime(struct bintime *bt) 283 { 284 285 GETTHBINTIME(bt, th_offset); 286 } 287 288 void 289 fbclock_nanouptime(struct timespec *tsp) 290 { 291 struct bintime bt; 292 293 fbclock_binuptime(&bt); 294 bintime2timespec(&bt, tsp); 295 } 296 297 void 298 fbclock_microuptime(struct timeval *tvp) 299 { 300 struct bintime bt; 301 302 fbclock_binuptime(&bt); 303 bintime2timeval(&bt, tvp); 304 } 305 306 void 307 fbclock_bintime(struct bintime *bt) 308 { 309 310 GETTHBINTIME(bt, th_bintime); 311 } 312 313 void 314 fbclock_nanotime(struct timespec *tsp) 315 { 316 struct bintime bt; 317 318 fbclock_bintime(&bt); 319 bintime2timespec(&bt, tsp); 320 } 321 322 void 323 fbclock_microtime(struct timeval *tvp) 324 { 325 struct bintime bt; 326 327 fbclock_bintime(&bt); 328 bintime2timeval(&bt, tvp); 329 } 330 331 void 332 fbclock_getbinuptime(struct bintime *bt) 333 { 334 335 GETTHMEMBER(bt, th_offset); 336 } 337 338 void 339 fbclock_getnanouptime(struct timespec *tsp) 340 { 341 struct bintime bt; 342 343 GETTHMEMBER(&bt, th_offset); 344 bintime2timespec(&bt, tsp); 345 } 346 347 void 348 fbclock_getmicrouptime(struct timeval *tvp) 349 { 350 struct bintime bt; 351 352 GETTHMEMBER(&bt, th_offset); 353 bintime2timeval(&bt, tvp); 354 } 355 356 void 357 fbclock_getbintime(struct bintime *bt) 358 { 359 360 GETTHMEMBER(bt, th_bintime); 361 } 362 363 void 364 fbclock_getnanotime(struct timespec *tsp) 365 { 366 367 GETTHMEMBER(tsp, th_nanotime); 368 } 369 370 void 371 fbclock_getmicrotime(struct timeval *tvp) 372 { 373 374 GETTHMEMBER(tvp, th_microtime); 375 } 376 #else /* !FFCLOCK */ 377 378 void 379 binuptime(struct bintime *bt) 380 { 381 382 GETTHBINTIME(bt, th_offset); 383 } 384 385 void 386 nanouptime(struct timespec *tsp) 387 { 388 struct bintime bt; 389 390 binuptime(&bt); 391 bintime2timespec(&bt, tsp); 392 } 393 394 void 395 microuptime(struct timeval *tvp) 396 { 397 struct bintime bt; 398 399 binuptime(&bt); 400 bintime2timeval(&bt, tvp); 401 } 402 403 void 404 bintime(struct bintime *bt) 405 { 406 407 GETTHBINTIME(bt, th_bintime); 408 } 409 410 void 411 nanotime(struct timespec *tsp) 412 { 413 struct bintime bt; 414 415 bintime(&bt); 416 bintime2timespec(&bt, tsp); 417 } 418 419 void 420 microtime(struct timeval *tvp) 421 { 422 struct bintime bt; 423 424 bintime(&bt); 425 bintime2timeval(&bt, tvp); 426 } 427 428 void 429 getbinuptime(struct bintime *bt) 430 { 431 432 GETTHMEMBER(bt, th_offset); 433 } 434 435 void 436 getnanouptime(struct timespec *tsp) 437 { 438 struct bintime bt; 439 440 GETTHMEMBER(&bt, th_offset); 441 bintime2timespec(&bt, tsp); 442 } 443 444 void 445 getmicrouptime(struct timeval *tvp) 446 { 447 struct bintime bt; 448 449 GETTHMEMBER(&bt, th_offset); 450 bintime2timeval(&bt, tvp); 451 } 452 453 void 454 getbintime(struct bintime *bt) 455 { 456 457 GETTHMEMBER(bt, th_bintime); 458 } 459 460 void 461 getnanotime(struct timespec *tsp) 462 { 463 464 GETTHMEMBER(tsp, th_nanotime); 465 } 466 467 void 468 getmicrotime(struct timeval *tvp) 469 { 470 471 GETTHMEMBER(tvp, th_microtime); 472 } 473 #endif /* FFCLOCK */ 474 475 void 476 getboottime(struct timeval *boottime) 477 { 478 struct bintime boottimebin; 479 480 getboottimebin(&boottimebin); 481 bintime2timeval(&boottimebin, boottime); 482 } 483 484 void 485 getboottimebin(struct bintime *boottimebin) 486 { 487 488 GETTHMEMBER(boottimebin, th_boottime); 489 } 490 491 #ifdef FFCLOCK 492 /* 493 * Support for feed-forward synchronization algorithms. This is heavily inspired 494 * by the timehands mechanism but kept independent from it. *_windup() functions 495 * have some connection to avoid accessing the timecounter hardware more than 496 * necessary. 497 */ 498 499 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 500 struct ffclock_estimate ffclock_estimate; 501 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 502 uint32_t ffclock_status; /* Feed-forward clock status. */ 503 int8_t ffclock_updated; /* New estimates are available. */ 504 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 505 506 struct fftimehands { 507 struct ffclock_estimate cest; 508 struct bintime tick_time; 509 struct bintime tick_time_lerp; 510 ffcounter tick_ffcount; 511 uint64_t period_lerp; 512 volatile uint8_t gen; 513 struct fftimehands *next; 514 }; 515 516 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 517 518 static struct fftimehands ffth[10]; 519 static struct fftimehands *volatile fftimehands = ffth; 520 521 static void 522 ffclock_init(void) 523 { 524 struct fftimehands *cur; 525 struct fftimehands *last; 526 527 memset(ffth, 0, sizeof(ffth)); 528 529 last = ffth + NUM_ELEMENTS(ffth) - 1; 530 for (cur = ffth; cur < last; cur++) 531 cur->next = cur + 1; 532 last->next = ffth; 533 534 ffclock_updated = 0; 535 ffclock_status = FFCLOCK_STA_UNSYNC; 536 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 537 } 538 539 /* 540 * Reset the feed-forward clock estimates. Called from inittodr() to get things 541 * kick started and uses the timecounter nominal frequency as a first period 542 * estimate. Note: this function may be called several time just after boot. 543 * Note: this is the only function that sets the value of boot time for the 544 * monotonic (i.e. uptime) version of the feed-forward clock. 545 */ 546 void 547 ffclock_reset_clock(struct timespec *ts) 548 { 549 struct timecounter *tc; 550 struct ffclock_estimate cest; 551 552 tc = timehands->th_counter; 553 memset(&cest, 0, sizeof(struct ffclock_estimate)); 554 555 timespec2bintime(ts, &ffclock_boottime); 556 timespec2bintime(ts, &(cest.update_time)); 557 ffclock_read_counter(&cest.update_ffcount); 558 cest.leapsec_next = 0; 559 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 560 cest.errb_abs = 0; 561 cest.errb_rate = 0; 562 cest.status = FFCLOCK_STA_UNSYNC; 563 cest.leapsec_total = 0; 564 cest.leapsec = 0; 565 566 mtx_lock(&ffclock_mtx); 567 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 568 ffclock_updated = INT8_MAX; 569 mtx_unlock(&ffclock_mtx); 570 571 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 572 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 573 (unsigned long)ts->tv_nsec); 574 } 575 576 /* 577 * Sub-routine to convert a time interval measured in RAW counter units to time 578 * in seconds stored in bintime format. 579 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 580 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 581 * extra cycles. 582 */ 583 static void 584 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 585 { 586 struct bintime bt2; 587 ffcounter delta, delta_max; 588 589 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 590 bintime_clear(bt); 591 do { 592 if (ffdelta > delta_max) 593 delta = delta_max; 594 else 595 delta = ffdelta; 596 bt2.sec = 0; 597 bt2.frac = period; 598 bintime_mul(&bt2, (unsigned int)delta); 599 bintime_add(bt, &bt2); 600 ffdelta -= delta; 601 } while (ffdelta > 0); 602 } 603 604 /* 605 * Update the fftimehands. 606 * Push the tick ffcount and time(s) forward based on current clock estimate. 607 * The conversion from ffcounter to bintime relies on the difference clock 608 * principle, whose accuracy relies on computing small time intervals. If a new 609 * clock estimate has been passed by the synchronisation daemon, make it 610 * current, and compute the linear interpolation for monotonic time if needed. 611 */ 612 static void 613 ffclock_windup(unsigned int delta) 614 { 615 struct ffclock_estimate *cest; 616 struct fftimehands *ffth; 617 struct bintime bt, gap_lerp; 618 ffcounter ffdelta; 619 uint64_t frac; 620 unsigned int polling; 621 uint8_t forward_jump, ogen; 622 623 /* 624 * Pick the next timehand, copy current ffclock estimates and move tick 625 * times and counter forward. 626 */ 627 forward_jump = 0; 628 ffth = fftimehands->next; 629 ogen = ffth->gen; 630 ffth->gen = 0; 631 cest = &ffth->cest; 632 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 633 ffdelta = (ffcounter)delta; 634 ffth->period_lerp = fftimehands->period_lerp; 635 636 ffth->tick_time = fftimehands->tick_time; 637 ffclock_convert_delta(ffdelta, cest->period, &bt); 638 bintime_add(&ffth->tick_time, &bt); 639 640 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 641 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 642 bintime_add(&ffth->tick_time_lerp, &bt); 643 644 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 645 646 /* 647 * Assess the status of the clock, if the last update is too old, it is 648 * likely the synchronisation daemon is dead and the clock is free 649 * running. 650 */ 651 if (ffclock_updated == 0) { 652 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 653 ffclock_convert_delta(ffdelta, cest->period, &bt); 654 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 655 ffclock_status |= FFCLOCK_STA_UNSYNC; 656 } 657 658 /* 659 * If available, grab updated clock estimates and make them current. 660 * Recompute time at this tick using the updated estimates. The clock 661 * estimates passed the feed-forward synchronisation daemon may result 662 * in time conversion that is not monotonically increasing (just after 663 * the update). time_lerp is a particular linear interpolation over the 664 * synchronisation algo polling period that ensures monotonicity for the 665 * clock ids requesting it. 666 */ 667 if (ffclock_updated > 0) { 668 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 669 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 670 ffth->tick_time = cest->update_time; 671 ffclock_convert_delta(ffdelta, cest->period, &bt); 672 bintime_add(&ffth->tick_time, &bt); 673 674 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 675 if (ffclock_updated == INT8_MAX) 676 ffth->tick_time_lerp = ffth->tick_time; 677 678 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 679 forward_jump = 1; 680 else 681 forward_jump = 0; 682 683 bintime_clear(&gap_lerp); 684 if (forward_jump) { 685 gap_lerp = ffth->tick_time; 686 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 687 } else { 688 gap_lerp = ffth->tick_time_lerp; 689 bintime_sub(&gap_lerp, &ffth->tick_time); 690 } 691 692 /* 693 * The reset from the RTC clock may be far from accurate, and 694 * reducing the gap between real time and interpolated time 695 * could take a very long time if the interpolated clock insists 696 * on strict monotonicity. The clock is reset under very strict 697 * conditions (kernel time is known to be wrong and 698 * synchronization daemon has been restarted recently. 699 * ffclock_boottime absorbs the jump to ensure boot time is 700 * correct and uptime functions stay consistent. 701 */ 702 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 703 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 704 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 705 if (forward_jump) 706 bintime_add(&ffclock_boottime, &gap_lerp); 707 else 708 bintime_sub(&ffclock_boottime, &gap_lerp); 709 ffth->tick_time_lerp = ffth->tick_time; 710 bintime_clear(&gap_lerp); 711 } 712 713 ffclock_status = cest->status; 714 ffth->period_lerp = cest->period; 715 716 /* 717 * Compute corrected period used for the linear interpolation of 718 * time. The rate of linear interpolation is capped to 5000PPM 719 * (5ms/s). 720 */ 721 if (bintime_isset(&gap_lerp)) { 722 ffdelta = cest->update_ffcount; 723 ffdelta -= fftimehands->cest.update_ffcount; 724 ffclock_convert_delta(ffdelta, cest->period, &bt); 725 polling = bt.sec; 726 bt.sec = 0; 727 bt.frac = 5000000 * (uint64_t)18446744073LL; 728 bintime_mul(&bt, polling); 729 if (bintime_cmp(&gap_lerp, &bt, >)) 730 gap_lerp = bt; 731 732 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 733 frac = 0; 734 if (gap_lerp.sec > 0) { 735 frac -= 1; 736 frac /= ffdelta / gap_lerp.sec; 737 } 738 frac += gap_lerp.frac / ffdelta; 739 740 if (forward_jump) 741 ffth->period_lerp += frac; 742 else 743 ffth->period_lerp -= frac; 744 } 745 746 ffclock_updated = 0; 747 } 748 if (++ogen == 0) 749 ogen = 1; 750 ffth->gen = ogen; 751 fftimehands = ffth; 752 } 753 754 /* 755 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 756 * the old and new hardware counter cannot be read simultaneously. tc_windup() 757 * does read the two counters 'back to back', but a few cycles are effectively 758 * lost, and not accumulated in tick_ffcount. This is a fairly radical 759 * operation for a feed-forward synchronization daemon, and it is its job to not 760 * pushing irrelevant data to the kernel. Because there is no locking here, 761 * simply force to ignore pending or next update to give daemon a chance to 762 * realize the counter has changed. 763 */ 764 static void 765 ffclock_change_tc(struct timehands *th) 766 { 767 struct fftimehands *ffth; 768 struct ffclock_estimate *cest; 769 struct timecounter *tc; 770 uint8_t ogen; 771 772 tc = th->th_counter; 773 ffth = fftimehands->next; 774 ogen = ffth->gen; 775 ffth->gen = 0; 776 777 cest = &ffth->cest; 778 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 779 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 780 cest->errb_abs = 0; 781 cest->errb_rate = 0; 782 cest->status |= FFCLOCK_STA_UNSYNC; 783 784 ffth->tick_ffcount = fftimehands->tick_ffcount; 785 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 786 ffth->tick_time = fftimehands->tick_time; 787 ffth->period_lerp = cest->period; 788 789 /* Do not lock but ignore next update from synchronization daemon. */ 790 ffclock_updated--; 791 792 if (++ogen == 0) 793 ogen = 1; 794 ffth->gen = ogen; 795 fftimehands = ffth; 796 } 797 798 /* 799 * Retrieve feed-forward counter and time of last kernel tick. 800 */ 801 void 802 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 803 { 804 struct fftimehands *ffth; 805 uint8_t gen; 806 807 /* 808 * No locking but check generation has not changed. Also need to make 809 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 810 */ 811 do { 812 ffth = fftimehands; 813 gen = ffth->gen; 814 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 815 *bt = ffth->tick_time_lerp; 816 else 817 *bt = ffth->tick_time; 818 *ffcount = ffth->tick_ffcount; 819 } while (gen == 0 || gen != ffth->gen); 820 } 821 822 /* 823 * Absolute clock conversion. Low level function to convert ffcounter to 824 * bintime. The ffcounter is converted using the current ffclock period estimate 825 * or the "interpolated period" to ensure monotonicity. 826 * NOTE: this conversion may have been deferred, and the clock updated since the 827 * hardware counter has been read. 828 */ 829 void 830 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 831 { 832 struct fftimehands *ffth; 833 struct bintime bt2; 834 ffcounter ffdelta; 835 uint8_t gen; 836 837 /* 838 * No locking but check generation has not changed. Also need to make 839 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 840 */ 841 do { 842 ffth = fftimehands; 843 gen = ffth->gen; 844 if (ffcount > ffth->tick_ffcount) 845 ffdelta = ffcount - ffth->tick_ffcount; 846 else 847 ffdelta = ffth->tick_ffcount - ffcount; 848 849 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 850 *bt = ffth->tick_time_lerp; 851 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 852 } else { 853 *bt = ffth->tick_time; 854 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 855 } 856 857 if (ffcount > ffth->tick_ffcount) 858 bintime_add(bt, &bt2); 859 else 860 bintime_sub(bt, &bt2); 861 } while (gen == 0 || gen != ffth->gen); 862 } 863 864 /* 865 * Difference clock conversion. 866 * Low level function to Convert a time interval measured in RAW counter units 867 * into bintime. The difference clock allows measuring small intervals much more 868 * reliably than the absolute clock. 869 */ 870 void 871 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 872 { 873 struct fftimehands *ffth; 874 uint8_t gen; 875 876 /* No locking but check generation has not changed. */ 877 do { 878 ffth = fftimehands; 879 gen = ffth->gen; 880 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 881 } while (gen == 0 || gen != ffth->gen); 882 } 883 884 /* 885 * Access to current ffcounter value. 886 */ 887 void 888 ffclock_read_counter(ffcounter *ffcount) 889 { 890 struct timehands *th; 891 struct fftimehands *ffth; 892 unsigned int gen, delta; 893 894 /* 895 * ffclock_windup() called from tc_windup(), safe to rely on 896 * th->th_generation only, for correct delta and ffcounter. 897 */ 898 do { 899 th = timehands; 900 gen = atomic_load_acq_int(&th->th_generation); 901 ffth = fftimehands; 902 delta = tc_delta(th); 903 *ffcount = ffth->tick_ffcount; 904 atomic_thread_fence_acq(); 905 } while (gen == 0 || gen != th->th_generation); 906 907 *ffcount += delta; 908 } 909 910 void 911 binuptime(struct bintime *bt) 912 { 913 914 binuptime_fromclock(bt, sysclock_active); 915 } 916 917 void 918 nanouptime(struct timespec *tsp) 919 { 920 921 nanouptime_fromclock(tsp, sysclock_active); 922 } 923 924 void 925 microuptime(struct timeval *tvp) 926 { 927 928 microuptime_fromclock(tvp, sysclock_active); 929 } 930 931 void 932 bintime(struct bintime *bt) 933 { 934 935 bintime_fromclock(bt, sysclock_active); 936 } 937 938 void 939 nanotime(struct timespec *tsp) 940 { 941 942 nanotime_fromclock(tsp, sysclock_active); 943 } 944 945 void 946 microtime(struct timeval *tvp) 947 { 948 949 microtime_fromclock(tvp, sysclock_active); 950 } 951 952 void 953 getbinuptime(struct bintime *bt) 954 { 955 956 getbinuptime_fromclock(bt, sysclock_active); 957 } 958 959 void 960 getnanouptime(struct timespec *tsp) 961 { 962 963 getnanouptime_fromclock(tsp, sysclock_active); 964 } 965 966 void 967 getmicrouptime(struct timeval *tvp) 968 { 969 970 getmicrouptime_fromclock(tvp, sysclock_active); 971 } 972 973 void 974 getbintime(struct bintime *bt) 975 { 976 977 getbintime_fromclock(bt, sysclock_active); 978 } 979 980 void 981 getnanotime(struct timespec *tsp) 982 { 983 984 getnanotime_fromclock(tsp, sysclock_active); 985 } 986 987 void 988 getmicrotime(struct timeval *tvp) 989 { 990 991 getmicrouptime_fromclock(tvp, sysclock_active); 992 } 993 994 #endif /* FFCLOCK */ 995 996 /* 997 * This is a clone of getnanotime and used for walltimestamps. 998 * The dtrace_ prefix prevents fbt from creating probes for 999 * it so walltimestamp can be safely used in all fbt probes. 1000 */ 1001 void 1002 dtrace_getnanotime(struct timespec *tsp) 1003 { 1004 1005 GETTHMEMBER(tsp, th_nanotime); 1006 } 1007 1008 /* 1009 * This is a clone of getnanouptime used for time since boot. 1010 * The dtrace_ prefix prevents fbt from creating probes for 1011 * it so an uptime that can be safely used in all fbt probes. 1012 */ 1013 void 1014 dtrace_getnanouptime(struct timespec *tsp) 1015 { 1016 struct bintime bt; 1017 1018 GETTHMEMBER(&bt, th_offset); 1019 bintime2timespec(&bt, tsp); 1020 } 1021 1022 /* 1023 * System clock currently providing time to the system. Modifiable via sysctl 1024 * when the FFCLOCK option is defined. 1025 */ 1026 int sysclock_active = SYSCLOCK_FBCK; 1027 1028 /* Internal NTP status and error estimates. */ 1029 extern int time_status; 1030 extern long time_esterror; 1031 1032 /* 1033 * Take a snapshot of sysclock data which can be used to compare system clocks 1034 * and generate timestamps after the fact. 1035 */ 1036 void 1037 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 1038 { 1039 struct fbclock_info *fbi; 1040 struct timehands *th; 1041 struct bintime bt; 1042 unsigned int delta, gen; 1043 #ifdef FFCLOCK 1044 ffcounter ffcount; 1045 struct fftimehands *ffth; 1046 struct ffclock_info *ffi; 1047 struct ffclock_estimate cest; 1048 1049 ffi = &clock_snap->ff_info; 1050 #endif 1051 1052 fbi = &clock_snap->fb_info; 1053 delta = 0; 1054 1055 do { 1056 th = timehands; 1057 gen = atomic_load_acq_int(&th->th_generation); 1058 fbi->th_scale = th->th_scale; 1059 fbi->tick_time = th->th_offset; 1060 #ifdef FFCLOCK 1061 ffth = fftimehands; 1062 ffi->tick_time = ffth->tick_time_lerp; 1063 ffi->tick_time_lerp = ffth->tick_time_lerp; 1064 ffi->period = ffth->cest.period; 1065 ffi->period_lerp = ffth->period_lerp; 1066 clock_snap->ffcount = ffth->tick_ffcount; 1067 cest = ffth->cest; 1068 #endif 1069 if (!fast) 1070 delta = tc_delta(th); 1071 atomic_thread_fence_acq(); 1072 } while (gen == 0 || gen != th->th_generation); 1073 1074 clock_snap->delta = delta; 1075 clock_snap->sysclock_active = sysclock_active; 1076 1077 /* Record feedback clock status and error. */ 1078 clock_snap->fb_info.status = time_status; 1079 /* XXX: Very crude estimate of feedback clock error. */ 1080 bt.sec = time_esterror / 1000000; 1081 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1082 (uint64_t)18446744073709ULL; 1083 clock_snap->fb_info.error = bt; 1084 1085 #ifdef FFCLOCK 1086 if (!fast) 1087 clock_snap->ffcount += delta; 1088 1089 /* Record feed-forward clock leap second adjustment. */ 1090 ffi->leapsec_adjustment = cest.leapsec_total; 1091 if (clock_snap->ffcount > cest.leapsec_next) 1092 ffi->leapsec_adjustment -= cest.leapsec; 1093 1094 /* Record feed-forward clock status and error. */ 1095 clock_snap->ff_info.status = cest.status; 1096 ffcount = clock_snap->ffcount - cest.update_ffcount; 1097 ffclock_convert_delta(ffcount, cest.period, &bt); 1098 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1099 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1100 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1101 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1102 clock_snap->ff_info.error = bt; 1103 #endif 1104 } 1105 1106 /* 1107 * Convert a sysclock snapshot into a struct bintime based on the specified 1108 * clock source and flags. 1109 */ 1110 int 1111 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1112 int whichclock, uint32_t flags) 1113 { 1114 struct bintime boottimebin; 1115 #ifdef FFCLOCK 1116 struct bintime bt2; 1117 uint64_t period; 1118 #endif 1119 1120 switch (whichclock) { 1121 case SYSCLOCK_FBCK: 1122 *bt = cs->fb_info.tick_time; 1123 1124 /* If snapshot was created with !fast, delta will be >0. */ 1125 if (cs->delta > 0) 1126 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1127 1128 if ((flags & FBCLOCK_UPTIME) == 0) { 1129 getboottimebin(&boottimebin); 1130 bintime_add(bt, &boottimebin); 1131 } 1132 break; 1133 #ifdef FFCLOCK 1134 case SYSCLOCK_FFWD: 1135 if (flags & FFCLOCK_LERP) { 1136 *bt = cs->ff_info.tick_time_lerp; 1137 period = cs->ff_info.period_lerp; 1138 } else { 1139 *bt = cs->ff_info.tick_time; 1140 period = cs->ff_info.period; 1141 } 1142 1143 /* If snapshot was created with !fast, delta will be >0. */ 1144 if (cs->delta > 0) { 1145 ffclock_convert_delta(cs->delta, period, &bt2); 1146 bintime_add(bt, &bt2); 1147 } 1148 1149 /* Leap second adjustment. */ 1150 if (flags & FFCLOCK_LEAPSEC) 1151 bt->sec -= cs->ff_info.leapsec_adjustment; 1152 1153 /* Boot time adjustment, for uptime/monotonic clocks. */ 1154 if (flags & FFCLOCK_UPTIME) 1155 bintime_sub(bt, &ffclock_boottime); 1156 break; 1157 #endif 1158 default: 1159 return (EINVAL); 1160 break; 1161 } 1162 1163 return (0); 1164 } 1165 1166 /* 1167 * Initialize a new timecounter and possibly use it. 1168 */ 1169 void 1170 tc_init(struct timecounter *tc) 1171 { 1172 u_int u; 1173 struct sysctl_oid *tc_root; 1174 1175 u = tc->tc_frequency / tc->tc_counter_mask; 1176 /* XXX: We need some margin here, 10% is a guess */ 1177 u *= 11; 1178 u /= 10; 1179 if (u > hz && tc->tc_quality >= 0) { 1180 tc->tc_quality = -2000; 1181 if (bootverbose) { 1182 printf("Timecounter \"%s\" frequency %ju Hz", 1183 tc->tc_name, (uintmax_t)tc->tc_frequency); 1184 printf(" -- Insufficient hz, needs at least %u\n", u); 1185 } 1186 } else if (tc->tc_quality >= 0 || bootverbose) { 1187 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1188 tc->tc_name, (uintmax_t)tc->tc_frequency, 1189 tc->tc_quality); 1190 } 1191 1192 tc->tc_next = timecounters; 1193 timecounters = tc; 1194 /* 1195 * Set up sysctl tree for this counter. 1196 */ 1197 tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL, 1198 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1199 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1200 "timecounter description", "timecounter"); 1201 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1202 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1203 "mask for implemented bits"); 1204 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1205 "counter", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, tc, 1206 sizeof(*tc), sysctl_kern_timecounter_get, "IU", 1207 "current timecounter value"); 1208 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1209 "frequency", CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, tc, 1210 sizeof(*tc), sysctl_kern_timecounter_freq, "QU", 1211 "timecounter frequency"); 1212 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1213 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1214 "goodness of time counter"); 1215 /* 1216 * Do not automatically switch if the current tc was specifically 1217 * chosen. Never automatically use a timecounter with negative quality. 1218 * Even though we run on the dummy counter, switching here may be 1219 * worse since this timecounter may not be monotonic. 1220 */ 1221 if (tc_chosen) 1222 return; 1223 if (tc->tc_quality < 0) 1224 return; 1225 if (tc_from_tunable[0] != '\0' && 1226 strcmp(tc->tc_name, tc_from_tunable) == 0) { 1227 tc_chosen = 1; 1228 tc_from_tunable[0] = '\0'; 1229 } else { 1230 if (tc->tc_quality < timecounter->tc_quality) 1231 return; 1232 if (tc->tc_quality == timecounter->tc_quality && 1233 tc->tc_frequency < timecounter->tc_frequency) 1234 return; 1235 } 1236 (void)tc->tc_get_timecount(tc); 1237 timecounter = tc; 1238 } 1239 1240 /* Report the frequency of the current timecounter. */ 1241 uint64_t 1242 tc_getfrequency(void) 1243 { 1244 1245 return (timehands->th_counter->tc_frequency); 1246 } 1247 1248 static bool 1249 sleeping_on_old_rtc(struct thread *td) 1250 { 1251 1252 /* 1253 * td_rtcgen is modified by curthread when it is running, 1254 * and by other threads in this function. By finding the thread 1255 * on a sleepqueue and holding the lock on the sleepqueue 1256 * chain, we guarantee that the thread is not running and that 1257 * modifying td_rtcgen is safe. Setting td_rtcgen to zero informs 1258 * the thread that it was woken due to a real-time clock adjustment. 1259 * (The declaration of td_rtcgen refers to this comment.) 1260 */ 1261 if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) { 1262 td->td_rtcgen = 0; 1263 return (true); 1264 } 1265 return (false); 1266 } 1267 1268 static struct mtx tc_setclock_mtx; 1269 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN); 1270 1271 /* 1272 * Step our concept of UTC. This is done by modifying our estimate of 1273 * when we booted. 1274 */ 1275 void 1276 tc_setclock(struct timespec *ts) 1277 { 1278 struct timespec tbef, taft; 1279 struct bintime bt, bt2; 1280 1281 timespec2bintime(ts, &bt); 1282 nanotime(&tbef); 1283 mtx_lock_spin(&tc_setclock_mtx); 1284 cpu_tick_calibrate(1); 1285 binuptime(&bt2); 1286 bintime_sub(&bt, &bt2); 1287 1288 /* XXX fiddle all the little crinkly bits around the fiords... */ 1289 tc_windup(&bt); 1290 mtx_unlock_spin(&tc_setclock_mtx); 1291 1292 /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */ 1293 atomic_add_rel_int(&rtc_generation, 2); 1294 sleepq_chains_remove_matching(sleeping_on_old_rtc); 1295 if (timestepwarnings) { 1296 nanotime(&taft); 1297 log(LOG_INFO, 1298 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1299 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1300 (intmax_t)taft.tv_sec, taft.tv_nsec, 1301 (intmax_t)ts->tv_sec, ts->tv_nsec); 1302 } 1303 } 1304 1305 /* 1306 * Initialize the next struct timehands in the ring and make 1307 * it the active timehands. Along the way we might switch to a different 1308 * timecounter and/or do seconds processing in NTP. Slightly magic. 1309 */ 1310 static void 1311 tc_windup(struct bintime *new_boottimebin) 1312 { 1313 struct bintime bt; 1314 struct timehands *th, *tho; 1315 uint64_t scale; 1316 u_int delta, ncount, ogen; 1317 int i; 1318 time_t t; 1319 1320 /* 1321 * Make the next timehands a copy of the current one, but do 1322 * not overwrite the generation or next pointer. While we 1323 * update the contents, the generation must be zero. We need 1324 * to ensure that the zero generation is visible before the 1325 * data updates become visible, which requires release fence. 1326 * For similar reasons, re-reading of the generation after the 1327 * data is read should use acquire fence. 1328 */ 1329 tho = timehands; 1330 th = tho->th_next; 1331 ogen = th->th_generation; 1332 th->th_generation = 0; 1333 atomic_thread_fence_rel(); 1334 memcpy(th, tho, offsetof(struct timehands, th_generation)); 1335 if (new_boottimebin != NULL) 1336 th->th_boottime = *new_boottimebin; 1337 1338 /* 1339 * Capture a timecounter delta on the current timecounter and if 1340 * changing timecounters, a counter value from the new timecounter. 1341 * Update the offset fields accordingly. 1342 */ 1343 delta = tc_delta(th); 1344 if (th->th_counter != timecounter) 1345 ncount = timecounter->tc_get_timecount(timecounter); 1346 else 1347 ncount = 0; 1348 #ifdef FFCLOCK 1349 ffclock_windup(delta); 1350 #endif 1351 th->th_offset_count += delta; 1352 th->th_offset_count &= th->th_counter->tc_counter_mask; 1353 while (delta > th->th_counter->tc_frequency) { 1354 /* Eat complete unadjusted seconds. */ 1355 delta -= th->th_counter->tc_frequency; 1356 th->th_offset.sec++; 1357 } 1358 if ((delta > th->th_counter->tc_frequency / 2) && 1359 (th->th_scale * delta < ((uint64_t)1 << 63))) { 1360 /* The product th_scale * delta just barely overflows. */ 1361 th->th_offset.sec++; 1362 } 1363 bintime_addx(&th->th_offset, th->th_scale * delta); 1364 1365 /* 1366 * Hardware latching timecounters may not generate interrupts on 1367 * PPS events, so instead we poll them. There is a finite risk that 1368 * the hardware might capture a count which is later than the one we 1369 * got above, and therefore possibly in the next NTP second which might 1370 * have a different rate than the current NTP second. It doesn't 1371 * matter in practice. 1372 */ 1373 if (tho->th_counter->tc_poll_pps) 1374 tho->th_counter->tc_poll_pps(tho->th_counter); 1375 1376 /* 1377 * Deal with NTP second processing. The for loop normally 1378 * iterates at most once, but in extreme situations it might 1379 * keep NTP sane if timeouts are not run for several seconds. 1380 * At boot, the time step can be large when the TOD hardware 1381 * has been read, so on really large steps, we call 1382 * ntp_update_second only twice. We need to call it twice in 1383 * case we missed a leap second. 1384 */ 1385 bt = th->th_offset; 1386 bintime_add(&bt, &th->th_boottime); 1387 i = bt.sec - tho->th_microtime.tv_sec; 1388 if (i > LARGE_STEP) 1389 i = 2; 1390 for (; i > 0; i--) { 1391 t = bt.sec; 1392 ntp_update_second(&th->th_adjustment, &bt.sec); 1393 if (bt.sec != t) 1394 th->th_boottime.sec += bt.sec - t; 1395 } 1396 /* Update the UTC timestamps used by the get*() functions. */ 1397 th->th_bintime = bt; 1398 bintime2timeval(&bt, &th->th_microtime); 1399 bintime2timespec(&bt, &th->th_nanotime); 1400 1401 /* Now is a good time to change timecounters. */ 1402 if (th->th_counter != timecounter) { 1403 #ifndef __arm__ 1404 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0) 1405 cpu_disable_c2_sleep++; 1406 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 1407 cpu_disable_c2_sleep--; 1408 #endif 1409 th->th_counter = timecounter; 1410 th->th_offset_count = ncount; 1411 tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 1412 (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1413 #ifdef FFCLOCK 1414 ffclock_change_tc(th); 1415 #endif 1416 } 1417 1418 /*- 1419 * Recalculate the scaling factor. We want the number of 1/2^64 1420 * fractions of a second per period of the hardware counter, taking 1421 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1422 * processing provides us with. 1423 * 1424 * The th_adjustment is nanoseconds per second with 32 bit binary 1425 * fraction and we want 64 bit binary fraction of second: 1426 * 1427 * x = a * 2^32 / 10^9 = a * 4.294967296 1428 * 1429 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1430 * we can only multiply by about 850 without overflowing, that 1431 * leaves no suitably precise fractions for multiply before divide. 1432 * 1433 * Divide before multiply with a fraction of 2199/512 results in a 1434 * systematic undercompensation of 10PPM of th_adjustment. On a 1435 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1436 * 1437 * We happily sacrifice the lowest of the 64 bits of our result 1438 * to the goddess of code clarity. 1439 * 1440 */ 1441 scale = (uint64_t)1 << 63; 1442 scale += (th->th_adjustment / 1024) * 2199; 1443 scale /= th->th_counter->tc_frequency; 1444 th->th_scale = scale * 2; 1445 th->th_large_delta = MIN(((uint64_t)1 << 63) / scale, UINT_MAX); 1446 1447 /* 1448 * Now that the struct timehands is again consistent, set the new 1449 * generation number, making sure to not make it zero. 1450 */ 1451 if (++ogen == 0) 1452 ogen = 1; 1453 atomic_store_rel_int(&th->th_generation, ogen); 1454 1455 /* Go live with the new struct timehands. */ 1456 #ifdef FFCLOCK 1457 switch (sysclock_active) { 1458 case SYSCLOCK_FBCK: 1459 #endif 1460 time_second = th->th_microtime.tv_sec; 1461 time_uptime = th->th_offset.sec; 1462 #ifdef FFCLOCK 1463 break; 1464 case SYSCLOCK_FFWD: 1465 time_second = fftimehands->tick_time_lerp.sec; 1466 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1467 break; 1468 } 1469 #endif 1470 1471 timehands = th; 1472 timekeep_push_vdso(); 1473 } 1474 1475 /* Report or change the active timecounter hardware. */ 1476 static int 1477 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1478 { 1479 char newname[32]; 1480 struct timecounter *newtc, *tc; 1481 int error; 1482 1483 tc = timecounter; 1484 strlcpy(newname, tc->tc_name, sizeof(newname)); 1485 1486 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1487 if (error != 0 || req->newptr == NULL) 1488 return (error); 1489 /* Record that the tc in use now was specifically chosen. */ 1490 tc_chosen = 1; 1491 if (strcmp(newname, tc->tc_name) == 0) 1492 return (0); 1493 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1494 if (strcmp(newname, newtc->tc_name) != 0) 1495 continue; 1496 1497 /* Warm up new timecounter. */ 1498 (void)newtc->tc_get_timecount(newtc); 1499 1500 timecounter = newtc; 1501 1502 /* 1503 * The vdso timehands update is deferred until the next 1504 * 'tc_windup()'. 1505 * 1506 * This is prudent given that 'timekeep_push_vdso()' does not 1507 * use any locking and that it can be called in hard interrupt 1508 * context via 'tc_windup()'. 1509 */ 1510 return (0); 1511 } 1512 return (EINVAL); 1513 } 1514 1515 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, 1516 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 0, 0, 1517 sysctl_kern_timecounter_hardware, "A", 1518 "Timecounter hardware selected"); 1519 1520 /* Report the available timecounter hardware. */ 1521 static int 1522 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1523 { 1524 struct sbuf sb; 1525 struct timecounter *tc; 1526 int error; 1527 1528 sbuf_new_for_sysctl(&sb, NULL, 0, req); 1529 for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 1530 if (tc != timecounters) 1531 sbuf_putc(&sb, ' '); 1532 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality); 1533 } 1534 error = sbuf_finish(&sb); 1535 sbuf_delete(&sb); 1536 return (error); 1537 } 1538 1539 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, 1540 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, 1541 sysctl_kern_timecounter_choice, "A", 1542 "Timecounter hardware detected"); 1543 1544 /* 1545 * RFC 2783 PPS-API implementation. 1546 */ 1547 1548 /* 1549 * Return true if the driver is aware of the abi version extensions in the 1550 * pps_state structure, and it supports at least the given abi version number. 1551 */ 1552 static inline int 1553 abi_aware(struct pps_state *pps, int vers) 1554 { 1555 1556 return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers); 1557 } 1558 1559 static int 1560 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1561 { 1562 int err, timo; 1563 pps_seq_t aseq, cseq; 1564 struct timeval tv; 1565 1566 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1567 return (EINVAL); 1568 1569 /* 1570 * If no timeout is requested, immediately return whatever values were 1571 * most recently captured. If timeout seconds is -1, that's a request 1572 * to block without a timeout. WITNESS won't let us sleep forever 1573 * without a lock (we really don't need a lock), so just repeatedly 1574 * sleep a long time. 1575 */ 1576 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1577 if (fapi->timeout.tv_sec == -1) 1578 timo = 0x7fffffff; 1579 else { 1580 tv.tv_sec = fapi->timeout.tv_sec; 1581 tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1582 timo = tvtohz(&tv); 1583 } 1584 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence); 1585 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence); 1586 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) && 1587 cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) { 1588 if (abi_aware(pps, 1) && pps->driver_mtx != NULL) { 1589 if (pps->flags & PPSFLAG_MTX_SPIN) { 1590 err = msleep_spin(pps, pps->driver_mtx, 1591 "ppsfch", timo); 1592 } else { 1593 err = msleep(pps, pps->driver_mtx, PCATCH, 1594 "ppsfch", timo); 1595 } 1596 } else { 1597 err = tsleep(pps, PCATCH, "ppsfch", timo); 1598 } 1599 if (err == EWOULDBLOCK) { 1600 if (fapi->timeout.tv_sec == -1) { 1601 continue; 1602 } else { 1603 return (ETIMEDOUT); 1604 } 1605 } else if (err != 0) { 1606 return (err); 1607 } 1608 } 1609 } 1610 1611 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1612 fapi->pps_info_buf = pps->ppsinfo; 1613 1614 return (0); 1615 } 1616 1617 int 1618 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1619 { 1620 pps_params_t *app; 1621 struct pps_fetch_args *fapi; 1622 #ifdef FFCLOCK 1623 struct pps_fetch_ffc_args *fapi_ffc; 1624 #endif 1625 #ifdef PPS_SYNC 1626 struct pps_kcbind_args *kapi; 1627 #endif 1628 1629 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1630 switch (cmd) { 1631 case PPS_IOC_CREATE: 1632 return (0); 1633 case PPS_IOC_DESTROY: 1634 return (0); 1635 case PPS_IOC_SETPARAMS: 1636 app = (pps_params_t *)data; 1637 if (app->mode & ~pps->ppscap) 1638 return (EINVAL); 1639 #ifdef FFCLOCK 1640 /* Ensure only a single clock is selected for ffc timestamp. */ 1641 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1642 return (EINVAL); 1643 #endif 1644 pps->ppsparam = *app; 1645 return (0); 1646 case PPS_IOC_GETPARAMS: 1647 app = (pps_params_t *)data; 1648 *app = pps->ppsparam; 1649 app->api_version = PPS_API_VERS_1; 1650 return (0); 1651 case PPS_IOC_GETCAP: 1652 *(int*)data = pps->ppscap; 1653 return (0); 1654 case PPS_IOC_FETCH: 1655 fapi = (struct pps_fetch_args *)data; 1656 return (pps_fetch(fapi, pps)); 1657 #ifdef FFCLOCK 1658 case PPS_IOC_FETCH_FFCOUNTER: 1659 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1660 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1661 PPS_TSFMT_TSPEC) 1662 return (EINVAL); 1663 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1664 return (EOPNOTSUPP); 1665 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1666 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1667 /* Overwrite timestamps if feedback clock selected. */ 1668 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1669 case PPS_TSCLK_FBCK: 1670 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1671 pps->ppsinfo.assert_timestamp; 1672 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1673 pps->ppsinfo.clear_timestamp; 1674 break; 1675 case PPS_TSCLK_FFWD: 1676 break; 1677 default: 1678 break; 1679 } 1680 return (0); 1681 #endif /* FFCLOCK */ 1682 case PPS_IOC_KCBIND: 1683 #ifdef PPS_SYNC 1684 kapi = (struct pps_kcbind_args *)data; 1685 /* XXX Only root should be able to do this */ 1686 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1687 return (EINVAL); 1688 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1689 return (EINVAL); 1690 if (kapi->edge & ~pps->ppscap) 1691 return (EINVAL); 1692 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) | 1693 (pps->kcmode & KCMODE_ABIFLAG); 1694 return (0); 1695 #else 1696 return (EOPNOTSUPP); 1697 #endif 1698 default: 1699 return (ENOIOCTL); 1700 } 1701 } 1702 1703 void 1704 pps_init(struct pps_state *pps) 1705 { 1706 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1707 if (pps->ppscap & PPS_CAPTUREASSERT) 1708 pps->ppscap |= PPS_OFFSETASSERT; 1709 if (pps->ppscap & PPS_CAPTURECLEAR) 1710 pps->ppscap |= PPS_OFFSETCLEAR; 1711 #ifdef FFCLOCK 1712 pps->ppscap |= PPS_TSCLK_MASK; 1713 #endif 1714 pps->kcmode &= ~KCMODE_ABIFLAG; 1715 } 1716 1717 void 1718 pps_init_abi(struct pps_state *pps) 1719 { 1720 1721 pps_init(pps); 1722 if (pps->driver_abi > 0) { 1723 pps->kcmode |= KCMODE_ABIFLAG; 1724 pps->kernel_abi = PPS_ABI_VERSION; 1725 } 1726 } 1727 1728 void 1729 pps_capture(struct pps_state *pps) 1730 { 1731 struct timehands *th; 1732 1733 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1734 th = timehands; 1735 pps->capgen = atomic_load_acq_int(&th->th_generation); 1736 pps->capth = th; 1737 #ifdef FFCLOCK 1738 pps->capffth = fftimehands; 1739 #endif 1740 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1741 atomic_thread_fence_acq(); 1742 if (pps->capgen != th->th_generation) 1743 pps->capgen = 0; 1744 } 1745 1746 void 1747 pps_event(struct pps_state *pps, int event) 1748 { 1749 struct bintime bt; 1750 struct timespec ts, *tsp, *osp; 1751 u_int tcount, *pcount; 1752 int foff; 1753 pps_seq_t *pseq; 1754 #ifdef FFCLOCK 1755 struct timespec *tsp_ffc; 1756 pps_seq_t *pseq_ffc; 1757 ffcounter *ffcount; 1758 #endif 1759 #ifdef PPS_SYNC 1760 int fhard; 1761 #endif 1762 1763 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1764 /* Nothing to do if not currently set to capture this event type. */ 1765 if ((event & pps->ppsparam.mode) == 0) 1766 return; 1767 /* If the timecounter was wound up underneath us, bail out. */ 1768 if (pps->capgen == 0 || pps->capgen != 1769 atomic_load_acq_int(&pps->capth->th_generation)) 1770 return; 1771 1772 /* Things would be easier with arrays. */ 1773 if (event == PPS_CAPTUREASSERT) { 1774 tsp = &pps->ppsinfo.assert_timestamp; 1775 osp = &pps->ppsparam.assert_offset; 1776 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1777 #ifdef PPS_SYNC 1778 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1779 #endif 1780 pcount = &pps->ppscount[0]; 1781 pseq = &pps->ppsinfo.assert_sequence; 1782 #ifdef FFCLOCK 1783 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1784 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1785 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1786 #endif 1787 } else { 1788 tsp = &pps->ppsinfo.clear_timestamp; 1789 osp = &pps->ppsparam.clear_offset; 1790 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1791 #ifdef PPS_SYNC 1792 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1793 #endif 1794 pcount = &pps->ppscount[1]; 1795 pseq = &pps->ppsinfo.clear_sequence; 1796 #ifdef FFCLOCK 1797 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1798 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1799 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1800 #endif 1801 } 1802 1803 /* 1804 * If the timecounter changed, we cannot compare the count values, so 1805 * we have to drop the rest of the PPS-stuff until the next event. 1806 */ 1807 if (pps->ppstc != pps->capth->th_counter) { 1808 pps->ppstc = pps->capth->th_counter; 1809 *pcount = pps->capcount; 1810 pps->ppscount[2] = pps->capcount; 1811 return; 1812 } 1813 1814 /* Convert the count to a timespec. */ 1815 tcount = pps->capcount - pps->capth->th_offset_count; 1816 tcount &= pps->capth->th_counter->tc_counter_mask; 1817 bt = pps->capth->th_bintime; 1818 bintime_addx(&bt, pps->capth->th_scale * tcount); 1819 bintime2timespec(&bt, &ts); 1820 1821 /* If the timecounter was wound up underneath us, bail out. */ 1822 atomic_thread_fence_acq(); 1823 if (pps->capgen != pps->capth->th_generation) 1824 return; 1825 1826 *pcount = pps->capcount; 1827 (*pseq)++; 1828 *tsp = ts; 1829 1830 if (foff) { 1831 timespecadd(tsp, osp, tsp); 1832 if (tsp->tv_nsec < 0) { 1833 tsp->tv_nsec += 1000000000; 1834 tsp->tv_sec -= 1; 1835 } 1836 } 1837 1838 #ifdef FFCLOCK 1839 *ffcount = pps->capffth->tick_ffcount + tcount; 1840 bt = pps->capffth->tick_time; 1841 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1842 bintime_add(&bt, &pps->capffth->tick_time); 1843 bintime2timespec(&bt, &ts); 1844 (*pseq_ffc)++; 1845 *tsp_ffc = ts; 1846 #endif 1847 1848 #ifdef PPS_SYNC 1849 if (fhard) { 1850 uint64_t scale; 1851 1852 /* 1853 * Feed the NTP PLL/FLL. 1854 * The FLL wants to know how many (hardware) nanoseconds 1855 * elapsed since the previous event. 1856 */ 1857 tcount = pps->capcount - pps->ppscount[2]; 1858 pps->ppscount[2] = pps->capcount; 1859 tcount &= pps->capth->th_counter->tc_counter_mask; 1860 scale = (uint64_t)1 << 63; 1861 scale /= pps->capth->th_counter->tc_frequency; 1862 scale *= 2; 1863 bt.sec = 0; 1864 bt.frac = 0; 1865 bintime_addx(&bt, scale * tcount); 1866 bintime2timespec(&bt, &ts); 1867 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1868 } 1869 #endif 1870 1871 /* Wakeup anyone sleeping in pps_fetch(). */ 1872 wakeup(pps); 1873 } 1874 1875 /* 1876 * Timecounters need to be updated every so often to prevent the hardware 1877 * counter from overflowing. Updating also recalculates the cached values 1878 * used by the get*() family of functions, so their precision depends on 1879 * the update frequency. 1880 */ 1881 1882 static int tc_tick; 1883 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1884 "Approximate number of hardclock ticks in a millisecond"); 1885 1886 void 1887 tc_ticktock(int cnt) 1888 { 1889 static int count; 1890 1891 if (mtx_trylock_spin(&tc_setclock_mtx)) { 1892 count += cnt; 1893 if (count >= tc_tick) { 1894 count = 0; 1895 tc_windup(NULL); 1896 } 1897 mtx_unlock_spin(&tc_setclock_mtx); 1898 } 1899 } 1900 1901 static void __inline 1902 tc_adjprecision(void) 1903 { 1904 int t; 1905 1906 if (tc_timepercentage > 0) { 1907 t = (99 + tc_timepercentage) / tc_timepercentage; 1908 tc_precexp = fls(t + (t >> 1)) - 1; 1909 FREQ2BT(hz / tc_tick, &bt_timethreshold); 1910 FREQ2BT(hz, &bt_tickthreshold); 1911 bintime_shift(&bt_timethreshold, tc_precexp); 1912 bintime_shift(&bt_tickthreshold, tc_precexp); 1913 } else { 1914 tc_precexp = 31; 1915 bt_timethreshold.sec = INT_MAX; 1916 bt_timethreshold.frac = ~(uint64_t)0; 1917 bt_tickthreshold = bt_timethreshold; 1918 } 1919 sbt_timethreshold = bttosbt(bt_timethreshold); 1920 sbt_tickthreshold = bttosbt(bt_tickthreshold); 1921 } 1922 1923 static int 1924 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 1925 { 1926 int error, val; 1927 1928 val = tc_timepercentage; 1929 error = sysctl_handle_int(oidp, &val, 0, req); 1930 if (error != 0 || req->newptr == NULL) 1931 return (error); 1932 tc_timepercentage = val; 1933 if (cold) 1934 goto done; 1935 tc_adjprecision(); 1936 done: 1937 return (0); 1938 } 1939 1940 /* Set up the requested number of timehands. */ 1941 static void 1942 inittimehands(void *dummy) 1943 { 1944 struct timehands *thp; 1945 int i; 1946 1947 TUNABLE_INT_FETCH("kern.timecounter.timehands_count", 1948 &timehands_count); 1949 if (timehands_count < 1) 1950 timehands_count = 1; 1951 if (timehands_count > nitems(ths)) 1952 timehands_count = nitems(ths); 1953 for (i = 1, thp = &ths[0]; i < timehands_count; thp = &ths[i++]) 1954 thp->th_next = &ths[i]; 1955 thp->th_next = &ths[0]; 1956 1957 TUNABLE_STR_FETCH("kern.timecounter.hardware", tc_from_tunable, 1958 sizeof(tc_from_tunable)); 1959 } 1960 SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL); 1961 1962 static void 1963 inittimecounter(void *dummy) 1964 { 1965 u_int p; 1966 int tick_rate; 1967 1968 /* 1969 * Set the initial timeout to 1970 * max(1, <approx. number of hardclock ticks in a millisecond>). 1971 * People should probably not use the sysctl to set the timeout 1972 * to smaller than its initial value, since that value is the 1973 * smallest reasonable one. If they want better timestamps they 1974 * should use the non-"get"* functions. 1975 */ 1976 if (hz > 1000) 1977 tc_tick = (hz + 500) / 1000; 1978 else 1979 tc_tick = 1; 1980 tc_adjprecision(); 1981 FREQ2BT(hz, &tick_bt); 1982 tick_sbt = bttosbt(tick_bt); 1983 tick_rate = hz / tc_tick; 1984 FREQ2BT(tick_rate, &tc_tick_bt); 1985 tc_tick_sbt = bttosbt(tc_tick_bt); 1986 p = (tc_tick * 1000000) / hz; 1987 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 1988 1989 #ifdef FFCLOCK 1990 ffclock_init(); 1991 #endif 1992 1993 /* warm up new timecounter (again) and get rolling. */ 1994 (void)timecounter->tc_get_timecount(timecounter); 1995 mtx_lock_spin(&tc_setclock_mtx); 1996 tc_windup(NULL); 1997 mtx_unlock_spin(&tc_setclock_mtx); 1998 } 1999 2000 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 2001 2002 /* Cpu tick handling -------------------------------------------------*/ 2003 2004 static int cpu_tick_variable; 2005 static uint64_t cpu_tick_frequency; 2006 2007 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base); 2008 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last); 2009 2010 static uint64_t 2011 tc_cpu_ticks(void) 2012 { 2013 struct timecounter *tc; 2014 uint64_t res, *base; 2015 unsigned u, *last; 2016 2017 critical_enter(); 2018 base = DPCPU_PTR(tc_cpu_ticks_base); 2019 last = DPCPU_PTR(tc_cpu_ticks_last); 2020 tc = timehands->th_counter; 2021 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 2022 if (u < *last) 2023 *base += (uint64_t)tc->tc_counter_mask + 1; 2024 *last = u; 2025 res = u + *base; 2026 critical_exit(); 2027 return (res); 2028 } 2029 2030 void 2031 cpu_tick_calibration(void) 2032 { 2033 static time_t last_calib; 2034 2035 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 2036 cpu_tick_calibrate(0); 2037 last_calib = time_uptime; 2038 } 2039 } 2040 2041 /* 2042 * This function gets called every 16 seconds on only one designated 2043 * CPU in the system from hardclock() via cpu_tick_calibration()(). 2044 * 2045 * Whenever the real time clock is stepped we get called with reset=1 2046 * to make sure we handle suspend/resume and similar events correctly. 2047 */ 2048 2049 static void 2050 cpu_tick_calibrate(int reset) 2051 { 2052 static uint64_t c_last; 2053 uint64_t c_this, c_delta; 2054 static struct bintime t_last; 2055 struct bintime t_this, t_delta; 2056 uint32_t divi; 2057 2058 if (reset) { 2059 /* The clock was stepped, abort & reset */ 2060 t_last.sec = 0; 2061 return; 2062 } 2063 2064 /* we don't calibrate fixed rate cputicks */ 2065 if (!cpu_tick_variable) 2066 return; 2067 2068 getbinuptime(&t_this); 2069 c_this = cpu_ticks(); 2070 if (t_last.sec != 0) { 2071 c_delta = c_this - c_last; 2072 t_delta = t_this; 2073 bintime_sub(&t_delta, &t_last); 2074 /* 2075 * Headroom: 2076 * 2^(64-20) / 16[s] = 2077 * 2^(44) / 16[s] = 2078 * 17.592.186.044.416 / 16 = 2079 * 1.099.511.627.776 [Hz] 2080 */ 2081 divi = t_delta.sec << 20; 2082 divi |= t_delta.frac >> (64 - 20); 2083 c_delta <<= 20; 2084 c_delta /= divi; 2085 if (c_delta > cpu_tick_frequency) { 2086 if (0 && bootverbose) 2087 printf("cpu_tick increased to %ju Hz\n", 2088 c_delta); 2089 cpu_tick_frequency = c_delta; 2090 } 2091 } 2092 c_last = c_this; 2093 t_last = t_this; 2094 } 2095 2096 void 2097 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 2098 { 2099 2100 if (func == NULL) { 2101 cpu_ticks = tc_cpu_ticks; 2102 } else { 2103 cpu_tick_frequency = freq; 2104 cpu_tick_variable = var; 2105 cpu_ticks = func; 2106 } 2107 } 2108 2109 uint64_t 2110 cpu_tickrate(void) 2111 { 2112 2113 if (cpu_ticks == tc_cpu_ticks) 2114 return (tc_getfrequency()); 2115 return (cpu_tick_frequency); 2116 } 2117 2118 /* 2119 * We need to be slightly careful converting cputicks to microseconds. 2120 * There is plenty of margin in 64 bits of microseconds (half a million 2121 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 2122 * before divide conversion (to retain precision) we find that the 2123 * margin shrinks to 1.5 hours (one millionth of 146y). 2124 * With a three prong approach we never lose significant bits, no 2125 * matter what the cputick rate and length of timeinterval is. 2126 */ 2127 2128 uint64_t 2129 cputick2usec(uint64_t tick) 2130 { 2131 2132 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 2133 return (tick / (cpu_tickrate() / 1000000LL)); 2134 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 2135 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 2136 else 2137 return ((tick * 1000000LL) / cpu_tickrate()); 2138 } 2139 2140 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 2141 2142 static int vdso_th_enable = 1; 2143 static int 2144 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 2145 { 2146 int old_vdso_th_enable, error; 2147 2148 old_vdso_th_enable = vdso_th_enable; 2149 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 2150 if (error != 0) 2151 return (error); 2152 vdso_th_enable = old_vdso_th_enable; 2153 return (0); 2154 } 2155 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 2156 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 2157 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 2158 2159 uint32_t 2160 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2161 { 2162 struct timehands *th; 2163 uint32_t enabled; 2164 2165 th = timehands; 2166 vdso_th->th_scale = th->th_scale; 2167 vdso_th->th_offset_count = th->th_offset_count; 2168 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2169 vdso_th->th_offset = th->th_offset; 2170 vdso_th->th_boottime = th->th_boottime; 2171 if (th->th_counter->tc_fill_vdso_timehands != NULL) { 2172 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th, 2173 th->th_counter); 2174 } else 2175 enabled = 0; 2176 if (!vdso_th_enable) 2177 enabled = 0; 2178 return (enabled); 2179 } 2180 2181 #ifdef COMPAT_FREEBSD32 2182 uint32_t 2183 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2184 { 2185 struct timehands *th; 2186 uint32_t enabled; 2187 2188 th = timehands; 2189 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2190 vdso_th32->th_offset_count = th->th_offset_count; 2191 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2192 vdso_th32->th_offset.sec = th->th_offset.sec; 2193 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 2194 vdso_th32->th_boottime.sec = th->th_boottime.sec; 2195 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac; 2196 if (th->th_counter->tc_fill_vdso_timehands32 != NULL) { 2197 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32, 2198 th->th_counter); 2199 } else 2200 enabled = 0; 2201 if (!vdso_th_enable) 2202 enabled = 0; 2203 return (enabled); 2204 } 2205 #endif 2206 2207 #include "opt_ddb.h" 2208 #ifdef DDB 2209 #include <ddb/ddb.h> 2210 2211 DB_SHOW_COMMAND(timecounter, db_show_timecounter) 2212 { 2213 struct timehands *th; 2214 struct timecounter *tc; 2215 u_int val1, val2; 2216 2217 th = timehands; 2218 tc = th->th_counter; 2219 val1 = tc->tc_get_timecount(tc); 2220 __compiler_membar(); 2221 val2 = tc->tc_get_timecount(tc); 2222 2223 db_printf("timecounter %p %s\n", tc, tc->tc_name); 2224 db_printf(" mask %#x freq %ju qual %d flags %#x priv %p\n", 2225 tc->tc_counter_mask, (uintmax_t)tc->tc_frequency, tc->tc_quality, 2226 tc->tc_flags, tc->tc_priv); 2227 db_printf(" val %#x %#x\n", val1, val2); 2228 db_printf("timehands adj %#jx scale %#jx ldelta %d off_cnt %d gen %d\n", 2229 (uintmax_t)th->th_adjustment, (uintmax_t)th->th_scale, 2230 th->th_large_delta, th->th_offset_count, th->th_generation); 2231 db_printf(" offset %jd %jd boottime %jd %jd\n", 2232 (intmax_t)th->th_offset.sec, (uintmax_t)th->th_offset.frac, 2233 (intmax_t)th->th_boottime.sec, (uintmax_t)th->th_boottime.frac); 2234 } 2235 #endif 2236