1 /*- 2 * SPDX-License-Identifier: Beerware 3 * 4 * ---------------------------------------------------------------------------- 5 * "THE BEER-WARE LICENSE" (Revision 42): 6 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 7 * can do whatever you want with this stuff. If we meet some day, and you think 8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 9 * ---------------------------------------------------------------------------- 10 * 11 * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation 12 * All rights reserved. 13 * 14 * Portions of this software were developed by Julien Ridoux at the University 15 * of Melbourne under sponsorship from the FreeBSD Foundation. 16 * 17 * Portions of this software were developed by Konstantin Belousov 18 * under sponsorship from the FreeBSD Foundation. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include "opt_ntp.h" 25 #include "opt_ffclock.h" 26 27 #include <sys/param.h> 28 #include <sys/kernel.h> 29 #include <sys/limits.h> 30 #include <sys/lock.h> 31 #include <sys/mutex.h> 32 #include <sys/proc.h> 33 #include <sys/sbuf.h> 34 #include <sys/sleepqueue.h> 35 #include <sys/sysctl.h> 36 #include <sys/syslog.h> 37 #include <sys/systm.h> 38 #include <sys/timeffc.h> 39 #include <sys/timepps.h> 40 #include <sys/timetc.h> 41 #include <sys/timex.h> 42 #include <sys/vdso.h> 43 44 /* 45 * A large step happens on boot. This constant detects such steps. 46 * It is relatively small so that ntp_update_second gets called enough 47 * in the typical 'missed a couple of seconds' case, but doesn't loop 48 * forever when the time step is large. 49 */ 50 #define LARGE_STEP 200 51 52 /* 53 * Implement a dummy timecounter which we can use until we get a real one 54 * in the air. This allows the console and other early stuff to use 55 * time services. 56 */ 57 58 static u_int 59 dummy_get_timecount(struct timecounter *tc) 60 { 61 static u_int now; 62 63 return (++now); 64 } 65 66 static struct timecounter dummy_timecounter = { 67 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 68 }; 69 70 struct timehands { 71 /* These fields must be initialized by the driver. */ 72 struct timecounter *th_counter; 73 int64_t th_adjustment; 74 uint64_t th_scale; 75 u_int th_offset_count; 76 struct bintime th_offset; 77 struct bintime th_bintime; 78 struct timeval th_microtime; 79 struct timespec th_nanotime; 80 struct bintime th_boottime; 81 /* Fields not to be copied in tc_windup start with th_generation. */ 82 u_int th_generation; 83 struct timehands *th_next; 84 }; 85 86 static struct timehands th0; 87 static struct timehands th1 = { 88 .th_next = &th0 89 }; 90 static struct timehands th0 = { 91 .th_counter = &dummy_timecounter, 92 .th_scale = (uint64_t)-1 / 1000000, 93 .th_offset = { .sec = 1 }, 94 .th_generation = 1, 95 .th_next = &th1 96 }; 97 98 static struct timehands *volatile timehands = &th0; 99 struct timecounter *timecounter = &dummy_timecounter; 100 static struct timecounter *timecounters = &dummy_timecounter; 101 102 int tc_min_ticktock_freq = 1; 103 104 volatile time_t time_second = 1; 105 volatile time_t time_uptime = 1; 106 107 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 108 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD, 109 NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime"); 110 111 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, ""); 112 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, ""); 113 114 static int timestepwarnings; 115 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW, 116 ×tepwarnings, 0, "Log time steps"); 117 118 struct bintime bt_timethreshold; 119 struct bintime bt_tickthreshold; 120 sbintime_t sbt_timethreshold; 121 sbintime_t sbt_tickthreshold; 122 struct bintime tc_tick_bt; 123 sbintime_t tc_tick_sbt; 124 int tc_precexp; 125 int tc_timepercentage = TC_DEFAULTPERC; 126 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 127 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 128 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 129 sysctl_kern_timecounter_adjprecision, "I", 130 "Allowed time interval deviation in percents"); 131 132 volatile int rtc_generation = 1; 133 134 static int tc_chosen; /* Non-zero if a specific tc was chosen via sysctl. */ 135 136 static void tc_windup(struct bintime *new_boottimebin); 137 static void cpu_tick_calibrate(int); 138 139 void dtrace_getnanotime(struct timespec *tsp); 140 141 static int 142 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 143 { 144 struct timeval boottime; 145 146 getboottime(&boottime); 147 148 #ifndef __mips__ 149 #ifdef SCTL_MASK32 150 int tv[2]; 151 152 if (req->flags & SCTL_MASK32) { 153 tv[0] = boottime.tv_sec; 154 tv[1] = boottime.tv_usec; 155 return (SYSCTL_OUT(req, tv, sizeof(tv))); 156 } 157 #endif 158 #endif 159 return (SYSCTL_OUT(req, &boottime, sizeof(boottime))); 160 } 161 162 static int 163 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 164 { 165 u_int ncount; 166 struct timecounter *tc = arg1; 167 168 ncount = tc->tc_get_timecount(tc); 169 return (sysctl_handle_int(oidp, &ncount, 0, req)); 170 } 171 172 static int 173 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 174 { 175 uint64_t freq; 176 struct timecounter *tc = arg1; 177 178 freq = tc->tc_frequency; 179 return (sysctl_handle_64(oidp, &freq, 0, req)); 180 } 181 182 /* 183 * Return the difference between the timehands' counter value now and what 184 * was when we copied it to the timehands' offset_count. 185 */ 186 static __inline u_int 187 tc_delta(struct timehands *th) 188 { 189 struct timecounter *tc; 190 191 tc = th->th_counter; 192 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 193 tc->tc_counter_mask); 194 } 195 196 /* 197 * Functions for reading the time. We have to loop until we are sure that 198 * the timehands that we operated on was not updated under our feet. See 199 * the comment in <sys/time.h> for a description of these 12 functions. 200 */ 201 202 #ifdef FFCLOCK 203 void 204 fbclock_binuptime(struct bintime *bt) 205 { 206 struct timehands *th; 207 unsigned int gen; 208 209 do { 210 th = timehands; 211 gen = atomic_load_acq_int(&th->th_generation); 212 *bt = th->th_offset; 213 bintime_addx(bt, th->th_scale * tc_delta(th)); 214 atomic_thread_fence_acq(); 215 } while (gen == 0 || gen != th->th_generation); 216 } 217 218 void 219 fbclock_nanouptime(struct timespec *tsp) 220 { 221 struct bintime bt; 222 223 fbclock_binuptime(&bt); 224 bintime2timespec(&bt, tsp); 225 } 226 227 void 228 fbclock_microuptime(struct timeval *tvp) 229 { 230 struct bintime bt; 231 232 fbclock_binuptime(&bt); 233 bintime2timeval(&bt, tvp); 234 } 235 236 void 237 fbclock_bintime(struct bintime *bt) 238 { 239 struct timehands *th; 240 unsigned int gen; 241 242 do { 243 th = timehands; 244 gen = atomic_load_acq_int(&th->th_generation); 245 *bt = th->th_bintime; 246 bintime_addx(bt, th->th_scale * tc_delta(th)); 247 atomic_thread_fence_acq(); 248 } while (gen == 0 || gen != th->th_generation); 249 } 250 251 void 252 fbclock_nanotime(struct timespec *tsp) 253 { 254 struct bintime bt; 255 256 fbclock_bintime(&bt); 257 bintime2timespec(&bt, tsp); 258 } 259 260 void 261 fbclock_microtime(struct timeval *tvp) 262 { 263 struct bintime bt; 264 265 fbclock_bintime(&bt); 266 bintime2timeval(&bt, tvp); 267 } 268 269 void 270 fbclock_getbinuptime(struct bintime *bt) 271 { 272 struct timehands *th; 273 unsigned int gen; 274 275 do { 276 th = timehands; 277 gen = atomic_load_acq_int(&th->th_generation); 278 *bt = th->th_offset; 279 atomic_thread_fence_acq(); 280 } while (gen == 0 || gen != th->th_generation); 281 } 282 283 void 284 fbclock_getnanouptime(struct timespec *tsp) 285 { 286 struct timehands *th; 287 unsigned int gen; 288 289 do { 290 th = timehands; 291 gen = atomic_load_acq_int(&th->th_generation); 292 bintime2timespec(&th->th_offset, tsp); 293 atomic_thread_fence_acq(); 294 } while (gen == 0 || gen != th->th_generation); 295 } 296 297 void 298 fbclock_getmicrouptime(struct timeval *tvp) 299 { 300 struct timehands *th; 301 unsigned int gen; 302 303 do { 304 th = timehands; 305 gen = atomic_load_acq_int(&th->th_generation); 306 bintime2timeval(&th->th_offset, tvp); 307 atomic_thread_fence_acq(); 308 } while (gen == 0 || gen != th->th_generation); 309 } 310 311 void 312 fbclock_getbintime(struct bintime *bt) 313 { 314 struct timehands *th; 315 unsigned int gen; 316 317 do { 318 th = timehands; 319 gen = atomic_load_acq_int(&th->th_generation); 320 *bt = th->th_bintime; 321 atomic_thread_fence_acq(); 322 } while (gen == 0 || gen != th->th_generation); 323 } 324 325 void 326 fbclock_getnanotime(struct timespec *tsp) 327 { 328 struct timehands *th; 329 unsigned int gen; 330 331 do { 332 th = timehands; 333 gen = atomic_load_acq_int(&th->th_generation); 334 *tsp = th->th_nanotime; 335 atomic_thread_fence_acq(); 336 } while (gen == 0 || gen != th->th_generation); 337 } 338 339 void 340 fbclock_getmicrotime(struct timeval *tvp) 341 { 342 struct timehands *th; 343 unsigned int gen; 344 345 do { 346 th = timehands; 347 gen = atomic_load_acq_int(&th->th_generation); 348 *tvp = th->th_microtime; 349 atomic_thread_fence_acq(); 350 } while (gen == 0 || gen != th->th_generation); 351 } 352 #else /* !FFCLOCK */ 353 void 354 binuptime(struct bintime *bt) 355 { 356 struct timehands *th; 357 u_int gen; 358 359 do { 360 th = timehands; 361 gen = atomic_load_acq_int(&th->th_generation); 362 *bt = th->th_offset; 363 bintime_addx(bt, th->th_scale * tc_delta(th)); 364 atomic_thread_fence_acq(); 365 } while (gen == 0 || gen != th->th_generation); 366 } 367 368 void 369 nanouptime(struct timespec *tsp) 370 { 371 struct bintime bt; 372 373 binuptime(&bt); 374 bintime2timespec(&bt, tsp); 375 } 376 377 void 378 microuptime(struct timeval *tvp) 379 { 380 struct bintime bt; 381 382 binuptime(&bt); 383 bintime2timeval(&bt, tvp); 384 } 385 386 void 387 bintime(struct bintime *bt) 388 { 389 struct timehands *th; 390 u_int gen; 391 392 do { 393 th = timehands; 394 gen = atomic_load_acq_int(&th->th_generation); 395 *bt = th->th_bintime; 396 bintime_addx(bt, th->th_scale * tc_delta(th)); 397 atomic_thread_fence_acq(); 398 } while (gen == 0 || gen != th->th_generation); 399 } 400 401 void 402 nanotime(struct timespec *tsp) 403 { 404 struct bintime bt; 405 406 bintime(&bt); 407 bintime2timespec(&bt, tsp); 408 } 409 410 void 411 microtime(struct timeval *tvp) 412 { 413 struct bintime bt; 414 415 bintime(&bt); 416 bintime2timeval(&bt, tvp); 417 } 418 419 void 420 getbinuptime(struct bintime *bt) 421 { 422 struct timehands *th; 423 u_int gen; 424 425 do { 426 th = timehands; 427 gen = atomic_load_acq_int(&th->th_generation); 428 *bt = th->th_offset; 429 atomic_thread_fence_acq(); 430 } while (gen == 0 || gen != th->th_generation); 431 } 432 433 void 434 getnanouptime(struct timespec *tsp) 435 { 436 struct timehands *th; 437 u_int gen; 438 439 do { 440 th = timehands; 441 gen = atomic_load_acq_int(&th->th_generation); 442 bintime2timespec(&th->th_offset, tsp); 443 atomic_thread_fence_acq(); 444 } while (gen == 0 || gen != th->th_generation); 445 } 446 447 void 448 getmicrouptime(struct timeval *tvp) 449 { 450 struct timehands *th; 451 u_int gen; 452 453 do { 454 th = timehands; 455 gen = atomic_load_acq_int(&th->th_generation); 456 bintime2timeval(&th->th_offset, tvp); 457 atomic_thread_fence_acq(); 458 } while (gen == 0 || gen != th->th_generation); 459 } 460 461 void 462 getbintime(struct bintime *bt) 463 { 464 struct timehands *th; 465 u_int gen; 466 467 do { 468 th = timehands; 469 gen = atomic_load_acq_int(&th->th_generation); 470 *bt = th->th_bintime; 471 atomic_thread_fence_acq(); 472 } while (gen == 0 || gen != th->th_generation); 473 } 474 475 void 476 getnanotime(struct timespec *tsp) 477 { 478 struct timehands *th; 479 u_int gen; 480 481 do { 482 th = timehands; 483 gen = atomic_load_acq_int(&th->th_generation); 484 *tsp = th->th_nanotime; 485 atomic_thread_fence_acq(); 486 } while (gen == 0 || gen != th->th_generation); 487 } 488 489 void 490 getmicrotime(struct timeval *tvp) 491 { 492 struct timehands *th; 493 u_int gen; 494 495 do { 496 th = timehands; 497 gen = atomic_load_acq_int(&th->th_generation); 498 *tvp = th->th_microtime; 499 atomic_thread_fence_acq(); 500 } while (gen == 0 || gen != th->th_generation); 501 } 502 #endif /* FFCLOCK */ 503 504 void 505 getboottime(struct timeval *boottime) 506 { 507 struct bintime boottimebin; 508 509 getboottimebin(&boottimebin); 510 bintime2timeval(&boottimebin, boottime); 511 } 512 513 void 514 getboottimebin(struct bintime *boottimebin) 515 { 516 struct timehands *th; 517 u_int gen; 518 519 do { 520 th = timehands; 521 gen = atomic_load_acq_int(&th->th_generation); 522 *boottimebin = th->th_boottime; 523 atomic_thread_fence_acq(); 524 } while (gen == 0 || gen != th->th_generation); 525 } 526 527 #ifdef FFCLOCK 528 /* 529 * Support for feed-forward synchronization algorithms. This is heavily inspired 530 * by the timehands mechanism but kept independent from it. *_windup() functions 531 * have some connection to avoid accessing the timecounter hardware more than 532 * necessary. 533 */ 534 535 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 536 struct ffclock_estimate ffclock_estimate; 537 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 538 uint32_t ffclock_status; /* Feed-forward clock status. */ 539 int8_t ffclock_updated; /* New estimates are available. */ 540 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 541 542 struct fftimehands { 543 struct ffclock_estimate cest; 544 struct bintime tick_time; 545 struct bintime tick_time_lerp; 546 ffcounter tick_ffcount; 547 uint64_t period_lerp; 548 volatile uint8_t gen; 549 struct fftimehands *next; 550 }; 551 552 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 553 554 static struct fftimehands ffth[10]; 555 static struct fftimehands *volatile fftimehands = ffth; 556 557 static void 558 ffclock_init(void) 559 { 560 struct fftimehands *cur; 561 struct fftimehands *last; 562 563 memset(ffth, 0, sizeof(ffth)); 564 565 last = ffth + NUM_ELEMENTS(ffth) - 1; 566 for (cur = ffth; cur < last; cur++) 567 cur->next = cur + 1; 568 last->next = ffth; 569 570 ffclock_updated = 0; 571 ffclock_status = FFCLOCK_STA_UNSYNC; 572 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 573 } 574 575 /* 576 * Reset the feed-forward clock estimates. Called from inittodr() to get things 577 * kick started and uses the timecounter nominal frequency as a first period 578 * estimate. Note: this function may be called several time just after boot. 579 * Note: this is the only function that sets the value of boot time for the 580 * monotonic (i.e. uptime) version of the feed-forward clock. 581 */ 582 void 583 ffclock_reset_clock(struct timespec *ts) 584 { 585 struct timecounter *tc; 586 struct ffclock_estimate cest; 587 588 tc = timehands->th_counter; 589 memset(&cest, 0, sizeof(struct ffclock_estimate)); 590 591 timespec2bintime(ts, &ffclock_boottime); 592 timespec2bintime(ts, &(cest.update_time)); 593 ffclock_read_counter(&cest.update_ffcount); 594 cest.leapsec_next = 0; 595 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 596 cest.errb_abs = 0; 597 cest.errb_rate = 0; 598 cest.status = FFCLOCK_STA_UNSYNC; 599 cest.leapsec_total = 0; 600 cest.leapsec = 0; 601 602 mtx_lock(&ffclock_mtx); 603 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 604 ffclock_updated = INT8_MAX; 605 mtx_unlock(&ffclock_mtx); 606 607 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 608 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 609 (unsigned long)ts->tv_nsec); 610 } 611 612 /* 613 * Sub-routine to convert a time interval measured in RAW counter units to time 614 * in seconds stored in bintime format. 615 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 616 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 617 * extra cycles. 618 */ 619 static void 620 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 621 { 622 struct bintime bt2; 623 ffcounter delta, delta_max; 624 625 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 626 bintime_clear(bt); 627 do { 628 if (ffdelta > delta_max) 629 delta = delta_max; 630 else 631 delta = ffdelta; 632 bt2.sec = 0; 633 bt2.frac = period; 634 bintime_mul(&bt2, (unsigned int)delta); 635 bintime_add(bt, &bt2); 636 ffdelta -= delta; 637 } while (ffdelta > 0); 638 } 639 640 /* 641 * Update the fftimehands. 642 * Push the tick ffcount and time(s) forward based on current clock estimate. 643 * The conversion from ffcounter to bintime relies on the difference clock 644 * principle, whose accuracy relies on computing small time intervals. If a new 645 * clock estimate has been passed by the synchronisation daemon, make it 646 * current, and compute the linear interpolation for monotonic time if needed. 647 */ 648 static void 649 ffclock_windup(unsigned int delta) 650 { 651 struct ffclock_estimate *cest; 652 struct fftimehands *ffth; 653 struct bintime bt, gap_lerp; 654 ffcounter ffdelta; 655 uint64_t frac; 656 unsigned int polling; 657 uint8_t forward_jump, ogen; 658 659 /* 660 * Pick the next timehand, copy current ffclock estimates and move tick 661 * times and counter forward. 662 */ 663 forward_jump = 0; 664 ffth = fftimehands->next; 665 ogen = ffth->gen; 666 ffth->gen = 0; 667 cest = &ffth->cest; 668 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 669 ffdelta = (ffcounter)delta; 670 ffth->period_lerp = fftimehands->period_lerp; 671 672 ffth->tick_time = fftimehands->tick_time; 673 ffclock_convert_delta(ffdelta, cest->period, &bt); 674 bintime_add(&ffth->tick_time, &bt); 675 676 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 677 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 678 bintime_add(&ffth->tick_time_lerp, &bt); 679 680 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 681 682 /* 683 * Assess the status of the clock, if the last update is too old, it is 684 * likely the synchronisation daemon is dead and the clock is free 685 * running. 686 */ 687 if (ffclock_updated == 0) { 688 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 689 ffclock_convert_delta(ffdelta, cest->period, &bt); 690 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 691 ffclock_status |= FFCLOCK_STA_UNSYNC; 692 } 693 694 /* 695 * If available, grab updated clock estimates and make them current. 696 * Recompute time at this tick using the updated estimates. The clock 697 * estimates passed the feed-forward synchronisation daemon may result 698 * in time conversion that is not monotonically increasing (just after 699 * the update). time_lerp is a particular linear interpolation over the 700 * synchronisation algo polling period that ensures monotonicity for the 701 * clock ids requesting it. 702 */ 703 if (ffclock_updated > 0) { 704 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 705 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 706 ffth->tick_time = cest->update_time; 707 ffclock_convert_delta(ffdelta, cest->period, &bt); 708 bintime_add(&ffth->tick_time, &bt); 709 710 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 711 if (ffclock_updated == INT8_MAX) 712 ffth->tick_time_lerp = ffth->tick_time; 713 714 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 715 forward_jump = 1; 716 else 717 forward_jump = 0; 718 719 bintime_clear(&gap_lerp); 720 if (forward_jump) { 721 gap_lerp = ffth->tick_time; 722 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 723 } else { 724 gap_lerp = ffth->tick_time_lerp; 725 bintime_sub(&gap_lerp, &ffth->tick_time); 726 } 727 728 /* 729 * The reset from the RTC clock may be far from accurate, and 730 * reducing the gap between real time and interpolated time 731 * could take a very long time if the interpolated clock insists 732 * on strict monotonicity. The clock is reset under very strict 733 * conditions (kernel time is known to be wrong and 734 * synchronization daemon has been restarted recently. 735 * ffclock_boottime absorbs the jump to ensure boot time is 736 * correct and uptime functions stay consistent. 737 */ 738 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 739 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 740 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 741 if (forward_jump) 742 bintime_add(&ffclock_boottime, &gap_lerp); 743 else 744 bintime_sub(&ffclock_boottime, &gap_lerp); 745 ffth->tick_time_lerp = ffth->tick_time; 746 bintime_clear(&gap_lerp); 747 } 748 749 ffclock_status = cest->status; 750 ffth->period_lerp = cest->period; 751 752 /* 753 * Compute corrected period used for the linear interpolation of 754 * time. The rate of linear interpolation is capped to 5000PPM 755 * (5ms/s). 756 */ 757 if (bintime_isset(&gap_lerp)) { 758 ffdelta = cest->update_ffcount; 759 ffdelta -= fftimehands->cest.update_ffcount; 760 ffclock_convert_delta(ffdelta, cest->period, &bt); 761 polling = bt.sec; 762 bt.sec = 0; 763 bt.frac = 5000000 * (uint64_t)18446744073LL; 764 bintime_mul(&bt, polling); 765 if (bintime_cmp(&gap_lerp, &bt, >)) 766 gap_lerp = bt; 767 768 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 769 frac = 0; 770 if (gap_lerp.sec > 0) { 771 frac -= 1; 772 frac /= ffdelta / gap_lerp.sec; 773 } 774 frac += gap_lerp.frac / ffdelta; 775 776 if (forward_jump) 777 ffth->period_lerp += frac; 778 else 779 ffth->period_lerp -= frac; 780 } 781 782 ffclock_updated = 0; 783 } 784 if (++ogen == 0) 785 ogen = 1; 786 ffth->gen = ogen; 787 fftimehands = ffth; 788 } 789 790 /* 791 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 792 * the old and new hardware counter cannot be read simultaneously. tc_windup() 793 * does read the two counters 'back to back', but a few cycles are effectively 794 * lost, and not accumulated in tick_ffcount. This is a fairly radical 795 * operation for a feed-forward synchronization daemon, and it is its job to not 796 * pushing irrelevant data to the kernel. Because there is no locking here, 797 * simply force to ignore pending or next update to give daemon a chance to 798 * realize the counter has changed. 799 */ 800 static void 801 ffclock_change_tc(struct timehands *th) 802 { 803 struct fftimehands *ffth; 804 struct ffclock_estimate *cest; 805 struct timecounter *tc; 806 uint8_t ogen; 807 808 tc = th->th_counter; 809 ffth = fftimehands->next; 810 ogen = ffth->gen; 811 ffth->gen = 0; 812 813 cest = &ffth->cest; 814 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 815 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 816 cest->errb_abs = 0; 817 cest->errb_rate = 0; 818 cest->status |= FFCLOCK_STA_UNSYNC; 819 820 ffth->tick_ffcount = fftimehands->tick_ffcount; 821 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 822 ffth->tick_time = fftimehands->tick_time; 823 ffth->period_lerp = cest->period; 824 825 /* Do not lock but ignore next update from synchronization daemon. */ 826 ffclock_updated--; 827 828 if (++ogen == 0) 829 ogen = 1; 830 ffth->gen = ogen; 831 fftimehands = ffth; 832 } 833 834 /* 835 * Retrieve feed-forward counter and time of last kernel tick. 836 */ 837 void 838 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 839 { 840 struct fftimehands *ffth; 841 uint8_t gen; 842 843 /* 844 * No locking but check generation has not changed. Also need to make 845 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 846 */ 847 do { 848 ffth = fftimehands; 849 gen = ffth->gen; 850 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 851 *bt = ffth->tick_time_lerp; 852 else 853 *bt = ffth->tick_time; 854 *ffcount = ffth->tick_ffcount; 855 } while (gen == 0 || gen != ffth->gen); 856 } 857 858 /* 859 * Absolute clock conversion. Low level function to convert ffcounter to 860 * bintime. The ffcounter is converted using the current ffclock period estimate 861 * or the "interpolated period" to ensure monotonicity. 862 * NOTE: this conversion may have been deferred, and the clock updated since the 863 * hardware counter has been read. 864 */ 865 void 866 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 867 { 868 struct fftimehands *ffth; 869 struct bintime bt2; 870 ffcounter ffdelta; 871 uint8_t gen; 872 873 /* 874 * No locking but check generation has not changed. Also need to make 875 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 876 */ 877 do { 878 ffth = fftimehands; 879 gen = ffth->gen; 880 if (ffcount > ffth->tick_ffcount) 881 ffdelta = ffcount - ffth->tick_ffcount; 882 else 883 ffdelta = ffth->tick_ffcount - ffcount; 884 885 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 886 *bt = ffth->tick_time_lerp; 887 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 888 } else { 889 *bt = ffth->tick_time; 890 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 891 } 892 893 if (ffcount > ffth->tick_ffcount) 894 bintime_add(bt, &bt2); 895 else 896 bintime_sub(bt, &bt2); 897 } while (gen == 0 || gen != ffth->gen); 898 } 899 900 /* 901 * Difference clock conversion. 902 * Low level function to Convert a time interval measured in RAW counter units 903 * into bintime. The difference clock allows measuring small intervals much more 904 * reliably than the absolute clock. 905 */ 906 void 907 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 908 { 909 struct fftimehands *ffth; 910 uint8_t gen; 911 912 /* No locking but check generation has not changed. */ 913 do { 914 ffth = fftimehands; 915 gen = ffth->gen; 916 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 917 } while (gen == 0 || gen != ffth->gen); 918 } 919 920 /* 921 * Access to current ffcounter value. 922 */ 923 void 924 ffclock_read_counter(ffcounter *ffcount) 925 { 926 struct timehands *th; 927 struct fftimehands *ffth; 928 unsigned int gen, delta; 929 930 /* 931 * ffclock_windup() called from tc_windup(), safe to rely on 932 * th->th_generation only, for correct delta and ffcounter. 933 */ 934 do { 935 th = timehands; 936 gen = atomic_load_acq_int(&th->th_generation); 937 ffth = fftimehands; 938 delta = tc_delta(th); 939 *ffcount = ffth->tick_ffcount; 940 atomic_thread_fence_acq(); 941 } while (gen == 0 || gen != th->th_generation); 942 943 *ffcount += delta; 944 } 945 946 void 947 binuptime(struct bintime *bt) 948 { 949 950 binuptime_fromclock(bt, sysclock_active); 951 } 952 953 void 954 nanouptime(struct timespec *tsp) 955 { 956 957 nanouptime_fromclock(tsp, sysclock_active); 958 } 959 960 void 961 microuptime(struct timeval *tvp) 962 { 963 964 microuptime_fromclock(tvp, sysclock_active); 965 } 966 967 void 968 bintime(struct bintime *bt) 969 { 970 971 bintime_fromclock(bt, sysclock_active); 972 } 973 974 void 975 nanotime(struct timespec *tsp) 976 { 977 978 nanotime_fromclock(tsp, sysclock_active); 979 } 980 981 void 982 microtime(struct timeval *tvp) 983 { 984 985 microtime_fromclock(tvp, sysclock_active); 986 } 987 988 void 989 getbinuptime(struct bintime *bt) 990 { 991 992 getbinuptime_fromclock(bt, sysclock_active); 993 } 994 995 void 996 getnanouptime(struct timespec *tsp) 997 { 998 999 getnanouptime_fromclock(tsp, sysclock_active); 1000 } 1001 1002 void 1003 getmicrouptime(struct timeval *tvp) 1004 { 1005 1006 getmicrouptime_fromclock(tvp, sysclock_active); 1007 } 1008 1009 void 1010 getbintime(struct bintime *bt) 1011 { 1012 1013 getbintime_fromclock(bt, sysclock_active); 1014 } 1015 1016 void 1017 getnanotime(struct timespec *tsp) 1018 { 1019 1020 getnanotime_fromclock(tsp, sysclock_active); 1021 } 1022 1023 void 1024 getmicrotime(struct timeval *tvp) 1025 { 1026 1027 getmicrouptime_fromclock(tvp, sysclock_active); 1028 } 1029 1030 #endif /* FFCLOCK */ 1031 1032 /* 1033 * This is a clone of getnanotime and used for walltimestamps. 1034 * The dtrace_ prefix prevents fbt from creating probes for 1035 * it so walltimestamp can be safely used in all fbt probes. 1036 */ 1037 void 1038 dtrace_getnanotime(struct timespec *tsp) 1039 { 1040 struct timehands *th; 1041 u_int gen; 1042 1043 do { 1044 th = timehands; 1045 gen = atomic_load_acq_int(&th->th_generation); 1046 *tsp = th->th_nanotime; 1047 atomic_thread_fence_acq(); 1048 } while (gen == 0 || gen != th->th_generation); 1049 } 1050 1051 /* 1052 * System clock currently providing time to the system. Modifiable via sysctl 1053 * when the FFCLOCK option is defined. 1054 */ 1055 int sysclock_active = SYSCLOCK_FBCK; 1056 1057 /* Internal NTP status and error estimates. */ 1058 extern int time_status; 1059 extern long time_esterror; 1060 1061 /* 1062 * Take a snapshot of sysclock data which can be used to compare system clocks 1063 * and generate timestamps after the fact. 1064 */ 1065 void 1066 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 1067 { 1068 struct fbclock_info *fbi; 1069 struct timehands *th; 1070 struct bintime bt; 1071 unsigned int delta, gen; 1072 #ifdef FFCLOCK 1073 ffcounter ffcount; 1074 struct fftimehands *ffth; 1075 struct ffclock_info *ffi; 1076 struct ffclock_estimate cest; 1077 1078 ffi = &clock_snap->ff_info; 1079 #endif 1080 1081 fbi = &clock_snap->fb_info; 1082 delta = 0; 1083 1084 do { 1085 th = timehands; 1086 gen = atomic_load_acq_int(&th->th_generation); 1087 fbi->th_scale = th->th_scale; 1088 fbi->tick_time = th->th_offset; 1089 #ifdef FFCLOCK 1090 ffth = fftimehands; 1091 ffi->tick_time = ffth->tick_time_lerp; 1092 ffi->tick_time_lerp = ffth->tick_time_lerp; 1093 ffi->period = ffth->cest.period; 1094 ffi->period_lerp = ffth->period_lerp; 1095 clock_snap->ffcount = ffth->tick_ffcount; 1096 cest = ffth->cest; 1097 #endif 1098 if (!fast) 1099 delta = tc_delta(th); 1100 atomic_thread_fence_acq(); 1101 } while (gen == 0 || gen != th->th_generation); 1102 1103 clock_snap->delta = delta; 1104 clock_snap->sysclock_active = sysclock_active; 1105 1106 /* Record feedback clock status and error. */ 1107 clock_snap->fb_info.status = time_status; 1108 /* XXX: Very crude estimate of feedback clock error. */ 1109 bt.sec = time_esterror / 1000000; 1110 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1111 (uint64_t)18446744073709ULL; 1112 clock_snap->fb_info.error = bt; 1113 1114 #ifdef FFCLOCK 1115 if (!fast) 1116 clock_snap->ffcount += delta; 1117 1118 /* Record feed-forward clock leap second adjustment. */ 1119 ffi->leapsec_adjustment = cest.leapsec_total; 1120 if (clock_snap->ffcount > cest.leapsec_next) 1121 ffi->leapsec_adjustment -= cest.leapsec; 1122 1123 /* Record feed-forward clock status and error. */ 1124 clock_snap->ff_info.status = cest.status; 1125 ffcount = clock_snap->ffcount - cest.update_ffcount; 1126 ffclock_convert_delta(ffcount, cest.period, &bt); 1127 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1128 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1129 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1130 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1131 clock_snap->ff_info.error = bt; 1132 #endif 1133 } 1134 1135 /* 1136 * Convert a sysclock snapshot into a struct bintime based on the specified 1137 * clock source and flags. 1138 */ 1139 int 1140 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1141 int whichclock, uint32_t flags) 1142 { 1143 struct bintime boottimebin; 1144 #ifdef FFCLOCK 1145 struct bintime bt2; 1146 uint64_t period; 1147 #endif 1148 1149 switch (whichclock) { 1150 case SYSCLOCK_FBCK: 1151 *bt = cs->fb_info.tick_time; 1152 1153 /* If snapshot was created with !fast, delta will be >0. */ 1154 if (cs->delta > 0) 1155 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1156 1157 if ((flags & FBCLOCK_UPTIME) == 0) { 1158 getboottimebin(&boottimebin); 1159 bintime_add(bt, &boottimebin); 1160 } 1161 break; 1162 #ifdef FFCLOCK 1163 case SYSCLOCK_FFWD: 1164 if (flags & FFCLOCK_LERP) { 1165 *bt = cs->ff_info.tick_time_lerp; 1166 period = cs->ff_info.period_lerp; 1167 } else { 1168 *bt = cs->ff_info.tick_time; 1169 period = cs->ff_info.period; 1170 } 1171 1172 /* If snapshot was created with !fast, delta will be >0. */ 1173 if (cs->delta > 0) { 1174 ffclock_convert_delta(cs->delta, period, &bt2); 1175 bintime_add(bt, &bt2); 1176 } 1177 1178 /* Leap second adjustment. */ 1179 if (flags & FFCLOCK_LEAPSEC) 1180 bt->sec -= cs->ff_info.leapsec_adjustment; 1181 1182 /* Boot time adjustment, for uptime/monotonic clocks. */ 1183 if (flags & FFCLOCK_UPTIME) 1184 bintime_sub(bt, &ffclock_boottime); 1185 break; 1186 #endif 1187 default: 1188 return (EINVAL); 1189 break; 1190 } 1191 1192 return (0); 1193 } 1194 1195 /* 1196 * Initialize a new timecounter and possibly use it. 1197 */ 1198 void 1199 tc_init(struct timecounter *tc) 1200 { 1201 u_int u; 1202 struct sysctl_oid *tc_root; 1203 1204 u = tc->tc_frequency / tc->tc_counter_mask; 1205 /* XXX: We need some margin here, 10% is a guess */ 1206 u *= 11; 1207 u /= 10; 1208 if (u > hz && tc->tc_quality >= 0) { 1209 tc->tc_quality = -2000; 1210 if (bootverbose) { 1211 printf("Timecounter \"%s\" frequency %ju Hz", 1212 tc->tc_name, (uintmax_t)tc->tc_frequency); 1213 printf(" -- Insufficient hz, needs at least %u\n", u); 1214 } 1215 } else if (tc->tc_quality >= 0 || bootverbose) { 1216 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1217 tc->tc_name, (uintmax_t)tc->tc_frequency, 1218 tc->tc_quality); 1219 } 1220 1221 tc->tc_next = timecounters; 1222 timecounters = tc; 1223 /* 1224 * Set up sysctl tree for this counter. 1225 */ 1226 tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL, 1227 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1228 CTLFLAG_RW, 0, "timecounter description", "timecounter"); 1229 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1230 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1231 "mask for implemented bits"); 1232 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1233 "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc), 1234 sysctl_kern_timecounter_get, "IU", "current timecounter value"); 1235 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1236 "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc), 1237 sysctl_kern_timecounter_freq, "QU", "timecounter frequency"); 1238 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1239 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1240 "goodness of time counter"); 1241 /* 1242 * Do not automatically switch if the current tc was specifically 1243 * chosen. Never automatically use a timecounter with negative quality. 1244 * Even though we run on the dummy counter, switching here may be 1245 * worse since this timecounter may not be monotonic. 1246 */ 1247 if (tc_chosen) 1248 return; 1249 if (tc->tc_quality < 0) 1250 return; 1251 if (tc->tc_quality < timecounter->tc_quality) 1252 return; 1253 if (tc->tc_quality == timecounter->tc_quality && 1254 tc->tc_frequency < timecounter->tc_frequency) 1255 return; 1256 (void)tc->tc_get_timecount(tc); 1257 (void)tc->tc_get_timecount(tc); 1258 timecounter = tc; 1259 } 1260 1261 /* Report the frequency of the current timecounter. */ 1262 uint64_t 1263 tc_getfrequency(void) 1264 { 1265 1266 return (timehands->th_counter->tc_frequency); 1267 } 1268 1269 static bool 1270 sleeping_on_old_rtc(struct thread *td) 1271 { 1272 1273 /* 1274 * td_rtcgen is modified by curthread when it is running, 1275 * and by other threads in this function. By finding the thread 1276 * on a sleepqueue and holding the lock on the sleepqueue 1277 * chain, we guarantee that the thread is not running and that 1278 * modifying td_rtcgen is safe. Setting td_rtcgen to zero informs 1279 * the thread that it was woken due to a real-time clock adjustment. 1280 * (The declaration of td_rtcgen refers to this comment.) 1281 */ 1282 if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) { 1283 td->td_rtcgen = 0; 1284 return (true); 1285 } 1286 return (false); 1287 } 1288 1289 static struct mtx tc_setclock_mtx; 1290 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN); 1291 1292 /* 1293 * Step our concept of UTC. This is done by modifying our estimate of 1294 * when we booted. 1295 */ 1296 void 1297 tc_setclock(struct timespec *ts) 1298 { 1299 struct timespec tbef, taft; 1300 struct bintime bt, bt2; 1301 1302 timespec2bintime(ts, &bt); 1303 nanotime(&tbef); 1304 mtx_lock_spin(&tc_setclock_mtx); 1305 cpu_tick_calibrate(1); 1306 binuptime(&bt2); 1307 bintime_sub(&bt, &bt2); 1308 1309 /* XXX fiddle all the little crinkly bits around the fiords... */ 1310 tc_windup(&bt); 1311 mtx_unlock_spin(&tc_setclock_mtx); 1312 1313 /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */ 1314 atomic_add_rel_int(&rtc_generation, 2); 1315 sleepq_chains_remove_matching(sleeping_on_old_rtc); 1316 if (timestepwarnings) { 1317 nanotime(&taft); 1318 log(LOG_INFO, 1319 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1320 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1321 (intmax_t)taft.tv_sec, taft.tv_nsec, 1322 (intmax_t)ts->tv_sec, ts->tv_nsec); 1323 } 1324 } 1325 1326 /* 1327 * Initialize the next struct timehands in the ring and make 1328 * it the active timehands. Along the way we might switch to a different 1329 * timecounter and/or do seconds processing in NTP. Slightly magic. 1330 */ 1331 static void 1332 tc_windup(struct bintime *new_boottimebin) 1333 { 1334 struct bintime bt; 1335 struct timehands *th, *tho; 1336 uint64_t scale; 1337 u_int delta, ncount, ogen; 1338 int i; 1339 time_t t; 1340 1341 /* 1342 * Make the next timehands a copy of the current one, but do 1343 * not overwrite the generation or next pointer. While we 1344 * update the contents, the generation must be zero. We need 1345 * to ensure that the zero generation is visible before the 1346 * data updates become visible, which requires release fence. 1347 * For similar reasons, re-reading of the generation after the 1348 * data is read should use acquire fence. 1349 */ 1350 tho = timehands; 1351 th = tho->th_next; 1352 ogen = th->th_generation; 1353 th->th_generation = 0; 1354 atomic_thread_fence_rel(); 1355 memcpy(th, tho, offsetof(struct timehands, th_generation)); 1356 if (new_boottimebin != NULL) 1357 th->th_boottime = *new_boottimebin; 1358 1359 /* 1360 * Capture a timecounter delta on the current timecounter and if 1361 * changing timecounters, a counter value from the new timecounter. 1362 * Update the offset fields accordingly. 1363 */ 1364 delta = tc_delta(th); 1365 if (th->th_counter != timecounter) 1366 ncount = timecounter->tc_get_timecount(timecounter); 1367 else 1368 ncount = 0; 1369 #ifdef FFCLOCK 1370 ffclock_windup(delta); 1371 #endif 1372 th->th_offset_count += delta; 1373 th->th_offset_count &= th->th_counter->tc_counter_mask; 1374 while (delta > th->th_counter->tc_frequency) { 1375 /* Eat complete unadjusted seconds. */ 1376 delta -= th->th_counter->tc_frequency; 1377 th->th_offset.sec++; 1378 } 1379 if ((delta > th->th_counter->tc_frequency / 2) && 1380 (th->th_scale * delta < ((uint64_t)1 << 63))) { 1381 /* The product th_scale * delta just barely overflows. */ 1382 th->th_offset.sec++; 1383 } 1384 bintime_addx(&th->th_offset, th->th_scale * delta); 1385 1386 /* 1387 * Hardware latching timecounters may not generate interrupts on 1388 * PPS events, so instead we poll them. There is a finite risk that 1389 * the hardware might capture a count which is later than the one we 1390 * got above, and therefore possibly in the next NTP second which might 1391 * have a different rate than the current NTP second. It doesn't 1392 * matter in practice. 1393 */ 1394 if (tho->th_counter->tc_poll_pps) 1395 tho->th_counter->tc_poll_pps(tho->th_counter); 1396 1397 /* 1398 * Deal with NTP second processing. The for loop normally 1399 * iterates at most once, but in extreme situations it might 1400 * keep NTP sane if timeouts are not run for several seconds. 1401 * At boot, the time step can be large when the TOD hardware 1402 * has been read, so on really large steps, we call 1403 * ntp_update_second only twice. We need to call it twice in 1404 * case we missed a leap second. 1405 */ 1406 bt = th->th_offset; 1407 bintime_add(&bt, &th->th_boottime); 1408 i = bt.sec - tho->th_microtime.tv_sec; 1409 if (i > LARGE_STEP) 1410 i = 2; 1411 for (; i > 0; i--) { 1412 t = bt.sec; 1413 ntp_update_second(&th->th_adjustment, &bt.sec); 1414 if (bt.sec != t) 1415 th->th_boottime.sec += bt.sec - t; 1416 } 1417 /* Update the UTC timestamps used by the get*() functions. */ 1418 th->th_bintime = bt; 1419 bintime2timeval(&bt, &th->th_microtime); 1420 bintime2timespec(&bt, &th->th_nanotime); 1421 1422 /* Now is a good time to change timecounters. */ 1423 if (th->th_counter != timecounter) { 1424 #ifndef __arm__ 1425 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0) 1426 cpu_disable_c2_sleep++; 1427 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 1428 cpu_disable_c2_sleep--; 1429 #endif 1430 th->th_counter = timecounter; 1431 th->th_offset_count = ncount; 1432 tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 1433 (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1434 #ifdef FFCLOCK 1435 ffclock_change_tc(th); 1436 #endif 1437 } 1438 1439 /*- 1440 * Recalculate the scaling factor. We want the number of 1/2^64 1441 * fractions of a second per period of the hardware counter, taking 1442 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1443 * processing provides us with. 1444 * 1445 * The th_adjustment is nanoseconds per second with 32 bit binary 1446 * fraction and we want 64 bit binary fraction of second: 1447 * 1448 * x = a * 2^32 / 10^9 = a * 4.294967296 1449 * 1450 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1451 * we can only multiply by about 850 without overflowing, that 1452 * leaves no suitably precise fractions for multiply before divide. 1453 * 1454 * Divide before multiply with a fraction of 2199/512 results in a 1455 * systematic undercompensation of 10PPM of th_adjustment. On a 1456 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1457 * 1458 * We happily sacrifice the lowest of the 64 bits of our result 1459 * to the goddess of code clarity. 1460 * 1461 */ 1462 scale = (uint64_t)1 << 63; 1463 scale += (th->th_adjustment / 1024) * 2199; 1464 scale /= th->th_counter->tc_frequency; 1465 th->th_scale = scale * 2; 1466 1467 /* 1468 * Now that the struct timehands is again consistent, set the new 1469 * generation number, making sure to not make it zero. 1470 */ 1471 if (++ogen == 0) 1472 ogen = 1; 1473 atomic_store_rel_int(&th->th_generation, ogen); 1474 1475 /* Go live with the new struct timehands. */ 1476 #ifdef FFCLOCK 1477 switch (sysclock_active) { 1478 case SYSCLOCK_FBCK: 1479 #endif 1480 time_second = th->th_microtime.tv_sec; 1481 time_uptime = th->th_offset.sec; 1482 #ifdef FFCLOCK 1483 break; 1484 case SYSCLOCK_FFWD: 1485 time_second = fftimehands->tick_time_lerp.sec; 1486 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1487 break; 1488 } 1489 #endif 1490 1491 timehands = th; 1492 timekeep_push_vdso(); 1493 } 1494 1495 /* Report or change the active timecounter hardware. */ 1496 static int 1497 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1498 { 1499 char newname[32]; 1500 struct timecounter *newtc, *tc; 1501 int error; 1502 1503 tc = timecounter; 1504 strlcpy(newname, tc->tc_name, sizeof(newname)); 1505 1506 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1507 if (error != 0 || req->newptr == NULL) 1508 return (error); 1509 /* Record that the tc in use now was specifically chosen. */ 1510 tc_chosen = 1; 1511 if (strcmp(newname, tc->tc_name) == 0) 1512 return (0); 1513 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1514 if (strcmp(newname, newtc->tc_name) != 0) 1515 continue; 1516 1517 /* Warm up new timecounter. */ 1518 (void)newtc->tc_get_timecount(newtc); 1519 (void)newtc->tc_get_timecount(newtc); 1520 1521 timecounter = newtc; 1522 1523 /* 1524 * The vdso timehands update is deferred until the next 1525 * 'tc_windup()'. 1526 * 1527 * This is prudent given that 'timekeep_push_vdso()' does not 1528 * use any locking and that it can be called in hard interrupt 1529 * context via 'tc_windup()'. 1530 */ 1531 return (0); 1532 } 1533 return (EINVAL); 1534 } 1535 1536 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW, 1537 0, 0, sysctl_kern_timecounter_hardware, "A", 1538 "Timecounter hardware selected"); 1539 1540 1541 /* Report the available timecounter hardware. */ 1542 static int 1543 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1544 { 1545 struct sbuf sb; 1546 struct timecounter *tc; 1547 int error; 1548 1549 sbuf_new_for_sysctl(&sb, NULL, 0, req); 1550 for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 1551 if (tc != timecounters) 1552 sbuf_putc(&sb, ' '); 1553 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality); 1554 } 1555 error = sbuf_finish(&sb); 1556 sbuf_delete(&sb); 1557 return (error); 1558 } 1559 1560 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD, 1561 0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected"); 1562 1563 /* 1564 * RFC 2783 PPS-API implementation. 1565 */ 1566 1567 /* 1568 * Return true if the driver is aware of the abi version extensions in the 1569 * pps_state structure, and it supports at least the given abi version number. 1570 */ 1571 static inline int 1572 abi_aware(struct pps_state *pps, int vers) 1573 { 1574 1575 return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers); 1576 } 1577 1578 static int 1579 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1580 { 1581 int err, timo; 1582 pps_seq_t aseq, cseq; 1583 struct timeval tv; 1584 1585 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1586 return (EINVAL); 1587 1588 /* 1589 * If no timeout is requested, immediately return whatever values were 1590 * most recently captured. If timeout seconds is -1, that's a request 1591 * to block without a timeout. WITNESS won't let us sleep forever 1592 * without a lock (we really don't need a lock), so just repeatedly 1593 * sleep a long time. 1594 */ 1595 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1596 if (fapi->timeout.tv_sec == -1) 1597 timo = 0x7fffffff; 1598 else { 1599 tv.tv_sec = fapi->timeout.tv_sec; 1600 tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1601 timo = tvtohz(&tv); 1602 } 1603 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence); 1604 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence); 1605 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) && 1606 cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) { 1607 if (abi_aware(pps, 1) && pps->driver_mtx != NULL) { 1608 if (pps->flags & PPSFLAG_MTX_SPIN) { 1609 err = msleep_spin(pps, pps->driver_mtx, 1610 "ppsfch", timo); 1611 } else { 1612 err = msleep(pps, pps->driver_mtx, PCATCH, 1613 "ppsfch", timo); 1614 } 1615 } else { 1616 err = tsleep(pps, PCATCH, "ppsfch", timo); 1617 } 1618 if (err == EWOULDBLOCK) { 1619 if (fapi->timeout.tv_sec == -1) { 1620 continue; 1621 } else { 1622 return (ETIMEDOUT); 1623 } 1624 } else if (err != 0) { 1625 return (err); 1626 } 1627 } 1628 } 1629 1630 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1631 fapi->pps_info_buf = pps->ppsinfo; 1632 1633 return (0); 1634 } 1635 1636 int 1637 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1638 { 1639 pps_params_t *app; 1640 struct pps_fetch_args *fapi; 1641 #ifdef FFCLOCK 1642 struct pps_fetch_ffc_args *fapi_ffc; 1643 #endif 1644 #ifdef PPS_SYNC 1645 struct pps_kcbind_args *kapi; 1646 #endif 1647 1648 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1649 switch (cmd) { 1650 case PPS_IOC_CREATE: 1651 return (0); 1652 case PPS_IOC_DESTROY: 1653 return (0); 1654 case PPS_IOC_SETPARAMS: 1655 app = (pps_params_t *)data; 1656 if (app->mode & ~pps->ppscap) 1657 return (EINVAL); 1658 #ifdef FFCLOCK 1659 /* Ensure only a single clock is selected for ffc timestamp. */ 1660 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1661 return (EINVAL); 1662 #endif 1663 pps->ppsparam = *app; 1664 return (0); 1665 case PPS_IOC_GETPARAMS: 1666 app = (pps_params_t *)data; 1667 *app = pps->ppsparam; 1668 app->api_version = PPS_API_VERS_1; 1669 return (0); 1670 case PPS_IOC_GETCAP: 1671 *(int*)data = pps->ppscap; 1672 return (0); 1673 case PPS_IOC_FETCH: 1674 fapi = (struct pps_fetch_args *)data; 1675 return (pps_fetch(fapi, pps)); 1676 #ifdef FFCLOCK 1677 case PPS_IOC_FETCH_FFCOUNTER: 1678 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1679 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1680 PPS_TSFMT_TSPEC) 1681 return (EINVAL); 1682 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1683 return (EOPNOTSUPP); 1684 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1685 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1686 /* Overwrite timestamps if feedback clock selected. */ 1687 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1688 case PPS_TSCLK_FBCK: 1689 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1690 pps->ppsinfo.assert_timestamp; 1691 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1692 pps->ppsinfo.clear_timestamp; 1693 break; 1694 case PPS_TSCLK_FFWD: 1695 break; 1696 default: 1697 break; 1698 } 1699 return (0); 1700 #endif /* FFCLOCK */ 1701 case PPS_IOC_KCBIND: 1702 #ifdef PPS_SYNC 1703 kapi = (struct pps_kcbind_args *)data; 1704 /* XXX Only root should be able to do this */ 1705 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1706 return (EINVAL); 1707 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1708 return (EINVAL); 1709 if (kapi->edge & ~pps->ppscap) 1710 return (EINVAL); 1711 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) | 1712 (pps->kcmode & KCMODE_ABIFLAG); 1713 return (0); 1714 #else 1715 return (EOPNOTSUPP); 1716 #endif 1717 default: 1718 return (ENOIOCTL); 1719 } 1720 } 1721 1722 void 1723 pps_init(struct pps_state *pps) 1724 { 1725 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1726 if (pps->ppscap & PPS_CAPTUREASSERT) 1727 pps->ppscap |= PPS_OFFSETASSERT; 1728 if (pps->ppscap & PPS_CAPTURECLEAR) 1729 pps->ppscap |= PPS_OFFSETCLEAR; 1730 #ifdef FFCLOCK 1731 pps->ppscap |= PPS_TSCLK_MASK; 1732 #endif 1733 pps->kcmode &= ~KCMODE_ABIFLAG; 1734 } 1735 1736 void 1737 pps_init_abi(struct pps_state *pps) 1738 { 1739 1740 pps_init(pps); 1741 if (pps->driver_abi > 0) { 1742 pps->kcmode |= KCMODE_ABIFLAG; 1743 pps->kernel_abi = PPS_ABI_VERSION; 1744 } 1745 } 1746 1747 void 1748 pps_capture(struct pps_state *pps) 1749 { 1750 struct timehands *th; 1751 1752 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1753 th = timehands; 1754 pps->capgen = atomic_load_acq_int(&th->th_generation); 1755 pps->capth = th; 1756 #ifdef FFCLOCK 1757 pps->capffth = fftimehands; 1758 #endif 1759 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1760 atomic_thread_fence_acq(); 1761 if (pps->capgen != th->th_generation) 1762 pps->capgen = 0; 1763 } 1764 1765 void 1766 pps_event(struct pps_state *pps, int event) 1767 { 1768 struct bintime bt; 1769 struct timespec ts, *tsp, *osp; 1770 u_int tcount, *pcount; 1771 int foff; 1772 pps_seq_t *pseq; 1773 #ifdef FFCLOCK 1774 struct timespec *tsp_ffc; 1775 pps_seq_t *pseq_ffc; 1776 ffcounter *ffcount; 1777 #endif 1778 #ifdef PPS_SYNC 1779 int fhard; 1780 #endif 1781 1782 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1783 /* Nothing to do if not currently set to capture this event type. */ 1784 if ((event & pps->ppsparam.mode) == 0) 1785 return; 1786 /* If the timecounter was wound up underneath us, bail out. */ 1787 if (pps->capgen == 0 || pps->capgen != 1788 atomic_load_acq_int(&pps->capth->th_generation)) 1789 return; 1790 1791 /* Things would be easier with arrays. */ 1792 if (event == PPS_CAPTUREASSERT) { 1793 tsp = &pps->ppsinfo.assert_timestamp; 1794 osp = &pps->ppsparam.assert_offset; 1795 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1796 #ifdef PPS_SYNC 1797 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1798 #endif 1799 pcount = &pps->ppscount[0]; 1800 pseq = &pps->ppsinfo.assert_sequence; 1801 #ifdef FFCLOCK 1802 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1803 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1804 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1805 #endif 1806 } else { 1807 tsp = &pps->ppsinfo.clear_timestamp; 1808 osp = &pps->ppsparam.clear_offset; 1809 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1810 #ifdef PPS_SYNC 1811 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1812 #endif 1813 pcount = &pps->ppscount[1]; 1814 pseq = &pps->ppsinfo.clear_sequence; 1815 #ifdef FFCLOCK 1816 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1817 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1818 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1819 #endif 1820 } 1821 1822 /* 1823 * If the timecounter changed, we cannot compare the count values, so 1824 * we have to drop the rest of the PPS-stuff until the next event. 1825 */ 1826 if (pps->ppstc != pps->capth->th_counter) { 1827 pps->ppstc = pps->capth->th_counter; 1828 *pcount = pps->capcount; 1829 pps->ppscount[2] = pps->capcount; 1830 return; 1831 } 1832 1833 /* Convert the count to a timespec. */ 1834 tcount = pps->capcount - pps->capth->th_offset_count; 1835 tcount &= pps->capth->th_counter->tc_counter_mask; 1836 bt = pps->capth->th_bintime; 1837 bintime_addx(&bt, pps->capth->th_scale * tcount); 1838 bintime2timespec(&bt, &ts); 1839 1840 /* If the timecounter was wound up underneath us, bail out. */ 1841 atomic_thread_fence_acq(); 1842 if (pps->capgen != pps->capth->th_generation) 1843 return; 1844 1845 *pcount = pps->capcount; 1846 (*pseq)++; 1847 *tsp = ts; 1848 1849 if (foff) { 1850 timespecadd(tsp, osp); 1851 if (tsp->tv_nsec < 0) { 1852 tsp->tv_nsec += 1000000000; 1853 tsp->tv_sec -= 1; 1854 } 1855 } 1856 1857 #ifdef FFCLOCK 1858 *ffcount = pps->capffth->tick_ffcount + tcount; 1859 bt = pps->capffth->tick_time; 1860 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1861 bintime_add(&bt, &pps->capffth->tick_time); 1862 bintime2timespec(&bt, &ts); 1863 (*pseq_ffc)++; 1864 *tsp_ffc = ts; 1865 #endif 1866 1867 #ifdef PPS_SYNC 1868 if (fhard) { 1869 uint64_t scale; 1870 1871 /* 1872 * Feed the NTP PLL/FLL. 1873 * The FLL wants to know how many (hardware) nanoseconds 1874 * elapsed since the previous event. 1875 */ 1876 tcount = pps->capcount - pps->ppscount[2]; 1877 pps->ppscount[2] = pps->capcount; 1878 tcount &= pps->capth->th_counter->tc_counter_mask; 1879 scale = (uint64_t)1 << 63; 1880 scale /= pps->capth->th_counter->tc_frequency; 1881 scale *= 2; 1882 bt.sec = 0; 1883 bt.frac = 0; 1884 bintime_addx(&bt, scale * tcount); 1885 bintime2timespec(&bt, &ts); 1886 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1887 } 1888 #endif 1889 1890 /* Wakeup anyone sleeping in pps_fetch(). */ 1891 wakeup(pps); 1892 } 1893 1894 /* 1895 * Timecounters need to be updated every so often to prevent the hardware 1896 * counter from overflowing. Updating also recalculates the cached values 1897 * used by the get*() family of functions, so their precision depends on 1898 * the update frequency. 1899 */ 1900 1901 static int tc_tick; 1902 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1903 "Approximate number of hardclock ticks in a millisecond"); 1904 1905 void 1906 tc_ticktock(int cnt) 1907 { 1908 static int count; 1909 1910 if (mtx_trylock_spin(&tc_setclock_mtx)) { 1911 count += cnt; 1912 if (count >= tc_tick) { 1913 count = 0; 1914 tc_windup(NULL); 1915 } 1916 mtx_unlock_spin(&tc_setclock_mtx); 1917 } 1918 } 1919 1920 static void __inline 1921 tc_adjprecision(void) 1922 { 1923 int t; 1924 1925 if (tc_timepercentage > 0) { 1926 t = (99 + tc_timepercentage) / tc_timepercentage; 1927 tc_precexp = fls(t + (t >> 1)) - 1; 1928 FREQ2BT(hz / tc_tick, &bt_timethreshold); 1929 FREQ2BT(hz, &bt_tickthreshold); 1930 bintime_shift(&bt_timethreshold, tc_precexp); 1931 bintime_shift(&bt_tickthreshold, tc_precexp); 1932 } else { 1933 tc_precexp = 31; 1934 bt_timethreshold.sec = INT_MAX; 1935 bt_timethreshold.frac = ~(uint64_t)0; 1936 bt_tickthreshold = bt_timethreshold; 1937 } 1938 sbt_timethreshold = bttosbt(bt_timethreshold); 1939 sbt_tickthreshold = bttosbt(bt_tickthreshold); 1940 } 1941 1942 static int 1943 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 1944 { 1945 int error, val; 1946 1947 val = tc_timepercentage; 1948 error = sysctl_handle_int(oidp, &val, 0, req); 1949 if (error != 0 || req->newptr == NULL) 1950 return (error); 1951 tc_timepercentage = val; 1952 if (cold) 1953 goto done; 1954 tc_adjprecision(); 1955 done: 1956 return (0); 1957 } 1958 1959 static void 1960 inittimecounter(void *dummy) 1961 { 1962 u_int p; 1963 int tick_rate; 1964 1965 /* 1966 * Set the initial timeout to 1967 * max(1, <approx. number of hardclock ticks in a millisecond>). 1968 * People should probably not use the sysctl to set the timeout 1969 * to smaller than its initial value, since that value is the 1970 * smallest reasonable one. If they want better timestamps they 1971 * should use the non-"get"* functions. 1972 */ 1973 if (hz > 1000) 1974 tc_tick = (hz + 500) / 1000; 1975 else 1976 tc_tick = 1; 1977 tc_adjprecision(); 1978 FREQ2BT(hz, &tick_bt); 1979 tick_sbt = bttosbt(tick_bt); 1980 tick_rate = hz / tc_tick; 1981 FREQ2BT(tick_rate, &tc_tick_bt); 1982 tc_tick_sbt = bttosbt(tc_tick_bt); 1983 p = (tc_tick * 1000000) / hz; 1984 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 1985 1986 #ifdef FFCLOCK 1987 ffclock_init(); 1988 #endif 1989 /* warm up new timecounter (again) and get rolling. */ 1990 (void)timecounter->tc_get_timecount(timecounter); 1991 (void)timecounter->tc_get_timecount(timecounter); 1992 mtx_lock_spin(&tc_setclock_mtx); 1993 tc_windup(NULL); 1994 mtx_unlock_spin(&tc_setclock_mtx); 1995 } 1996 1997 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 1998 1999 /* Cpu tick handling -------------------------------------------------*/ 2000 2001 static int cpu_tick_variable; 2002 static uint64_t cpu_tick_frequency; 2003 2004 static DPCPU_DEFINE(uint64_t, tc_cpu_ticks_base); 2005 static DPCPU_DEFINE(unsigned, tc_cpu_ticks_last); 2006 2007 static uint64_t 2008 tc_cpu_ticks(void) 2009 { 2010 struct timecounter *tc; 2011 uint64_t res, *base; 2012 unsigned u, *last; 2013 2014 critical_enter(); 2015 base = DPCPU_PTR(tc_cpu_ticks_base); 2016 last = DPCPU_PTR(tc_cpu_ticks_last); 2017 tc = timehands->th_counter; 2018 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 2019 if (u < *last) 2020 *base += (uint64_t)tc->tc_counter_mask + 1; 2021 *last = u; 2022 res = u + *base; 2023 critical_exit(); 2024 return (res); 2025 } 2026 2027 void 2028 cpu_tick_calibration(void) 2029 { 2030 static time_t last_calib; 2031 2032 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 2033 cpu_tick_calibrate(0); 2034 last_calib = time_uptime; 2035 } 2036 } 2037 2038 /* 2039 * This function gets called every 16 seconds on only one designated 2040 * CPU in the system from hardclock() via cpu_tick_calibration()(). 2041 * 2042 * Whenever the real time clock is stepped we get called with reset=1 2043 * to make sure we handle suspend/resume and similar events correctly. 2044 */ 2045 2046 static void 2047 cpu_tick_calibrate(int reset) 2048 { 2049 static uint64_t c_last; 2050 uint64_t c_this, c_delta; 2051 static struct bintime t_last; 2052 struct bintime t_this, t_delta; 2053 uint32_t divi; 2054 2055 if (reset) { 2056 /* The clock was stepped, abort & reset */ 2057 t_last.sec = 0; 2058 return; 2059 } 2060 2061 /* we don't calibrate fixed rate cputicks */ 2062 if (!cpu_tick_variable) 2063 return; 2064 2065 getbinuptime(&t_this); 2066 c_this = cpu_ticks(); 2067 if (t_last.sec != 0) { 2068 c_delta = c_this - c_last; 2069 t_delta = t_this; 2070 bintime_sub(&t_delta, &t_last); 2071 /* 2072 * Headroom: 2073 * 2^(64-20) / 16[s] = 2074 * 2^(44) / 16[s] = 2075 * 17.592.186.044.416 / 16 = 2076 * 1.099.511.627.776 [Hz] 2077 */ 2078 divi = t_delta.sec << 20; 2079 divi |= t_delta.frac >> (64 - 20); 2080 c_delta <<= 20; 2081 c_delta /= divi; 2082 if (c_delta > cpu_tick_frequency) { 2083 if (0 && bootverbose) 2084 printf("cpu_tick increased to %ju Hz\n", 2085 c_delta); 2086 cpu_tick_frequency = c_delta; 2087 } 2088 } 2089 c_last = c_this; 2090 t_last = t_this; 2091 } 2092 2093 void 2094 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 2095 { 2096 2097 if (func == NULL) { 2098 cpu_ticks = tc_cpu_ticks; 2099 } else { 2100 cpu_tick_frequency = freq; 2101 cpu_tick_variable = var; 2102 cpu_ticks = func; 2103 } 2104 } 2105 2106 uint64_t 2107 cpu_tickrate(void) 2108 { 2109 2110 if (cpu_ticks == tc_cpu_ticks) 2111 return (tc_getfrequency()); 2112 return (cpu_tick_frequency); 2113 } 2114 2115 /* 2116 * We need to be slightly careful converting cputicks to microseconds. 2117 * There is plenty of margin in 64 bits of microseconds (half a million 2118 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 2119 * before divide conversion (to retain precision) we find that the 2120 * margin shrinks to 1.5 hours (one millionth of 146y). 2121 * With a three prong approach we never lose significant bits, no 2122 * matter what the cputick rate and length of timeinterval is. 2123 */ 2124 2125 uint64_t 2126 cputick2usec(uint64_t tick) 2127 { 2128 2129 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 2130 return (tick / (cpu_tickrate() / 1000000LL)); 2131 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 2132 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 2133 else 2134 return ((tick * 1000000LL) / cpu_tickrate()); 2135 } 2136 2137 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 2138 2139 static int vdso_th_enable = 1; 2140 static int 2141 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 2142 { 2143 int old_vdso_th_enable, error; 2144 2145 old_vdso_th_enable = vdso_th_enable; 2146 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 2147 if (error != 0) 2148 return (error); 2149 vdso_th_enable = old_vdso_th_enable; 2150 return (0); 2151 } 2152 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 2153 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 2154 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 2155 2156 uint32_t 2157 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2158 { 2159 struct timehands *th; 2160 uint32_t enabled; 2161 2162 th = timehands; 2163 vdso_th->th_scale = th->th_scale; 2164 vdso_th->th_offset_count = th->th_offset_count; 2165 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2166 vdso_th->th_offset = th->th_offset; 2167 vdso_th->th_boottime = th->th_boottime; 2168 if (th->th_counter->tc_fill_vdso_timehands != NULL) { 2169 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th, 2170 th->th_counter); 2171 } else 2172 enabled = 0; 2173 if (!vdso_th_enable) 2174 enabled = 0; 2175 return (enabled); 2176 } 2177 2178 #ifdef COMPAT_FREEBSD32 2179 uint32_t 2180 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2181 { 2182 struct timehands *th; 2183 uint32_t enabled; 2184 2185 th = timehands; 2186 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2187 vdso_th32->th_offset_count = th->th_offset_count; 2188 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2189 vdso_th32->th_offset.sec = th->th_offset.sec; 2190 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 2191 vdso_th32->th_boottime.sec = th->th_boottime.sec; 2192 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac; 2193 if (th->th_counter->tc_fill_vdso_timehands32 != NULL) { 2194 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32, 2195 th->th_counter); 2196 } else 2197 enabled = 0; 2198 if (!vdso_th_enable) 2199 enabled = 0; 2200 return (enabled); 2201 } 2202 #endif 2203