xref: /freebsd/sys/kern/kern_tc.c (revision a3e8fd0b7f663db7eafff527d5c3ca3bcfa8a537)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * $FreeBSD$
10  */
11 
12 #include "opt_ntp.h"
13 
14 #include <sys/param.h>
15 #include <sys/kernel.h>
16 #include <sys/sysctl.h>
17 #include <sys/systm.h>
18 #include <sys/timepps.h>
19 #include <sys/timetc.h>
20 #include <sys/timex.h>
21 
22 /*
23  * Implement a dummy timecounter which we can use until we get a real one
24  * in the air.  This allows the console and other early stuff to use
25  * time services.
26  */
27 
28 static u_int
29 dummy_get_timecount(struct timecounter *tc)
30 {
31 	static u_int now;
32 
33 	return (++now);
34 }
35 
36 static struct timecounter dummy_timecounter = {
37 	dummy_get_timecount, 0, ~0u, 1000000, "dummy",
38 };
39 
40 struct timehands {
41 	/* These fields must be initialized by the driver. */
42 	struct timecounter	*th_counter;
43 	int64_t			th_adjustment;
44 	u_int64_t		th_scale;
45 	u_int	 		th_offset_count;
46 	struct bintime		th_offset;
47 	struct timeval		th_microtime;
48 	struct timespec		th_nanotime;
49 	/* Fields not to be copied in tc_windup start with th_generation. */
50 	volatile u_int		th_generation;
51 	struct timehands	*th_next;
52 };
53 
54 extern struct timehands th0;
55 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
56 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
57 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
58 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
59 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
60 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
61 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
62 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
63 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
64 static struct timehands th0 = {
65 	&dummy_timecounter,
66 	0,
67 	(uint64_t)-1 / 1000000,
68 	0,
69 	{1, 0},
70 	{0, 0},
71 	{0, 0},
72 	1,
73 	&th1
74 };
75 
76 static struct timehands *volatile timehands = &th0;
77 struct timecounter *timecounter = &dummy_timecounter;
78 static struct timecounter *timecounters = &dummy_timecounter;
79 
80 time_t time_second = 1;
81 
82 static struct bintime boottimebin;
83 struct timeval boottime;
84 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
85     &boottime, timeval, "System boottime");
86 
87 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
88 
89 #define TC_STATS(foo) \
90 	static u_int foo; \
91 	SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
92 	struct __hack
93 
94 TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
95 TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
96 TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
97 TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
98 
99 #undef TC_STATS
100 
101 static void tc_windup(void);
102 
103 /*
104  * Return the difference between the timehands' counter value now and what
105  * was when we copied it to the timehands' offset_count.
106  */
107 static __inline u_int
108 tc_delta(struct timehands *th)
109 {
110 	struct timecounter *tc;
111 
112 	tc = th->th_counter;
113 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
114 	    tc->tc_counter_mask);
115 }
116 
117 /*
118  * Functions for reading the time.  We have to loop until we are sure that
119  * the timehands that we operated on was not updated under our feet.  See
120  * the comment in <sys/time.h> for a description of these 12 functions.
121  */
122 
123 void
124 binuptime(struct bintime *bt)
125 {
126 	struct timehands *th;
127 	u_int gen;
128 
129 	nbinuptime++;
130 	do {
131 		th = timehands;
132 		gen = th->th_generation;
133 		*bt = th->th_offset;
134 		bintime_addx(bt, th->th_scale * tc_delta(th));
135 	} while (gen == 0 || gen != th->th_generation);
136 }
137 
138 void
139 nanouptime(struct timespec *tsp)
140 {
141 	struct bintime bt;
142 
143 	nnanouptime++;
144 	binuptime(&bt);
145 	bintime2timespec(&bt, tsp);
146 }
147 
148 void
149 microuptime(struct timeval *tvp)
150 {
151 	struct bintime bt;
152 
153 	nmicrouptime++;
154 	binuptime(&bt);
155 	bintime2timeval(&bt, tvp);
156 }
157 
158 void
159 bintime(struct bintime *bt)
160 {
161 
162 	nbintime++;
163 	binuptime(bt);
164 	bintime_add(bt, &boottimebin);
165 }
166 
167 void
168 nanotime(struct timespec *tsp)
169 {
170 	struct bintime bt;
171 
172 	nnanotime++;
173 	bintime(&bt);
174 	bintime2timespec(&bt, tsp);
175 }
176 
177 void
178 microtime(struct timeval *tvp)
179 {
180 	struct bintime bt;
181 
182 	nmicrotime++;
183 	bintime(&bt);
184 	bintime2timeval(&bt, tvp);
185 }
186 
187 void
188 getbinuptime(struct bintime *bt)
189 {
190 	struct timehands *th;
191 	u_int gen;
192 
193 	ngetbinuptime++;
194 	do {
195 		th = timehands;
196 		gen = th->th_generation;
197 		*bt = th->th_offset;
198 	} while (gen == 0 || gen != th->th_generation);
199 }
200 
201 void
202 getnanouptime(struct timespec *tsp)
203 {
204 	struct timehands *th;
205 	u_int gen;
206 
207 	ngetnanouptime++;
208 	do {
209 		th = timehands;
210 		gen = th->th_generation;
211 		bintime2timespec(&th->th_offset, tsp);
212 	} while (gen == 0 || gen != th->th_generation);
213 }
214 
215 void
216 getmicrouptime(struct timeval *tvp)
217 {
218 	struct timehands *th;
219 	u_int gen;
220 
221 	ngetmicrouptime++;
222 	do {
223 		th = timehands;
224 		gen = th->th_generation;
225 		bintime2timeval(&th->th_offset, tvp);
226 	} while (gen == 0 || gen != th->th_generation);
227 }
228 
229 void
230 getbintime(struct bintime *bt)
231 {
232 	struct timehands *th;
233 	u_int gen;
234 
235 	ngetbintime++;
236 	do {
237 		th = timehands;
238 		gen = th->th_generation;
239 		*bt = th->th_offset;
240 	} while (gen == 0 || gen != th->th_generation);
241 	bintime_add(bt, &boottimebin);
242 }
243 
244 void
245 getnanotime(struct timespec *tsp)
246 {
247 	struct timehands *th;
248 	u_int gen;
249 
250 	ngetnanotime++;
251 	do {
252 		th = timehands;
253 		gen = th->th_generation;
254 		*tsp = th->th_nanotime;
255 	} while (gen == 0 || gen != th->th_generation);
256 }
257 
258 void
259 getmicrotime(struct timeval *tvp)
260 {
261 	struct timehands *th;
262 	u_int gen;
263 
264 	ngetmicrotime++;
265 	do {
266 		th = timehands;
267 		gen = th->th_generation;
268 		*tvp = th->th_microtime;
269 	} while (gen == 0 || gen != th->th_generation);
270 }
271 
272 /*
273  * Initialize a new timecounter.
274  * We should really try to rank the timecounters and intelligently determine
275  * if the new timecounter is better than the current one.  This is subject
276  * to further study.  For now always use the new timecounter.
277  */
278 void
279 tc_init(struct timecounter *tc)
280 {
281 	unsigned u;
282 
283 	printf("Timecounter \"%s\"  frequency %lu Hz",
284 	    tc->tc_name, (u_long)tc->tc_frequency);
285 
286 	u = tc->tc_frequency / tc->tc_counter_mask;
287 	if (u > hz) {
288 		printf(" -- Insufficient hz, needs at least %u\n", u);
289 		return;
290 	}
291 	tc->tc_next = timecounters;
292 	timecounters = tc;
293 	printf("\n");
294 	(void)tc->tc_get_timecount(tc);
295 	(void)tc->tc_get_timecount(tc);
296 	timecounter = tc;
297 }
298 
299 /* Report the frequency of the current timecounter. */
300 u_int32_t
301 tc_getfrequency(void)
302 {
303 
304 	return (timehands->th_counter->tc_frequency);
305 }
306 
307 /*
308  * Step our concept of GMT.  This is done by modifying our estimate of
309  * when we booted.  XXX: needs futher work.
310  */
311 void
312 tc_setclock(struct timespec *ts)
313 {
314 	struct timespec ts2;
315 
316 	nanouptime(&ts2);
317 	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
318 	/* XXX boottime should probably be a timespec. */
319 	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
320 	if (boottime.tv_usec < 0) {
321 		boottime.tv_usec += 1000000;
322 		boottime.tv_sec--;
323 	}
324 	timeval2bintime(&boottime, &boottimebin);
325 
326 	/* XXX fiddle all the little crinkly bits around the fiords... */
327 	tc_windup();
328 }
329 
330 /*
331  * Initialize the next struct timehands in the ring and make
332  * it the active timehands.  Along the way we might switch to a different
333  * timecounter and/or do seconds processing in NTP.  Slightly magic.
334  */
335 static void
336 tc_windup(void)
337 {
338 	struct bintime bt;
339 	struct timehands *th, *tho;
340 	u_int64_t scale;
341 	u_int delta, ncount, ogen;
342 	int i;
343 
344 	/*
345 	 * Make the next timehands a copy of the current one, but do not
346 	 * overwrite the generation or next pointer.  While we update
347 	 * the contents, the generation must be zero.
348 	 */
349 	tho = timehands;
350 	th = tho->th_next;
351 	ogen = th->th_generation;
352 	th->th_generation = 0;
353 	bcopy(tho, th, offsetof(struct timehands, th_generation));
354 
355 	/*
356 	 * Capture a timecounter delta on the current timecounter and if
357 	 * changing timecounters, a counter value from the new timecounter.
358 	 * Update the offset fields accordingly.
359 	 */
360 	delta = tc_delta(th);
361 	if (th->th_counter != timecounter)
362 		ncount = timecounter->tc_get_timecount(timecounter);
363 	else
364 		ncount = 0;
365 	th->th_offset_count += delta;
366 	th->th_offset_count &= th->th_counter->tc_counter_mask;
367 	bintime_addx(&th->th_offset, th->th_scale * delta);
368 
369 	/*
370 	 * Hardware latching timecounters may not generate interrupts on
371 	 * PPS events, so instead we poll them.  There is a finite risk that
372 	 * the hardware might capture a count which is later than the one we
373 	 * got above, and therefore possibly in the next NTP second which might
374 	 * have a different rate than the current NTP second.  It doesn't
375 	 * matter in practice.
376 	 */
377 	if (tho->th_counter->tc_poll_pps)
378 		tho->th_counter->tc_poll_pps(tho->th_counter);
379 
380 	/*
381 	 * Deal with NTP second processing.  The for loop normally only
382 	 * iterates once, but in extreme situations it might keep NTP sane
383 	 * if timeouts are not run for several seconds.
384 	 */
385 	for (i = th->th_offset.sec - tho->th_offset.sec; i > 0; i--)
386 		ntp_update_second(&th->th_adjustment, &th->th_offset.sec);
387 
388 	/* Now is a good time to change timecounters. */
389 	if (th->th_counter != timecounter) {
390 		th->th_counter = timecounter;
391 		th->th_offset_count = ncount;
392 	}
393 
394 	/*-
395 	 * Recalculate the scaling factor.  We want the number of 1/2^64
396 	 * fractions of a second per period of the hardware counter, taking
397 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
398 	 * processing provides us with.
399 	 *
400 	 * The th_adjustment is nanoseconds per second with 32 bit binary
401 	 * fraction and want 64 bit binary fraction of second:
402 	 *
403 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
404 	 *
405 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
406 	 * we can only multiply by about 850 without overflowing, but that
407 	 * leaves suitably precise fractions for multiply before divide.
408 	 *
409 	 * Divide before multiply with a fraction of 2199/512 results in a
410 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
411 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
412  	 *
413 	 * We happily sacrifice the lowest of the 64 bits of our result
414 	 * to the goddess of code clarity.
415 	 *
416 	 */
417 	scale = (u_int64_t)1 << 63;
418 	scale += (th->th_adjustment / 1024) * 2199;
419 	scale /= th->th_counter->tc_frequency;
420 	th->th_scale = scale * 2;
421 
422 	/* Update the GMT timestamps used for the get*() functions. */
423 	bt = th->th_offset;
424 	bintime_add(&bt, &boottimebin);
425 	bintime2timeval(&bt, &th->th_microtime);
426 	bintime2timespec(&bt, &th->th_nanotime);
427 
428 	/*
429 	 * Now that the struct timehands is again consistent, set the new
430 	 * generation number, making sure to not make it zero.
431 	 */
432 	if (++ogen == 0)
433 		ogen = 1;
434 	th->th_generation = ogen;
435 
436 	/* Go live with the new struct timehands. */
437 	time_second = th->th_microtime.tv_sec;
438 	timehands = th;
439 }
440 
441 /* Report or change the active timecounter hardware. */
442 static int
443 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
444 {
445 	char newname[32];
446 	struct timecounter *newtc, *tc;
447 	int error;
448 
449 	tc = timecounter;
450 	strlcpy(newname, tc->tc_name, sizeof(newname));
451 
452 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
453 	if (error != 0 || req->newptr == NULL ||
454 	    strcmp(newname, tc->tc_name) == 0)
455 		return (error);
456 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
457 		if (strcmp(newname, newtc->tc_name) != 0)
458 			continue;
459 
460 		/* Warm up new timecounter. */
461 		(void)newtc->tc_get_timecount(newtc);
462 		(void)newtc->tc_get_timecount(newtc);
463 
464 		timecounter = newtc;
465 		return (0);
466 	}
467 	return (EINVAL);
468 }
469 
470 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
471     0, 0, sysctl_kern_timecounter_hardware, "A", "");
472 
473 /*
474  * RFC 2783 PPS-API implementation.
475  */
476 
477 int
478 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
479 {
480 	pps_params_t *app;
481 	struct pps_fetch_args *fapi;
482 #ifdef PPS_SYNC
483 	struct pps_kcbind_args *kapi;
484 #endif
485 
486 	switch (cmd) {
487 	case PPS_IOC_CREATE:
488 		return (0);
489 	case PPS_IOC_DESTROY:
490 		return (0);
491 	case PPS_IOC_SETPARAMS:
492 		app = (pps_params_t *)data;
493 		if (app->mode & ~pps->ppscap)
494 			return (EINVAL);
495 		pps->ppsparam = *app;
496 		return (0);
497 	case PPS_IOC_GETPARAMS:
498 		app = (pps_params_t *)data;
499 		*app = pps->ppsparam;
500 		app->api_version = PPS_API_VERS_1;
501 		return (0);
502 	case PPS_IOC_GETCAP:
503 		*(int*)data = pps->ppscap;
504 		return (0);
505 	case PPS_IOC_FETCH:
506 		fapi = (struct pps_fetch_args *)data;
507 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
508 			return (EINVAL);
509 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
510 			return (EOPNOTSUPP);
511 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
512 		fapi->pps_info_buf = pps->ppsinfo;
513 		return (0);
514 	case PPS_IOC_KCBIND:
515 #ifdef PPS_SYNC
516 		kapi = (struct pps_kcbind_args *)data;
517 		/* XXX Only root should be able to do this */
518 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
519 			return (EINVAL);
520 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
521 			return (EINVAL);
522 		if (kapi->edge & ~pps->ppscap)
523 			return (EINVAL);
524 		pps->kcmode = kapi->edge;
525 		return (0);
526 #else
527 		return (EOPNOTSUPP);
528 #endif
529 	default:
530 		return (ENOTTY);
531 	}
532 }
533 
534 void
535 pps_init(struct pps_state *pps)
536 {
537 	pps->ppscap |= PPS_TSFMT_TSPEC;
538 	if (pps->ppscap & PPS_CAPTUREASSERT)
539 		pps->ppscap |= PPS_OFFSETASSERT;
540 	if (pps->ppscap & PPS_CAPTURECLEAR)
541 		pps->ppscap |= PPS_OFFSETCLEAR;
542 }
543 
544 void
545 pps_capture(struct pps_state *pps)
546 {
547 	struct timehands *th;
548 
549 	th = timehands;
550 	pps->capgen = th->th_generation;
551 	pps->capth = th;
552 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
553 	if (pps->capgen != th->th_generation)
554 		pps->capgen = 0;
555 }
556 
557 void
558 pps_event(struct pps_state *pps, int event)
559 {
560 	struct bintime bt;
561 	struct timespec ts, *tsp, *osp;
562 	u_int tcount, *pcount;
563 	int foff, fhard;
564 	pps_seq_t *pseq;
565 
566 	/* If the timecounter was wound up underneath us, bail out. */
567 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
568 		return;
569 
570 	/* Things would be easier with arrays. */
571 	if (event == PPS_CAPTUREASSERT) {
572 		tsp = &pps->ppsinfo.assert_timestamp;
573 		osp = &pps->ppsparam.assert_offset;
574 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
575 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
576 		pcount = &pps->ppscount[0];
577 		pseq = &pps->ppsinfo.assert_sequence;
578 	} else {
579 		tsp = &pps->ppsinfo.clear_timestamp;
580 		osp = &pps->ppsparam.clear_offset;
581 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
582 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
583 		pcount = &pps->ppscount[1];
584 		pseq = &pps->ppsinfo.clear_sequence;
585 	}
586 
587 	/*
588 	 * If the timecounter changed, we cannot compare the count values, so
589 	 * we have to drop the rest of the PPS-stuff until the next event.
590 	 */
591 	if (pps->ppstc != pps->capth->th_counter) {
592 		pps->ppstc = pps->capth->th_counter;
593 		*pcount = pps->capcount;
594 		pps->ppscount[2] = pps->capcount;
595 		return;
596 	}
597 
598 	/* Return if nothing really happened. */
599 	if (*pcount == pps->capcount)
600 		return;
601 
602 	/* Convert the count to a timespec. */
603 	tcount = pps->capcount - pps->capth->th_offset_count;
604 	tcount &= pps->capth->th_counter->tc_counter_mask;
605 	bt = pps->capth->th_offset;
606 	bintime_addx(&bt, pps->capth->th_scale * tcount);
607 	bintime_add(&bt, &boottimebin);
608 	bintime2timespec(&bt, &ts);
609 
610 	/* If the timecounter was wound up underneath us, bail out. */
611 	if (pps->capgen != pps->capth->th_generation)
612 		return;
613 
614 	*pcount = pps->capcount;
615 	(*pseq)++;
616 	*tsp = ts;
617 
618 	if (foff) {
619 		timespecadd(tsp, osp);
620 		if (tsp->tv_nsec < 0) {
621 			tsp->tv_nsec += 1000000000;
622 			tsp->tv_sec -= 1;
623 		}
624 	}
625 #ifdef PPS_SYNC
626 	if (fhard) {
627 		/*
628 		 * Feed the NTP PLL/FLL.
629 		 * The FLL wants to know how many nanoseconds elapsed since
630 		 * the previous event.
631 		 * I have never been able to convince myself that this code
632 		 * is actually correct:  Using th_scale is bound to contain
633 		 * a phase correction component from userland, when running
634 		 * as FLL, so the number hardpps() gets is not meaningful IMO.
635 		 */
636 		tcount = pps->capcount - pps->ppscount[2];
637 		pps->ppscount[2] = pps->capcount;
638 		tcount &= pps->capth->th_counter->tc_counter_mask;
639 		bt.sec = 0;
640 		bt.frac = 0;
641 		bintime_addx(&bt, pps->capth->th_scale * tcount);
642 		bintime2timespec(&bt, &ts);
643 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
644 	}
645 #endif
646 }
647 
648 /*
649  * Timecounters need to be updated every so often to prevent the hardware
650  * counter from overflowing.  Updating also recalculates the cached values
651  * used by the get*() family of functions, so their precision depends on
652  * the update frequency.
653  */
654 
655 static int tc_tick;
656 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tick, 0, "");
657 
658 void
659 tc_ticktock(void)
660 {
661 	static int count;
662 
663 	if (++count < tc_tick)
664 		return;
665 	count = 0;
666 	tc_windup();
667 }
668 
669 static void
670 inittimecounter(void *dummy)
671 {
672 	u_int p;
673 
674 	/*
675 	 * Set the initial timeout to
676 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
677 	 * People should probably not use the sysctl to set the timeout
678 	 * to smaller than its inital value, since that value is the
679 	 * smallest reasonable one.  If they want better timestamps they
680 	 * should use the non-"get"* functions.
681 	 */
682 	if (hz > 1000)
683 		tc_tick = (hz + 500) / 1000;
684 	else
685 		tc_tick = 1;
686 	p = (tc_tick * 1000000) / hz;
687 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
688 
689 	/* warm up new timecounter (again) and get rolling. */
690 	(void)timecounter->tc_get_timecount(timecounter);
691 	(void)timecounter->tc_get_timecount(timecounter);
692 }
693 
694 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_FIRST, inittimecounter, NULL)
695