1 /*- 2 * ---------------------------------------------------------------------------- 3 * "THE BEER-WARE LICENSE" (Revision 42): 4 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 5 * can do whatever you want with this stuff. If we meet some day, and you think 6 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 7 * ---------------------------------------------------------------------------- 8 * 9 * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation 10 * All rights reserved. 11 * 12 * Portions of this software were developed by Julien Ridoux at the University 13 * of Melbourne under sponsorship from the FreeBSD Foundation. 14 * 15 * Portions of this software were developed by Konstantin Belousov 16 * under sponsorship from the FreeBSD Foundation. 17 */ 18 19 #include <sys/cdefs.h> 20 __FBSDID("$FreeBSD$"); 21 22 #include "opt_compat.h" 23 #include "opt_ntp.h" 24 #include "opt_ffclock.h" 25 26 #include <sys/param.h> 27 #include <sys/kernel.h> 28 #include <sys/limits.h> 29 #include <sys/lock.h> 30 #include <sys/mutex.h> 31 #include <sys/proc.h> 32 #include <sys/sbuf.h> 33 #include <sys/sleepqueue.h> 34 #include <sys/sysctl.h> 35 #include <sys/syslog.h> 36 #include <sys/systm.h> 37 #include <sys/timeffc.h> 38 #include <sys/timepps.h> 39 #include <sys/timetc.h> 40 #include <sys/timex.h> 41 #include <sys/vdso.h> 42 43 /* 44 * A large step happens on boot. This constant detects such steps. 45 * It is relatively small so that ntp_update_second gets called enough 46 * in the typical 'missed a couple of seconds' case, but doesn't loop 47 * forever when the time step is large. 48 */ 49 #define LARGE_STEP 200 50 51 /* 52 * Implement a dummy timecounter which we can use until we get a real one 53 * in the air. This allows the console and other early stuff to use 54 * time services. 55 */ 56 57 static u_int 58 dummy_get_timecount(struct timecounter *tc) 59 { 60 static u_int now; 61 62 return (++now); 63 } 64 65 static struct timecounter dummy_timecounter = { 66 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 67 }; 68 69 struct timehands { 70 /* These fields must be initialized by the driver. */ 71 struct timecounter *th_counter; 72 int64_t th_adjustment; 73 uint64_t th_scale; 74 u_int th_offset_count; 75 struct bintime th_offset; 76 struct bintime th_bintime; 77 struct timeval th_microtime; 78 struct timespec th_nanotime; 79 struct bintime th_boottime; 80 /* Fields not to be copied in tc_windup start with th_generation. */ 81 u_int th_generation; 82 struct timehands *th_next; 83 }; 84 85 static struct timehands th0; 86 static struct timehands th1 = { 87 .th_next = &th0 88 }; 89 static struct timehands th0 = { 90 .th_counter = &dummy_timecounter, 91 .th_scale = (uint64_t)-1 / 1000000, 92 .th_offset = { .sec = 1 }, 93 .th_generation = 1, 94 .th_next = &th1 95 }; 96 97 static struct timehands *volatile timehands = &th0; 98 struct timecounter *timecounter = &dummy_timecounter; 99 static struct timecounter *timecounters = &dummy_timecounter; 100 101 int tc_min_ticktock_freq = 1; 102 103 volatile time_t time_second = 1; 104 volatile time_t time_uptime = 1; 105 106 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 107 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD, 108 NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime"); 109 110 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, ""); 111 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, ""); 112 113 static int timestepwarnings; 114 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW, 115 ×tepwarnings, 0, "Log time steps"); 116 117 struct bintime bt_timethreshold; 118 struct bintime bt_tickthreshold; 119 sbintime_t sbt_timethreshold; 120 sbintime_t sbt_tickthreshold; 121 struct bintime tc_tick_bt; 122 sbintime_t tc_tick_sbt; 123 int tc_precexp; 124 int tc_timepercentage = TC_DEFAULTPERC; 125 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 126 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 127 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 128 sysctl_kern_timecounter_adjprecision, "I", 129 "Allowed time interval deviation in percents"); 130 131 volatile int rtc_generation = 1; 132 133 static int tc_chosen; /* Non-zero if a specific tc was chosen via sysctl. */ 134 135 static void tc_windup(struct bintime *new_boottimebin); 136 static void cpu_tick_calibrate(int); 137 138 void dtrace_getnanotime(struct timespec *tsp); 139 140 static int 141 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 142 { 143 struct timeval boottime; 144 145 getboottime(&boottime); 146 147 #ifndef __mips__ 148 #ifdef SCTL_MASK32 149 int tv[2]; 150 151 if (req->flags & SCTL_MASK32) { 152 tv[0] = boottime.tv_sec; 153 tv[1] = boottime.tv_usec; 154 return (SYSCTL_OUT(req, tv, sizeof(tv))); 155 } 156 #endif 157 #endif 158 return (SYSCTL_OUT(req, &boottime, sizeof(boottime))); 159 } 160 161 static int 162 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 163 { 164 u_int ncount; 165 struct timecounter *tc = arg1; 166 167 ncount = tc->tc_get_timecount(tc); 168 return (sysctl_handle_int(oidp, &ncount, 0, req)); 169 } 170 171 static int 172 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 173 { 174 uint64_t freq; 175 struct timecounter *tc = arg1; 176 177 freq = tc->tc_frequency; 178 return (sysctl_handle_64(oidp, &freq, 0, req)); 179 } 180 181 /* 182 * Return the difference between the timehands' counter value now and what 183 * was when we copied it to the timehands' offset_count. 184 */ 185 static __inline u_int 186 tc_delta(struct timehands *th) 187 { 188 struct timecounter *tc; 189 190 tc = th->th_counter; 191 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 192 tc->tc_counter_mask); 193 } 194 195 /* 196 * Functions for reading the time. We have to loop until we are sure that 197 * the timehands that we operated on was not updated under our feet. See 198 * the comment in <sys/time.h> for a description of these 12 functions. 199 */ 200 201 #ifdef FFCLOCK 202 void 203 fbclock_binuptime(struct bintime *bt) 204 { 205 struct timehands *th; 206 unsigned int gen; 207 208 do { 209 th = timehands; 210 gen = atomic_load_acq_int(&th->th_generation); 211 *bt = th->th_offset; 212 bintime_addx(bt, th->th_scale * tc_delta(th)); 213 atomic_thread_fence_acq(); 214 } while (gen == 0 || gen != th->th_generation); 215 } 216 217 void 218 fbclock_nanouptime(struct timespec *tsp) 219 { 220 struct bintime bt; 221 222 fbclock_binuptime(&bt); 223 bintime2timespec(&bt, tsp); 224 } 225 226 void 227 fbclock_microuptime(struct timeval *tvp) 228 { 229 struct bintime bt; 230 231 fbclock_binuptime(&bt); 232 bintime2timeval(&bt, tvp); 233 } 234 235 void 236 fbclock_bintime(struct bintime *bt) 237 { 238 struct timehands *th; 239 unsigned int gen; 240 241 do { 242 th = timehands; 243 gen = atomic_load_acq_int(&th->th_generation); 244 *bt = th->th_bintime; 245 bintime_addx(bt, th->th_scale * tc_delta(th)); 246 atomic_thread_fence_acq(); 247 } while (gen == 0 || gen != th->th_generation); 248 } 249 250 void 251 fbclock_nanotime(struct timespec *tsp) 252 { 253 struct bintime bt; 254 255 fbclock_bintime(&bt); 256 bintime2timespec(&bt, tsp); 257 } 258 259 void 260 fbclock_microtime(struct timeval *tvp) 261 { 262 struct bintime bt; 263 264 fbclock_bintime(&bt); 265 bintime2timeval(&bt, tvp); 266 } 267 268 void 269 fbclock_getbinuptime(struct bintime *bt) 270 { 271 struct timehands *th; 272 unsigned int gen; 273 274 do { 275 th = timehands; 276 gen = atomic_load_acq_int(&th->th_generation); 277 *bt = th->th_offset; 278 atomic_thread_fence_acq(); 279 } while (gen == 0 || gen != th->th_generation); 280 } 281 282 void 283 fbclock_getnanouptime(struct timespec *tsp) 284 { 285 struct timehands *th; 286 unsigned int gen; 287 288 do { 289 th = timehands; 290 gen = atomic_load_acq_int(&th->th_generation); 291 bintime2timespec(&th->th_offset, tsp); 292 atomic_thread_fence_acq(); 293 } while (gen == 0 || gen != th->th_generation); 294 } 295 296 void 297 fbclock_getmicrouptime(struct timeval *tvp) 298 { 299 struct timehands *th; 300 unsigned int gen; 301 302 do { 303 th = timehands; 304 gen = atomic_load_acq_int(&th->th_generation); 305 bintime2timeval(&th->th_offset, tvp); 306 atomic_thread_fence_acq(); 307 } while (gen == 0 || gen != th->th_generation); 308 } 309 310 void 311 fbclock_getbintime(struct bintime *bt) 312 { 313 struct timehands *th; 314 unsigned int gen; 315 316 do { 317 th = timehands; 318 gen = atomic_load_acq_int(&th->th_generation); 319 *bt = th->th_bintime; 320 atomic_thread_fence_acq(); 321 } while (gen == 0 || gen != th->th_generation); 322 } 323 324 void 325 fbclock_getnanotime(struct timespec *tsp) 326 { 327 struct timehands *th; 328 unsigned int gen; 329 330 do { 331 th = timehands; 332 gen = atomic_load_acq_int(&th->th_generation); 333 *tsp = th->th_nanotime; 334 atomic_thread_fence_acq(); 335 } while (gen == 0 || gen != th->th_generation); 336 } 337 338 void 339 fbclock_getmicrotime(struct timeval *tvp) 340 { 341 struct timehands *th; 342 unsigned int gen; 343 344 do { 345 th = timehands; 346 gen = atomic_load_acq_int(&th->th_generation); 347 *tvp = th->th_microtime; 348 atomic_thread_fence_acq(); 349 } while (gen == 0 || gen != th->th_generation); 350 } 351 #else /* !FFCLOCK */ 352 void 353 binuptime(struct bintime *bt) 354 { 355 struct timehands *th; 356 u_int gen; 357 358 do { 359 th = timehands; 360 gen = atomic_load_acq_int(&th->th_generation); 361 *bt = th->th_offset; 362 bintime_addx(bt, th->th_scale * tc_delta(th)); 363 atomic_thread_fence_acq(); 364 } while (gen == 0 || gen != th->th_generation); 365 } 366 367 void 368 nanouptime(struct timespec *tsp) 369 { 370 struct bintime bt; 371 372 binuptime(&bt); 373 bintime2timespec(&bt, tsp); 374 } 375 376 void 377 microuptime(struct timeval *tvp) 378 { 379 struct bintime bt; 380 381 binuptime(&bt); 382 bintime2timeval(&bt, tvp); 383 } 384 385 void 386 bintime(struct bintime *bt) 387 { 388 struct timehands *th; 389 u_int gen; 390 391 do { 392 th = timehands; 393 gen = atomic_load_acq_int(&th->th_generation); 394 *bt = th->th_bintime; 395 bintime_addx(bt, th->th_scale * tc_delta(th)); 396 atomic_thread_fence_acq(); 397 } while (gen == 0 || gen != th->th_generation); 398 } 399 400 void 401 nanotime(struct timespec *tsp) 402 { 403 struct bintime bt; 404 405 bintime(&bt); 406 bintime2timespec(&bt, tsp); 407 } 408 409 void 410 microtime(struct timeval *tvp) 411 { 412 struct bintime bt; 413 414 bintime(&bt); 415 bintime2timeval(&bt, tvp); 416 } 417 418 void 419 getbinuptime(struct bintime *bt) 420 { 421 struct timehands *th; 422 u_int gen; 423 424 do { 425 th = timehands; 426 gen = atomic_load_acq_int(&th->th_generation); 427 *bt = th->th_offset; 428 atomic_thread_fence_acq(); 429 } while (gen == 0 || gen != th->th_generation); 430 } 431 432 void 433 getnanouptime(struct timespec *tsp) 434 { 435 struct timehands *th; 436 u_int gen; 437 438 do { 439 th = timehands; 440 gen = atomic_load_acq_int(&th->th_generation); 441 bintime2timespec(&th->th_offset, tsp); 442 atomic_thread_fence_acq(); 443 } while (gen == 0 || gen != th->th_generation); 444 } 445 446 void 447 getmicrouptime(struct timeval *tvp) 448 { 449 struct timehands *th; 450 u_int gen; 451 452 do { 453 th = timehands; 454 gen = atomic_load_acq_int(&th->th_generation); 455 bintime2timeval(&th->th_offset, tvp); 456 atomic_thread_fence_acq(); 457 } while (gen == 0 || gen != th->th_generation); 458 } 459 460 void 461 getbintime(struct bintime *bt) 462 { 463 struct timehands *th; 464 u_int gen; 465 466 do { 467 th = timehands; 468 gen = atomic_load_acq_int(&th->th_generation); 469 *bt = th->th_bintime; 470 atomic_thread_fence_acq(); 471 } while (gen == 0 || gen != th->th_generation); 472 } 473 474 void 475 getnanotime(struct timespec *tsp) 476 { 477 struct timehands *th; 478 u_int gen; 479 480 do { 481 th = timehands; 482 gen = atomic_load_acq_int(&th->th_generation); 483 *tsp = th->th_nanotime; 484 atomic_thread_fence_acq(); 485 } while (gen == 0 || gen != th->th_generation); 486 } 487 488 void 489 getmicrotime(struct timeval *tvp) 490 { 491 struct timehands *th; 492 u_int gen; 493 494 do { 495 th = timehands; 496 gen = atomic_load_acq_int(&th->th_generation); 497 *tvp = th->th_microtime; 498 atomic_thread_fence_acq(); 499 } while (gen == 0 || gen != th->th_generation); 500 } 501 #endif /* FFCLOCK */ 502 503 void 504 getboottime(struct timeval *boottime) 505 { 506 struct bintime boottimebin; 507 508 getboottimebin(&boottimebin); 509 bintime2timeval(&boottimebin, boottime); 510 } 511 512 void 513 getboottimebin(struct bintime *boottimebin) 514 { 515 struct timehands *th; 516 u_int gen; 517 518 do { 519 th = timehands; 520 gen = atomic_load_acq_int(&th->th_generation); 521 *boottimebin = th->th_boottime; 522 atomic_thread_fence_acq(); 523 } while (gen == 0 || gen != th->th_generation); 524 } 525 526 #ifdef FFCLOCK 527 /* 528 * Support for feed-forward synchronization algorithms. This is heavily inspired 529 * by the timehands mechanism but kept independent from it. *_windup() functions 530 * have some connection to avoid accessing the timecounter hardware more than 531 * necessary. 532 */ 533 534 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 535 struct ffclock_estimate ffclock_estimate; 536 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 537 uint32_t ffclock_status; /* Feed-forward clock status. */ 538 int8_t ffclock_updated; /* New estimates are available. */ 539 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 540 541 struct fftimehands { 542 struct ffclock_estimate cest; 543 struct bintime tick_time; 544 struct bintime tick_time_lerp; 545 ffcounter tick_ffcount; 546 uint64_t period_lerp; 547 volatile uint8_t gen; 548 struct fftimehands *next; 549 }; 550 551 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 552 553 static struct fftimehands ffth[10]; 554 static struct fftimehands *volatile fftimehands = ffth; 555 556 static void 557 ffclock_init(void) 558 { 559 struct fftimehands *cur; 560 struct fftimehands *last; 561 562 memset(ffth, 0, sizeof(ffth)); 563 564 last = ffth + NUM_ELEMENTS(ffth) - 1; 565 for (cur = ffth; cur < last; cur++) 566 cur->next = cur + 1; 567 last->next = ffth; 568 569 ffclock_updated = 0; 570 ffclock_status = FFCLOCK_STA_UNSYNC; 571 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 572 } 573 574 /* 575 * Reset the feed-forward clock estimates. Called from inittodr() to get things 576 * kick started and uses the timecounter nominal frequency as a first period 577 * estimate. Note: this function may be called several time just after boot. 578 * Note: this is the only function that sets the value of boot time for the 579 * monotonic (i.e. uptime) version of the feed-forward clock. 580 */ 581 void 582 ffclock_reset_clock(struct timespec *ts) 583 { 584 struct timecounter *tc; 585 struct ffclock_estimate cest; 586 587 tc = timehands->th_counter; 588 memset(&cest, 0, sizeof(struct ffclock_estimate)); 589 590 timespec2bintime(ts, &ffclock_boottime); 591 timespec2bintime(ts, &(cest.update_time)); 592 ffclock_read_counter(&cest.update_ffcount); 593 cest.leapsec_next = 0; 594 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 595 cest.errb_abs = 0; 596 cest.errb_rate = 0; 597 cest.status = FFCLOCK_STA_UNSYNC; 598 cest.leapsec_total = 0; 599 cest.leapsec = 0; 600 601 mtx_lock(&ffclock_mtx); 602 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 603 ffclock_updated = INT8_MAX; 604 mtx_unlock(&ffclock_mtx); 605 606 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 607 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 608 (unsigned long)ts->tv_nsec); 609 } 610 611 /* 612 * Sub-routine to convert a time interval measured in RAW counter units to time 613 * in seconds stored in bintime format. 614 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 615 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 616 * extra cycles. 617 */ 618 static void 619 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 620 { 621 struct bintime bt2; 622 ffcounter delta, delta_max; 623 624 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 625 bintime_clear(bt); 626 do { 627 if (ffdelta > delta_max) 628 delta = delta_max; 629 else 630 delta = ffdelta; 631 bt2.sec = 0; 632 bt2.frac = period; 633 bintime_mul(&bt2, (unsigned int)delta); 634 bintime_add(bt, &bt2); 635 ffdelta -= delta; 636 } while (ffdelta > 0); 637 } 638 639 /* 640 * Update the fftimehands. 641 * Push the tick ffcount and time(s) forward based on current clock estimate. 642 * The conversion from ffcounter to bintime relies on the difference clock 643 * principle, whose accuracy relies on computing small time intervals. If a new 644 * clock estimate has been passed by the synchronisation daemon, make it 645 * current, and compute the linear interpolation for monotonic time if needed. 646 */ 647 static void 648 ffclock_windup(unsigned int delta) 649 { 650 struct ffclock_estimate *cest; 651 struct fftimehands *ffth; 652 struct bintime bt, gap_lerp; 653 ffcounter ffdelta; 654 uint64_t frac; 655 unsigned int polling; 656 uint8_t forward_jump, ogen; 657 658 /* 659 * Pick the next timehand, copy current ffclock estimates and move tick 660 * times and counter forward. 661 */ 662 forward_jump = 0; 663 ffth = fftimehands->next; 664 ogen = ffth->gen; 665 ffth->gen = 0; 666 cest = &ffth->cest; 667 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 668 ffdelta = (ffcounter)delta; 669 ffth->period_lerp = fftimehands->period_lerp; 670 671 ffth->tick_time = fftimehands->tick_time; 672 ffclock_convert_delta(ffdelta, cest->period, &bt); 673 bintime_add(&ffth->tick_time, &bt); 674 675 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 676 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 677 bintime_add(&ffth->tick_time_lerp, &bt); 678 679 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 680 681 /* 682 * Assess the status of the clock, if the last update is too old, it is 683 * likely the synchronisation daemon is dead and the clock is free 684 * running. 685 */ 686 if (ffclock_updated == 0) { 687 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 688 ffclock_convert_delta(ffdelta, cest->period, &bt); 689 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 690 ffclock_status |= FFCLOCK_STA_UNSYNC; 691 } 692 693 /* 694 * If available, grab updated clock estimates and make them current. 695 * Recompute time at this tick using the updated estimates. The clock 696 * estimates passed the feed-forward synchronisation daemon may result 697 * in time conversion that is not monotonically increasing (just after 698 * the update). time_lerp is a particular linear interpolation over the 699 * synchronisation algo polling period that ensures monotonicity for the 700 * clock ids requesting it. 701 */ 702 if (ffclock_updated > 0) { 703 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 704 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 705 ffth->tick_time = cest->update_time; 706 ffclock_convert_delta(ffdelta, cest->period, &bt); 707 bintime_add(&ffth->tick_time, &bt); 708 709 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 710 if (ffclock_updated == INT8_MAX) 711 ffth->tick_time_lerp = ffth->tick_time; 712 713 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 714 forward_jump = 1; 715 else 716 forward_jump = 0; 717 718 bintime_clear(&gap_lerp); 719 if (forward_jump) { 720 gap_lerp = ffth->tick_time; 721 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 722 } else { 723 gap_lerp = ffth->tick_time_lerp; 724 bintime_sub(&gap_lerp, &ffth->tick_time); 725 } 726 727 /* 728 * The reset from the RTC clock may be far from accurate, and 729 * reducing the gap between real time and interpolated time 730 * could take a very long time if the interpolated clock insists 731 * on strict monotonicity. The clock is reset under very strict 732 * conditions (kernel time is known to be wrong and 733 * synchronization daemon has been restarted recently. 734 * ffclock_boottime absorbs the jump to ensure boot time is 735 * correct and uptime functions stay consistent. 736 */ 737 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 738 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 739 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 740 if (forward_jump) 741 bintime_add(&ffclock_boottime, &gap_lerp); 742 else 743 bintime_sub(&ffclock_boottime, &gap_lerp); 744 ffth->tick_time_lerp = ffth->tick_time; 745 bintime_clear(&gap_lerp); 746 } 747 748 ffclock_status = cest->status; 749 ffth->period_lerp = cest->period; 750 751 /* 752 * Compute corrected period used for the linear interpolation of 753 * time. The rate of linear interpolation is capped to 5000PPM 754 * (5ms/s). 755 */ 756 if (bintime_isset(&gap_lerp)) { 757 ffdelta = cest->update_ffcount; 758 ffdelta -= fftimehands->cest.update_ffcount; 759 ffclock_convert_delta(ffdelta, cest->period, &bt); 760 polling = bt.sec; 761 bt.sec = 0; 762 bt.frac = 5000000 * (uint64_t)18446744073LL; 763 bintime_mul(&bt, polling); 764 if (bintime_cmp(&gap_lerp, &bt, >)) 765 gap_lerp = bt; 766 767 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 768 frac = 0; 769 if (gap_lerp.sec > 0) { 770 frac -= 1; 771 frac /= ffdelta / gap_lerp.sec; 772 } 773 frac += gap_lerp.frac / ffdelta; 774 775 if (forward_jump) 776 ffth->period_lerp += frac; 777 else 778 ffth->period_lerp -= frac; 779 } 780 781 ffclock_updated = 0; 782 } 783 if (++ogen == 0) 784 ogen = 1; 785 ffth->gen = ogen; 786 fftimehands = ffth; 787 } 788 789 /* 790 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 791 * the old and new hardware counter cannot be read simultaneously. tc_windup() 792 * does read the two counters 'back to back', but a few cycles are effectively 793 * lost, and not accumulated in tick_ffcount. This is a fairly radical 794 * operation for a feed-forward synchronization daemon, and it is its job to not 795 * pushing irrelevant data to the kernel. Because there is no locking here, 796 * simply force to ignore pending or next update to give daemon a chance to 797 * realize the counter has changed. 798 */ 799 static void 800 ffclock_change_tc(struct timehands *th) 801 { 802 struct fftimehands *ffth; 803 struct ffclock_estimate *cest; 804 struct timecounter *tc; 805 uint8_t ogen; 806 807 tc = th->th_counter; 808 ffth = fftimehands->next; 809 ogen = ffth->gen; 810 ffth->gen = 0; 811 812 cest = &ffth->cest; 813 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 814 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 815 cest->errb_abs = 0; 816 cest->errb_rate = 0; 817 cest->status |= FFCLOCK_STA_UNSYNC; 818 819 ffth->tick_ffcount = fftimehands->tick_ffcount; 820 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 821 ffth->tick_time = fftimehands->tick_time; 822 ffth->period_lerp = cest->period; 823 824 /* Do not lock but ignore next update from synchronization daemon. */ 825 ffclock_updated--; 826 827 if (++ogen == 0) 828 ogen = 1; 829 ffth->gen = ogen; 830 fftimehands = ffth; 831 } 832 833 /* 834 * Retrieve feed-forward counter and time of last kernel tick. 835 */ 836 void 837 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 838 { 839 struct fftimehands *ffth; 840 uint8_t gen; 841 842 /* 843 * No locking but check generation has not changed. Also need to make 844 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 845 */ 846 do { 847 ffth = fftimehands; 848 gen = ffth->gen; 849 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 850 *bt = ffth->tick_time_lerp; 851 else 852 *bt = ffth->tick_time; 853 *ffcount = ffth->tick_ffcount; 854 } while (gen == 0 || gen != ffth->gen); 855 } 856 857 /* 858 * Absolute clock conversion. Low level function to convert ffcounter to 859 * bintime. The ffcounter is converted using the current ffclock period estimate 860 * or the "interpolated period" to ensure monotonicity. 861 * NOTE: this conversion may have been deferred, and the clock updated since the 862 * hardware counter has been read. 863 */ 864 void 865 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 866 { 867 struct fftimehands *ffth; 868 struct bintime bt2; 869 ffcounter ffdelta; 870 uint8_t gen; 871 872 /* 873 * No locking but check generation has not changed. Also need to make 874 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 875 */ 876 do { 877 ffth = fftimehands; 878 gen = ffth->gen; 879 if (ffcount > ffth->tick_ffcount) 880 ffdelta = ffcount - ffth->tick_ffcount; 881 else 882 ffdelta = ffth->tick_ffcount - ffcount; 883 884 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 885 *bt = ffth->tick_time_lerp; 886 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 887 } else { 888 *bt = ffth->tick_time; 889 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 890 } 891 892 if (ffcount > ffth->tick_ffcount) 893 bintime_add(bt, &bt2); 894 else 895 bintime_sub(bt, &bt2); 896 } while (gen == 0 || gen != ffth->gen); 897 } 898 899 /* 900 * Difference clock conversion. 901 * Low level function to Convert a time interval measured in RAW counter units 902 * into bintime. The difference clock allows measuring small intervals much more 903 * reliably than the absolute clock. 904 */ 905 void 906 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 907 { 908 struct fftimehands *ffth; 909 uint8_t gen; 910 911 /* No locking but check generation has not changed. */ 912 do { 913 ffth = fftimehands; 914 gen = ffth->gen; 915 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 916 } while (gen == 0 || gen != ffth->gen); 917 } 918 919 /* 920 * Access to current ffcounter value. 921 */ 922 void 923 ffclock_read_counter(ffcounter *ffcount) 924 { 925 struct timehands *th; 926 struct fftimehands *ffth; 927 unsigned int gen, delta; 928 929 /* 930 * ffclock_windup() called from tc_windup(), safe to rely on 931 * th->th_generation only, for correct delta and ffcounter. 932 */ 933 do { 934 th = timehands; 935 gen = atomic_load_acq_int(&th->th_generation); 936 ffth = fftimehands; 937 delta = tc_delta(th); 938 *ffcount = ffth->tick_ffcount; 939 atomic_thread_fence_acq(); 940 } while (gen == 0 || gen != th->th_generation); 941 942 *ffcount += delta; 943 } 944 945 void 946 binuptime(struct bintime *bt) 947 { 948 949 binuptime_fromclock(bt, sysclock_active); 950 } 951 952 void 953 nanouptime(struct timespec *tsp) 954 { 955 956 nanouptime_fromclock(tsp, sysclock_active); 957 } 958 959 void 960 microuptime(struct timeval *tvp) 961 { 962 963 microuptime_fromclock(tvp, sysclock_active); 964 } 965 966 void 967 bintime(struct bintime *bt) 968 { 969 970 bintime_fromclock(bt, sysclock_active); 971 } 972 973 void 974 nanotime(struct timespec *tsp) 975 { 976 977 nanotime_fromclock(tsp, sysclock_active); 978 } 979 980 void 981 microtime(struct timeval *tvp) 982 { 983 984 microtime_fromclock(tvp, sysclock_active); 985 } 986 987 void 988 getbinuptime(struct bintime *bt) 989 { 990 991 getbinuptime_fromclock(bt, sysclock_active); 992 } 993 994 void 995 getnanouptime(struct timespec *tsp) 996 { 997 998 getnanouptime_fromclock(tsp, sysclock_active); 999 } 1000 1001 void 1002 getmicrouptime(struct timeval *tvp) 1003 { 1004 1005 getmicrouptime_fromclock(tvp, sysclock_active); 1006 } 1007 1008 void 1009 getbintime(struct bintime *bt) 1010 { 1011 1012 getbintime_fromclock(bt, sysclock_active); 1013 } 1014 1015 void 1016 getnanotime(struct timespec *tsp) 1017 { 1018 1019 getnanotime_fromclock(tsp, sysclock_active); 1020 } 1021 1022 void 1023 getmicrotime(struct timeval *tvp) 1024 { 1025 1026 getmicrouptime_fromclock(tvp, sysclock_active); 1027 } 1028 1029 #endif /* FFCLOCK */ 1030 1031 /* 1032 * This is a clone of getnanotime and used for walltimestamps. 1033 * The dtrace_ prefix prevents fbt from creating probes for 1034 * it so walltimestamp can be safely used in all fbt probes. 1035 */ 1036 void 1037 dtrace_getnanotime(struct timespec *tsp) 1038 { 1039 struct timehands *th; 1040 u_int gen; 1041 1042 do { 1043 th = timehands; 1044 gen = atomic_load_acq_int(&th->th_generation); 1045 *tsp = th->th_nanotime; 1046 atomic_thread_fence_acq(); 1047 } while (gen == 0 || gen != th->th_generation); 1048 } 1049 1050 /* 1051 * System clock currently providing time to the system. Modifiable via sysctl 1052 * when the FFCLOCK option is defined. 1053 */ 1054 int sysclock_active = SYSCLOCK_FBCK; 1055 1056 /* Internal NTP status and error estimates. */ 1057 extern int time_status; 1058 extern long time_esterror; 1059 1060 /* 1061 * Take a snapshot of sysclock data which can be used to compare system clocks 1062 * and generate timestamps after the fact. 1063 */ 1064 void 1065 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 1066 { 1067 struct fbclock_info *fbi; 1068 struct timehands *th; 1069 struct bintime bt; 1070 unsigned int delta, gen; 1071 #ifdef FFCLOCK 1072 ffcounter ffcount; 1073 struct fftimehands *ffth; 1074 struct ffclock_info *ffi; 1075 struct ffclock_estimate cest; 1076 1077 ffi = &clock_snap->ff_info; 1078 #endif 1079 1080 fbi = &clock_snap->fb_info; 1081 delta = 0; 1082 1083 do { 1084 th = timehands; 1085 gen = atomic_load_acq_int(&th->th_generation); 1086 fbi->th_scale = th->th_scale; 1087 fbi->tick_time = th->th_offset; 1088 #ifdef FFCLOCK 1089 ffth = fftimehands; 1090 ffi->tick_time = ffth->tick_time_lerp; 1091 ffi->tick_time_lerp = ffth->tick_time_lerp; 1092 ffi->period = ffth->cest.period; 1093 ffi->period_lerp = ffth->period_lerp; 1094 clock_snap->ffcount = ffth->tick_ffcount; 1095 cest = ffth->cest; 1096 #endif 1097 if (!fast) 1098 delta = tc_delta(th); 1099 atomic_thread_fence_acq(); 1100 } while (gen == 0 || gen != th->th_generation); 1101 1102 clock_snap->delta = delta; 1103 clock_snap->sysclock_active = sysclock_active; 1104 1105 /* Record feedback clock status and error. */ 1106 clock_snap->fb_info.status = time_status; 1107 /* XXX: Very crude estimate of feedback clock error. */ 1108 bt.sec = time_esterror / 1000000; 1109 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1110 (uint64_t)18446744073709ULL; 1111 clock_snap->fb_info.error = bt; 1112 1113 #ifdef FFCLOCK 1114 if (!fast) 1115 clock_snap->ffcount += delta; 1116 1117 /* Record feed-forward clock leap second adjustment. */ 1118 ffi->leapsec_adjustment = cest.leapsec_total; 1119 if (clock_snap->ffcount > cest.leapsec_next) 1120 ffi->leapsec_adjustment -= cest.leapsec; 1121 1122 /* Record feed-forward clock status and error. */ 1123 clock_snap->ff_info.status = cest.status; 1124 ffcount = clock_snap->ffcount - cest.update_ffcount; 1125 ffclock_convert_delta(ffcount, cest.period, &bt); 1126 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1127 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1128 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1129 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1130 clock_snap->ff_info.error = bt; 1131 #endif 1132 } 1133 1134 /* 1135 * Convert a sysclock snapshot into a struct bintime based on the specified 1136 * clock source and flags. 1137 */ 1138 int 1139 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1140 int whichclock, uint32_t flags) 1141 { 1142 struct bintime boottimebin; 1143 #ifdef FFCLOCK 1144 struct bintime bt2; 1145 uint64_t period; 1146 #endif 1147 1148 switch (whichclock) { 1149 case SYSCLOCK_FBCK: 1150 *bt = cs->fb_info.tick_time; 1151 1152 /* If snapshot was created with !fast, delta will be >0. */ 1153 if (cs->delta > 0) 1154 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1155 1156 if ((flags & FBCLOCK_UPTIME) == 0) { 1157 getboottimebin(&boottimebin); 1158 bintime_add(bt, &boottimebin); 1159 } 1160 break; 1161 #ifdef FFCLOCK 1162 case SYSCLOCK_FFWD: 1163 if (flags & FFCLOCK_LERP) { 1164 *bt = cs->ff_info.tick_time_lerp; 1165 period = cs->ff_info.period_lerp; 1166 } else { 1167 *bt = cs->ff_info.tick_time; 1168 period = cs->ff_info.period; 1169 } 1170 1171 /* If snapshot was created with !fast, delta will be >0. */ 1172 if (cs->delta > 0) { 1173 ffclock_convert_delta(cs->delta, period, &bt2); 1174 bintime_add(bt, &bt2); 1175 } 1176 1177 /* Leap second adjustment. */ 1178 if (flags & FFCLOCK_LEAPSEC) 1179 bt->sec -= cs->ff_info.leapsec_adjustment; 1180 1181 /* Boot time adjustment, for uptime/monotonic clocks. */ 1182 if (flags & FFCLOCK_UPTIME) 1183 bintime_sub(bt, &ffclock_boottime); 1184 break; 1185 #endif 1186 default: 1187 return (EINVAL); 1188 break; 1189 } 1190 1191 return (0); 1192 } 1193 1194 /* 1195 * Initialize a new timecounter and possibly use it. 1196 */ 1197 void 1198 tc_init(struct timecounter *tc) 1199 { 1200 u_int u; 1201 struct sysctl_oid *tc_root; 1202 1203 u = tc->tc_frequency / tc->tc_counter_mask; 1204 /* XXX: We need some margin here, 10% is a guess */ 1205 u *= 11; 1206 u /= 10; 1207 if (u > hz && tc->tc_quality >= 0) { 1208 tc->tc_quality = -2000; 1209 if (bootverbose) { 1210 printf("Timecounter \"%s\" frequency %ju Hz", 1211 tc->tc_name, (uintmax_t)tc->tc_frequency); 1212 printf(" -- Insufficient hz, needs at least %u\n", u); 1213 } 1214 } else if (tc->tc_quality >= 0 || bootverbose) { 1215 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1216 tc->tc_name, (uintmax_t)tc->tc_frequency, 1217 tc->tc_quality); 1218 } 1219 1220 tc->tc_next = timecounters; 1221 timecounters = tc; 1222 /* 1223 * Set up sysctl tree for this counter. 1224 */ 1225 tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL, 1226 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1227 CTLFLAG_RW, 0, "timecounter description", "timecounter"); 1228 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1229 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1230 "mask for implemented bits"); 1231 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1232 "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc), 1233 sysctl_kern_timecounter_get, "IU", "current timecounter value"); 1234 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1235 "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc), 1236 sysctl_kern_timecounter_freq, "QU", "timecounter frequency"); 1237 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1238 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1239 "goodness of time counter"); 1240 /* 1241 * Do not automatically switch if the current tc was specifically 1242 * chosen. Never automatically use a timecounter with negative quality. 1243 * Even though we run on the dummy counter, switching here may be 1244 * worse since this timecounter may not be monotonic. 1245 */ 1246 if (tc_chosen) 1247 return; 1248 if (tc->tc_quality < 0) 1249 return; 1250 if (tc->tc_quality < timecounter->tc_quality) 1251 return; 1252 if (tc->tc_quality == timecounter->tc_quality && 1253 tc->tc_frequency < timecounter->tc_frequency) 1254 return; 1255 (void)tc->tc_get_timecount(tc); 1256 (void)tc->tc_get_timecount(tc); 1257 timecounter = tc; 1258 } 1259 1260 /* Report the frequency of the current timecounter. */ 1261 uint64_t 1262 tc_getfrequency(void) 1263 { 1264 1265 return (timehands->th_counter->tc_frequency); 1266 } 1267 1268 static bool 1269 sleeping_on_old_rtc(struct thread *td) 1270 { 1271 1272 /* 1273 * td_rtcgen is modified by curthread when it is running, 1274 * and by other threads in this function. By finding the thread 1275 * on a sleepqueue and holding the lock on the sleepqueue 1276 * chain, we guarantee that the thread is not running and that 1277 * modifying td_rtcgen is safe. Setting td_rtcgen to zero informs 1278 * the thread that it was woken due to a real-time clock adjustment. 1279 * (The declaration of td_rtcgen refers to this comment.) 1280 */ 1281 if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) { 1282 td->td_rtcgen = 0; 1283 return (true); 1284 } 1285 return (false); 1286 } 1287 1288 static struct mtx tc_setclock_mtx; 1289 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN); 1290 1291 /* 1292 * Step our concept of UTC. This is done by modifying our estimate of 1293 * when we booted. 1294 */ 1295 void 1296 tc_setclock(struct timespec *ts) 1297 { 1298 struct timespec tbef, taft; 1299 struct bintime bt, bt2; 1300 1301 timespec2bintime(ts, &bt); 1302 nanotime(&tbef); 1303 mtx_lock_spin(&tc_setclock_mtx); 1304 cpu_tick_calibrate(1); 1305 binuptime(&bt2); 1306 bintime_sub(&bt, &bt2); 1307 1308 /* XXX fiddle all the little crinkly bits around the fiords... */ 1309 tc_windup(&bt); 1310 mtx_unlock_spin(&tc_setclock_mtx); 1311 1312 /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */ 1313 atomic_add_rel_int(&rtc_generation, 2); 1314 sleepq_chains_remove_matching(sleeping_on_old_rtc); 1315 if (timestepwarnings) { 1316 nanotime(&taft); 1317 log(LOG_INFO, 1318 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1319 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1320 (intmax_t)taft.tv_sec, taft.tv_nsec, 1321 (intmax_t)ts->tv_sec, ts->tv_nsec); 1322 } 1323 } 1324 1325 /* 1326 * Initialize the next struct timehands in the ring and make 1327 * it the active timehands. Along the way we might switch to a different 1328 * timecounter and/or do seconds processing in NTP. Slightly magic. 1329 */ 1330 static void 1331 tc_windup(struct bintime *new_boottimebin) 1332 { 1333 struct bintime bt; 1334 struct timehands *th, *tho; 1335 uint64_t scale; 1336 u_int delta, ncount, ogen; 1337 int i; 1338 time_t t; 1339 1340 /* 1341 * Make the next timehands a copy of the current one, but do 1342 * not overwrite the generation or next pointer. While we 1343 * update the contents, the generation must be zero. We need 1344 * to ensure that the zero generation is visible before the 1345 * data updates become visible, which requires release fence. 1346 * For similar reasons, re-reading of the generation after the 1347 * data is read should use acquire fence. 1348 */ 1349 tho = timehands; 1350 th = tho->th_next; 1351 ogen = th->th_generation; 1352 th->th_generation = 0; 1353 atomic_thread_fence_rel(); 1354 bcopy(tho, th, offsetof(struct timehands, th_generation)); 1355 if (new_boottimebin != NULL) 1356 th->th_boottime = *new_boottimebin; 1357 1358 /* 1359 * Capture a timecounter delta on the current timecounter and if 1360 * changing timecounters, a counter value from the new timecounter. 1361 * Update the offset fields accordingly. 1362 */ 1363 delta = tc_delta(th); 1364 if (th->th_counter != timecounter) 1365 ncount = timecounter->tc_get_timecount(timecounter); 1366 else 1367 ncount = 0; 1368 #ifdef FFCLOCK 1369 ffclock_windup(delta); 1370 #endif 1371 th->th_offset_count += delta; 1372 th->th_offset_count &= th->th_counter->tc_counter_mask; 1373 while (delta > th->th_counter->tc_frequency) { 1374 /* Eat complete unadjusted seconds. */ 1375 delta -= th->th_counter->tc_frequency; 1376 th->th_offset.sec++; 1377 } 1378 if ((delta > th->th_counter->tc_frequency / 2) && 1379 (th->th_scale * delta < ((uint64_t)1 << 63))) { 1380 /* The product th_scale * delta just barely overflows. */ 1381 th->th_offset.sec++; 1382 } 1383 bintime_addx(&th->th_offset, th->th_scale * delta); 1384 1385 /* 1386 * Hardware latching timecounters may not generate interrupts on 1387 * PPS events, so instead we poll them. There is a finite risk that 1388 * the hardware might capture a count which is later than the one we 1389 * got above, and therefore possibly in the next NTP second which might 1390 * have a different rate than the current NTP second. It doesn't 1391 * matter in practice. 1392 */ 1393 if (tho->th_counter->tc_poll_pps) 1394 tho->th_counter->tc_poll_pps(tho->th_counter); 1395 1396 /* 1397 * Deal with NTP second processing. The for loop normally 1398 * iterates at most once, but in extreme situations it might 1399 * keep NTP sane if timeouts are not run for several seconds. 1400 * At boot, the time step can be large when the TOD hardware 1401 * has been read, so on really large steps, we call 1402 * ntp_update_second only twice. We need to call it twice in 1403 * case we missed a leap second. 1404 */ 1405 bt = th->th_offset; 1406 bintime_add(&bt, &th->th_boottime); 1407 i = bt.sec - tho->th_microtime.tv_sec; 1408 if (i > LARGE_STEP) 1409 i = 2; 1410 for (; i > 0; i--) { 1411 t = bt.sec; 1412 ntp_update_second(&th->th_adjustment, &bt.sec); 1413 if (bt.sec != t) 1414 th->th_boottime.sec += bt.sec - t; 1415 } 1416 /* Update the UTC timestamps used by the get*() functions. */ 1417 th->th_bintime = bt; 1418 bintime2timeval(&bt, &th->th_microtime); 1419 bintime2timespec(&bt, &th->th_nanotime); 1420 1421 /* Now is a good time to change timecounters. */ 1422 if (th->th_counter != timecounter) { 1423 #ifndef __arm__ 1424 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0) 1425 cpu_disable_c2_sleep++; 1426 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 1427 cpu_disable_c2_sleep--; 1428 #endif 1429 th->th_counter = timecounter; 1430 th->th_offset_count = ncount; 1431 tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 1432 (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1433 #ifdef FFCLOCK 1434 ffclock_change_tc(th); 1435 #endif 1436 } 1437 1438 /*- 1439 * Recalculate the scaling factor. We want the number of 1/2^64 1440 * fractions of a second per period of the hardware counter, taking 1441 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1442 * processing provides us with. 1443 * 1444 * The th_adjustment is nanoseconds per second with 32 bit binary 1445 * fraction and we want 64 bit binary fraction of second: 1446 * 1447 * x = a * 2^32 / 10^9 = a * 4.294967296 1448 * 1449 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1450 * we can only multiply by about 850 without overflowing, that 1451 * leaves no suitably precise fractions for multiply before divide. 1452 * 1453 * Divide before multiply with a fraction of 2199/512 results in a 1454 * systematic undercompensation of 10PPM of th_adjustment. On a 1455 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1456 * 1457 * We happily sacrifice the lowest of the 64 bits of our result 1458 * to the goddess of code clarity. 1459 * 1460 */ 1461 scale = (uint64_t)1 << 63; 1462 scale += (th->th_adjustment / 1024) * 2199; 1463 scale /= th->th_counter->tc_frequency; 1464 th->th_scale = scale * 2; 1465 1466 /* 1467 * Now that the struct timehands is again consistent, set the new 1468 * generation number, making sure to not make it zero. 1469 */ 1470 if (++ogen == 0) 1471 ogen = 1; 1472 atomic_store_rel_int(&th->th_generation, ogen); 1473 1474 /* Go live with the new struct timehands. */ 1475 #ifdef FFCLOCK 1476 switch (sysclock_active) { 1477 case SYSCLOCK_FBCK: 1478 #endif 1479 time_second = th->th_microtime.tv_sec; 1480 time_uptime = th->th_offset.sec; 1481 #ifdef FFCLOCK 1482 break; 1483 case SYSCLOCK_FFWD: 1484 time_second = fftimehands->tick_time_lerp.sec; 1485 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1486 break; 1487 } 1488 #endif 1489 1490 timehands = th; 1491 timekeep_push_vdso(); 1492 } 1493 1494 /* Report or change the active timecounter hardware. */ 1495 static int 1496 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1497 { 1498 char newname[32]; 1499 struct timecounter *newtc, *tc; 1500 int error; 1501 1502 tc = timecounter; 1503 strlcpy(newname, tc->tc_name, sizeof(newname)); 1504 1505 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1506 if (error != 0 || req->newptr == NULL) 1507 return (error); 1508 /* Record that the tc in use now was specifically chosen. */ 1509 tc_chosen = 1; 1510 if (strcmp(newname, tc->tc_name) == 0) 1511 return (0); 1512 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1513 if (strcmp(newname, newtc->tc_name) != 0) 1514 continue; 1515 1516 /* Warm up new timecounter. */ 1517 (void)newtc->tc_get_timecount(newtc); 1518 (void)newtc->tc_get_timecount(newtc); 1519 1520 timecounter = newtc; 1521 1522 /* 1523 * The vdso timehands update is deferred until the next 1524 * 'tc_windup()'. 1525 * 1526 * This is prudent given that 'timekeep_push_vdso()' does not 1527 * use any locking and that it can be called in hard interrupt 1528 * context via 'tc_windup()'. 1529 */ 1530 return (0); 1531 } 1532 return (EINVAL); 1533 } 1534 1535 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW, 1536 0, 0, sysctl_kern_timecounter_hardware, "A", 1537 "Timecounter hardware selected"); 1538 1539 1540 /* Report the available timecounter hardware. */ 1541 static int 1542 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1543 { 1544 struct sbuf sb; 1545 struct timecounter *tc; 1546 int error; 1547 1548 sbuf_new_for_sysctl(&sb, NULL, 0, req); 1549 for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 1550 if (tc != timecounters) 1551 sbuf_putc(&sb, ' '); 1552 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality); 1553 } 1554 error = sbuf_finish(&sb); 1555 sbuf_delete(&sb); 1556 return (error); 1557 } 1558 1559 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD, 1560 0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected"); 1561 1562 /* 1563 * RFC 2783 PPS-API implementation. 1564 */ 1565 1566 /* 1567 * Return true if the driver is aware of the abi version extensions in the 1568 * pps_state structure, and it supports at least the given abi version number. 1569 */ 1570 static inline int 1571 abi_aware(struct pps_state *pps, int vers) 1572 { 1573 1574 return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers); 1575 } 1576 1577 static int 1578 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1579 { 1580 int err, timo; 1581 pps_seq_t aseq, cseq; 1582 struct timeval tv; 1583 1584 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1585 return (EINVAL); 1586 1587 /* 1588 * If no timeout is requested, immediately return whatever values were 1589 * most recently captured. If timeout seconds is -1, that's a request 1590 * to block without a timeout. WITNESS won't let us sleep forever 1591 * without a lock (we really don't need a lock), so just repeatedly 1592 * sleep a long time. 1593 */ 1594 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1595 if (fapi->timeout.tv_sec == -1) 1596 timo = 0x7fffffff; 1597 else { 1598 tv.tv_sec = fapi->timeout.tv_sec; 1599 tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1600 timo = tvtohz(&tv); 1601 } 1602 aseq = pps->ppsinfo.assert_sequence; 1603 cseq = pps->ppsinfo.clear_sequence; 1604 while (aseq == pps->ppsinfo.assert_sequence && 1605 cseq == pps->ppsinfo.clear_sequence) { 1606 if (abi_aware(pps, 1) && pps->driver_mtx != NULL) { 1607 if (pps->flags & PPSFLAG_MTX_SPIN) { 1608 err = msleep_spin(pps, pps->driver_mtx, 1609 "ppsfch", timo); 1610 } else { 1611 err = msleep(pps, pps->driver_mtx, PCATCH, 1612 "ppsfch", timo); 1613 } 1614 } else { 1615 err = tsleep(pps, PCATCH, "ppsfch", timo); 1616 } 1617 if (err == EWOULDBLOCK) { 1618 if (fapi->timeout.tv_sec == -1) { 1619 continue; 1620 } else { 1621 return (ETIMEDOUT); 1622 } 1623 } else if (err != 0) { 1624 return (err); 1625 } 1626 } 1627 } 1628 1629 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1630 fapi->pps_info_buf = pps->ppsinfo; 1631 1632 return (0); 1633 } 1634 1635 int 1636 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1637 { 1638 pps_params_t *app; 1639 struct pps_fetch_args *fapi; 1640 #ifdef FFCLOCK 1641 struct pps_fetch_ffc_args *fapi_ffc; 1642 #endif 1643 #ifdef PPS_SYNC 1644 struct pps_kcbind_args *kapi; 1645 #endif 1646 1647 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1648 switch (cmd) { 1649 case PPS_IOC_CREATE: 1650 return (0); 1651 case PPS_IOC_DESTROY: 1652 return (0); 1653 case PPS_IOC_SETPARAMS: 1654 app = (pps_params_t *)data; 1655 if (app->mode & ~pps->ppscap) 1656 return (EINVAL); 1657 #ifdef FFCLOCK 1658 /* Ensure only a single clock is selected for ffc timestamp. */ 1659 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1660 return (EINVAL); 1661 #endif 1662 pps->ppsparam = *app; 1663 return (0); 1664 case PPS_IOC_GETPARAMS: 1665 app = (pps_params_t *)data; 1666 *app = pps->ppsparam; 1667 app->api_version = PPS_API_VERS_1; 1668 return (0); 1669 case PPS_IOC_GETCAP: 1670 *(int*)data = pps->ppscap; 1671 return (0); 1672 case PPS_IOC_FETCH: 1673 fapi = (struct pps_fetch_args *)data; 1674 return (pps_fetch(fapi, pps)); 1675 #ifdef FFCLOCK 1676 case PPS_IOC_FETCH_FFCOUNTER: 1677 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1678 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1679 PPS_TSFMT_TSPEC) 1680 return (EINVAL); 1681 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1682 return (EOPNOTSUPP); 1683 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1684 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1685 /* Overwrite timestamps if feedback clock selected. */ 1686 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1687 case PPS_TSCLK_FBCK: 1688 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1689 pps->ppsinfo.assert_timestamp; 1690 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1691 pps->ppsinfo.clear_timestamp; 1692 break; 1693 case PPS_TSCLK_FFWD: 1694 break; 1695 default: 1696 break; 1697 } 1698 return (0); 1699 #endif /* FFCLOCK */ 1700 case PPS_IOC_KCBIND: 1701 #ifdef PPS_SYNC 1702 kapi = (struct pps_kcbind_args *)data; 1703 /* XXX Only root should be able to do this */ 1704 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1705 return (EINVAL); 1706 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1707 return (EINVAL); 1708 if (kapi->edge & ~pps->ppscap) 1709 return (EINVAL); 1710 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) | 1711 (pps->kcmode & KCMODE_ABIFLAG); 1712 return (0); 1713 #else 1714 return (EOPNOTSUPP); 1715 #endif 1716 default: 1717 return (ENOIOCTL); 1718 } 1719 } 1720 1721 void 1722 pps_init(struct pps_state *pps) 1723 { 1724 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1725 if (pps->ppscap & PPS_CAPTUREASSERT) 1726 pps->ppscap |= PPS_OFFSETASSERT; 1727 if (pps->ppscap & PPS_CAPTURECLEAR) 1728 pps->ppscap |= PPS_OFFSETCLEAR; 1729 #ifdef FFCLOCK 1730 pps->ppscap |= PPS_TSCLK_MASK; 1731 #endif 1732 pps->kcmode &= ~KCMODE_ABIFLAG; 1733 } 1734 1735 void 1736 pps_init_abi(struct pps_state *pps) 1737 { 1738 1739 pps_init(pps); 1740 if (pps->driver_abi > 0) { 1741 pps->kcmode |= KCMODE_ABIFLAG; 1742 pps->kernel_abi = PPS_ABI_VERSION; 1743 } 1744 } 1745 1746 void 1747 pps_capture(struct pps_state *pps) 1748 { 1749 struct timehands *th; 1750 1751 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1752 th = timehands; 1753 pps->capgen = atomic_load_acq_int(&th->th_generation); 1754 pps->capth = th; 1755 #ifdef FFCLOCK 1756 pps->capffth = fftimehands; 1757 #endif 1758 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1759 atomic_thread_fence_acq(); 1760 if (pps->capgen != th->th_generation) 1761 pps->capgen = 0; 1762 } 1763 1764 void 1765 pps_event(struct pps_state *pps, int event) 1766 { 1767 struct bintime bt; 1768 struct timespec ts, *tsp, *osp; 1769 u_int tcount, *pcount; 1770 int foff; 1771 pps_seq_t *pseq; 1772 #ifdef FFCLOCK 1773 struct timespec *tsp_ffc; 1774 pps_seq_t *pseq_ffc; 1775 ffcounter *ffcount; 1776 #endif 1777 #ifdef PPS_SYNC 1778 int fhard; 1779 #endif 1780 1781 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1782 /* Nothing to do if not currently set to capture this event type. */ 1783 if ((event & pps->ppsparam.mode) == 0) 1784 return; 1785 /* If the timecounter was wound up underneath us, bail out. */ 1786 if (pps->capgen == 0 || pps->capgen != 1787 atomic_load_acq_int(&pps->capth->th_generation)) 1788 return; 1789 1790 /* Things would be easier with arrays. */ 1791 if (event == PPS_CAPTUREASSERT) { 1792 tsp = &pps->ppsinfo.assert_timestamp; 1793 osp = &pps->ppsparam.assert_offset; 1794 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1795 #ifdef PPS_SYNC 1796 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1797 #endif 1798 pcount = &pps->ppscount[0]; 1799 pseq = &pps->ppsinfo.assert_sequence; 1800 #ifdef FFCLOCK 1801 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1802 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1803 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1804 #endif 1805 } else { 1806 tsp = &pps->ppsinfo.clear_timestamp; 1807 osp = &pps->ppsparam.clear_offset; 1808 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1809 #ifdef PPS_SYNC 1810 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1811 #endif 1812 pcount = &pps->ppscount[1]; 1813 pseq = &pps->ppsinfo.clear_sequence; 1814 #ifdef FFCLOCK 1815 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1816 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1817 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1818 #endif 1819 } 1820 1821 /* 1822 * If the timecounter changed, we cannot compare the count values, so 1823 * we have to drop the rest of the PPS-stuff until the next event. 1824 */ 1825 if (pps->ppstc != pps->capth->th_counter) { 1826 pps->ppstc = pps->capth->th_counter; 1827 *pcount = pps->capcount; 1828 pps->ppscount[2] = pps->capcount; 1829 return; 1830 } 1831 1832 /* Convert the count to a timespec. */ 1833 tcount = pps->capcount - pps->capth->th_offset_count; 1834 tcount &= pps->capth->th_counter->tc_counter_mask; 1835 bt = pps->capth->th_bintime; 1836 bintime_addx(&bt, pps->capth->th_scale * tcount); 1837 bintime2timespec(&bt, &ts); 1838 1839 /* If the timecounter was wound up underneath us, bail out. */ 1840 atomic_thread_fence_acq(); 1841 if (pps->capgen != pps->capth->th_generation) 1842 return; 1843 1844 *pcount = pps->capcount; 1845 (*pseq)++; 1846 *tsp = ts; 1847 1848 if (foff) { 1849 timespecadd(tsp, osp); 1850 if (tsp->tv_nsec < 0) { 1851 tsp->tv_nsec += 1000000000; 1852 tsp->tv_sec -= 1; 1853 } 1854 } 1855 1856 #ifdef FFCLOCK 1857 *ffcount = pps->capffth->tick_ffcount + tcount; 1858 bt = pps->capffth->tick_time; 1859 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1860 bintime_add(&bt, &pps->capffth->tick_time); 1861 bintime2timespec(&bt, &ts); 1862 (*pseq_ffc)++; 1863 *tsp_ffc = ts; 1864 #endif 1865 1866 #ifdef PPS_SYNC 1867 if (fhard) { 1868 uint64_t scale; 1869 1870 /* 1871 * Feed the NTP PLL/FLL. 1872 * The FLL wants to know how many (hardware) nanoseconds 1873 * elapsed since the previous event. 1874 */ 1875 tcount = pps->capcount - pps->ppscount[2]; 1876 pps->ppscount[2] = pps->capcount; 1877 tcount &= pps->capth->th_counter->tc_counter_mask; 1878 scale = (uint64_t)1 << 63; 1879 scale /= pps->capth->th_counter->tc_frequency; 1880 scale *= 2; 1881 bt.sec = 0; 1882 bt.frac = 0; 1883 bintime_addx(&bt, scale * tcount); 1884 bintime2timespec(&bt, &ts); 1885 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1886 } 1887 #endif 1888 1889 /* Wakeup anyone sleeping in pps_fetch(). */ 1890 wakeup(pps); 1891 } 1892 1893 /* 1894 * Timecounters need to be updated every so often to prevent the hardware 1895 * counter from overflowing. Updating also recalculates the cached values 1896 * used by the get*() family of functions, so their precision depends on 1897 * the update frequency. 1898 */ 1899 1900 static int tc_tick; 1901 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1902 "Approximate number of hardclock ticks in a millisecond"); 1903 1904 void 1905 tc_ticktock(int cnt) 1906 { 1907 static int count; 1908 1909 if (mtx_trylock_spin(&tc_setclock_mtx)) { 1910 count += cnt; 1911 if (count >= tc_tick) { 1912 count = 0; 1913 tc_windup(NULL); 1914 } 1915 mtx_unlock_spin(&tc_setclock_mtx); 1916 } 1917 } 1918 1919 static void __inline 1920 tc_adjprecision(void) 1921 { 1922 int t; 1923 1924 if (tc_timepercentage > 0) { 1925 t = (99 + tc_timepercentage) / tc_timepercentage; 1926 tc_precexp = fls(t + (t >> 1)) - 1; 1927 FREQ2BT(hz / tc_tick, &bt_timethreshold); 1928 FREQ2BT(hz, &bt_tickthreshold); 1929 bintime_shift(&bt_timethreshold, tc_precexp); 1930 bintime_shift(&bt_tickthreshold, tc_precexp); 1931 } else { 1932 tc_precexp = 31; 1933 bt_timethreshold.sec = INT_MAX; 1934 bt_timethreshold.frac = ~(uint64_t)0; 1935 bt_tickthreshold = bt_timethreshold; 1936 } 1937 sbt_timethreshold = bttosbt(bt_timethreshold); 1938 sbt_tickthreshold = bttosbt(bt_tickthreshold); 1939 } 1940 1941 static int 1942 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 1943 { 1944 int error, val; 1945 1946 val = tc_timepercentage; 1947 error = sysctl_handle_int(oidp, &val, 0, req); 1948 if (error != 0 || req->newptr == NULL) 1949 return (error); 1950 tc_timepercentage = val; 1951 if (cold) 1952 goto done; 1953 tc_adjprecision(); 1954 done: 1955 return (0); 1956 } 1957 1958 static void 1959 inittimecounter(void *dummy) 1960 { 1961 u_int p; 1962 int tick_rate; 1963 1964 /* 1965 * Set the initial timeout to 1966 * max(1, <approx. number of hardclock ticks in a millisecond>). 1967 * People should probably not use the sysctl to set the timeout 1968 * to smaller than its initial value, since that value is the 1969 * smallest reasonable one. If they want better timestamps they 1970 * should use the non-"get"* functions. 1971 */ 1972 if (hz > 1000) 1973 tc_tick = (hz + 500) / 1000; 1974 else 1975 tc_tick = 1; 1976 tc_adjprecision(); 1977 FREQ2BT(hz, &tick_bt); 1978 tick_sbt = bttosbt(tick_bt); 1979 tick_rate = hz / tc_tick; 1980 FREQ2BT(tick_rate, &tc_tick_bt); 1981 tc_tick_sbt = bttosbt(tc_tick_bt); 1982 p = (tc_tick * 1000000) / hz; 1983 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 1984 1985 #ifdef FFCLOCK 1986 ffclock_init(); 1987 #endif 1988 /* warm up new timecounter (again) and get rolling. */ 1989 (void)timecounter->tc_get_timecount(timecounter); 1990 (void)timecounter->tc_get_timecount(timecounter); 1991 mtx_lock_spin(&tc_setclock_mtx); 1992 tc_windup(NULL); 1993 mtx_unlock_spin(&tc_setclock_mtx); 1994 } 1995 1996 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 1997 1998 /* Cpu tick handling -------------------------------------------------*/ 1999 2000 static int cpu_tick_variable; 2001 static uint64_t cpu_tick_frequency; 2002 2003 static DPCPU_DEFINE(uint64_t, tc_cpu_ticks_base); 2004 static DPCPU_DEFINE(unsigned, tc_cpu_ticks_last); 2005 2006 static uint64_t 2007 tc_cpu_ticks(void) 2008 { 2009 struct timecounter *tc; 2010 uint64_t res, *base; 2011 unsigned u, *last; 2012 2013 critical_enter(); 2014 base = DPCPU_PTR(tc_cpu_ticks_base); 2015 last = DPCPU_PTR(tc_cpu_ticks_last); 2016 tc = timehands->th_counter; 2017 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 2018 if (u < *last) 2019 *base += (uint64_t)tc->tc_counter_mask + 1; 2020 *last = u; 2021 res = u + *base; 2022 critical_exit(); 2023 return (res); 2024 } 2025 2026 void 2027 cpu_tick_calibration(void) 2028 { 2029 static time_t last_calib; 2030 2031 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 2032 cpu_tick_calibrate(0); 2033 last_calib = time_uptime; 2034 } 2035 } 2036 2037 /* 2038 * This function gets called every 16 seconds on only one designated 2039 * CPU in the system from hardclock() via cpu_tick_calibration()(). 2040 * 2041 * Whenever the real time clock is stepped we get called with reset=1 2042 * to make sure we handle suspend/resume and similar events correctly. 2043 */ 2044 2045 static void 2046 cpu_tick_calibrate(int reset) 2047 { 2048 static uint64_t c_last; 2049 uint64_t c_this, c_delta; 2050 static struct bintime t_last; 2051 struct bintime t_this, t_delta; 2052 uint32_t divi; 2053 2054 if (reset) { 2055 /* The clock was stepped, abort & reset */ 2056 t_last.sec = 0; 2057 return; 2058 } 2059 2060 /* we don't calibrate fixed rate cputicks */ 2061 if (!cpu_tick_variable) 2062 return; 2063 2064 getbinuptime(&t_this); 2065 c_this = cpu_ticks(); 2066 if (t_last.sec != 0) { 2067 c_delta = c_this - c_last; 2068 t_delta = t_this; 2069 bintime_sub(&t_delta, &t_last); 2070 /* 2071 * Headroom: 2072 * 2^(64-20) / 16[s] = 2073 * 2^(44) / 16[s] = 2074 * 17.592.186.044.416 / 16 = 2075 * 1.099.511.627.776 [Hz] 2076 */ 2077 divi = t_delta.sec << 20; 2078 divi |= t_delta.frac >> (64 - 20); 2079 c_delta <<= 20; 2080 c_delta /= divi; 2081 if (c_delta > cpu_tick_frequency) { 2082 if (0 && bootverbose) 2083 printf("cpu_tick increased to %ju Hz\n", 2084 c_delta); 2085 cpu_tick_frequency = c_delta; 2086 } 2087 } 2088 c_last = c_this; 2089 t_last = t_this; 2090 } 2091 2092 void 2093 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 2094 { 2095 2096 if (func == NULL) { 2097 cpu_ticks = tc_cpu_ticks; 2098 } else { 2099 cpu_tick_frequency = freq; 2100 cpu_tick_variable = var; 2101 cpu_ticks = func; 2102 } 2103 } 2104 2105 uint64_t 2106 cpu_tickrate(void) 2107 { 2108 2109 if (cpu_ticks == tc_cpu_ticks) 2110 return (tc_getfrequency()); 2111 return (cpu_tick_frequency); 2112 } 2113 2114 /* 2115 * We need to be slightly careful converting cputicks to microseconds. 2116 * There is plenty of margin in 64 bits of microseconds (half a million 2117 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 2118 * before divide conversion (to retain precision) we find that the 2119 * margin shrinks to 1.5 hours (one millionth of 146y). 2120 * With a three prong approach we never lose significant bits, no 2121 * matter what the cputick rate and length of timeinterval is. 2122 */ 2123 2124 uint64_t 2125 cputick2usec(uint64_t tick) 2126 { 2127 2128 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 2129 return (tick / (cpu_tickrate() / 1000000LL)); 2130 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 2131 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 2132 else 2133 return ((tick * 1000000LL) / cpu_tickrate()); 2134 } 2135 2136 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 2137 2138 static int vdso_th_enable = 1; 2139 static int 2140 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 2141 { 2142 int old_vdso_th_enable, error; 2143 2144 old_vdso_th_enable = vdso_th_enable; 2145 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 2146 if (error != 0) 2147 return (error); 2148 vdso_th_enable = old_vdso_th_enable; 2149 return (0); 2150 } 2151 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 2152 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 2153 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 2154 2155 uint32_t 2156 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2157 { 2158 struct timehands *th; 2159 uint32_t enabled; 2160 2161 th = timehands; 2162 vdso_th->th_scale = th->th_scale; 2163 vdso_th->th_offset_count = th->th_offset_count; 2164 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2165 vdso_th->th_offset = th->th_offset; 2166 vdso_th->th_boottime = th->th_boottime; 2167 if (th->th_counter->tc_fill_vdso_timehands != NULL) { 2168 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th, 2169 th->th_counter); 2170 } else 2171 enabled = 0; 2172 if (!vdso_th_enable) 2173 enabled = 0; 2174 return (enabled); 2175 } 2176 2177 #ifdef COMPAT_FREEBSD32 2178 uint32_t 2179 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2180 { 2181 struct timehands *th; 2182 uint32_t enabled; 2183 2184 th = timehands; 2185 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2186 vdso_th32->th_offset_count = th->th_offset_count; 2187 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2188 vdso_th32->th_offset.sec = th->th_offset.sec; 2189 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 2190 vdso_th32->th_boottime.sec = th->th_boottime.sec; 2191 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac; 2192 if (th->th_counter->tc_fill_vdso_timehands32 != NULL) { 2193 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32, 2194 th->th_counter); 2195 } else 2196 enabled = 0; 2197 if (!vdso_th_enable) 2198 enabled = 0; 2199 return (enabled); 2200 } 2201 #endif 2202