1 /*- 2 * SPDX-License-Identifier: Beerware 3 * 4 * ---------------------------------------------------------------------------- 5 * "THE BEER-WARE LICENSE" (Revision 42): 6 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 7 * can do whatever you want with this stuff. If we meet some day, and you think 8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 9 * ---------------------------------------------------------------------------- 10 * 11 * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation 12 * 13 * Portions of this software were developed by Julien Ridoux at the University 14 * of Melbourne under sponsorship from the FreeBSD Foundation. 15 * 16 * Portions of this software were developed by Konstantin Belousov 17 * under sponsorship from the FreeBSD Foundation. 18 */ 19 20 #include <sys/cdefs.h> 21 __FBSDID("$FreeBSD$"); 22 23 #include "opt_ntp.h" 24 #include "opt_ffclock.h" 25 26 #include <sys/param.h> 27 #include <sys/kernel.h> 28 #include <sys/limits.h> 29 #include <sys/lock.h> 30 #include <sys/mutex.h> 31 #include <sys/proc.h> 32 #include <sys/sbuf.h> 33 #include <sys/sleepqueue.h> 34 #include <sys/sysctl.h> 35 #include <sys/syslog.h> 36 #include <sys/systm.h> 37 #include <sys/timeffc.h> 38 #include <sys/timepps.h> 39 #include <sys/timetc.h> 40 #include <sys/timex.h> 41 #include <sys/vdso.h> 42 43 /* 44 * A large step happens on boot. This constant detects such steps. 45 * It is relatively small so that ntp_update_second gets called enough 46 * in the typical 'missed a couple of seconds' case, but doesn't loop 47 * forever when the time step is large. 48 */ 49 #define LARGE_STEP 200 50 51 /* 52 * Implement a dummy timecounter which we can use until we get a real one 53 * in the air. This allows the console and other early stuff to use 54 * time services. 55 */ 56 57 static u_int 58 dummy_get_timecount(struct timecounter *tc) 59 { 60 static u_int now; 61 62 return (++now); 63 } 64 65 static struct timecounter dummy_timecounter = { 66 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 67 }; 68 69 struct timehands { 70 /* These fields must be initialized by the driver. */ 71 struct timecounter *th_counter; 72 int64_t th_adjustment; 73 uint64_t th_scale; 74 u_int th_large_delta; 75 u_int th_offset_count; 76 struct bintime th_offset; 77 struct bintime th_bintime; 78 struct timeval th_microtime; 79 struct timespec th_nanotime; 80 struct bintime th_boottime; 81 /* Fields not to be copied in tc_windup start with th_generation. */ 82 u_int th_generation; 83 struct timehands *th_next; 84 }; 85 86 static struct timehands ths[16] = { 87 [0] = { 88 .th_counter = &dummy_timecounter, 89 .th_scale = (uint64_t)-1 / 1000000, 90 .th_large_delta = 1000000, 91 .th_offset = { .sec = 1 }, 92 .th_generation = 1, 93 }, 94 }; 95 96 static struct timehands *volatile timehands = &ths[0]; 97 struct timecounter *timecounter = &dummy_timecounter; 98 static struct timecounter *timecounters = &dummy_timecounter; 99 100 int tc_min_ticktock_freq = 1; 101 102 volatile time_t time_second = 1; 103 volatile time_t time_uptime = 1; 104 105 /* 106 * The system time is always computed by summing the estimated boot time and the 107 * system uptime. The timehands track boot time, but it changes when the system 108 * time is set by the user, stepped by ntpd or adjusted when resuming. It 109 * is set to new_time - uptime. 110 */ 111 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 112 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, 113 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 114 sysctl_kern_boottime, "S,timeval", 115 "Estimated system boottime"); 116 117 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 118 ""); 119 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, 120 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 121 ""); 122 123 static int timestepwarnings; 124 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW, 125 ×tepwarnings, 0, "Log time steps"); 126 127 static int timehands_count = 2; 128 SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count, 129 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 130 &timehands_count, 0, "Count of timehands in rotation"); 131 132 struct bintime bt_timethreshold; 133 struct bintime bt_tickthreshold; 134 sbintime_t sbt_timethreshold; 135 sbintime_t sbt_tickthreshold; 136 struct bintime tc_tick_bt; 137 sbintime_t tc_tick_sbt; 138 int tc_precexp; 139 int tc_timepercentage = TC_DEFAULTPERC; 140 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 141 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 142 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 143 sysctl_kern_timecounter_adjprecision, "I", 144 "Allowed time interval deviation in percents"); 145 146 volatile int rtc_generation = 1; 147 148 static int tc_chosen; /* Non-zero if a specific tc was chosen via sysctl. */ 149 static char tc_from_tunable[16]; 150 151 static void tc_windup(struct bintime *new_boottimebin); 152 static void cpu_tick_calibrate(int); 153 154 void dtrace_getnanotime(struct timespec *tsp); 155 void dtrace_getnanouptime(struct timespec *tsp); 156 157 static int 158 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 159 { 160 struct timeval boottime; 161 162 getboottime(&boottime); 163 164 /* i386 is the only arch which uses a 32bits time_t */ 165 #ifdef __amd64__ 166 #ifdef SCTL_MASK32 167 int tv[2]; 168 169 if (req->flags & SCTL_MASK32) { 170 tv[0] = boottime.tv_sec; 171 tv[1] = boottime.tv_usec; 172 return (SYSCTL_OUT(req, tv, sizeof(tv))); 173 } 174 #endif 175 #endif 176 return (SYSCTL_OUT(req, &boottime, sizeof(boottime))); 177 } 178 179 static int 180 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 181 { 182 u_int ncount; 183 struct timecounter *tc = arg1; 184 185 ncount = tc->tc_get_timecount(tc); 186 return (sysctl_handle_int(oidp, &ncount, 0, req)); 187 } 188 189 static int 190 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 191 { 192 uint64_t freq; 193 struct timecounter *tc = arg1; 194 195 freq = tc->tc_frequency; 196 return (sysctl_handle_64(oidp, &freq, 0, req)); 197 } 198 199 /* 200 * Return the difference between the timehands' counter value now and what 201 * was when we copied it to the timehands' offset_count. 202 */ 203 static __inline u_int 204 tc_delta(struct timehands *th) 205 { 206 struct timecounter *tc; 207 208 tc = th->th_counter; 209 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 210 tc->tc_counter_mask); 211 } 212 213 /* 214 * Functions for reading the time. We have to loop until we are sure that 215 * the timehands that we operated on was not updated under our feet. See 216 * the comment in <sys/time.h> for a description of these 12 functions. 217 */ 218 219 static __inline void 220 bintime_off(struct bintime *bt, u_int off) 221 { 222 struct timehands *th; 223 struct bintime *btp; 224 uint64_t scale, x; 225 u_int delta, gen, large_delta; 226 227 do { 228 th = timehands; 229 gen = atomic_load_acq_int(&th->th_generation); 230 btp = (struct bintime *)((vm_offset_t)th + off); 231 *bt = *btp; 232 scale = th->th_scale; 233 delta = tc_delta(th); 234 large_delta = th->th_large_delta; 235 atomic_thread_fence_acq(); 236 } while (gen == 0 || gen != th->th_generation); 237 238 if (__predict_false(delta >= large_delta)) { 239 /* Avoid overflow for scale * delta. */ 240 x = (scale >> 32) * delta; 241 bt->sec += x >> 32; 242 bintime_addx(bt, x << 32); 243 bintime_addx(bt, (scale & 0xffffffff) * delta); 244 } else { 245 bintime_addx(bt, scale * delta); 246 } 247 } 248 #define GETTHBINTIME(dst, member) \ 249 do { \ 250 _Static_assert(_Generic(((struct timehands *)NULL)->member, \ 251 struct bintime: 1, default: 0) == 1, \ 252 "struct timehands member is not of struct bintime type"); \ 253 bintime_off(dst, __offsetof(struct timehands, member)); \ 254 } while (0) 255 256 static __inline void 257 getthmember(void *out, size_t out_size, u_int off) 258 { 259 struct timehands *th; 260 u_int gen; 261 262 do { 263 th = timehands; 264 gen = atomic_load_acq_int(&th->th_generation); 265 memcpy(out, (char *)th + off, out_size); 266 atomic_thread_fence_acq(); 267 } while (gen == 0 || gen != th->th_generation); 268 } 269 #define GETTHMEMBER(dst, member) \ 270 do { \ 271 _Static_assert(_Generic(*dst, \ 272 __typeof(((struct timehands *)NULL)->member): 1, \ 273 default: 0) == 1, \ 274 "*dst and struct timehands member have different types"); \ 275 getthmember(dst, sizeof(*dst), __offsetof(struct timehands, \ 276 member)); \ 277 } while (0) 278 279 #ifdef FFCLOCK 280 void 281 fbclock_binuptime(struct bintime *bt) 282 { 283 284 GETTHBINTIME(bt, th_offset); 285 } 286 287 void 288 fbclock_nanouptime(struct timespec *tsp) 289 { 290 struct bintime bt; 291 292 fbclock_binuptime(&bt); 293 bintime2timespec(&bt, tsp); 294 } 295 296 void 297 fbclock_microuptime(struct timeval *tvp) 298 { 299 struct bintime bt; 300 301 fbclock_binuptime(&bt); 302 bintime2timeval(&bt, tvp); 303 } 304 305 void 306 fbclock_bintime(struct bintime *bt) 307 { 308 309 GETTHBINTIME(bt, th_bintime); 310 } 311 312 void 313 fbclock_nanotime(struct timespec *tsp) 314 { 315 struct bintime bt; 316 317 fbclock_bintime(&bt); 318 bintime2timespec(&bt, tsp); 319 } 320 321 void 322 fbclock_microtime(struct timeval *tvp) 323 { 324 struct bintime bt; 325 326 fbclock_bintime(&bt); 327 bintime2timeval(&bt, tvp); 328 } 329 330 void 331 fbclock_getbinuptime(struct bintime *bt) 332 { 333 334 GETTHMEMBER(bt, th_offset); 335 } 336 337 void 338 fbclock_getnanouptime(struct timespec *tsp) 339 { 340 struct bintime bt; 341 342 GETTHMEMBER(&bt, th_offset); 343 bintime2timespec(&bt, tsp); 344 } 345 346 void 347 fbclock_getmicrouptime(struct timeval *tvp) 348 { 349 struct bintime bt; 350 351 GETTHMEMBER(&bt, th_offset); 352 bintime2timeval(&bt, tvp); 353 } 354 355 void 356 fbclock_getbintime(struct bintime *bt) 357 { 358 359 GETTHMEMBER(bt, th_bintime); 360 } 361 362 void 363 fbclock_getnanotime(struct timespec *tsp) 364 { 365 366 GETTHMEMBER(tsp, th_nanotime); 367 } 368 369 void 370 fbclock_getmicrotime(struct timeval *tvp) 371 { 372 373 GETTHMEMBER(tvp, th_microtime); 374 } 375 #else /* !FFCLOCK */ 376 377 void 378 binuptime(struct bintime *bt) 379 { 380 381 GETTHBINTIME(bt, th_offset); 382 } 383 384 void 385 nanouptime(struct timespec *tsp) 386 { 387 struct bintime bt; 388 389 binuptime(&bt); 390 bintime2timespec(&bt, tsp); 391 } 392 393 void 394 microuptime(struct timeval *tvp) 395 { 396 struct bintime bt; 397 398 binuptime(&bt); 399 bintime2timeval(&bt, tvp); 400 } 401 402 void 403 bintime(struct bintime *bt) 404 { 405 406 GETTHBINTIME(bt, th_bintime); 407 } 408 409 void 410 nanotime(struct timespec *tsp) 411 { 412 struct bintime bt; 413 414 bintime(&bt); 415 bintime2timespec(&bt, tsp); 416 } 417 418 void 419 microtime(struct timeval *tvp) 420 { 421 struct bintime bt; 422 423 bintime(&bt); 424 bintime2timeval(&bt, tvp); 425 } 426 427 void 428 getbinuptime(struct bintime *bt) 429 { 430 431 GETTHMEMBER(bt, th_offset); 432 } 433 434 void 435 getnanouptime(struct timespec *tsp) 436 { 437 struct bintime bt; 438 439 GETTHMEMBER(&bt, th_offset); 440 bintime2timespec(&bt, tsp); 441 } 442 443 void 444 getmicrouptime(struct timeval *tvp) 445 { 446 struct bintime bt; 447 448 GETTHMEMBER(&bt, th_offset); 449 bintime2timeval(&bt, tvp); 450 } 451 452 void 453 getbintime(struct bintime *bt) 454 { 455 456 GETTHMEMBER(bt, th_bintime); 457 } 458 459 void 460 getnanotime(struct timespec *tsp) 461 { 462 463 GETTHMEMBER(tsp, th_nanotime); 464 } 465 466 void 467 getmicrotime(struct timeval *tvp) 468 { 469 470 GETTHMEMBER(tvp, th_microtime); 471 } 472 #endif /* FFCLOCK */ 473 474 void 475 getboottime(struct timeval *boottime) 476 { 477 struct bintime boottimebin; 478 479 getboottimebin(&boottimebin); 480 bintime2timeval(&boottimebin, boottime); 481 } 482 483 void 484 getboottimebin(struct bintime *boottimebin) 485 { 486 487 GETTHMEMBER(boottimebin, th_boottime); 488 } 489 490 #ifdef FFCLOCK 491 /* 492 * Support for feed-forward synchronization algorithms. This is heavily inspired 493 * by the timehands mechanism but kept independent from it. *_windup() functions 494 * have some connection to avoid accessing the timecounter hardware more than 495 * necessary. 496 */ 497 498 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 499 struct ffclock_estimate ffclock_estimate; 500 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 501 uint32_t ffclock_status; /* Feed-forward clock status. */ 502 int8_t ffclock_updated; /* New estimates are available. */ 503 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 504 505 struct fftimehands { 506 struct ffclock_estimate cest; 507 struct bintime tick_time; 508 struct bintime tick_time_lerp; 509 ffcounter tick_ffcount; 510 uint64_t period_lerp; 511 volatile uint8_t gen; 512 struct fftimehands *next; 513 }; 514 515 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 516 517 static struct fftimehands ffth[10]; 518 static struct fftimehands *volatile fftimehands = ffth; 519 520 static void 521 ffclock_init(void) 522 { 523 struct fftimehands *cur; 524 struct fftimehands *last; 525 526 memset(ffth, 0, sizeof(ffth)); 527 528 last = ffth + NUM_ELEMENTS(ffth) - 1; 529 for (cur = ffth; cur < last; cur++) 530 cur->next = cur + 1; 531 last->next = ffth; 532 533 ffclock_updated = 0; 534 ffclock_status = FFCLOCK_STA_UNSYNC; 535 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 536 } 537 538 /* 539 * Reset the feed-forward clock estimates. Called from inittodr() to get things 540 * kick started and uses the timecounter nominal frequency as a first period 541 * estimate. Note: this function may be called several time just after boot. 542 * Note: this is the only function that sets the value of boot time for the 543 * monotonic (i.e. uptime) version of the feed-forward clock. 544 */ 545 void 546 ffclock_reset_clock(struct timespec *ts) 547 { 548 struct timecounter *tc; 549 struct ffclock_estimate cest; 550 551 tc = timehands->th_counter; 552 memset(&cest, 0, sizeof(struct ffclock_estimate)); 553 554 timespec2bintime(ts, &ffclock_boottime); 555 timespec2bintime(ts, &(cest.update_time)); 556 ffclock_read_counter(&cest.update_ffcount); 557 cest.leapsec_next = 0; 558 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 559 cest.errb_abs = 0; 560 cest.errb_rate = 0; 561 cest.status = FFCLOCK_STA_UNSYNC; 562 cest.leapsec_total = 0; 563 cest.leapsec = 0; 564 565 mtx_lock(&ffclock_mtx); 566 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 567 ffclock_updated = INT8_MAX; 568 mtx_unlock(&ffclock_mtx); 569 570 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 571 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 572 (unsigned long)ts->tv_nsec); 573 } 574 575 /* 576 * Sub-routine to convert a time interval measured in RAW counter units to time 577 * in seconds stored in bintime format. 578 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 579 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 580 * extra cycles. 581 */ 582 static void 583 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 584 { 585 struct bintime bt2; 586 ffcounter delta, delta_max; 587 588 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 589 bintime_clear(bt); 590 do { 591 if (ffdelta > delta_max) 592 delta = delta_max; 593 else 594 delta = ffdelta; 595 bt2.sec = 0; 596 bt2.frac = period; 597 bintime_mul(&bt2, (unsigned int)delta); 598 bintime_add(bt, &bt2); 599 ffdelta -= delta; 600 } while (ffdelta > 0); 601 } 602 603 /* 604 * Update the fftimehands. 605 * Push the tick ffcount and time(s) forward based on current clock estimate. 606 * The conversion from ffcounter to bintime relies on the difference clock 607 * principle, whose accuracy relies on computing small time intervals. If a new 608 * clock estimate has been passed by the synchronisation daemon, make it 609 * current, and compute the linear interpolation for monotonic time if needed. 610 */ 611 static void 612 ffclock_windup(unsigned int delta) 613 { 614 struct ffclock_estimate *cest; 615 struct fftimehands *ffth; 616 struct bintime bt, gap_lerp; 617 ffcounter ffdelta; 618 uint64_t frac; 619 unsigned int polling; 620 uint8_t forward_jump, ogen; 621 622 /* 623 * Pick the next timehand, copy current ffclock estimates and move tick 624 * times and counter forward. 625 */ 626 forward_jump = 0; 627 ffth = fftimehands->next; 628 ogen = ffth->gen; 629 ffth->gen = 0; 630 cest = &ffth->cest; 631 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 632 ffdelta = (ffcounter)delta; 633 ffth->period_lerp = fftimehands->period_lerp; 634 635 ffth->tick_time = fftimehands->tick_time; 636 ffclock_convert_delta(ffdelta, cest->period, &bt); 637 bintime_add(&ffth->tick_time, &bt); 638 639 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 640 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 641 bintime_add(&ffth->tick_time_lerp, &bt); 642 643 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 644 645 /* 646 * Assess the status of the clock, if the last update is too old, it is 647 * likely the synchronisation daemon is dead and the clock is free 648 * running. 649 */ 650 if (ffclock_updated == 0) { 651 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 652 ffclock_convert_delta(ffdelta, cest->period, &bt); 653 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 654 ffclock_status |= FFCLOCK_STA_UNSYNC; 655 } 656 657 /* 658 * If available, grab updated clock estimates and make them current. 659 * Recompute time at this tick using the updated estimates. The clock 660 * estimates passed the feed-forward synchronisation daemon may result 661 * in time conversion that is not monotonically increasing (just after 662 * the update). time_lerp is a particular linear interpolation over the 663 * synchronisation algo polling period that ensures monotonicity for the 664 * clock ids requesting it. 665 */ 666 if (ffclock_updated > 0) { 667 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 668 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 669 ffth->tick_time = cest->update_time; 670 ffclock_convert_delta(ffdelta, cest->period, &bt); 671 bintime_add(&ffth->tick_time, &bt); 672 673 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 674 if (ffclock_updated == INT8_MAX) 675 ffth->tick_time_lerp = ffth->tick_time; 676 677 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 678 forward_jump = 1; 679 else 680 forward_jump = 0; 681 682 bintime_clear(&gap_lerp); 683 if (forward_jump) { 684 gap_lerp = ffth->tick_time; 685 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 686 } else { 687 gap_lerp = ffth->tick_time_lerp; 688 bintime_sub(&gap_lerp, &ffth->tick_time); 689 } 690 691 /* 692 * The reset from the RTC clock may be far from accurate, and 693 * reducing the gap between real time and interpolated time 694 * could take a very long time if the interpolated clock insists 695 * on strict monotonicity. The clock is reset under very strict 696 * conditions (kernel time is known to be wrong and 697 * synchronization daemon has been restarted recently. 698 * ffclock_boottime absorbs the jump to ensure boot time is 699 * correct and uptime functions stay consistent. 700 */ 701 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 702 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 703 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 704 if (forward_jump) 705 bintime_add(&ffclock_boottime, &gap_lerp); 706 else 707 bintime_sub(&ffclock_boottime, &gap_lerp); 708 ffth->tick_time_lerp = ffth->tick_time; 709 bintime_clear(&gap_lerp); 710 } 711 712 ffclock_status = cest->status; 713 ffth->period_lerp = cest->period; 714 715 /* 716 * Compute corrected period used for the linear interpolation of 717 * time. The rate of linear interpolation is capped to 5000PPM 718 * (5ms/s). 719 */ 720 if (bintime_isset(&gap_lerp)) { 721 ffdelta = cest->update_ffcount; 722 ffdelta -= fftimehands->cest.update_ffcount; 723 ffclock_convert_delta(ffdelta, cest->period, &bt); 724 polling = bt.sec; 725 bt.sec = 0; 726 bt.frac = 5000000 * (uint64_t)18446744073LL; 727 bintime_mul(&bt, polling); 728 if (bintime_cmp(&gap_lerp, &bt, >)) 729 gap_lerp = bt; 730 731 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 732 frac = 0; 733 if (gap_lerp.sec > 0) { 734 frac -= 1; 735 frac /= ffdelta / gap_lerp.sec; 736 } 737 frac += gap_lerp.frac / ffdelta; 738 739 if (forward_jump) 740 ffth->period_lerp += frac; 741 else 742 ffth->period_lerp -= frac; 743 } 744 745 ffclock_updated = 0; 746 } 747 if (++ogen == 0) 748 ogen = 1; 749 ffth->gen = ogen; 750 fftimehands = ffth; 751 } 752 753 /* 754 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 755 * the old and new hardware counter cannot be read simultaneously. tc_windup() 756 * does read the two counters 'back to back', but a few cycles are effectively 757 * lost, and not accumulated in tick_ffcount. This is a fairly radical 758 * operation for a feed-forward synchronization daemon, and it is its job to not 759 * pushing irrelevant data to the kernel. Because there is no locking here, 760 * simply force to ignore pending or next update to give daemon a chance to 761 * realize the counter has changed. 762 */ 763 static void 764 ffclock_change_tc(struct timehands *th) 765 { 766 struct fftimehands *ffth; 767 struct ffclock_estimate *cest; 768 struct timecounter *tc; 769 uint8_t ogen; 770 771 tc = th->th_counter; 772 ffth = fftimehands->next; 773 ogen = ffth->gen; 774 ffth->gen = 0; 775 776 cest = &ffth->cest; 777 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 778 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 779 cest->errb_abs = 0; 780 cest->errb_rate = 0; 781 cest->status |= FFCLOCK_STA_UNSYNC; 782 783 ffth->tick_ffcount = fftimehands->tick_ffcount; 784 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 785 ffth->tick_time = fftimehands->tick_time; 786 ffth->period_lerp = cest->period; 787 788 /* Do not lock but ignore next update from synchronization daemon. */ 789 ffclock_updated--; 790 791 if (++ogen == 0) 792 ogen = 1; 793 ffth->gen = ogen; 794 fftimehands = ffth; 795 } 796 797 /* 798 * Retrieve feed-forward counter and time of last kernel tick. 799 */ 800 void 801 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 802 { 803 struct fftimehands *ffth; 804 uint8_t gen; 805 806 /* 807 * No locking but check generation has not changed. Also need to make 808 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 809 */ 810 do { 811 ffth = fftimehands; 812 gen = ffth->gen; 813 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 814 *bt = ffth->tick_time_lerp; 815 else 816 *bt = ffth->tick_time; 817 *ffcount = ffth->tick_ffcount; 818 } while (gen == 0 || gen != ffth->gen); 819 } 820 821 /* 822 * Absolute clock conversion. Low level function to convert ffcounter to 823 * bintime. The ffcounter is converted using the current ffclock period estimate 824 * or the "interpolated period" to ensure monotonicity. 825 * NOTE: this conversion may have been deferred, and the clock updated since the 826 * hardware counter has been read. 827 */ 828 void 829 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 830 { 831 struct fftimehands *ffth; 832 struct bintime bt2; 833 ffcounter ffdelta; 834 uint8_t gen; 835 836 /* 837 * No locking but check generation has not changed. Also need to make 838 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 839 */ 840 do { 841 ffth = fftimehands; 842 gen = ffth->gen; 843 if (ffcount > ffth->tick_ffcount) 844 ffdelta = ffcount - ffth->tick_ffcount; 845 else 846 ffdelta = ffth->tick_ffcount - ffcount; 847 848 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 849 *bt = ffth->tick_time_lerp; 850 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 851 } else { 852 *bt = ffth->tick_time; 853 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 854 } 855 856 if (ffcount > ffth->tick_ffcount) 857 bintime_add(bt, &bt2); 858 else 859 bintime_sub(bt, &bt2); 860 } while (gen == 0 || gen != ffth->gen); 861 } 862 863 /* 864 * Difference clock conversion. 865 * Low level function to Convert a time interval measured in RAW counter units 866 * into bintime. The difference clock allows measuring small intervals much more 867 * reliably than the absolute clock. 868 */ 869 void 870 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 871 { 872 struct fftimehands *ffth; 873 uint8_t gen; 874 875 /* No locking but check generation has not changed. */ 876 do { 877 ffth = fftimehands; 878 gen = ffth->gen; 879 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 880 } while (gen == 0 || gen != ffth->gen); 881 } 882 883 /* 884 * Access to current ffcounter value. 885 */ 886 void 887 ffclock_read_counter(ffcounter *ffcount) 888 { 889 struct timehands *th; 890 struct fftimehands *ffth; 891 unsigned int gen, delta; 892 893 /* 894 * ffclock_windup() called from tc_windup(), safe to rely on 895 * th->th_generation only, for correct delta and ffcounter. 896 */ 897 do { 898 th = timehands; 899 gen = atomic_load_acq_int(&th->th_generation); 900 ffth = fftimehands; 901 delta = tc_delta(th); 902 *ffcount = ffth->tick_ffcount; 903 atomic_thread_fence_acq(); 904 } while (gen == 0 || gen != th->th_generation); 905 906 *ffcount += delta; 907 } 908 909 void 910 binuptime(struct bintime *bt) 911 { 912 913 binuptime_fromclock(bt, sysclock_active); 914 } 915 916 void 917 nanouptime(struct timespec *tsp) 918 { 919 920 nanouptime_fromclock(tsp, sysclock_active); 921 } 922 923 void 924 microuptime(struct timeval *tvp) 925 { 926 927 microuptime_fromclock(tvp, sysclock_active); 928 } 929 930 void 931 bintime(struct bintime *bt) 932 { 933 934 bintime_fromclock(bt, sysclock_active); 935 } 936 937 void 938 nanotime(struct timespec *tsp) 939 { 940 941 nanotime_fromclock(tsp, sysclock_active); 942 } 943 944 void 945 microtime(struct timeval *tvp) 946 { 947 948 microtime_fromclock(tvp, sysclock_active); 949 } 950 951 void 952 getbinuptime(struct bintime *bt) 953 { 954 955 getbinuptime_fromclock(bt, sysclock_active); 956 } 957 958 void 959 getnanouptime(struct timespec *tsp) 960 { 961 962 getnanouptime_fromclock(tsp, sysclock_active); 963 } 964 965 void 966 getmicrouptime(struct timeval *tvp) 967 { 968 969 getmicrouptime_fromclock(tvp, sysclock_active); 970 } 971 972 void 973 getbintime(struct bintime *bt) 974 { 975 976 getbintime_fromclock(bt, sysclock_active); 977 } 978 979 void 980 getnanotime(struct timespec *tsp) 981 { 982 983 getnanotime_fromclock(tsp, sysclock_active); 984 } 985 986 void 987 getmicrotime(struct timeval *tvp) 988 { 989 990 getmicrouptime_fromclock(tvp, sysclock_active); 991 } 992 993 #endif /* FFCLOCK */ 994 995 /* 996 * This is a clone of getnanotime and used for walltimestamps. 997 * The dtrace_ prefix prevents fbt from creating probes for 998 * it so walltimestamp can be safely used in all fbt probes. 999 */ 1000 void 1001 dtrace_getnanotime(struct timespec *tsp) 1002 { 1003 1004 GETTHMEMBER(tsp, th_nanotime); 1005 } 1006 1007 /* 1008 * This is a clone of getnanouptime used for time since boot. 1009 * The dtrace_ prefix prevents fbt from creating probes for 1010 * it so an uptime that can be safely used in all fbt probes. 1011 */ 1012 void 1013 dtrace_getnanouptime(struct timespec *tsp) 1014 { 1015 struct bintime bt; 1016 1017 GETTHMEMBER(&bt, th_offset); 1018 bintime2timespec(&bt, tsp); 1019 } 1020 1021 /* 1022 * System clock currently providing time to the system. Modifiable via sysctl 1023 * when the FFCLOCK option is defined. 1024 */ 1025 int sysclock_active = SYSCLOCK_FBCK; 1026 1027 /* Internal NTP status and error estimates. */ 1028 extern int time_status; 1029 extern long time_esterror; 1030 1031 /* 1032 * Take a snapshot of sysclock data which can be used to compare system clocks 1033 * and generate timestamps after the fact. 1034 */ 1035 void 1036 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 1037 { 1038 struct fbclock_info *fbi; 1039 struct timehands *th; 1040 struct bintime bt; 1041 unsigned int delta, gen; 1042 #ifdef FFCLOCK 1043 ffcounter ffcount; 1044 struct fftimehands *ffth; 1045 struct ffclock_info *ffi; 1046 struct ffclock_estimate cest; 1047 1048 ffi = &clock_snap->ff_info; 1049 #endif 1050 1051 fbi = &clock_snap->fb_info; 1052 delta = 0; 1053 1054 do { 1055 th = timehands; 1056 gen = atomic_load_acq_int(&th->th_generation); 1057 fbi->th_scale = th->th_scale; 1058 fbi->tick_time = th->th_offset; 1059 #ifdef FFCLOCK 1060 ffth = fftimehands; 1061 ffi->tick_time = ffth->tick_time_lerp; 1062 ffi->tick_time_lerp = ffth->tick_time_lerp; 1063 ffi->period = ffth->cest.period; 1064 ffi->period_lerp = ffth->period_lerp; 1065 clock_snap->ffcount = ffth->tick_ffcount; 1066 cest = ffth->cest; 1067 #endif 1068 if (!fast) 1069 delta = tc_delta(th); 1070 atomic_thread_fence_acq(); 1071 } while (gen == 0 || gen != th->th_generation); 1072 1073 clock_snap->delta = delta; 1074 clock_snap->sysclock_active = sysclock_active; 1075 1076 /* Record feedback clock status and error. */ 1077 clock_snap->fb_info.status = time_status; 1078 /* XXX: Very crude estimate of feedback clock error. */ 1079 bt.sec = time_esterror / 1000000; 1080 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1081 (uint64_t)18446744073709ULL; 1082 clock_snap->fb_info.error = bt; 1083 1084 #ifdef FFCLOCK 1085 if (!fast) 1086 clock_snap->ffcount += delta; 1087 1088 /* Record feed-forward clock leap second adjustment. */ 1089 ffi->leapsec_adjustment = cest.leapsec_total; 1090 if (clock_snap->ffcount > cest.leapsec_next) 1091 ffi->leapsec_adjustment -= cest.leapsec; 1092 1093 /* Record feed-forward clock status and error. */ 1094 clock_snap->ff_info.status = cest.status; 1095 ffcount = clock_snap->ffcount - cest.update_ffcount; 1096 ffclock_convert_delta(ffcount, cest.period, &bt); 1097 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1098 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1099 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1100 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1101 clock_snap->ff_info.error = bt; 1102 #endif 1103 } 1104 1105 /* 1106 * Convert a sysclock snapshot into a struct bintime based on the specified 1107 * clock source and flags. 1108 */ 1109 int 1110 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1111 int whichclock, uint32_t flags) 1112 { 1113 struct bintime boottimebin; 1114 #ifdef FFCLOCK 1115 struct bintime bt2; 1116 uint64_t period; 1117 #endif 1118 1119 switch (whichclock) { 1120 case SYSCLOCK_FBCK: 1121 *bt = cs->fb_info.tick_time; 1122 1123 /* If snapshot was created with !fast, delta will be >0. */ 1124 if (cs->delta > 0) 1125 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1126 1127 if ((flags & FBCLOCK_UPTIME) == 0) { 1128 getboottimebin(&boottimebin); 1129 bintime_add(bt, &boottimebin); 1130 } 1131 break; 1132 #ifdef FFCLOCK 1133 case SYSCLOCK_FFWD: 1134 if (flags & FFCLOCK_LERP) { 1135 *bt = cs->ff_info.tick_time_lerp; 1136 period = cs->ff_info.period_lerp; 1137 } else { 1138 *bt = cs->ff_info.tick_time; 1139 period = cs->ff_info.period; 1140 } 1141 1142 /* If snapshot was created with !fast, delta will be >0. */ 1143 if (cs->delta > 0) { 1144 ffclock_convert_delta(cs->delta, period, &bt2); 1145 bintime_add(bt, &bt2); 1146 } 1147 1148 /* Leap second adjustment. */ 1149 if (flags & FFCLOCK_LEAPSEC) 1150 bt->sec -= cs->ff_info.leapsec_adjustment; 1151 1152 /* Boot time adjustment, for uptime/monotonic clocks. */ 1153 if (flags & FFCLOCK_UPTIME) 1154 bintime_sub(bt, &ffclock_boottime); 1155 break; 1156 #endif 1157 default: 1158 return (EINVAL); 1159 break; 1160 } 1161 1162 return (0); 1163 } 1164 1165 /* 1166 * Initialize a new timecounter and possibly use it. 1167 */ 1168 void 1169 tc_init(struct timecounter *tc) 1170 { 1171 u_int u; 1172 struct sysctl_oid *tc_root; 1173 1174 u = tc->tc_frequency / tc->tc_counter_mask; 1175 /* XXX: We need some margin here, 10% is a guess */ 1176 u *= 11; 1177 u /= 10; 1178 if (u > hz && tc->tc_quality >= 0) { 1179 tc->tc_quality = -2000; 1180 if (bootverbose) { 1181 printf("Timecounter \"%s\" frequency %ju Hz", 1182 tc->tc_name, (uintmax_t)tc->tc_frequency); 1183 printf(" -- Insufficient hz, needs at least %u\n", u); 1184 } 1185 } else if (tc->tc_quality >= 0 || bootverbose) { 1186 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1187 tc->tc_name, (uintmax_t)tc->tc_frequency, 1188 tc->tc_quality); 1189 } 1190 1191 tc->tc_next = timecounters; 1192 timecounters = tc; 1193 /* 1194 * Set up sysctl tree for this counter. 1195 */ 1196 tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL, 1197 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1198 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1199 "timecounter description", "timecounter"); 1200 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1201 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1202 "mask for implemented bits"); 1203 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1204 "counter", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, tc, 1205 sizeof(*tc), sysctl_kern_timecounter_get, "IU", 1206 "current timecounter value"); 1207 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1208 "frequency", CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, tc, 1209 sizeof(*tc), sysctl_kern_timecounter_freq, "QU", 1210 "timecounter frequency"); 1211 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1212 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1213 "goodness of time counter"); 1214 /* 1215 * Do not automatically switch if the current tc was specifically 1216 * chosen. Never automatically use a timecounter with negative quality. 1217 * Even though we run on the dummy counter, switching here may be 1218 * worse since this timecounter may not be monotonic. 1219 */ 1220 if (tc_chosen) 1221 return; 1222 if (tc->tc_quality < 0) 1223 return; 1224 if (tc_from_tunable[0] != '\0' && 1225 strcmp(tc->tc_name, tc_from_tunable) == 0) { 1226 tc_chosen = 1; 1227 tc_from_tunable[0] = '\0'; 1228 } else { 1229 if (tc->tc_quality < timecounter->tc_quality) 1230 return; 1231 if (tc->tc_quality == timecounter->tc_quality && 1232 tc->tc_frequency < timecounter->tc_frequency) 1233 return; 1234 } 1235 (void)tc->tc_get_timecount(tc); 1236 timecounter = tc; 1237 } 1238 1239 /* Report the frequency of the current timecounter. */ 1240 uint64_t 1241 tc_getfrequency(void) 1242 { 1243 1244 return (timehands->th_counter->tc_frequency); 1245 } 1246 1247 static bool 1248 sleeping_on_old_rtc(struct thread *td) 1249 { 1250 1251 /* 1252 * td_rtcgen is modified by curthread when it is running, 1253 * and by other threads in this function. By finding the thread 1254 * on a sleepqueue and holding the lock on the sleepqueue 1255 * chain, we guarantee that the thread is not running and that 1256 * modifying td_rtcgen is safe. Setting td_rtcgen to zero informs 1257 * the thread that it was woken due to a real-time clock adjustment. 1258 * (The declaration of td_rtcgen refers to this comment.) 1259 */ 1260 if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) { 1261 td->td_rtcgen = 0; 1262 return (true); 1263 } 1264 return (false); 1265 } 1266 1267 static struct mtx tc_setclock_mtx; 1268 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN); 1269 1270 /* 1271 * Step our concept of UTC. This is done by modifying our estimate of 1272 * when we booted. 1273 */ 1274 void 1275 tc_setclock(struct timespec *ts) 1276 { 1277 struct timespec tbef, taft; 1278 struct bintime bt, bt2; 1279 1280 timespec2bintime(ts, &bt); 1281 nanotime(&tbef); 1282 mtx_lock_spin(&tc_setclock_mtx); 1283 cpu_tick_calibrate(1); 1284 binuptime(&bt2); 1285 bintime_sub(&bt, &bt2); 1286 1287 /* XXX fiddle all the little crinkly bits around the fiords... */ 1288 tc_windup(&bt); 1289 mtx_unlock_spin(&tc_setclock_mtx); 1290 1291 /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */ 1292 atomic_add_rel_int(&rtc_generation, 2); 1293 sleepq_chains_remove_matching(sleeping_on_old_rtc); 1294 if (timestepwarnings) { 1295 nanotime(&taft); 1296 log(LOG_INFO, 1297 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1298 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1299 (intmax_t)taft.tv_sec, taft.tv_nsec, 1300 (intmax_t)ts->tv_sec, ts->tv_nsec); 1301 } 1302 } 1303 1304 /* 1305 * Initialize the next struct timehands in the ring and make 1306 * it the active timehands. Along the way we might switch to a different 1307 * timecounter and/or do seconds processing in NTP. Slightly magic. 1308 */ 1309 static void 1310 tc_windup(struct bintime *new_boottimebin) 1311 { 1312 struct bintime bt; 1313 struct timehands *th, *tho; 1314 uint64_t scale; 1315 u_int delta, ncount, ogen; 1316 int i; 1317 time_t t; 1318 1319 /* 1320 * Make the next timehands a copy of the current one, but do 1321 * not overwrite the generation or next pointer. While we 1322 * update the contents, the generation must be zero. We need 1323 * to ensure that the zero generation is visible before the 1324 * data updates become visible, which requires release fence. 1325 * For similar reasons, re-reading of the generation after the 1326 * data is read should use acquire fence. 1327 */ 1328 tho = timehands; 1329 th = tho->th_next; 1330 ogen = th->th_generation; 1331 th->th_generation = 0; 1332 atomic_thread_fence_rel(); 1333 memcpy(th, tho, offsetof(struct timehands, th_generation)); 1334 if (new_boottimebin != NULL) 1335 th->th_boottime = *new_boottimebin; 1336 1337 /* 1338 * Capture a timecounter delta on the current timecounter and if 1339 * changing timecounters, a counter value from the new timecounter. 1340 * Update the offset fields accordingly. 1341 */ 1342 delta = tc_delta(th); 1343 if (th->th_counter != timecounter) 1344 ncount = timecounter->tc_get_timecount(timecounter); 1345 else 1346 ncount = 0; 1347 #ifdef FFCLOCK 1348 ffclock_windup(delta); 1349 #endif 1350 th->th_offset_count += delta; 1351 th->th_offset_count &= th->th_counter->tc_counter_mask; 1352 while (delta > th->th_counter->tc_frequency) { 1353 /* Eat complete unadjusted seconds. */ 1354 delta -= th->th_counter->tc_frequency; 1355 th->th_offset.sec++; 1356 } 1357 if ((delta > th->th_counter->tc_frequency / 2) && 1358 (th->th_scale * delta < ((uint64_t)1 << 63))) { 1359 /* The product th_scale * delta just barely overflows. */ 1360 th->th_offset.sec++; 1361 } 1362 bintime_addx(&th->th_offset, th->th_scale * delta); 1363 1364 /* 1365 * Hardware latching timecounters may not generate interrupts on 1366 * PPS events, so instead we poll them. There is a finite risk that 1367 * the hardware might capture a count which is later than the one we 1368 * got above, and therefore possibly in the next NTP second which might 1369 * have a different rate than the current NTP second. It doesn't 1370 * matter in practice. 1371 */ 1372 if (tho->th_counter->tc_poll_pps) 1373 tho->th_counter->tc_poll_pps(tho->th_counter); 1374 1375 /* 1376 * Deal with NTP second processing. The for loop normally 1377 * iterates at most once, but in extreme situations it might 1378 * keep NTP sane if timeouts are not run for several seconds. 1379 * At boot, the time step can be large when the TOD hardware 1380 * has been read, so on really large steps, we call 1381 * ntp_update_second only twice. We need to call it twice in 1382 * case we missed a leap second. 1383 */ 1384 bt = th->th_offset; 1385 bintime_add(&bt, &th->th_boottime); 1386 i = bt.sec - tho->th_microtime.tv_sec; 1387 if (i > LARGE_STEP) 1388 i = 2; 1389 for (; i > 0; i--) { 1390 t = bt.sec; 1391 ntp_update_second(&th->th_adjustment, &bt.sec); 1392 if (bt.sec != t) 1393 th->th_boottime.sec += bt.sec - t; 1394 } 1395 /* Update the UTC timestamps used by the get*() functions. */ 1396 th->th_bintime = bt; 1397 bintime2timeval(&bt, &th->th_microtime); 1398 bintime2timespec(&bt, &th->th_nanotime); 1399 1400 /* Now is a good time to change timecounters. */ 1401 if (th->th_counter != timecounter) { 1402 #ifndef __arm__ 1403 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0) 1404 cpu_disable_c2_sleep++; 1405 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 1406 cpu_disable_c2_sleep--; 1407 #endif 1408 th->th_counter = timecounter; 1409 th->th_offset_count = ncount; 1410 tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 1411 (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1412 #ifdef FFCLOCK 1413 ffclock_change_tc(th); 1414 #endif 1415 } 1416 1417 /*- 1418 * Recalculate the scaling factor. We want the number of 1/2^64 1419 * fractions of a second per period of the hardware counter, taking 1420 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1421 * processing provides us with. 1422 * 1423 * The th_adjustment is nanoseconds per second with 32 bit binary 1424 * fraction and we want 64 bit binary fraction of second: 1425 * 1426 * x = a * 2^32 / 10^9 = a * 4.294967296 1427 * 1428 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1429 * we can only multiply by about 850 without overflowing, that 1430 * leaves no suitably precise fractions for multiply before divide. 1431 * 1432 * Divide before multiply with a fraction of 2199/512 results in a 1433 * systematic undercompensation of 10PPM of th_adjustment. On a 1434 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1435 * 1436 * We happily sacrifice the lowest of the 64 bits of our result 1437 * to the goddess of code clarity. 1438 * 1439 */ 1440 scale = (uint64_t)1 << 63; 1441 scale += (th->th_adjustment / 1024) * 2199; 1442 scale /= th->th_counter->tc_frequency; 1443 th->th_scale = scale * 2; 1444 th->th_large_delta = MIN(((uint64_t)1 << 63) / scale, UINT_MAX); 1445 1446 /* 1447 * Now that the struct timehands is again consistent, set the new 1448 * generation number, making sure to not make it zero. 1449 */ 1450 if (++ogen == 0) 1451 ogen = 1; 1452 atomic_store_rel_int(&th->th_generation, ogen); 1453 1454 /* Go live with the new struct timehands. */ 1455 #ifdef FFCLOCK 1456 switch (sysclock_active) { 1457 case SYSCLOCK_FBCK: 1458 #endif 1459 time_second = th->th_microtime.tv_sec; 1460 time_uptime = th->th_offset.sec; 1461 #ifdef FFCLOCK 1462 break; 1463 case SYSCLOCK_FFWD: 1464 time_second = fftimehands->tick_time_lerp.sec; 1465 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1466 break; 1467 } 1468 #endif 1469 1470 timehands = th; 1471 timekeep_push_vdso(); 1472 } 1473 1474 /* Report or change the active timecounter hardware. */ 1475 static int 1476 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1477 { 1478 char newname[32]; 1479 struct timecounter *newtc, *tc; 1480 int error; 1481 1482 tc = timecounter; 1483 strlcpy(newname, tc->tc_name, sizeof(newname)); 1484 1485 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1486 if (error != 0 || req->newptr == NULL) 1487 return (error); 1488 /* Record that the tc in use now was specifically chosen. */ 1489 tc_chosen = 1; 1490 if (strcmp(newname, tc->tc_name) == 0) 1491 return (0); 1492 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1493 if (strcmp(newname, newtc->tc_name) != 0) 1494 continue; 1495 1496 /* Warm up new timecounter. */ 1497 (void)newtc->tc_get_timecount(newtc); 1498 1499 timecounter = newtc; 1500 1501 /* 1502 * The vdso timehands update is deferred until the next 1503 * 'tc_windup()'. 1504 * 1505 * This is prudent given that 'timekeep_push_vdso()' does not 1506 * use any locking and that it can be called in hard interrupt 1507 * context via 'tc_windup()'. 1508 */ 1509 return (0); 1510 } 1511 return (EINVAL); 1512 } 1513 1514 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, 1515 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 0, 0, 1516 sysctl_kern_timecounter_hardware, "A", 1517 "Timecounter hardware selected"); 1518 1519 /* Report the available timecounter hardware. */ 1520 static int 1521 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1522 { 1523 struct sbuf sb; 1524 struct timecounter *tc; 1525 int error; 1526 1527 sbuf_new_for_sysctl(&sb, NULL, 0, req); 1528 for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 1529 if (tc != timecounters) 1530 sbuf_putc(&sb, ' '); 1531 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality); 1532 } 1533 error = sbuf_finish(&sb); 1534 sbuf_delete(&sb); 1535 return (error); 1536 } 1537 1538 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, 1539 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, 1540 sysctl_kern_timecounter_choice, "A", 1541 "Timecounter hardware detected"); 1542 1543 /* 1544 * RFC 2783 PPS-API implementation. 1545 */ 1546 1547 /* 1548 * Return true if the driver is aware of the abi version extensions in the 1549 * pps_state structure, and it supports at least the given abi version number. 1550 */ 1551 static inline int 1552 abi_aware(struct pps_state *pps, int vers) 1553 { 1554 1555 return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers); 1556 } 1557 1558 static int 1559 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1560 { 1561 int err, timo; 1562 pps_seq_t aseq, cseq; 1563 struct timeval tv; 1564 1565 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1566 return (EINVAL); 1567 1568 /* 1569 * If no timeout is requested, immediately return whatever values were 1570 * most recently captured. If timeout seconds is -1, that's a request 1571 * to block without a timeout. WITNESS won't let us sleep forever 1572 * without a lock (we really don't need a lock), so just repeatedly 1573 * sleep a long time. 1574 */ 1575 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1576 if (fapi->timeout.tv_sec == -1) 1577 timo = 0x7fffffff; 1578 else { 1579 tv.tv_sec = fapi->timeout.tv_sec; 1580 tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1581 timo = tvtohz(&tv); 1582 } 1583 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence); 1584 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence); 1585 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) && 1586 cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) { 1587 if (abi_aware(pps, 1) && pps->driver_mtx != NULL) { 1588 if (pps->flags & PPSFLAG_MTX_SPIN) { 1589 err = msleep_spin(pps, pps->driver_mtx, 1590 "ppsfch", timo); 1591 } else { 1592 err = msleep(pps, pps->driver_mtx, PCATCH, 1593 "ppsfch", timo); 1594 } 1595 } else { 1596 err = tsleep(pps, PCATCH, "ppsfch", timo); 1597 } 1598 if (err == EWOULDBLOCK) { 1599 if (fapi->timeout.tv_sec == -1) { 1600 continue; 1601 } else { 1602 return (ETIMEDOUT); 1603 } 1604 } else if (err != 0) { 1605 return (err); 1606 } 1607 } 1608 } 1609 1610 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1611 fapi->pps_info_buf = pps->ppsinfo; 1612 1613 return (0); 1614 } 1615 1616 int 1617 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1618 { 1619 pps_params_t *app; 1620 struct pps_fetch_args *fapi; 1621 #ifdef FFCLOCK 1622 struct pps_fetch_ffc_args *fapi_ffc; 1623 #endif 1624 #ifdef PPS_SYNC 1625 struct pps_kcbind_args *kapi; 1626 #endif 1627 1628 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1629 switch (cmd) { 1630 case PPS_IOC_CREATE: 1631 return (0); 1632 case PPS_IOC_DESTROY: 1633 return (0); 1634 case PPS_IOC_SETPARAMS: 1635 app = (pps_params_t *)data; 1636 if (app->mode & ~pps->ppscap) 1637 return (EINVAL); 1638 #ifdef FFCLOCK 1639 /* Ensure only a single clock is selected for ffc timestamp. */ 1640 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1641 return (EINVAL); 1642 #endif 1643 pps->ppsparam = *app; 1644 return (0); 1645 case PPS_IOC_GETPARAMS: 1646 app = (pps_params_t *)data; 1647 *app = pps->ppsparam; 1648 app->api_version = PPS_API_VERS_1; 1649 return (0); 1650 case PPS_IOC_GETCAP: 1651 *(int*)data = pps->ppscap; 1652 return (0); 1653 case PPS_IOC_FETCH: 1654 fapi = (struct pps_fetch_args *)data; 1655 return (pps_fetch(fapi, pps)); 1656 #ifdef FFCLOCK 1657 case PPS_IOC_FETCH_FFCOUNTER: 1658 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1659 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1660 PPS_TSFMT_TSPEC) 1661 return (EINVAL); 1662 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1663 return (EOPNOTSUPP); 1664 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1665 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1666 /* Overwrite timestamps if feedback clock selected. */ 1667 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1668 case PPS_TSCLK_FBCK: 1669 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1670 pps->ppsinfo.assert_timestamp; 1671 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1672 pps->ppsinfo.clear_timestamp; 1673 break; 1674 case PPS_TSCLK_FFWD: 1675 break; 1676 default: 1677 break; 1678 } 1679 return (0); 1680 #endif /* FFCLOCK */ 1681 case PPS_IOC_KCBIND: 1682 #ifdef PPS_SYNC 1683 kapi = (struct pps_kcbind_args *)data; 1684 /* XXX Only root should be able to do this */ 1685 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1686 return (EINVAL); 1687 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1688 return (EINVAL); 1689 if (kapi->edge & ~pps->ppscap) 1690 return (EINVAL); 1691 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) | 1692 (pps->kcmode & KCMODE_ABIFLAG); 1693 return (0); 1694 #else 1695 return (EOPNOTSUPP); 1696 #endif 1697 default: 1698 return (ENOIOCTL); 1699 } 1700 } 1701 1702 void 1703 pps_init(struct pps_state *pps) 1704 { 1705 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1706 if (pps->ppscap & PPS_CAPTUREASSERT) 1707 pps->ppscap |= PPS_OFFSETASSERT; 1708 if (pps->ppscap & PPS_CAPTURECLEAR) 1709 pps->ppscap |= PPS_OFFSETCLEAR; 1710 #ifdef FFCLOCK 1711 pps->ppscap |= PPS_TSCLK_MASK; 1712 #endif 1713 pps->kcmode &= ~KCMODE_ABIFLAG; 1714 } 1715 1716 void 1717 pps_init_abi(struct pps_state *pps) 1718 { 1719 1720 pps_init(pps); 1721 if (pps->driver_abi > 0) { 1722 pps->kcmode |= KCMODE_ABIFLAG; 1723 pps->kernel_abi = PPS_ABI_VERSION; 1724 } 1725 } 1726 1727 void 1728 pps_capture(struct pps_state *pps) 1729 { 1730 struct timehands *th; 1731 1732 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1733 th = timehands; 1734 pps->capgen = atomic_load_acq_int(&th->th_generation); 1735 pps->capth = th; 1736 #ifdef FFCLOCK 1737 pps->capffth = fftimehands; 1738 #endif 1739 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1740 atomic_thread_fence_acq(); 1741 if (pps->capgen != th->th_generation) 1742 pps->capgen = 0; 1743 } 1744 1745 void 1746 pps_event(struct pps_state *pps, int event) 1747 { 1748 struct bintime bt; 1749 struct timespec ts, *tsp, *osp; 1750 u_int tcount, *pcount; 1751 int foff; 1752 pps_seq_t *pseq; 1753 #ifdef FFCLOCK 1754 struct timespec *tsp_ffc; 1755 pps_seq_t *pseq_ffc; 1756 ffcounter *ffcount; 1757 #endif 1758 #ifdef PPS_SYNC 1759 int fhard; 1760 #endif 1761 1762 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1763 /* Nothing to do if not currently set to capture this event type. */ 1764 if ((event & pps->ppsparam.mode) == 0) 1765 return; 1766 /* If the timecounter was wound up underneath us, bail out. */ 1767 if (pps->capgen == 0 || pps->capgen != 1768 atomic_load_acq_int(&pps->capth->th_generation)) 1769 return; 1770 1771 /* Things would be easier with arrays. */ 1772 if (event == PPS_CAPTUREASSERT) { 1773 tsp = &pps->ppsinfo.assert_timestamp; 1774 osp = &pps->ppsparam.assert_offset; 1775 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1776 #ifdef PPS_SYNC 1777 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1778 #endif 1779 pcount = &pps->ppscount[0]; 1780 pseq = &pps->ppsinfo.assert_sequence; 1781 #ifdef FFCLOCK 1782 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1783 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1784 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1785 #endif 1786 } else { 1787 tsp = &pps->ppsinfo.clear_timestamp; 1788 osp = &pps->ppsparam.clear_offset; 1789 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1790 #ifdef PPS_SYNC 1791 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1792 #endif 1793 pcount = &pps->ppscount[1]; 1794 pseq = &pps->ppsinfo.clear_sequence; 1795 #ifdef FFCLOCK 1796 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1797 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1798 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1799 #endif 1800 } 1801 1802 /* 1803 * If the timecounter changed, we cannot compare the count values, so 1804 * we have to drop the rest of the PPS-stuff until the next event. 1805 */ 1806 if (pps->ppstc != pps->capth->th_counter) { 1807 pps->ppstc = pps->capth->th_counter; 1808 *pcount = pps->capcount; 1809 pps->ppscount[2] = pps->capcount; 1810 return; 1811 } 1812 1813 /* Convert the count to a timespec. */ 1814 tcount = pps->capcount - pps->capth->th_offset_count; 1815 tcount &= pps->capth->th_counter->tc_counter_mask; 1816 bt = pps->capth->th_bintime; 1817 bintime_addx(&bt, pps->capth->th_scale * tcount); 1818 bintime2timespec(&bt, &ts); 1819 1820 /* If the timecounter was wound up underneath us, bail out. */ 1821 atomic_thread_fence_acq(); 1822 if (pps->capgen != pps->capth->th_generation) 1823 return; 1824 1825 *pcount = pps->capcount; 1826 (*pseq)++; 1827 *tsp = ts; 1828 1829 if (foff) { 1830 timespecadd(tsp, osp, tsp); 1831 if (tsp->tv_nsec < 0) { 1832 tsp->tv_nsec += 1000000000; 1833 tsp->tv_sec -= 1; 1834 } 1835 } 1836 1837 #ifdef FFCLOCK 1838 *ffcount = pps->capffth->tick_ffcount + tcount; 1839 bt = pps->capffth->tick_time; 1840 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1841 bintime_add(&bt, &pps->capffth->tick_time); 1842 bintime2timespec(&bt, &ts); 1843 (*pseq_ffc)++; 1844 *tsp_ffc = ts; 1845 #endif 1846 1847 #ifdef PPS_SYNC 1848 if (fhard) { 1849 uint64_t scale; 1850 1851 /* 1852 * Feed the NTP PLL/FLL. 1853 * The FLL wants to know how many (hardware) nanoseconds 1854 * elapsed since the previous event. 1855 */ 1856 tcount = pps->capcount - pps->ppscount[2]; 1857 pps->ppscount[2] = pps->capcount; 1858 tcount &= pps->capth->th_counter->tc_counter_mask; 1859 scale = (uint64_t)1 << 63; 1860 scale /= pps->capth->th_counter->tc_frequency; 1861 scale *= 2; 1862 bt.sec = 0; 1863 bt.frac = 0; 1864 bintime_addx(&bt, scale * tcount); 1865 bintime2timespec(&bt, &ts); 1866 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1867 } 1868 #endif 1869 1870 /* Wakeup anyone sleeping in pps_fetch(). */ 1871 wakeup(pps); 1872 } 1873 1874 /* 1875 * Timecounters need to be updated every so often to prevent the hardware 1876 * counter from overflowing. Updating also recalculates the cached values 1877 * used by the get*() family of functions, so their precision depends on 1878 * the update frequency. 1879 */ 1880 1881 static int tc_tick; 1882 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1883 "Approximate number of hardclock ticks in a millisecond"); 1884 1885 void 1886 tc_ticktock(int cnt) 1887 { 1888 static int count; 1889 1890 if (mtx_trylock_spin(&tc_setclock_mtx)) { 1891 count += cnt; 1892 if (count >= tc_tick) { 1893 count = 0; 1894 tc_windup(NULL); 1895 } 1896 mtx_unlock_spin(&tc_setclock_mtx); 1897 } 1898 } 1899 1900 static void __inline 1901 tc_adjprecision(void) 1902 { 1903 int t; 1904 1905 if (tc_timepercentage > 0) { 1906 t = (99 + tc_timepercentage) / tc_timepercentage; 1907 tc_precexp = fls(t + (t >> 1)) - 1; 1908 FREQ2BT(hz / tc_tick, &bt_timethreshold); 1909 FREQ2BT(hz, &bt_tickthreshold); 1910 bintime_shift(&bt_timethreshold, tc_precexp); 1911 bintime_shift(&bt_tickthreshold, tc_precexp); 1912 } else { 1913 tc_precexp = 31; 1914 bt_timethreshold.sec = INT_MAX; 1915 bt_timethreshold.frac = ~(uint64_t)0; 1916 bt_tickthreshold = bt_timethreshold; 1917 } 1918 sbt_timethreshold = bttosbt(bt_timethreshold); 1919 sbt_tickthreshold = bttosbt(bt_tickthreshold); 1920 } 1921 1922 static int 1923 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 1924 { 1925 int error, val; 1926 1927 val = tc_timepercentage; 1928 error = sysctl_handle_int(oidp, &val, 0, req); 1929 if (error != 0 || req->newptr == NULL) 1930 return (error); 1931 tc_timepercentage = val; 1932 if (cold) 1933 goto done; 1934 tc_adjprecision(); 1935 done: 1936 return (0); 1937 } 1938 1939 /* Set up the requested number of timehands. */ 1940 static void 1941 inittimehands(void *dummy) 1942 { 1943 struct timehands *thp; 1944 int i; 1945 1946 TUNABLE_INT_FETCH("kern.timecounter.timehands_count", 1947 &timehands_count); 1948 if (timehands_count < 1) 1949 timehands_count = 1; 1950 if (timehands_count > nitems(ths)) 1951 timehands_count = nitems(ths); 1952 for (i = 1, thp = &ths[0]; i < timehands_count; thp = &ths[i++]) 1953 thp->th_next = &ths[i]; 1954 thp->th_next = &ths[0]; 1955 1956 TUNABLE_STR_FETCH("kern.timecounter.hardware", tc_from_tunable, 1957 sizeof(tc_from_tunable)); 1958 } 1959 SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL); 1960 1961 static void 1962 inittimecounter(void *dummy) 1963 { 1964 u_int p; 1965 int tick_rate; 1966 1967 /* 1968 * Set the initial timeout to 1969 * max(1, <approx. number of hardclock ticks in a millisecond>). 1970 * People should probably not use the sysctl to set the timeout 1971 * to smaller than its initial value, since that value is the 1972 * smallest reasonable one. If they want better timestamps they 1973 * should use the non-"get"* functions. 1974 */ 1975 if (hz > 1000) 1976 tc_tick = (hz + 500) / 1000; 1977 else 1978 tc_tick = 1; 1979 tc_adjprecision(); 1980 FREQ2BT(hz, &tick_bt); 1981 tick_sbt = bttosbt(tick_bt); 1982 tick_rate = hz / tc_tick; 1983 FREQ2BT(tick_rate, &tc_tick_bt); 1984 tc_tick_sbt = bttosbt(tc_tick_bt); 1985 p = (tc_tick * 1000000) / hz; 1986 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 1987 1988 #ifdef FFCLOCK 1989 ffclock_init(); 1990 #endif 1991 1992 /* warm up new timecounter (again) and get rolling. */ 1993 (void)timecounter->tc_get_timecount(timecounter); 1994 mtx_lock_spin(&tc_setclock_mtx); 1995 tc_windup(NULL); 1996 mtx_unlock_spin(&tc_setclock_mtx); 1997 } 1998 1999 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 2000 2001 /* Cpu tick handling -------------------------------------------------*/ 2002 2003 static int cpu_tick_variable; 2004 static uint64_t cpu_tick_frequency; 2005 2006 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base); 2007 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last); 2008 2009 static uint64_t 2010 tc_cpu_ticks(void) 2011 { 2012 struct timecounter *tc; 2013 uint64_t res, *base; 2014 unsigned u, *last; 2015 2016 critical_enter(); 2017 base = DPCPU_PTR(tc_cpu_ticks_base); 2018 last = DPCPU_PTR(tc_cpu_ticks_last); 2019 tc = timehands->th_counter; 2020 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 2021 if (u < *last) 2022 *base += (uint64_t)tc->tc_counter_mask + 1; 2023 *last = u; 2024 res = u + *base; 2025 critical_exit(); 2026 return (res); 2027 } 2028 2029 void 2030 cpu_tick_calibration(void) 2031 { 2032 static time_t last_calib; 2033 2034 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 2035 cpu_tick_calibrate(0); 2036 last_calib = time_uptime; 2037 } 2038 } 2039 2040 /* 2041 * This function gets called every 16 seconds on only one designated 2042 * CPU in the system from hardclock() via cpu_tick_calibration()(). 2043 * 2044 * Whenever the real time clock is stepped we get called with reset=1 2045 * to make sure we handle suspend/resume and similar events correctly. 2046 */ 2047 2048 static void 2049 cpu_tick_calibrate(int reset) 2050 { 2051 static uint64_t c_last; 2052 uint64_t c_this, c_delta; 2053 static struct bintime t_last; 2054 struct bintime t_this, t_delta; 2055 uint32_t divi; 2056 2057 if (reset) { 2058 /* The clock was stepped, abort & reset */ 2059 t_last.sec = 0; 2060 return; 2061 } 2062 2063 /* we don't calibrate fixed rate cputicks */ 2064 if (!cpu_tick_variable) 2065 return; 2066 2067 getbinuptime(&t_this); 2068 c_this = cpu_ticks(); 2069 if (t_last.sec != 0) { 2070 c_delta = c_this - c_last; 2071 t_delta = t_this; 2072 bintime_sub(&t_delta, &t_last); 2073 /* 2074 * Headroom: 2075 * 2^(64-20) / 16[s] = 2076 * 2^(44) / 16[s] = 2077 * 17.592.186.044.416 / 16 = 2078 * 1.099.511.627.776 [Hz] 2079 */ 2080 divi = t_delta.sec << 20; 2081 divi |= t_delta.frac >> (64 - 20); 2082 c_delta <<= 20; 2083 c_delta /= divi; 2084 if (c_delta > cpu_tick_frequency) { 2085 if (0 && bootverbose) 2086 printf("cpu_tick increased to %ju Hz\n", 2087 c_delta); 2088 cpu_tick_frequency = c_delta; 2089 } 2090 } 2091 c_last = c_this; 2092 t_last = t_this; 2093 } 2094 2095 void 2096 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 2097 { 2098 2099 if (func == NULL) { 2100 cpu_ticks = tc_cpu_ticks; 2101 } else { 2102 cpu_tick_frequency = freq; 2103 cpu_tick_variable = var; 2104 cpu_ticks = func; 2105 } 2106 } 2107 2108 uint64_t 2109 cpu_tickrate(void) 2110 { 2111 2112 if (cpu_ticks == tc_cpu_ticks) 2113 return (tc_getfrequency()); 2114 return (cpu_tick_frequency); 2115 } 2116 2117 /* 2118 * We need to be slightly careful converting cputicks to microseconds. 2119 * There is plenty of margin in 64 bits of microseconds (half a million 2120 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 2121 * before divide conversion (to retain precision) we find that the 2122 * margin shrinks to 1.5 hours (one millionth of 146y). 2123 * With a three prong approach we never lose significant bits, no 2124 * matter what the cputick rate and length of timeinterval is. 2125 */ 2126 2127 uint64_t 2128 cputick2usec(uint64_t tick) 2129 { 2130 2131 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 2132 return (tick / (cpu_tickrate() / 1000000LL)); 2133 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 2134 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 2135 else 2136 return ((tick * 1000000LL) / cpu_tickrate()); 2137 } 2138 2139 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 2140 2141 static int vdso_th_enable = 1; 2142 static int 2143 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 2144 { 2145 int old_vdso_th_enable, error; 2146 2147 old_vdso_th_enable = vdso_th_enable; 2148 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 2149 if (error != 0) 2150 return (error); 2151 vdso_th_enable = old_vdso_th_enable; 2152 return (0); 2153 } 2154 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 2155 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 2156 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 2157 2158 uint32_t 2159 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2160 { 2161 struct timehands *th; 2162 uint32_t enabled; 2163 2164 th = timehands; 2165 vdso_th->th_scale = th->th_scale; 2166 vdso_th->th_offset_count = th->th_offset_count; 2167 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2168 vdso_th->th_offset = th->th_offset; 2169 vdso_th->th_boottime = th->th_boottime; 2170 if (th->th_counter->tc_fill_vdso_timehands != NULL) { 2171 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th, 2172 th->th_counter); 2173 } else 2174 enabled = 0; 2175 if (!vdso_th_enable) 2176 enabled = 0; 2177 return (enabled); 2178 } 2179 2180 #ifdef COMPAT_FREEBSD32 2181 uint32_t 2182 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2183 { 2184 struct timehands *th; 2185 uint32_t enabled; 2186 2187 th = timehands; 2188 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2189 vdso_th32->th_offset_count = th->th_offset_count; 2190 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2191 vdso_th32->th_offset.sec = th->th_offset.sec; 2192 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 2193 vdso_th32->th_boottime.sec = th->th_boottime.sec; 2194 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac; 2195 if (th->th_counter->tc_fill_vdso_timehands32 != NULL) { 2196 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32, 2197 th->th_counter); 2198 } else 2199 enabled = 0; 2200 if (!vdso_th_enable) 2201 enabled = 0; 2202 return (enabled); 2203 } 2204 #endif 2205 2206 #include "opt_ddb.h" 2207 #ifdef DDB 2208 #include <ddb/ddb.h> 2209 2210 DB_SHOW_COMMAND(timecounter, db_show_timecounter) 2211 { 2212 struct timehands *th; 2213 struct timecounter *tc; 2214 u_int val1, val2; 2215 2216 th = timehands; 2217 tc = th->th_counter; 2218 val1 = tc->tc_get_timecount(tc); 2219 __compiler_membar(); 2220 val2 = tc->tc_get_timecount(tc); 2221 2222 db_printf("timecounter %p %s\n", tc, tc->tc_name); 2223 db_printf(" mask %#x freq %ju qual %d flags %#x priv %p\n", 2224 tc->tc_counter_mask, (uintmax_t)tc->tc_frequency, tc->tc_quality, 2225 tc->tc_flags, tc->tc_priv); 2226 db_printf(" val %#x %#x\n", val1, val2); 2227 db_printf("timehands adj %#jx scale %#jx ldelta %d off_cnt %d gen %d\n", 2228 (uintmax_t)th->th_adjustment, (uintmax_t)th->th_scale, 2229 th->th_large_delta, th->th_offset_count, th->th_generation); 2230 db_printf(" offset %jd %jd boottime %jd %jd\n", 2231 (intmax_t)th->th_offset.sec, (uintmax_t)th->th_offset.frac, 2232 (intmax_t)th->th_boottime.sec, (uintmax_t)th->th_boottime.frac); 2233 } 2234 #endif 2235