1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 39 * $Id: kern_clock.c,v 1.16 1995/09/09 18:10:01 davidg Exp $ 40 */ 41 42 /* Portions of this software are covered by the following: */ 43 /****************************************************************************** 44 * * 45 * Copyright (c) David L. Mills 1993, 1994 * 46 * * 47 * Permission to use, copy, modify, and distribute this software and its * 48 * documentation for any purpose and without fee is hereby granted, provided * 49 * that the above copyright notice appears in all copies and that both the * 50 * copyright notice and this permission notice appear in supporting * 51 * documentation, and that the name University of Delaware not be used in * 52 * advertising or publicity pertaining to distribution of the software * 53 * without specific, written prior permission. The University of Delaware * 54 * makes no representations about the suitability this software for any * 55 * purpose. It is provided "as is" without express or implied warranty. * 56 * * 57 *****************************************************************************/ 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/dkstat.h> 62 #include <sys/callout.h> 63 #include <sys/kernel.h> 64 #include <sys/proc.h> 65 #include <sys/resourcevar.h> 66 #include <sys/signalvar.h> 67 #include <sys/timex.h> 68 #include <vm/vm.h> 69 #include <sys/sysctl.h> 70 71 #include <machine/cpu.h> 72 #include <machine/clock.h> 73 74 #ifdef GPROF 75 #include <sys/gmon.h> 76 #endif 77 78 /* 79 * System initialization 80 */ 81 82 static void initclocks __P((void *udata)); 83 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 84 85 86 /* Does anybody else really care about these? */ 87 struct callout *callfree, *callout, calltodo; 88 89 /* Some of these don't belong here, but it's easiest to concentrate them. */ 90 long cp_time[CPUSTATES]; 91 long dk_seek[DK_NDRIVE]; 92 long dk_time[DK_NDRIVE]; 93 long dk_wds[DK_NDRIVE]; 94 long dk_wpms[DK_NDRIVE]; 95 long dk_xfer[DK_NDRIVE]; 96 97 int dk_busy; 98 int dk_ndrive = 0; 99 char dk_names[DK_NDRIVE][DK_NAMELEN]; 100 101 long tk_cancc; 102 long tk_nin; 103 long tk_nout; 104 long tk_rawcc; 105 106 /* 107 * Clock handling routines. 108 * 109 * This code is written to operate with two timers that run independently of 110 * each other. The main clock, running hz times per second, is used to keep 111 * track of real time. The second timer handles kernel and user profiling, 112 * and does resource use estimation. If the second timer is programmable, 113 * it is randomized to avoid aliasing between the two clocks. For example, 114 * the randomization prevents an adversary from always giving up the cpu 115 * just before its quantum expires. Otherwise, it would never accumulate 116 * cpu ticks. The mean frequency of the second timer is stathz. 117 * 118 * If no second timer exists, stathz will be zero; in this case we drive 119 * profiling and statistics off the main clock. This WILL NOT be accurate; 120 * do not do it unless absolutely necessary. 121 * 122 * The statistics clock may (or may not) be run at a higher rate while 123 * profiling. This profile clock runs at profhz. We require that profhz 124 * be an integral multiple of stathz. 125 * 126 * If the statistics clock is running fast, it must be divided by the ratio 127 * profhz/stathz for statistics. (For profiling, every tick counts.) 128 */ 129 130 /* 131 * TODO: 132 * allocate more timeout table slots when table overflows. 133 */ 134 135 /* 136 * Bump a timeval by a small number of usec's. 137 */ 138 #define BUMPTIME(t, usec) { \ 139 register volatile struct timeval *tp = (t); \ 140 register long us; \ 141 \ 142 tp->tv_usec = us = tp->tv_usec + (usec); \ 143 if (us >= 1000000) { \ 144 tp->tv_usec = us - 1000000; \ 145 tp->tv_sec++; \ 146 } \ 147 } 148 149 int stathz; 150 int profhz; 151 int profprocs; 152 int ticks; 153 static int psdiv, pscnt; /* prof => stat divider */ 154 int psratio; /* ratio: prof / stat */ 155 156 volatile struct timeval time; 157 volatile struct timeval mono_time; 158 159 /* 160 * Phase-lock loop (PLL) definitions 161 * 162 * The following variables are read and set by the ntp_adjtime() system 163 * call. 164 * 165 * time_state shows the state of the system clock, with values defined 166 * in the timex.h header file. 167 * 168 * time_status shows the status of the system clock, with bits defined 169 * in the timex.h header file. 170 * 171 * time_offset is used by the PLL to adjust the system time in small 172 * increments. 173 * 174 * time_constant determines the bandwidth or "stiffness" of the PLL. 175 * 176 * time_tolerance determines maximum frequency error or tolerance of the 177 * CPU clock oscillator and is a property of the architecture; however, 178 * in principle it could change as result of the presence of external 179 * discipline signals, for instance. 180 * 181 * time_precision is usually equal to the kernel tick variable; however, 182 * in cases where a precision clock counter or external clock is 183 * available, the resolution can be much less than this and depend on 184 * whether the external clock is working or not. 185 * 186 * time_maxerror is initialized by a ntp_adjtime() call and increased by 187 * the kernel once each second to reflect the maximum error 188 * bound growth. 189 * 190 * time_esterror is set and read by the ntp_adjtime() call, but 191 * otherwise not used by the kernel. 192 */ 193 int time_status = STA_UNSYNC; /* clock status bits */ 194 int time_state = TIME_OK; /* clock state */ 195 long time_offset = 0; /* time offset (us) */ 196 long time_constant = 0; /* pll time constant */ 197 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 198 long time_precision = 1; /* clock precision (us) */ 199 long time_maxerror = MAXPHASE; /* maximum error (us) */ 200 long time_esterror = MAXPHASE; /* estimated error (us) */ 201 202 /* 203 * The following variables establish the state of the PLL and the 204 * residual time and frequency offset of the local clock. The scale 205 * factors are defined in the timex.h header file. 206 * 207 * time_phase and time_freq are the phase increment and the frequency 208 * increment, respectively, of the kernel time variable at each tick of 209 * the clock. 210 * 211 * time_freq is set via ntp_adjtime() from a value stored in a file when 212 * the synchronization daemon is first started. Its value is retrieved 213 * via ntp_adjtime() and written to the file about once per hour by the 214 * daemon. 215 * 216 * time_adj is the adjustment added to the value of tick at each timer 217 * interrupt and is recomputed at each timer interrupt. 218 * 219 * time_reftime is the second's portion of the system time on the last 220 * call to ntp_adjtime(). It is used to adjust the time_freq variable 221 * and to increase the time_maxerror as the time since last update 222 * increases. 223 */ 224 long time_phase = 0; /* phase offset (scaled us) */ 225 long time_freq = 0; /* frequency offset (scaled ppm) */ 226 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 227 long time_reftime = 0; /* time at last adjustment (s) */ 228 229 #ifdef PPS_SYNC 230 /* 231 * The following variables are used only if the if the kernel PPS 232 * discipline code is configured (PPS_SYNC). The scale factors are 233 * defined in the timex.h header file. 234 * 235 * pps_time contains the time at each calibration interval, as read by 236 * microtime(). 237 * 238 * pps_offset is the time offset produced by the time median filter 239 * pps_tf[], while pps_jitter is the dispersion measured by this 240 * filter. 241 * 242 * pps_freq is the frequency offset produced by the frequency median 243 * filter pps_ff[], while pps_stabil is the dispersion measured by 244 * this filter. 245 * 246 * pps_usec is latched from a high resolution counter or external clock 247 * at pps_time. Here we want the hardware counter contents only, not the 248 * contents plus the time_tv.usec as usual. 249 * 250 * pps_valid counts the number of seconds since the last PPS update. It 251 * is used as a watchdog timer to disable the PPS discipline should the 252 * PPS signal be lost. 253 * 254 * pps_glitch counts the number of seconds since the beginning of an 255 * offset burst more than tick/2 from current nominal offset. It is used 256 * mainly to suppress error bursts due to priority conflicts between the 257 * PPS interrupt and timer interrupt. 258 * 259 * pps_count counts the seconds of the calibration interval, the 260 * duration of which is pps_shift in powers of two. 261 * 262 * pps_intcnt counts the calibration intervals for use in the interval- 263 * adaptation algorithm. It's just too complicated for words. 264 */ 265 struct timeval pps_time; /* kernel time at last interval */ 266 long pps_offset = 0; /* pps time offset (us) */ 267 long pps_jitter = MAXTIME; /* pps time dispersion (jitter) (us) */ 268 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 269 long pps_freq = 0; /* frequency offset (scaled ppm) */ 270 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 271 long pps_ff[] = {0, 0, 0}; /* frequency offset median filter */ 272 long pps_usec = 0; /* microsec counter at last interval */ 273 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 274 int pps_glitch = 0; /* pps signal glitch counter */ 275 int pps_count = 0; /* calibration interval counter (s) */ 276 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 277 int pps_intcnt = 0; /* intervals at current duration */ 278 279 /* 280 * PPS signal quality monitors 281 * 282 * pps_jitcnt counts the seconds that have been discarded because the 283 * jitter measured by the time median filter exceeds the limit MAXTIME 284 * (100 us). 285 * 286 * pps_calcnt counts the frequency calibration intervals, which are 287 * variable from 4 s to 256 s. 288 * 289 * pps_errcnt counts the calibration intervals which have been discarded 290 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 291 * calibration interval jitter exceeds two ticks. 292 * 293 * pps_stbcnt counts the calibration intervals that have been discarded 294 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 295 */ 296 long pps_jitcnt = 0; /* jitter limit exceeded */ 297 long pps_calcnt = 0; /* calibration intervals */ 298 long pps_errcnt = 0; /* calibration errors */ 299 long pps_stbcnt = 0; /* stability limit exceeded */ 300 #endif /* PPS_SYNC */ 301 302 /* XXX none of this stuff works under FreeBSD */ 303 #ifdef EXT_CLOCK 304 /* 305 * External clock definitions 306 * 307 * The following definitions and declarations are used only if an 308 * external clock (HIGHBALL or TPRO) is configured on the system. 309 */ 310 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 311 312 /* 313 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 314 * interrupt and decremented once each second. 315 */ 316 int clock_count = 0; /* CPU clock counter */ 317 318 #ifdef HIGHBALL 319 /* 320 * The clock_offset and clock_cpu variables are used by the HIGHBALL 321 * interface. The clock_offset variable defines the offset between 322 * system time and the HIGBALL counters. The clock_cpu variable contains 323 * the offset between the system clock and the HIGHBALL clock for use in 324 * disciplining the kernel time variable. 325 */ 326 extern struct timeval clock_offset; /* Highball clock offset */ 327 long clock_cpu = 0; /* CPU clock adjust */ 328 #endif /* HIGHBALL */ 329 #endif /* EXT_CLOCK */ 330 331 /* 332 * hardupdate() - local clock update 333 * 334 * This routine is called by ntp_adjtime() to update the local clock 335 * phase and frequency. This is used to implement an adaptive-parameter, 336 * first-order, type-II phase-lock loop. The code computes new time and 337 * frequency offsets each time it is called. The hardclock() routine 338 * amortizes these offsets at each tick interrupt. If the kernel PPS 339 * discipline code is configured (PPS_SYNC), the PPS signal itself 340 * determines the new time offset, instead of the calling argument. 341 * Presumably, calls to ntp_adjtime() occur only when the caller 342 * believes the local clock is valid within some bound (+-128 ms with 343 * NTP). If the caller's time is far different than the PPS time, an 344 * argument will ensue, and it's not clear who will lose. 345 * 346 * For default SHIFT_UPDATE = 12, the offset is limited to +-512 ms, the 347 * maximum interval between updates is 4096 s and the maximum frequency 348 * offset is +-31.25 ms/s. 349 * 350 * Note: splclock() is in effect. 351 */ 352 void 353 hardupdate(offset) 354 long offset; 355 { 356 long ltemp, mtemp; 357 358 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 359 return; 360 ltemp = offset; 361 #ifdef PPS_SYNC 362 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 363 ltemp = pps_offset; 364 #endif /* PPS_SYNC */ 365 if (ltemp > MAXPHASE) 366 time_offset = MAXPHASE << SHIFT_UPDATE; 367 else if (ltemp < -MAXPHASE) 368 time_offset = -(MAXPHASE << SHIFT_UPDATE); 369 else 370 time_offset = ltemp << SHIFT_UPDATE; 371 mtemp = time.tv_sec - time_reftime; 372 time_reftime = time.tv_sec; 373 if (mtemp > MAXSEC) 374 mtemp = 0; 375 376 /* ugly multiply should be replaced */ 377 if (ltemp < 0) 378 time_freq -= (-ltemp * mtemp) >> (time_constant + 379 time_constant + SHIFT_KF - SHIFT_USEC); 380 else 381 time_freq += (ltemp * mtemp) >> (time_constant + 382 time_constant + SHIFT_KF - SHIFT_USEC); 383 if (time_freq > time_tolerance) 384 time_freq = time_tolerance; 385 else if (time_freq < -time_tolerance) 386 time_freq = -time_tolerance; 387 } 388 389 390 391 /* 392 * Initialize clock frequencies and start both clocks running. 393 */ 394 /* ARGSUSED*/ 395 static void 396 initclocks(udata) 397 void *udata; /* not used*/ 398 { 399 register int i; 400 401 /* 402 * Set divisors to 1 (normal case) and let the machine-specific 403 * code do its bit. 404 */ 405 psdiv = pscnt = 1; 406 cpu_initclocks(); 407 408 /* 409 * Compute profhz/stathz, and fix profhz if needed. 410 */ 411 i = stathz ? stathz : hz; 412 if (profhz == 0) 413 profhz = i; 414 psratio = profhz / i; 415 } 416 417 /* 418 * The real-time timer, interrupting hz times per second. 419 */ 420 void 421 hardclock(frame) 422 register struct clockframe *frame; 423 { 424 register struct callout *p1; 425 register struct proc *p; 426 register int needsoft; 427 428 /* 429 * Update real-time timeout queue. 430 * At front of queue are some number of events which are ``due''. 431 * The time to these is <= 0 and if negative represents the 432 * number of ticks which have passed since it was supposed to happen. 433 * The rest of the q elements (times > 0) are events yet to happen, 434 * where the time for each is given as a delta from the previous. 435 * Decrementing just the first of these serves to decrement the time 436 * to all events. 437 */ 438 needsoft = 0; 439 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) { 440 if (--p1->c_time > 0) 441 break; 442 needsoft = 1; 443 if (p1->c_time == 0) 444 break; 445 } 446 447 p = curproc; 448 if (p) { 449 register struct pstats *pstats; 450 451 /* 452 * Run current process's virtual and profile time, as needed. 453 */ 454 pstats = p->p_stats; 455 if (CLKF_USERMODE(frame) && 456 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 457 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 458 psignal(p, SIGVTALRM); 459 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 460 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 461 psignal(p, SIGPROF); 462 } 463 464 /* 465 * If no separate statistics clock is available, run it from here. 466 */ 467 if (stathz == 0) 468 statclock(frame); 469 470 /* 471 * Increment the time-of-day. 472 */ 473 ticks++; 474 { 475 int time_update; 476 struct timeval newtime = time; 477 long ltemp; 478 479 if (timedelta == 0) { 480 time_update = CPU_THISTICKLEN(tick); 481 } else { 482 time_update = CPU_THISTICKLEN(tick) + tickdelta; 483 timedelta -= tickdelta; 484 } 485 BUMPTIME(&mono_time, time_update); 486 487 /* 488 * Compute the phase adjustment. If the low-order bits 489 * (time_phase) of the update overflow, bump the high-order bits 490 * (time_update). 491 */ 492 time_phase += time_adj; 493 if (time_phase <= -FINEUSEC) { 494 ltemp = -time_phase >> SHIFT_SCALE; 495 time_phase += ltemp << SHIFT_SCALE; 496 time_update -= ltemp; 497 } 498 else if (time_phase >= FINEUSEC) { 499 ltemp = time_phase >> SHIFT_SCALE; 500 time_phase -= ltemp << SHIFT_SCALE; 501 time_update += ltemp; 502 } 503 504 newtime.tv_usec += time_update; 505 /* 506 * On rollover of the second the phase adjustment to be used for 507 * the next second is calculated. Also, the maximum error is 508 * increased by the tolerance. If the PPS frequency discipline 509 * code is present, the phase is increased to compensate for the 510 * CPU clock oscillator frequency error. 511 * 512 * With SHIFT_SCALE = 23, the maximum frequency adjustment is 513 * +-256 us per tick, or 25.6 ms/s at a clock frequency of 100 514 * Hz. The time contribution is shifted right a minimum of two 515 * bits, while the frequency contribution is a right shift. 516 * Thus, overflow is prevented if the frequency contribution is 517 * limited to half the maximum or 15.625 ms/s. 518 */ 519 if (newtime.tv_usec >= 1000000) { 520 newtime.tv_usec -= 1000000; 521 newtime.tv_sec++; 522 time_maxerror += time_tolerance >> SHIFT_USEC; 523 if (time_offset < 0) { 524 ltemp = -time_offset >> 525 (SHIFT_KG + time_constant); 526 time_offset += ltemp; 527 time_adj = -ltemp << 528 (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); 529 } else { 530 ltemp = time_offset >> 531 (SHIFT_KG + time_constant); 532 time_offset -= ltemp; 533 time_adj = ltemp << 534 (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); 535 } 536 #ifdef PPS_SYNC 537 /* 538 * Gnaw on the watchdog counter and update the frequency 539 * computed by the pll and the PPS signal. 540 */ 541 pps_valid++; 542 if (pps_valid == PPS_VALID) { 543 pps_jitter = MAXTIME; 544 pps_stabil = MAXFREQ; 545 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 546 STA_PPSWANDER | STA_PPSERROR); 547 } 548 ltemp = time_freq + pps_freq; 549 #else 550 ltemp = time_freq; 551 #endif /* PPS_SYNC */ 552 if (ltemp < 0) 553 time_adj -= -ltemp >> 554 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 555 else 556 time_adj += ltemp >> 557 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 558 559 /* 560 * When the CPU clock oscillator frequency is not a 561 * power of two in Hz, the SHIFT_HZ is only an 562 * approximate scale factor. In the SunOS kernel, this 563 * results in a PLL gain factor of 1/1.28 = 0.78 what it 564 * should be. In the following code the overall gain is 565 * increased by a factor of 1.25, which results in a 566 * residual error less than 3 percent. 567 */ 568 /* Same thing applies for FreeBSD --GAW */ 569 if (hz == 100) { 570 if (time_adj < 0) 571 time_adj -= -time_adj >> 2; 572 else 573 time_adj += time_adj >> 2; 574 } 575 576 /* XXX - this is really bogus, but can't be fixed until 577 xntpd's idea of the system clock is fixed to know how 578 the user wants leap seconds handled; in the mean time, 579 we assume that users of NTP are running without proper 580 leap second support (this is now the default anyway) */ 581 /* 582 * Leap second processing. If in leap-insert state at 583 * the end of the day, the system clock is set back one 584 * second; if in leap-delete state, the system clock is 585 * set ahead one second. The microtime() routine or 586 * external clock driver will insure that reported time 587 * is always monotonic. The ugly divides should be 588 * replaced. 589 */ 590 switch (time_state) { 591 592 case TIME_OK: 593 if (time_status & STA_INS) 594 time_state = TIME_INS; 595 else if (time_status & STA_DEL) 596 time_state = TIME_DEL; 597 break; 598 599 case TIME_INS: 600 if (newtime.tv_sec % 86400 == 0) { 601 newtime.tv_sec--; 602 time_state = TIME_OOP; 603 } 604 break; 605 606 case TIME_DEL: 607 if ((newtime.tv_sec + 1) % 86400 == 0) { 608 newtime.tv_sec++; 609 time_state = TIME_WAIT; 610 } 611 break; 612 613 case TIME_OOP: 614 time_state = TIME_WAIT; 615 break; 616 617 case TIME_WAIT: 618 if (!(time_status & (STA_INS | STA_DEL))) 619 time_state = TIME_OK; 620 } 621 } 622 CPU_CLOCKUPDATE(&time, &newtime); 623 } 624 625 /* 626 * Process callouts at a very low cpu priority, so we don't keep the 627 * relatively high clock interrupt priority any longer than necessary. 628 */ 629 if (needsoft) { 630 if (CLKF_BASEPRI(frame)) { 631 /* 632 * Save the overhead of a software interrupt; 633 * it will happen as soon as we return, so do it now. 634 */ 635 (void)splsoftclock(); 636 softclock(); 637 } else 638 setsoftclock(); 639 } 640 } 641 642 /* 643 * Software (low priority) clock interrupt. 644 * Run periodic events from timeout queue. 645 */ 646 /*ARGSUSED*/ 647 void 648 softclock() 649 { 650 register struct callout *c; 651 register void *arg; 652 register void (*func) __P((void *)); 653 register int s; 654 655 s = splhigh(); 656 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) { 657 func = c->c_func; 658 arg = c->c_arg; 659 calltodo.c_next = c->c_next; 660 c->c_next = callfree; 661 callfree = c; 662 splx(s); 663 (*func)(arg); 664 (void) splhigh(); 665 } 666 splx(s); 667 } 668 669 /* 670 * timeout -- 671 * Execute a function after a specified length of time. 672 * 673 * untimeout -- 674 * Cancel previous timeout function call. 675 * 676 * See AT&T BCI Driver Reference Manual for specification. This 677 * implementation differs from that one in that no identification 678 * value is returned from timeout, rather, the original arguments 679 * to timeout are used to identify entries for untimeout. 680 */ 681 void 682 timeout(ftn, arg, ticks) 683 timeout_t ftn; 684 void *arg; 685 register int ticks; 686 { 687 register struct callout *new, *p, *t; 688 register int s; 689 690 if (ticks <= 0) 691 ticks = 1; 692 693 /* Lock out the clock. */ 694 s = splhigh(); 695 696 /* Fill in the next free callout structure. */ 697 if (callfree == NULL) 698 panic("timeout table full"); 699 new = callfree; 700 callfree = new->c_next; 701 new->c_arg = arg; 702 new->c_func = ftn; 703 704 /* 705 * The time for each event is stored as a difference from the time 706 * of the previous event on the queue. Walk the queue, correcting 707 * the ticks argument for queue entries passed. Correct the ticks 708 * value for the queue entry immediately after the insertion point 709 * as well. Watch out for negative c_time values; these represent 710 * overdue events. 711 */ 712 for (p = &calltodo; 713 (t = p->c_next) != NULL && ticks > t->c_time; p = t) 714 if (t->c_time > 0) 715 ticks -= t->c_time; 716 new->c_time = ticks; 717 if (t != NULL) 718 t->c_time -= ticks; 719 720 /* Insert the new entry into the queue. */ 721 p->c_next = new; 722 new->c_next = t; 723 splx(s); 724 } 725 726 void 727 untimeout(ftn, arg) 728 timeout_t ftn; 729 void *arg; 730 { 731 register struct callout *p, *t; 732 register int s; 733 734 s = splhigh(); 735 for (p = &calltodo; (t = p->c_next) != NULL; p = t) 736 if (t->c_func == ftn && t->c_arg == arg) { 737 /* Increment next entry's tick count. */ 738 if (t->c_next && t->c_time > 0) 739 t->c_next->c_time += t->c_time; 740 741 /* Move entry from callout queue to callfree queue. */ 742 p->c_next = t->c_next; 743 t->c_next = callfree; 744 callfree = t; 745 break; 746 } 747 splx(s); 748 } 749 750 /* 751 * Compute number of hz until specified time. Used to 752 * compute third argument to timeout() from an absolute time. 753 */ 754 int 755 hzto(tv) 756 struct timeval *tv; 757 { 758 register unsigned long ticks; 759 register long sec, usec; 760 int s; 761 762 /* 763 * If the number of usecs in the whole seconds part of the time 764 * difference fits in a long, then the total number of usecs will 765 * fit in an unsigned long. Compute the total and convert it to 766 * ticks, rounding up and adding 1 to allow for the current tick 767 * to expire. Rounding also depends on unsigned long arithmetic 768 * to avoid overflow. 769 * 770 * Otherwise, if the number of ticks in the whole seconds part of 771 * the time difference fits in a long, then convert the parts to 772 * ticks separately and add, using similar rounding methods and 773 * overflow avoidance. This method would work in the previous 774 * case but it is slightly slower and assumes that hz is integral. 775 * 776 * Otherwise, round the time difference down to the maximum 777 * representable value. 778 * 779 * If ints have 32 bits, then the maximum value for any timeout in 780 * 10ms ticks is 248 days. 781 */ 782 s = splclock(); 783 sec = tv->tv_sec - time.tv_sec; 784 usec = tv->tv_usec - time.tv_usec; 785 splx(s); 786 if (usec < 0) { 787 sec--; 788 usec += 1000000; 789 } 790 if (sec < 0) { 791 #ifdef DIAGNOSTIC 792 printf("hzto: negative time difference %ld sec %ld usec\n", 793 sec, usec); 794 #endif 795 ticks = 1; 796 } else if (sec <= LONG_MAX / 1000000) 797 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 798 / tick + 1; 799 else if (sec <= LONG_MAX / hz) 800 ticks = sec * hz 801 + ((unsigned long)usec + (tick - 1)) / tick + 1; 802 else 803 ticks = LONG_MAX; 804 if (ticks > INT_MAX) 805 ticks = INT_MAX; 806 return (ticks); 807 } 808 809 /* 810 * Start profiling on a process. 811 * 812 * Kernel profiling passes proc0 which never exits and hence 813 * keeps the profile clock running constantly. 814 */ 815 void 816 startprofclock(p) 817 register struct proc *p; 818 { 819 int s; 820 821 if ((p->p_flag & P_PROFIL) == 0) { 822 p->p_flag |= P_PROFIL; 823 if (++profprocs == 1 && stathz != 0) { 824 s = splstatclock(); 825 psdiv = pscnt = psratio; 826 setstatclockrate(profhz); 827 splx(s); 828 } 829 } 830 } 831 832 /* 833 * Stop profiling on a process. 834 */ 835 void 836 stopprofclock(p) 837 register struct proc *p; 838 { 839 int s; 840 841 if (p->p_flag & P_PROFIL) { 842 p->p_flag &= ~P_PROFIL; 843 if (--profprocs == 0 && stathz != 0) { 844 s = splstatclock(); 845 psdiv = pscnt = 1; 846 setstatclockrate(stathz); 847 splx(s); 848 } 849 } 850 } 851 852 /* 853 * Statistics clock. Grab profile sample, and if divider reaches 0, 854 * do process and kernel statistics. 855 */ 856 void 857 statclock(frame) 858 register struct clockframe *frame; 859 { 860 #ifdef GPROF 861 register struct gmonparam *g; 862 #endif 863 register struct proc *p = curproc; 864 register int i; 865 866 if (p) { 867 struct pstats *pstats; 868 struct rusage *ru; 869 struct vmspace *vm; 870 871 /* bump the resource usage of integral space use */ 872 if ((pstats = p->p_stats) && (ru = &pstats->p_ru) && (vm = p->p_vmspace)) { 873 ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024; 874 ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024; 875 ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024; 876 if ((vm->vm_pmap.pm_stats.resident_count * PAGE_SIZE / 1024) > 877 ru->ru_maxrss) { 878 ru->ru_maxrss = 879 vm->vm_pmap.pm_stats.resident_count * PAGE_SIZE / 1024; 880 } 881 } 882 } 883 884 if (CLKF_USERMODE(frame)) { 885 if (p->p_flag & P_PROFIL) 886 addupc_intr(p, CLKF_PC(frame), 1); 887 if (--pscnt > 0) 888 return; 889 /* 890 * Came from user mode; CPU was in user state. 891 * If this process is being profiled record the tick. 892 */ 893 p->p_uticks++; 894 if (p->p_nice > NZERO) 895 cp_time[CP_NICE]++; 896 else 897 cp_time[CP_USER]++; 898 } else { 899 #ifdef GPROF 900 /* 901 * Kernel statistics are just like addupc_intr, only easier. 902 */ 903 g = &_gmonparam; 904 if (g->state == GMON_PROF_ON) { 905 i = CLKF_PC(frame) - g->lowpc; 906 if (i < g->textsize) { 907 i /= HISTFRACTION * sizeof(*g->kcount); 908 g->kcount[i]++; 909 } 910 } 911 #endif 912 if (--pscnt > 0) 913 return; 914 /* 915 * Came from kernel mode, so we were: 916 * - handling an interrupt, 917 * - doing syscall or trap work on behalf of the current 918 * user process, or 919 * - spinning in the idle loop. 920 * Whichever it is, charge the time as appropriate. 921 * Note that we charge interrupts to the current process, 922 * regardless of whether they are ``for'' that process, 923 * so that we know how much of its real time was spent 924 * in ``non-process'' (i.e., interrupt) work. 925 */ 926 if (CLKF_INTR(frame)) { 927 if (p != NULL) 928 p->p_iticks++; 929 cp_time[CP_INTR]++; 930 } else if (p != NULL) { 931 p->p_sticks++; 932 cp_time[CP_SYS]++; 933 } else 934 cp_time[CP_IDLE]++; 935 } 936 pscnt = psdiv; 937 938 /* 939 * We maintain statistics shown by user-level statistics 940 * programs: the amount of time in each cpu state, and 941 * the amount of time each of DK_NDRIVE ``drives'' is busy. 942 * 943 * XXX should either run linked list of drives, or (better) 944 * grab timestamps in the start & done code. 945 */ 946 for (i = 0; i < DK_NDRIVE; i++) 947 if (dk_busy & (1 << i)) 948 dk_time[i]++; 949 950 /* 951 * We adjust the priority of the current process. The priority of 952 * a process gets worse as it accumulates CPU time. The cpu usage 953 * estimator (p_estcpu) is increased here. The formula for computing 954 * priorities (in kern_synch.c) will compute a different value each 955 * time p_estcpu increases by 4. The cpu usage estimator ramps up 956 * quite quickly when the process is running (linearly), and decays 957 * away exponentially, at a rate which is proportionally slower when 958 * the system is busy. The basic principal is that the system will 959 * 90% forget that the process used a lot of CPU time in 5 * loadav 960 * seconds. This causes the system to favor processes which haven't 961 * run much recently, and to round-robin among other processes. 962 */ 963 if (p != NULL) { 964 p->p_cpticks++; 965 if (++p->p_estcpu == 0) 966 p->p_estcpu--; 967 if ((p->p_estcpu & 3) == 0) { 968 resetpriority(p); 969 if (p->p_priority >= PUSER) 970 p->p_priority = p->p_usrpri; 971 } 972 } 973 } 974 975 /* 976 * Return information about system clocks. 977 */ 978 int 979 sysctl_clockrate(where, sizep) 980 register char *where; 981 size_t *sizep; 982 { 983 struct clockinfo clkinfo; 984 985 /* 986 * Construct clockinfo structure. 987 */ 988 clkinfo.hz = hz; 989 clkinfo.tick = tick; 990 clkinfo.profhz = profhz; 991 clkinfo.stathz = stathz ? stathz : hz; 992 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 993 } 994 995 /*#ifdef PPS_SYNC*/ 996 #if 0 997 /* This code is completely bogus; if anybody ever wants to use it, get 998 * the current version from Dave Mills. */ 999 1000 /* 1001 * hardpps() - discipline CPU clock oscillator to external pps signal 1002 * 1003 * This routine is called at each PPS interrupt in order to discipline 1004 * the CPU clock oscillator to the PPS signal. It integrates successive 1005 * phase differences between the two oscillators and calculates the 1006 * frequency offset. This is used in hardclock() to discipline the CPU 1007 * clock oscillator so that intrinsic frequency error is cancelled out. 1008 * The code requires the caller to capture the time and hardware 1009 * counter value at the designated PPS signal transition. 1010 */ 1011 void 1012 hardpps(tvp, usec) 1013 struct timeval *tvp; /* time at PPS */ 1014 long usec; /* hardware counter at PPS */ 1015 { 1016 long u_usec, v_usec, bigtick; 1017 long cal_sec, cal_usec; 1018 1019 /* 1020 * During the calibration interval adjust the starting time when 1021 * the tick overflows. At the end of the interval compute the 1022 * duration of the interval and the difference of the hardware 1023 * counters at the beginning and end of the interval. This code 1024 * is deliciously complicated by the fact valid differences may 1025 * exceed the value of tick when using long calibration 1026 * intervals and small ticks. Note that the counter can be 1027 * greater than tick if caught at just the wrong instant, but 1028 * the values returned and used here are correct. 1029 */ 1030 bigtick = (long)tick << SHIFT_USEC; 1031 pps_usec -= ntp_pll.ybar; 1032 if (pps_usec >= bigtick) 1033 pps_usec -= bigtick; 1034 if (pps_usec < 0) 1035 pps_usec += bigtick; 1036 pps_time.tv_sec++; 1037 pps_count++; 1038 if (pps_count < (1 << pps_shift)) 1039 return; 1040 pps_count = 0; 1041 ntp_pll.calcnt++; 1042 u_usec = usec << SHIFT_USEC; 1043 v_usec = pps_usec - u_usec; 1044 if (v_usec >= bigtick >> 1) 1045 v_usec -= bigtick; 1046 if (v_usec < -(bigtick >> 1)) 1047 v_usec += bigtick; 1048 if (v_usec < 0) 1049 v_usec = -(-v_usec >> ntp_pll.shift); 1050 else 1051 v_usec = v_usec >> ntp_pll.shift; 1052 pps_usec = u_usec; 1053 cal_sec = tvp->tv_sec; 1054 cal_usec = tvp->tv_usec; 1055 cal_sec -= pps_time.tv_sec; 1056 cal_usec -= pps_time.tv_usec; 1057 if (cal_usec < 0) { 1058 cal_usec += 1000000; 1059 cal_sec--; 1060 } 1061 pps_time = *tvp; 1062 1063 /* 1064 * Check for lost interrupts, noise, excessive jitter and 1065 * excessive frequency error. The number of timer ticks during 1066 * the interval may vary +-1 tick. Add to this a margin of one 1067 * tick for the PPS signal jitter and maximum frequency 1068 * deviation. If the limits are exceeded, the calibration 1069 * interval is reset to the minimum and we start over. 1070 */ 1071 u_usec = (long)tick << 1; 1072 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1073 || (cal_sec == 0 && cal_usec < u_usec)) 1074 || v_usec > ntp_pll.tolerance || v_usec < -ntp_pll.tolerance) { 1075 ntp_pll.jitcnt++; 1076 ntp_pll.shift = NTP_PLL.SHIFT; 1077 pps_dispinc = PPS_DISPINC; 1078 ntp_pll.intcnt = 0; 1079 return; 1080 } 1081 1082 /* 1083 * A three-stage median filter is used to help deglitch the pps 1084 * signal. The median sample becomes the offset estimate; the 1085 * difference between the other two samples becomes the 1086 * dispersion estimate. 1087 */ 1088 pps_mf[2] = pps_mf[1]; 1089 pps_mf[1] = pps_mf[0]; 1090 pps_mf[0] = v_usec; 1091 if (pps_mf[0] > pps_mf[1]) { 1092 if (pps_mf[1] > pps_mf[2]) { 1093 u_usec = pps_mf[1]; /* 0 1 2 */ 1094 v_usec = pps_mf[0] - pps_mf[2]; 1095 } else if (pps_mf[2] > pps_mf[0]) { 1096 u_usec = pps_mf[0]; /* 2 0 1 */ 1097 v_usec = pps_mf[2] - pps_mf[1]; 1098 } else { 1099 u_usec = pps_mf[2]; /* 0 2 1 */ 1100 v_usec = pps_mf[0] - pps_mf[1]; 1101 } 1102 } else { 1103 if (pps_mf[1] < pps_mf[2]) { 1104 u_usec = pps_mf[1]; /* 2 1 0 */ 1105 v_usec = pps_mf[2] - pps_mf[0]; 1106 } else if (pps_mf[2] < pps_mf[0]) { 1107 u_usec = pps_mf[0]; /* 1 0 2 */ 1108 v_usec = pps_mf[1] - pps_mf[2]; 1109 } else { 1110 u_usec = pps_mf[2]; /* 1 2 0 */ 1111 v_usec = pps_mf[1] - pps_mf[0]; 1112 } 1113 } 1114 1115 /* 1116 * Here the dispersion average is updated. If it is less than 1117 * the threshold pps_dispmax, the frequency average is updated 1118 * as well, but clamped to the tolerance. 1119 */ 1120 v_usec = (v_usec >> 1) - ntp_pll.disp; 1121 if (v_usec < 0) 1122 ntp_pll.disp -= -v_usec >> PPS_AVG; 1123 else 1124 ntp_pll.disp += v_usec >> PPS_AVG; 1125 if (ntp_pll.disp > pps_dispmax) { 1126 ntp_pll.discnt++; 1127 return; 1128 } 1129 if (u_usec < 0) { 1130 ntp_pll.ybar -= -u_usec >> PPS_AVG; 1131 if (ntp_pll.ybar < -ntp_pll.tolerance) 1132 ntp_pll.ybar = -ntp_pll.tolerance; 1133 u_usec = -u_usec; 1134 } else { 1135 ntp_pll.ybar += u_usec >> PPS_AVG; 1136 if (ntp_pll.ybar > ntp_pll.tolerance) 1137 ntp_pll.ybar = ntp_pll.tolerance; 1138 } 1139 1140 /* 1141 * Here the calibration interval is adjusted. If the maximum 1142 * time difference is greater than tick/4, reduce the interval 1143 * by half. If this is not the case for four consecutive 1144 * intervals, double the interval. 1145 */ 1146 if (u_usec << ntp_pll.shift > bigtick >> 2) { 1147 ntp_pll.intcnt = 0; 1148 if (ntp_pll.shift > NTP_PLL.SHIFT) { 1149 ntp_pll.shift--; 1150 pps_dispinc <<= 1; 1151 } 1152 } else if (ntp_pll.intcnt >= 4) { 1153 ntp_pll.intcnt = 0; 1154 if (ntp_pll.shift < NTP_PLL.SHIFTMAX) { 1155 ntp_pll.shift++; 1156 pps_dispinc >>= 1; 1157 } 1158 } else 1159 ntp_pll.intcnt++; 1160 } 1161 #endif /* PPS_SYNC */ 1162