xref: /freebsd/sys/kern/kern_tc.c (revision 87569f75a91f298c52a71823c04d41cf53c88889)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  */
9 
10 #include <sys/cdefs.h>
11 __FBSDID("$FreeBSD$");
12 
13 #include "opt_ntp.h"
14 
15 #include <sys/param.h>
16 #include <sys/kernel.h>
17 #include <sys/sysctl.h>
18 #include <sys/syslog.h>
19 #include <sys/systm.h>
20 #include <sys/timepps.h>
21 #include <sys/timetc.h>
22 #include <sys/timex.h>
23 
24 /*
25  * A large step happens on boot.  This constant detects such steps.
26  * It is relatively small so that ntp_update_second gets called enough
27  * in the typical 'missed a couple of seconds' case, but doesn't loop
28  * forever when the time step is large.
29  */
30 #define LARGE_STEP	200
31 
32 /*
33  * Implement a dummy timecounter which we can use until we get a real one
34  * in the air.  This allows the console and other early stuff to use
35  * time services.
36  */
37 
38 static u_int
39 dummy_get_timecount(struct timecounter *tc)
40 {
41 	static u_int now;
42 
43 	return (++now);
44 }
45 
46 static struct timecounter dummy_timecounter = {
47 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
48 };
49 
50 struct timehands {
51 	/* These fields must be initialized by the driver. */
52 	struct timecounter	*th_counter;
53 	int64_t			th_adjustment;
54 	u_int64_t		th_scale;
55 	u_int	 		th_offset_count;
56 	struct bintime		th_offset;
57 	struct timeval		th_microtime;
58 	struct timespec		th_nanotime;
59 	/* Fields not to be copied in tc_windup start with th_generation. */
60 	volatile u_int		th_generation;
61 	struct timehands	*th_next;
62 };
63 
64 static struct timehands th0;
65 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74 static struct timehands th0 = {
75 	&dummy_timecounter,
76 	0,
77 	(uint64_t)-1 / 1000000,
78 	0,
79 	{1, 0},
80 	{0, 0},
81 	{0, 0},
82 	1,
83 	&th1
84 };
85 
86 static struct timehands *volatile timehands = &th0;
87 struct timecounter *timecounter = &dummy_timecounter;
88 static struct timecounter *timecounters = &dummy_timecounter;
89 
90 time_t time_second = 1;
91 time_t time_uptime = 1;
92 
93 static struct bintime boottimebin;
94 struct timeval boottime;
95 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
96 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
97     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
98 
99 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
100 
101 static int timestepwarnings;
102 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
103     &timestepwarnings, 0, "");
104 
105 #define TC_STATS(foo) \
106 	static u_int foo; \
107 	SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
108 	struct __hack
109 
110 TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
111 TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
112 TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
113 TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
114 TC_STATS(nsetclock);
115 
116 #undef TC_STATS
117 
118 static void tc_windup(void);
119 static void cpu_tick_calibrate(int);
120 
121 static int
122 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
123 {
124 #ifdef SCTL_MASK32
125 	int tv[2];
126 
127 	if (req->flags & SCTL_MASK32) {
128 		tv[0] = boottime.tv_sec;
129 		tv[1] = boottime.tv_usec;
130 		return SYSCTL_OUT(req, tv, sizeof(tv));
131 	} else
132 #endif
133 		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
134 }
135 
136 /*
137  * Return the difference between the timehands' counter value now and what
138  * was when we copied it to the timehands' offset_count.
139  */
140 static __inline u_int
141 tc_delta(struct timehands *th)
142 {
143 	struct timecounter *tc;
144 
145 	tc = th->th_counter;
146 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
147 	    tc->tc_counter_mask);
148 }
149 
150 /*
151  * Functions for reading the time.  We have to loop until we are sure that
152  * the timehands that we operated on was not updated under our feet.  See
153  * the comment in <sys/time.h> for a description of these 12 functions.
154  */
155 
156 void
157 binuptime(struct bintime *bt)
158 {
159 	struct timehands *th;
160 	u_int gen;
161 
162 	nbinuptime++;
163 	do {
164 		th = timehands;
165 		gen = th->th_generation;
166 		*bt = th->th_offset;
167 		bintime_addx(bt, th->th_scale * tc_delta(th));
168 	} while (gen == 0 || gen != th->th_generation);
169 }
170 
171 void
172 nanouptime(struct timespec *tsp)
173 {
174 	struct bintime bt;
175 
176 	nnanouptime++;
177 	binuptime(&bt);
178 	bintime2timespec(&bt, tsp);
179 }
180 
181 void
182 microuptime(struct timeval *tvp)
183 {
184 	struct bintime bt;
185 
186 	nmicrouptime++;
187 	binuptime(&bt);
188 	bintime2timeval(&bt, tvp);
189 }
190 
191 void
192 bintime(struct bintime *bt)
193 {
194 
195 	nbintime++;
196 	binuptime(bt);
197 	bintime_add(bt, &boottimebin);
198 }
199 
200 void
201 nanotime(struct timespec *tsp)
202 {
203 	struct bintime bt;
204 
205 	nnanotime++;
206 	bintime(&bt);
207 	bintime2timespec(&bt, tsp);
208 }
209 
210 void
211 microtime(struct timeval *tvp)
212 {
213 	struct bintime bt;
214 
215 	nmicrotime++;
216 	bintime(&bt);
217 	bintime2timeval(&bt, tvp);
218 }
219 
220 void
221 getbinuptime(struct bintime *bt)
222 {
223 	struct timehands *th;
224 	u_int gen;
225 
226 	ngetbinuptime++;
227 	do {
228 		th = timehands;
229 		gen = th->th_generation;
230 		*bt = th->th_offset;
231 	} while (gen == 0 || gen != th->th_generation);
232 }
233 
234 void
235 getnanouptime(struct timespec *tsp)
236 {
237 	struct timehands *th;
238 	u_int gen;
239 
240 	ngetnanouptime++;
241 	do {
242 		th = timehands;
243 		gen = th->th_generation;
244 		bintime2timespec(&th->th_offset, tsp);
245 	} while (gen == 0 || gen != th->th_generation);
246 }
247 
248 void
249 getmicrouptime(struct timeval *tvp)
250 {
251 	struct timehands *th;
252 	u_int gen;
253 
254 	ngetmicrouptime++;
255 	do {
256 		th = timehands;
257 		gen = th->th_generation;
258 		bintime2timeval(&th->th_offset, tvp);
259 	} while (gen == 0 || gen != th->th_generation);
260 }
261 
262 void
263 getbintime(struct bintime *bt)
264 {
265 	struct timehands *th;
266 	u_int gen;
267 
268 	ngetbintime++;
269 	do {
270 		th = timehands;
271 		gen = th->th_generation;
272 		*bt = th->th_offset;
273 	} while (gen == 0 || gen != th->th_generation);
274 	bintime_add(bt, &boottimebin);
275 }
276 
277 void
278 getnanotime(struct timespec *tsp)
279 {
280 	struct timehands *th;
281 	u_int gen;
282 
283 	ngetnanotime++;
284 	do {
285 		th = timehands;
286 		gen = th->th_generation;
287 		*tsp = th->th_nanotime;
288 	} while (gen == 0 || gen != th->th_generation);
289 }
290 
291 void
292 getmicrotime(struct timeval *tvp)
293 {
294 	struct timehands *th;
295 	u_int gen;
296 
297 	ngetmicrotime++;
298 	do {
299 		th = timehands;
300 		gen = th->th_generation;
301 		*tvp = th->th_microtime;
302 	} while (gen == 0 || gen != th->th_generation);
303 }
304 
305 /*
306  * Initialize a new timecounter and possibly use it.
307  */
308 void
309 tc_init(struct timecounter *tc)
310 {
311 	u_int u;
312 
313 	u = tc->tc_frequency / tc->tc_counter_mask;
314 	/* XXX: We need some margin here, 10% is a guess */
315 	u *= 11;
316 	u /= 10;
317 	if (u > hz && tc->tc_quality >= 0) {
318 		tc->tc_quality = -2000;
319 		if (bootverbose) {
320 			printf("Timecounter \"%s\" frequency %ju Hz",
321 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
322 			printf(" -- Insufficient hz, needs at least %u\n", u);
323 		}
324 	} else if (tc->tc_quality >= 0 || bootverbose) {
325 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
326 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
327 		    tc->tc_quality);
328 	}
329 
330 	tc->tc_next = timecounters;
331 	timecounters = tc;
332 	/*
333 	 * Never automatically use a timecounter with negative quality.
334 	 * Even though we run on the dummy counter, switching here may be
335 	 * worse since this timecounter may not be monotonous.
336 	 */
337 	if (tc->tc_quality < 0)
338 		return;
339 	if (tc->tc_quality < timecounter->tc_quality)
340 		return;
341 	if (tc->tc_quality == timecounter->tc_quality &&
342 	    tc->tc_frequency < timecounter->tc_frequency)
343 		return;
344 	(void)tc->tc_get_timecount(tc);
345 	(void)tc->tc_get_timecount(tc);
346 	timecounter = tc;
347 }
348 
349 /* Report the frequency of the current timecounter. */
350 u_int64_t
351 tc_getfrequency(void)
352 {
353 
354 	return (timehands->th_counter->tc_frequency);
355 }
356 
357 /*
358  * Step our concept of UTC.  This is done by modifying our estimate of
359  * when we booted.
360  * XXX: not locked.
361  */
362 void
363 tc_setclock(struct timespec *ts)
364 {
365 	struct timespec tbef, taft;
366 	struct bintime bt, bt2;
367 
368 	cpu_tick_calibrate(1);
369 	nsetclock++;
370 	nanotime(&tbef);
371 	timespec2bintime(ts, &bt);
372 	binuptime(&bt2);
373 	bintime_sub(&bt, &bt2);
374 	bintime_add(&bt2, &boottimebin);
375 	boottimebin = bt;
376 	bintime2timeval(&bt, &boottime);
377 
378 	/* XXX fiddle all the little crinkly bits around the fiords... */
379 	tc_windup();
380 	nanotime(&taft);
381 	if (timestepwarnings) {
382 		log(LOG_INFO,
383 		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
384 		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
385 		    (intmax_t)taft.tv_sec, taft.tv_nsec,
386 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
387 	}
388 	cpu_tick_calibrate(1);
389 }
390 
391 /*
392  * Initialize the next struct timehands in the ring and make
393  * it the active timehands.  Along the way we might switch to a different
394  * timecounter and/or do seconds processing in NTP.  Slightly magic.
395  */
396 static void
397 tc_windup(void)
398 {
399 	struct bintime bt;
400 	struct timehands *th, *tho;
401 	u_int64_t scale;
402 	u_int delta, ncount, ogen;
403 	int i;
404 	time_t t;
405 
406 	/*
407 	 * Make the next timehands a copy of the current one, but do not
408 	 * overwrite the generation or next pointer.  While we update
409 	 * the contents, the generation must be zero.
410 	 */
411 	tho = timehands;
412 	th = tho->th_next;
413 	ogen = th->th_generation;
414 	th->th_generation = 0;
415 	bcopy(tho, th, offsetof(struct timehands, th_generation));
416 
417 	/*
418 	 * Capture a timecounter delta on the current timecounter and if
419 	 * changing timecounters, a counter value from the new timecounter.
420 	 * Update the offset fields accordingly.
421 	 */
422 	delta = tc_delta(th);
423 	if (th->th_counter != timecounter)
424 		ncount = timecounter->tc_get_timecount(timecounter);
425 	else
426 		ncount = 0;
427 	th->th_offset_count += delta;
428 	th->th_offset_count &= th->th_counter->tc_counter_mask;
429 	bintime_addx(&th->th_offset, th->th_scale * delta);
430 
431 	/*
432 	 * Hardware latching timecounters may not generate interrupts on
433 	 * PPS events, so instead we poll them.  There is a finite risk that
434 	 * the hardware might capture a count which is later than the one we
435 	 * got above, and therefore possibly in the next NTP second which might
436 	 * have a different rate than the current NTP second.  It doesn't
437 	 * matter in practice.
438 	 */
439 	if (tho->th_counter->tc_poll_pps)
440 		tho->th_counter->tc_poll_pps(tho->th_counter);
441 
442 	/*
443 	 * Deal with NTP second processing.  The for loop normally
444 	 * iterates at most once, but in extreme situations it might
445 	 * keep NTP sane if timeouts are not run for several seconds.
446 	 * At boot, the time step can be large when the TOD hardware
447 	 * has been read, so on really large steps, we call
448 	 * ntp_update_second only twice.  We need to call it twice in
449 	 * case we missed a leap second.
450 	 */
451 	bt = th->th_offset;
452 	bintime_add(&bt, &boottimebin);
453 	i = bt.sec - tho->th_microtime.tv_sec;
454 	if (i > LARGE_STEP)
455 		i = 2;
456 	for (; i > 0; i--) {
457 		t = bt.sec;
458 		ntp_update_second(&th->th_adjustment, &bt.sec);
459 		if (bt.sec != t)
460 			boottimebin.sec += bt.sec - t;
461 	}
462 	/* Update the UTC timestamps used by the get*() functions. */
463 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
464 	bintime2timeval(&bt, &th->th_microtime);
465 	bintime2timespec(&bt, &th->th_nanotime);
466 
467 	/* Now is a good time to change timecounters. */
468 	if (th->th_counter != timecounter) {
469 		th->th_counter = timecounter;
470 		th->th_offset_count = ncount;
471 	}
472 
473 	/*-
474 	 * Recalculate the scaling factor.  We want the number of 1/2^64
475 	 * fractions of a second per period of the hardware counter, taking
476 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
477 	 * processing provides us with.
478 	 *
479 	 * The th_adjustment is nanoseconds per second with 32 bit binary
480 	 * fraction and we want 64 bit binary fraction of second:
481 	 *
482 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
483 	 *
484 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
485 	 * we can only multiply by about 850 without overflowing, that
486 	 * leaves no suitably precise fractions for multiply before divide.
487 	 *
488 	 * Divide before multiply with a fraction of 2199/512 results in a
489 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
490 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
491  	 *
492 	 * We happily sacrifice the lowest of the 64 bits of our result
493 	 * to the goddess of code clarity.
494 	 *
495 	 */
496 	scale = (u_int64_t)1 << 63;
497 	scale += (th->th_adjustment / 1024) * 2199;
498 	scale /= th->th_counter->tc_frequency;
499 	th->th_scale = scale * 2;
500 
501 	/*
502 	 * Now that the struct timehands is again consistent, set the new
503 	 * generation number, making sure to not make it zero.
504 	 */
505 	if (++ogen == 0)
506 		ogen = 1;
507 	th->th_generation = ogen;
508 
509 	/* Go live with the new struct timehands. */
510 	time_second = th->th_microtime.tv_sec;
511 	time_uptime = th->th_offset.sec;
512 	timehands = th;
513 }
514 
515 /* Report or change the active timecounter hardware. */
516 static int
517 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
518 {
519 	char newname[32];
520 	struct timecounter *newtc, *tc;
521 	int error;
522 
523 	tc = timecounter;
524 	strlcpy(newname, tc->tc_name, sizeof(newname));
525 
526 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
527 	if (error != 0 || req->newptr == NULL ||
528 	    strcmp(newname, tc->tc_name) == 0)
529 		return (error);
530 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
531 		if (strcmp(newname, newtc->tc_name) != 0)
532 			continue;
533 
534 		/* Warm up new timecounter. */
535 		(void)newtc->tc_get_timecount(newtc);
536 		(void)newtc->tc_get_timecount(newtc);
537 
538 		timecounter = newtc;
539 		return (0);
540 	}
541 	return (EINVAL);
542 }
543 
544 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
545     0, 0, sysctl_kern_timecounter_hardware, "A", "");
546 
547 
548 /* Report or change the active timecounter hardware. */
549 static int
550 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
551 {
552 	char buf[32], *spc;
553 	struct timecounter *tc;
554 	int error;
555 
556 	spc = "";
557 	error = 0;
558 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
559 		sprintf(buf, "%s%s(%d)",
560 		    spc, tc->tc_name, tc->tc_quality);
561 		error = SYSCTL_OUT(req, buf, strlen(buf));
562 		spc = " ";
563 	}
564 	return (error);
565 }
566 
567 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
568     0, 0, sysctl_kern_timecounter_choice, "A", "");
569 
570 /*
571  * RFC 2783 PPS-API implementation.
572  */
573 
574 int
575 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
576 {
577 	pps_params_t *app;
578 	struct pps_fetch_args *fapi;
579 #ifdef PPS_SYNC
580 	struct pps_kcbind_args *kapi;
581 #endif
582 
583 	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
584 	switch (cmd) {
585 	case PPS_IOC_CREATE:
586 		return (0);
587 	case PPS_IOC_DESTROY:
588 		return (0);
589 	case PPS_IOC_SETPARAMS:
590 		app = (pps_params_t *)data;
591 		if (app->mode & ~pps->ppscap)
592 			return (EINVAL);
593 		pps->ppsparam = *app;
594 		return (0);
595 	case PPS_IOC_GETPARAMS:
596 		app = (pps_params_t *)data;
597 		*app = pps->ppsparam;
598 		app->api_version = PPS_API_VERS_1;
599 		return (0);
600 	case PPS_IOC_GETCAP:
601 		*(int*)data = pps->ppscap;
602 		return (0);
603 	case PPS_IOC_FETCH:
604 		fapi = (struct pps_fetch_args *)data;
605 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
606 			return (EINVAL);
607 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
608 			return (EOPNOTSUPP);
609 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
610 		fapi->pps_info_buf = pps->ppsinfo;
611 		return (0);
612 	case PPS_IOC_KCBIND:
613 #ifdef PPS_SYNC
614 		kapi = (struct pps_kcbind_args *)data;
615 		/* XXX Only root should be able to do this */
616 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
617 			return (EINVAL);
618 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
619 			return (EINVAL);
620 		if (kapi->edge & ~pps->ppscap)
621 			return (EINVAL);
622 		pps->kcmode = kapi->edge;
623 		return (0);
624 #else
625 		return (EOPNOTSUPP);
626 #endif
627 	default:
628 		return (ENOIOCTL);
629 	}
630 }
631 
632 void
633 pps_init(struct pps_state *pps)
634 {
635 	pps->ppscap |= PPS_TSFMT_TSPEC;
636 	if (pps->ppscap & PPS_CAPTUREASSERT)
637 		pps->ppscap |= PPS_OFFSETASSERT;
638 	if (pps->ppscap & PPS_CAPTURECLEAR)
639 		pps->ppscap |= PPS_OFFSETCLEAR;
640 }
641 
642 void
643 pps_capture(struct pps_state *pps)
644 {
645 	struct timehands *th;
646 
647 	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
648 	th = timehands;
649 	pps->capgen = th->th_generation;
650 	pps->capth = th;
651 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
652 	if (pps->capgen != th->th_generation)
653 		pps->capgen = 0;
654 }
655 
656 void
657 pps_event(struct pps_state *pps, int event)
658 {
659 	struct bintime bt;
660 	struct timespec ts, *tsp, *osp;
661 	u_int tcount, *pcount;
662 	int foff, fhard;
663 	pps_seq_t *pseq;
664 
665 	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
666 	/* If the timecounter was wound up underneath us, bail out. */
667 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
668 		return;
669 
670 	/* Things would be easier with arrays. */
671 	if (event == PPS_CAPTUREASSERT) {
672 		tsp = &pps->ppsinfo.assert_timestamp;
673 		osp = &pps->ppsparam.assert_offset;
674 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
675 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
676 		pcount = &pps->ppscount[0];
677 		pseq = &pps->ppsinfo.assert_sequence;
678 	} else {
679 		tsp = &pps->ppsinfo.clear_timestamp;
680 		osp = &pps->ppsparam.clear_offset;
681 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
682 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
683 		pcount = &pps->ppscount[1];
684 		pseq = &pps->ppsinfo.clear_sequence;
685 	}
686 
687 	/*
688 	 * If the timecounter changed, we cannot compare the count values, so
689 	 * we have to drop the rest of the PPS-stuff until the next event.
690 	 */
691 	if (pps->ppstc != pps->capth->th_counter) {
692 		pps->ppstc = pps->capth->th_counter;
693 		*pcount = pps->capcount;
694 		pps->ppscount[2] = pps->capcount;
695 		return;
696 	}
697 
698 	/* Convert the count to a timespec. */
699 	tcount = pps->capcount - pps->capth->th_offset_count;
700 	tcount &= pps->capth->th_counter->tc_counter_mask;
701 	bt = pps->capth->th_offset;
702 	bintime_addx(&bt, pps->capth->th_scale * tcount);
703 	bintime_add(&bt, &boottimebin);
704 	bintime2timespec(&bt, &ts);
705 
706 	/* If the timecounter was wound up underneath us, bail out. */
707 	if (pps->capgen != pps->capth->th_generation)
708 		return;
709 
710 	*pcount = pps->capcount;
711 	(*pseq)++;
712 	*tsp = ts;
713 
714 	if (foff) {
715 		timespecadd(tsp, osp);
716 		if (tsp->tv_nsec < 0) {
717 			tsp->tv_nsec += 1000000000;
718 			tsp->tv_sec -= 1;
719 		}
720 	}
721 #ifdef PPS_SYNC
722 	if (fhard) {
723 		u_int64_t scale;
724 
725 		/*
726 		 * Feed the NTP PLL/FLL.
727 		 * The FLL wants to know how many (hardware) nanoseconds
728 		 * elapsed since the previous event.
729 		 */
730 		tcount = pps->capcount - pps->ppscount[2];
731 		pps->ppscount[2] = pps->capcount;
732 		tcount &= pps->capth->th_counter->tc_counter_mask;
733 		scale = (u_int64_t)1 << 63;
734 		scale /= pps->capth->th_counter->tc_frequency;
735 		scale *= 2;
736 		bt.sec = 0;
737 		bt.frac = 0;
738 		bintime_addx(&bt, scale * tcount);
739 		bintime2timespec(&bt, &ts);
740 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
741 	}
742 #endif
743 }
744 
745 /*
746  * Timecounters need to be updated every so often to prevent the hardware
747  * counter from overflowing.  Updating also recalculates the cached values
748  * used by the get*() family of functions, so their precision depends on
749  * the update frequency.
750  */
751 
752 static int tc_tick;
753 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
754 
755 void
756 tc_ticktock(void)
757 {
758 	static int count;
759 	static time_t last_calib;
760 
761 	if (++count < tc_tick)
762 		return;
763 	count = 0;
764 	tc_windup();
765 	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
766 		cpu_tick_calibrate(0);
767 		last_calib = time_uptime;
768 	}
769 }
770 
771 static void
772 inittimecounter(void *dummy)
773 {
774 	u_int p;
775 
776 	/*
777 	 * Set the initial timeout to
778 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
779 	 * People should probably not use the sysctl to set the timeout
780 	 * to smaller than its inital value, since that value is the
781 	 * smallest reasonable one.  If they want better timestamps they
782 	 * should use the non-"get"* functions.
783 	 */
784 	if (hz > 1000)
785 		tc_tick = (hz + 500) / 1000;
786 	else
787 		tc_tick = 1;
788 	p = (tc_tick * 1000000) / hz;
789 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
790 
791 	/* warm up new timecounter (again) and get rolling. */
792 	(void)timecounter->tc_get_timecount(timecounter);
793 	(void)timecounter->tc_get_timecount(timecounter);
794 }
795 
796 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
797 
798 /* Cpu tick handling -------------------------------------------------*/
799 
800 static int cpu_tick_variable;
801 static uint64_t	cpu_tick_frequency;
802 
803 static uint64_t
804 tc_cpu_ticks(void)
805 {
806 	static uint64_t base;
807 	static unsigned last;
808 	unsigned u;
809 	struct timecounter *tc;
810 
811 	tc = timehands->th_counter;
812 	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
813 	if (u < last)
814 		base += (uint64_t)tc->tc_counter_mask + 1;
815 	last = u;
816 	return (u + base);
817 }
818 
819 /*
820  * This function gets called ever 16 seconds on only one designated
821  * CPU in the system from hardclock() via tc_ticktock().
822  *
823  * Whenever the real time clock is stepped we get called with reset=1
824  * to make sure we handle suspend/resume and similar events correctly.
825  */
826 
827 static void
828 cpu_tick_calibrate(int reset)
829 {
830 	static uint64_t c_last;
831 	uint64_t c_this, c_delta;
832 	static struct bintime  t_last;
833 	struct bintime t_this, t_delta;
834 	uint32_t divi;
835 
836 	if (reset) {
837 		/* The clock was stepped, abort & reset */
838 		t_last.sec = 0;
839 		return;
840 	}
841 
842 	/* we don't calibrate fixed rate cputicks */
843 	if (!cpu_tick_variable)
844 		return;
845 
846 	getbinuptime(&t_this);
847 	c_this = cpu_ticks();
848 	if (t_last.sec != 0) {
849 		c_delta = c_this - c_last;
850 		t_delta = t_this;
851 		bintime_sub(&t_delta, &t_last);
852 		/*
853 		 * Validate that 16 +/- 1/256 seconds passed.
854 		 * After division by 16 this gives us a precision of
855 		 * roughly 250PPM which is sufficient
856 		 */
857 		if (t_delta.sec > 16 || (
858 		    t_delta.sec == 16 && t_delta.frac >= (0x01LL << 56))) {
859 			/* too long */
860 			if (bootverbose)
861 				printf("%ju.%016jx too long\n",
862 				    (uintmax_t)t_delta.sec,
863 				    (uintmax_t)t_delta.frac);
864 		} else if (t_delta.sec < 15 ||
865 		    (t_delta.sec == 15 && t_delta.frac <= (0xffLL << 56))) {
866 			/* too short */
867 			if (bootverbose)
868 				printf("%ju.%016jx too short\n",
869 				    (uintmax_t)t_delta.sec,
870 				    (uintmax_t)t_delta.frac);
871 		} else {
872 			/* just right */
873 			/*
874 			 * Headroom:
875 			 * 	2^(64-20) / 16[s] =
876 			 * 	2^(44) / 16[s] =
877 			 * 	17.592.186.044.416 / 16 =
878 			 * 	1.099.511.627.776 [Hz]
879 			 */
880 			divi = t_delta.sec << 20;
881 			divi |= t_delta.frac >> (64 - 20);
882 			c_delta <<= 20;
883 			c_delta /= divi;
884 			if (c_delta  > cpu_tick_frequency) {
885 				if (0 && bootverbose)
886 					printf("cpu_tick increased to %ju Hz\n",
887 					    c_delta);
888 				cpu_tick_frequency = c_delta;
889 			}
890 		}
891 	}
892 	c_last = c_this;
893 	t_last = t_this;
894 }
895 
896 void
897 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
898 {
899 
900 	if (func == NULL) {
901 		cpu_ticks = tc_cpu_ticks;
902 	} else {
903 		cpu_tick_frequency = freq;
904 		cpu_tick_variable = var;
905 		cpu_ticks = func;
906 	}
907 }
908 
909 uint64_t
910 cpu_tickrate(void)
911 {
912 
913 	if (cpu_ticks == tc_cpu_ticks)
914 		return (tc_getfrequency());
915 	return (cpu_tick_frequency);
916 }
917 
918 /*
919  * We need to be slightly careful converting cputicks to microseconds.
920  * There is plenty of margin in 64 bits of microseconds (half a million
921  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
922  * before divide conversion (to retain precision) we find that the
923  * margin shrinks to 1.5 hours (one millionth of 146y).
924  * With a three prong approach we never loose significant bits, no
925  * matter what the cputick rate and length of timeinterval is.
926  */
927 
928 uint64_t
929 cputick2usec(uint64_t tick)
930 {
931 
932 	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
933 		return (tick / (cpu_tickrate() / 1000000LL));
934 	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
935 		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
936 	else
937 		return ((tick * 1000000LL) / cpu_tickrate());
938 }
939 
940 cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
941