xref: /freebsd/sys/kern/kern_tc.c (revision 85f87cf491bec6f90948a85b10f5523ea24db9e3)
1 /*-
2  * SPDX-License-Identifier: Beerware
3  *
4  * ----------------------------------------------------------------------------
5  * "THE BEER-WARE LICENSE" (Revision 42):
6  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
7  * can do whatever you want with this stuff. If we meet some day, and you think
8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
9  * ----------------------------------------------------------------------------
10  *
11  * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
12  * All rights reserved.
13  *
14  * Portions of this software were developed by Julien Ridoux at the University
15  * of Melbourne under sponsorship from the FreeBSD Foundation.
16  *
17  * Portions of this software were developed by Konstantin Belousov
18  * under sponsorship from the FreeBSD Foundation.
19  */
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 #include "opt_ntp.h"
25 #include "opt_ffclock.h"
26 
27 #include <sys/param.h>
28 #include <sys/kernel.h>
29 #include <sys/limits.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/proc.h>
33 #include <sys/sbuf.h>
34 #include <sys/sleepqueue.h>
35 #include <sys/sysctl.h>
36 #include <sys/syslog.h>
37 #include <sys/systm.h>
38 #include <sys/timeffc.h>
39 #include <sys/timepps.h>
40 #include <sys/timetc.h>
41 #include <sys/timex.h>
42 #include <sys/vdso.h>
43 
44 /*
45  * A large step happens on boot.  This constant detects such steps.
46  * It is relatively small so that ntp_update_second gets called enough
47  * in the typical 'missed a couple of seconds' case, but doesn't loop
48  * forever when the time step is large.
49  */
50 #define LARGE_STEP	200
51 
52 /*
53  * Implement a dummy timecounter which we can use until we get a real one
54  * in the air.  This allows the console and other early stuff to use
55  * time services.
56  */
57 
58 static u_int
59 dummy_get_timecount(struct timecounter *tc)
60 {
61 	static u_int now;
62 
63 	return (++now);
64 }
65 
66 static struct timecounter dummy_timecounter = {
67 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
68 };
69 
70 struct timehands {
71 	/* These fields must be initialized by the driver. */
72 	struct timecounter	*th_counter;
73 	int64_t			th_adjustment;
74 	uint64_t		th_scale;
75 	u_int	 		th_offset_count;
76 	struct bintime		th_offset;
77 	struct bintime		th_bintime;
78 	struct timeval		th_microtime;
79 	struct timespec		th_nanotime;
80 	struct bintime		th_boottime;
81 	/* Fields not to be copied in tc_windup start with th_generation. */
82 	u_int			th_generation;
83 	struct timehands	*th_next;
84 };
85 
86 static struct timehands ths[16] = {
87     [0] =  {
88 	.th_counter = &dummy_timecounter,
89 	.th_scale = (uint64_t)-1 / 1000000,
90 	.th_offset = { .sec = 1 },
91 	.th_generation = 1,
92     },
93 };
94 
95 static struct timehands *volatile timehands = &ths[0];
96 struct timecounter *timecounter = &dummy_timecounter;
97 static struct timecounter *timecounters = &dummy_timecounter;
98 
99 int tc_min_ticktock_freq = 1;
100 
101 volatile time_t time_second = 1;
102 volatile time_t time_uptime = 1;
103 
104 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
105 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
106     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
107 
108 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
109 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
110 
111 static int timestepwarnings;
112 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
113     &timestepwarnings, 0, "Log time steps");
114 
115 static int timehands_count = 2;
116 SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count,
117     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
118     &timehands_count, 0, "Count of timehands in rotation");
119 
120 struct bintime bt_timethreshold;
121 struct bintime bt_tickthreshold;
122 sbintime_t sbt_timethreshold;
123 sbintime_t sbt_tickthreshold;
124 struct bintime tc_tick_bt;
125 sbintime_t tc_tick_sbt;
126 int tc_precexp;
127 int tc_timepercentage = TC_DEFAULTPERC;
128 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
129 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
130     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
131     sysctl_kern_timecounter_adjprecision, "I",
132     "Allowed time interval deviation in percents");
133 
134 volatile int rtc_generation = 1;
135 
136 static int tc_chosen;	/* Non-zero if a specific tc was chosen via sysctl. */
137 
138 static void tc_windup(struct bintime *new_boottimebin);
139 static void cpu_tick_calibrate(int);
140 
141 void dtrace_getnanotime(struct timespec *tsp);
142 
143 static int
144 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
145 {
146 	struct timeval boottime;
147 
148 	getboottime(&boottime);
149 
150 /* i386 is the only arch which uses a 32bits time_t */
151 #ifdef __amd64__
152 #ifdef SCTL_MASK32
153 	int tv[2];
154 
155 	if (req->flags & SCTL_MASK32) {
156 		tv[0] = boottime.tv_sec;
157 		tv[1] = boottime.tv_usec;
158 		return (SYSCTL_OUT(req, tv, sizeof(tv)));
159 	}
160 #endif
161 #endif
162 	return (SYSCTL_OUT(req, &boottime, sizeof(boottime)));
163 }
164 
165 static int
166 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
167 {
168 	u_int ncount;
169 	struct timecounter *tc = arg1;
170 
171 	ncount = tc->tc_get_timecount(tc);
172 	return (sysctl_handle_int(oidp, &ncount, 0, req));
173 }
174 
175 static int
176 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
177 {
178 	uint64_t freq;
179 	struct timecounter *tc = arg1;
180 
181 	freq = tc->tc_frequency;
182 	return (sysctl_handle_64(oidp, &freq, 0, req));
183 }
184 
185 /*
186  * Return the difference between the timehands' counter value now and what
187  * was when we copied it to the timehands' offset_count.
188  */
189 static __inline u_int
190 tc_delta(struct timehands *th)
191 {
192 	struct timecounter *tc;
193 
194 	tc = th->th_counter;
195 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
196 	    tc->tc_counter_mask);
197 }
198 
199 /*
200  * Functions for reading the time.  We have to loop until we are sure that
201  * the timehands that we operated on was not updated under our feet.  See
202  * the comment in <sys/time.h> for a description of these 12 functions.
203  */
204 
205 #ifdef FFCLOCK
206 void
207 fbclock_binuptime(struct bintime *bt)
208 {
209 	struct timehands *th;
210 	unsigned int gen;
211 
212 	do {
213 		th = timehands;
214 		gen = atomic_load_acq_int(&th->th_generation);
215 		*bt = th->th_offset;
216 		bintime_addx(bt, th->th_scale * tc_delta(th));
217 		atomic_thread_fence_acq();
218 	} while (gen == 0 || gen != th->th_generation);
219 }
220 
221 void
222 fbclock_nanouptime(struct timespec *tsp)
223 {
224 	struct bintime bt;
225 
226 	fbclock_binuptime(&bt);
227 	bintime2timespec(&bt, tsp);
228 }
229 
230 void
231 fbclock_microuptime(struct timeval *tvp)
232 {
233 	struct bintime bt;
234 
235 	fbclock_binuptime(&bt);
236 	bintime2timeval(&bt, tvp);
237 }
238 
239 void
240 fbclock_bintime(struct bintime *bt)
241 {
242 	struct timehands *th;
243 	unsigned int gen;
244 
245 	do {
246 		th = timehands;
247 		gen = atomic_load_acq_int(&th->th_generation);
248 		*bt = th->th_bintime;
249 		bintime_addx(bt, th->th_scale * tc_delta(th));
250 		atomic_thread_fence_acq();
251 	} while (gen == 0 || gen != th->th_generation);
252 }
253 
254 void
255 fbclock_nanotime(struct timespec *tsp)
256 {
257 	struct bintime bt;
258 
259 	fbclock_bintime(&bt);
260 	bintime2timespec(&bt, tsp);
261 }
262 
263 void
264 fbclock_microtime(struct timeval *tvp)
265 {
266 	struct bintime bt;
267 
268 	fbclock_bintime(&bt);
269 	bintime2timeval(&bt, tvp);
270 }
271 
272 void
273 fbclock_getbinuptime(struct bintime *bt)
274 {
275 	struct timehands *th;
276 	unsigned int gen;
277 
278 	do {
279 		th = timehands;
280 		gen = atomic_load_acq_int(&th->th_generation);
281 		*bt = th->th_offset;
282 		atomic_thread_fence_acq();
283 	} while (gen == 0 || gen != th->th_generation);
284 }
285 
286 void
287 fbclock_getnanouptime(struct timespec *tsp)
288 {
289 	struct timehands *th;
290 	unsigned int gen;
291 
292 	do {
293 		th = timehands;
294 		gen = atomic_load_acq_int(&th->th_generation);
295 		bintime2timespec(&th->th_offset, tsp);
296 		atomic_thread_fence_acq();
297 	} while (gen == 0 || gen != th->th_generation);
298 }
299 
300 void
301 fbclock_getmicrouptime(struct timeval *tvp)
302 {
303 	struct timehands *th;
304 	unsigned int gen;
305 
306 	do {
307 		th = timehands;
308 		gen = atomic_load_acq_int(&th->th_generation);
309 		bintime2timeval(&th->th_offset, tvp);
310 		atomic_thread_fence_acq();
311 	} while (gen == 0 || gen != th->th_generation);
312 }
313 
314 void
315 fbclock_getbintime(struct bintime *bt)
316 {
317 	struct timehands *th;
318 	unsigned int gen;
319 
320 	do {
321 		th = timehands;
322 		gen = atomic_load_acq_int(&th->th_generation);
323 		*bt = th->th_bintime;
324 		atomic_thread_fence_acq();
325 	} while (gen == 0 || gen != th->th_generation);
326 }
327 
328 void
329 fbclock_getnanotime(struct timespec *tsp)
330 {
331 	struct timehands *th;
332 	unsigned int gen;
333 
334 	do {
335 		th = timehands;
336 		gen = atomic_load_acq_int(&th->th_generation);
337 		*tsp = th->th_nanotime;
338 		atomic_thread_fence_acq();
339 	} while (gen == 0 || gen != th->th_generation);
340 }
341 
342 void
343 fbclock_getmicrotime(struct timeval *tvp)
344 {
345 	struct timehands *th;
346 	unsigned int gen;
347 
348 	do {
349 		th = timehands;
350 		gen = atomic_load_acq_int(&th->th_generation);
351 		*tvp = th->th_microtime;
352 		atomic_thread_fence_acq();
353 	} while (gen == 0 || gen != th->th_generation);
354 }
355 #else /* !FFCLOCK */
356 void
357 binuptime(struct bintime *bt)
358 {
359 	struct timehands *th;
360 	u_int gen;
361 
362 	do {
363 		th = timehands;
364 		gen = atomic_load_acq_int(&th->th_generation);
365 		*bt = th->th_offset;
366 		bintime_addx(bt, th->th_scale * tc_delta(th));
367 		atomic_thread_fence_acq();
368 	} while (gen == 0 || gen != th->th_generation);
369 }
370 
371 void
372 nanouptime(struct timespec *tsp)
373 {
374 	struct bintime bt;
375 
376 	binuptime(&bt);
377 	bintime2timespec(&bt, tsp);
378 }
379 
380 void
381 microuptime(struct timeval *tvp)
382 {
383 	struct bintime bt;
384 
385 	binuptime(&bt);
386 	bintime2timeval(&bt, tvp);
387 }
388 
389 void
390 bintime(struct bintime *bt)
391 {
392 	struct timehands *th;
393 	u_int gen;
394 
395 	do {
396 		th = timehands;
397 		gen = atomic_load_acq_int(&th->th_generation);
398 		*bt = th->th_bintime;
399 		bintime_addx(bt, th->th_scale * tc_delta(th));
400 		atomic_thread_fence_acq();
401 	} while (gen == 0 || gen != th->th_generation);
402 }
403 
404 void
405 nanotime(struct timespec *tsp)
406 {
407 	struct bintime bt;
408 
409 	bintime(&bt);
410 	bintime2timespec(&bt, tsp);
411 }
412 
413 void
414 microtime(struct timeval *tvp)
415 {
416 	struct bintime bt;
417 
418 	bintime(&bt);
419 	bintime2timeval(&bt, tvp);
420 }
421 
422 void
423 getbinuptime(struct bintime *bt)
424 {
425 	struct timehands *th;
426 	u_int gen;
427 
428 	do {
429 		th = timehands;
430 		gen = atomic_load_acq_int(&th->th_generation);
431 		*bt = th->th_offset;
432 		atomic_thread_fence_acq();
433 	} while (gen == 0 || gen != th->th_generation);
434 }
435 
436 void
437 getnanouptime(struct timespec *tsp)
438 {
439 	struct timehands *th;
440 	u_int gen;
441 
442 	do {
443 		th = timehands;
444 		gen = atomic_load_acq_int(&th->th_generation);
445 		bintime2timespec(&th->th_offset, tsp);
446 		atomic_thread_fence_acq();
447 	} while (gen == 0 || gen != th->th_generation);
448 }
449 
450 void
451 getmicrouptime(struct timeval *tvp)
452 {
453 	struct timehands *th;
454 	u_int gen;
455 
456 	do {
457 		th = timehands;
458 		gen = atomic_load_acq_int(&th->th_generation);
459 		bintime2timeval(&th->th_offset, tvp);
460 		atomic_thread_fence_acq();
461 	} while (gen == 0 || gen != th->th_generation);
462 }
463 
464 void
465 getbintime(struct bintime *bt)
466 {
467 	struct timehands *th;
468 	u_int gen;
469 
470 	do {
471 		th = timehands;
472 		gen = atomic_load_acq_int(&th->th_generation);
473 		*bt = th->th_bintime;
474 		atomic_thread_fence_acq();
475 	} while (gen == 0 || gen != th->th_generation);
476 }
477 
478 void
479 getnanotime(struct timespec *tsp)
480 {
481 	struct timehands *th;
482 	u_int gen;
483 
484 	do {
485 		th = timehands;
486 		gen = atomic_load_acq_int(&th->th_generation);
487 		*tsp = th->th_nanotime;
488 		atomic_thread_fence_acq();
489 	} while (gen == 0 || gen != th->th_generation);
490 }
491 
492 void
493 getmicrotime(struct timeval *tvp)
494 {
495 	struct timehands *th;
496 	u_int gen;
497 
498 	do {
499 		th = timehands;
500 		gen = atomic_load_acq_int(&th->th_generation);
501 		*tvp = th->th_microtime;
502 		atomic_thread_fence_acq();
503 	} while (gen == 0 || gen != th->th_generation);
504 }
505 #endif /* FFCLOCK */
506 
507 void
508 getboottime(struct timeval *boottime)
509 {
510 	struct bintime boottimebin;
511 
512 	getboottimebin(&boottimebin);
513 	bintime2timeval(&boottimebin, boottime);
514 }
515 
516 void
517 getboottimebin(struct bintime *boottimebin)
518 {
519 	struct timehands *th;
520 	u_int gen;
521 
522 	do {
523 		th = timehands;
524 		gen = atomic_load_acq_int(&th->th_generation);
525 		*boottimebin = th->th_boottime;
526 		atomic_thread_fence_acq();
527 	} while (gen == 0 || gen != th->th_generation);
528 }
529 
530 #ifdef FFCLOCK
531 /*
532  * Support for feed-forward synchronization algorithms. This is heavily inspired
533  * by the timehands mechanism but kept independent from it. *_windup() functions
534  * have some connection to avoid accessing the timecounter hardware more than
535  * necessary.
536  */
537 
538 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
539 struct ffclock_estimate ffclock_estimate;
540 struct bintime ffclock_boottime;	/* Feed-forward boot time estimate. */
541 uint32_t ffclock_status;		/* Feed-forward clock status. */
542 int8_t ffclock_updated;			/* New estimates are available. */
543 struct mtx ffclock_mtx;			/* Mutex on ffclock_estimate. */
544 
545 struct fftimehands {
546 	struct ffclock_estimate	cest;
547 	struct bintime		tick_time;
548 	struct bintime		tick_time_lerp;
549 	ffcounter		tick_ffcount;
550 	uint64_t		period_lerp;
551 	volatile uint8_t	gen;
552 	struct fftimehands	*next;
553 };
554 
555 #define	NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
556 
557 static struct fftimehands ffth[10];
558 static struct fftimehands *volatile fftimehands = ffth;
559 
560 static void
561 ffclock_init(void)
562 {
563 	struct fftimehands *cur;
564 	struct fftimehands *last;
565 
566 	memset(ffth, 0, sizeof(ffth));
567 
568 	last = ffth + NUM_ELEMENTS(ffth) - 1;
569 	for (cur = ffth; cur < last; cur++)
570 		cur->next = cur + 1;
571 	last->next = ffth;
572 
573 	ffclock_updated = 0;
574 	ffclock_status = FFCLOCK_STA_UNSYNC;
575 	mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
576 }
577 
578 /*
579  * Reset the feed-forward clock estimates. Called from inittodr() to get things
580  * kick started and uses the timecounter nominal frequency as a first period
581  * estimate. Note: this function may be called several time just after boot.
582  * Note: this is the only function that sets the value of boot time for the
583  * monotonic (i.e. uptime) version of the feed-forward clock.
584  */
585 void
586 ffclock_reset_clock(struct timespec *ts)
587 {
588 	struct timecounter *tc;
589 	struct ffclock_estimate cest;
590 
591 	tc = timehands->th_counter;
592 	memset(&cest, 0, sizeof(struct ffclock_estimate));
593 
594 	timespec2bintime(ts, &ffclock_boottime);
595 	timespec2bintime(ts, &(cest.update_time));
596 	ffclock_read_counter(&cest.update_ffcount);
597 	cest.leapsec_next = 0;
598 	cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
599 	cest.errb_abs = 0;
600 	cest.errb_rate = 0;
601 	cest.status = FFCLOCK_STA_UNSYNC;
602 	cest.leapsec_total = 0;
603 	cest.leapsec = 0;
604 
605 	mtx_lock(&ffclock_mtx);
606 	bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
607 	ffclock_updated = INT8_MAX;
608 	mtx_unlock(&ffclock_mtx);
609 
610 	printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
611 	    (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
612 	    (unsigned long)ts->tv_nsec);
613 }
614 
615 /*
616  * Sub-routine to convert a time interval measured in RAW counter units to time
617  * in seconds stored in bintime format.
618  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
619  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
620  * extra cycles.
621  */
622 static void
623 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
624 {
625 	struct bintime bt2;
626 	ffcounter delta, delta_max;
627 
628 	delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
629 	bintime_clear(bt);
630 	do {
631 		if (ffdelta > delta_max)
632 			delta = delta_max;
633 		else
634 			delta = ffdelta;
635 		bt2.sec = 0;
636 		bt2.frac = period;
637 		bintime_mul(&bt2, (unsigned int)delta);
638 		bintime_add(bt, &bt2);
639 		ffdelta -= delta;
640 	} while (ffdelta > 0);
641 }
642 
643 /*
644  * Update the fftimehands.
645  * Push the tick ffcount and time(s) forward based on current clock estimate.
646  * The conversion from ffcounter to bintime relies on the difference clock
647  * principle, whose accuracy relies on computing small time intervals. If a new
648  * clock estimate has been passed by the synchronisation daemon, make it
649  * current, and compute the linear interpolation for monotonic time if needed.
650  */
651 static void
652 ffclock_windup(unsigned int delta)
653 {
654 	struct ffclock_estimate *cest;
655 	struct fftimehands *ffth;
656 	struct bintime bt, gap_lerp;
657 	ffcounter ffdelta;
658 	uint64_t frac;
659 	unsigned int polling;
660 	uint8_t forward_jump, ogen;
661 
662 	/*
663 	 * Pick the next timehand, copy current ffclock estimates and move tick
664 	 * times and counter forward.
665 	 */
666 	forward_jump = 0;
667 	ffth = fftimehands->next;
668 	ogen = ffth->gen;
669 	ffth->gen = 0;
670 	cest = &ffth->cest;
671 	bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
672 	ffdelta = (ffcounter)delta;
673 	ffth->period_lerp = fftimehands->period_lerp;
674 
675 	ffth->tick_time = fftimehands->tick_time;
676 	ffclock_convert_delta(ffdelta, cest->period, &bt);
677 	bintime_add(&ffth->tick_time, &bt);
678 
679 	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
680 	ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
681 	bintime_add(&ffth->tick_time_lerp, &bt);
682 
683 	ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
684 
685 	/*
686 	 * Assess the status of the clock, if the last update is too old, it is
687 	 * likely the synchronisation daemon is dead and the clock is free
688 	 * running.
689 	 */
690 	if (ffclock_updated == 0) {
691 		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
692 		ffclock_convert_delta(ffdelta, cest->period, &bt);
693 		if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
694 			ffclock_status |= FFCLOCK_STA_UNSYNC;
695 	}
696 
697 	/*
698 	 * If available, grab updated clock estimates and make them current.
699 	 * Recompute time at this tick using the updated estimates. The clock
700 	 * estimates passed the feed-forward synchronisation daemon may result
701 	 * in time conversion that is not monotonically increasing (just after
702 	 * the update). time_lerp is a particular linear interpolation over the
703 	 * synchronisation algo polling period that ensures monotonicity for the
704 	 * clock ids requesting it.
705 	 */
706 	if (ffclock_updated > 0) {
707 		bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
708 		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
709 		ffth->tick_time = cest->update_time;
710 		ffclock_convert_delta(ffdelta, cest->period, &bt);
711 		bintime_add(&ffth->tick_time, &bt);
712 
713 		/* ffclock_reset sets ffclock_updated to INT8_MAX */
714 		if (ffclock_updated == INT8_MAX)
715 			ffth->tick_time_lerp = ffth->tick_time;
716 
717 		if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
718 			forward_jump = 1;
719 		else
720 			forward_jump = 0;
721 
722 		bintime_clear(&gap_lerp);
723 		if (forward_jump) {
724 			gap_lerp = ffth->tick_time;
725 			bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
726 		} else {
727 			gap_lerp = ffth->tick_time_lerp;
728 			bintime_sub(&gap_lerp, &ffth->tick_time);
729 		}
730 
731 		/*
732 		 * The reset from the RTC clock may be far from accurate, and
733 		 * reducing the gap between real time and interpolated time
734 		 * could take a very long time if the interpolated clock insists
735 		 * on strict monotonicity. The clock is reset under very strict
736 		 * conditions (kernel time is known to be wrong and
737 		 * synchronization daemon has been restarted recently.
738 		 * ffclock_boottime absorbs the jump to ensure boot time is
739 		 * correct and uptime functions stay consistent.
740 		 */
741 		if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
742 		    ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
743 		    ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
744 			if (forward_jump)
745 				bintime_add(&ffclock_boottime, &gap_lerp);
746 			else
747 				bintime_sub(&ffclock_boottime, &gap_lerp);
748 			ffth->tick_time_lerp = ffth->tick_time;
749 			bintime_clear(&gap_lerp);
750 		}
751 
752 		ffclock_status = cest->status;
753 		ffth->period_lerp = cest->period;
754 
755 		/*
756 		 * Compute corrected period used for the linear interpolation of
757 		 * time. The rate of linear interpolation is capped to 5000PPM
758 		 * (5ms/s).
759 		 */
760 		if (bintime_isset(&gap_lerp)) {
761 			ffdelta = cest->update_ffcount;
762 			ffdelta -= fftimehands->cest.update_ffcount;
763 			ffclock_convert_delta(ffdelta, cest->period, &bt);
764 			polling = bt.sec;
765 			bt.sec = 0;
766 			bt.frac = 5000000 * (uint64_t)18446744073LL;
767 			bintime_mul(&bt, polling);
768 			if (bintime_cmp(&gap_lerp, &bt, >))
769 				gap_lerp = bt;
770 
771 			/* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
772 			frac = 0;
773 			if (gap_lerp.sec > 0) {
774 				frac -= 1;
775 				frac /= ffdelta / gap_lerp.sec;
776 			}
777 			frac += gap_lerp.frac / ffdelta;
778 
779 			if (forward_jump)
780 				ffth->period_lerp += frac;
781 			else
782 				ffth->period_lerp -= frac;
783 		}
784 
785 		ffclock_updated = 0;
786 	}
787 	if (++ogen == 0)
788 		ogen = 1;
789 	ffth->gen = ogen;
790 	fftimehands = ffth;
791 }
792 
793 /*
794  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
795  * the old and new hardware counter cannot be read simultaneously. tc_windup()
796  * does read the two counters 'back to back', but a few cycles are effectively
797  * lost, and not accumulated in tick_ffcount. This is a fairly radical
798  * operation for a feed-forward synchronization daemon, and it is its job to not
799  * pushing irrelevant data to the kernel. Because there is no locking here,
800  * simply force to ignore pending or next update to give daemon a chance to
801  * realize the counter has changed.
802  */
803 static void
804 ffclock_change_tc(struct timehands *th)
805 {
806 	struct fftimehands *ffth;
807 	struct ffclock_estimate *cest;
808 	struct timecounter *tc;
809 	uint8_t ogen;
810 
811 	tc = th->th_counter;
812 	ffth = fftimehands->next;
813 	ogen = ffth->gen;
814 	ffth->gen = 0;
815 
816 	cest = &ffth->cest;
817 	bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
818 	cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
819 	cest->errb_abs = 0;
820 	cest->errb_rate = 0;
821 	cest->status |= FFCLOCK_STA_UNSYNC;
822 
823 	ffth->tick_ffcount = fftimehands->tick_ffcount;
824 	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
825 	ffth->tick_time = fftimehands->tick_time;
826 	ffth->period_lerp = cest->period;
827 
828 	/* Do not lock but ignore next update from synchronization daemon. */
829 	ffclock_updated--;
830 
831 	if (++ogen == 0)
832 		ogen = 1;
833 	ffth->gen = ogen;
834 	fftimehands = ffth;
835 }
836 
837 /*
838  * Retrieve feed-forward counter and time of last kernel tick.
839  */
840 void
841 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
842 {
843 	struct fftimehands *ffth;
844 	uint8_t gen;
845 
846 	/*
847 	 * No locking but check generation has not changed. Also need to make
848 	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
849 	 */
850 	do {
851 		ffth = fftimehands;
852 		gen = ffth->gen;
853 		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
854 			*bt = ffth->tick_time_lerp;
855 		else
856 			*bt = ffth->tick_time;
857 		*ffcount = ffth->tick_ffcount;
858 	} while (gen == 0 || gen != ffth->gen);
859 }
860 
861 /*
862  * Absolute clock conversion. Low level function to convert ffcounter to
863  * bintime. The ffcounter is converted using the current ffclock period estimate
864  * or the "interpolated period" to ensure monotonicity.
865  * NOTE: this conversion may have been deferred, and the clock updated since the
866  * hardware counter has been read.
867  */
868 void
869 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
870 {
871 	struct fftimehands *ffth;
872 	struct bintime bt2;
873 	ffcounter ffdelta;
874 	uint8_t gen;
875 
876 	/*
877 	 * No locking but check generation has not changed. Also need to make
878 	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
879 	 */
880 	do {
881 		ffth = fftimehands;
882 		gen = ffth->gen;
883 		if (ffcount > ffth->tick_ffcount)
884 			ffdelta = ffcount - ffth->tick_ffcount;
885 		else
886 			ffdelta = ffth->tick_ffcount - ffcount;
887 
888 		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
889 			*bt = ffth->tick_time_lerp;
890 			ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
891 		} else {
892 			*bt = ffth->tick_time;
893 			ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
894 		}
895 
896 		if (ffcount > ffth->tick_ffcount)
897 			bintime_add(bt, &bt2);
898 		else
899 			bintime_sub(bt, &bt2);
900 	} while (gen == 0 || gen != ffth->gen);
901 }
902 
903 /*
904  * Difference clock conversion.
905  * Low level function to Convert a time interval measured in RAW counter units
906  * into bintime. The difference clock allows measuring small intervals much more
907  * reliably than the absolute clock.
908  */
909 void
910 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
911 {
912 	struct fftimehands *ffth;
913 	uint8_t gen;
914 
915 	/* No locking but check generation has not changed. */
916 	do {
917 		ffth = fftimehands;
918 		gen = ffth->gen;
919 		ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
920 	} while (gen == 0 || gen != ffth->gen);
921 }
922 
923 /*
924  * Access to current ffcounter value.
925  */
926 void
927 ffclock_read_counter(ffcounter *ffcount)
928 {
929 	struct timehands *th;
930 	struct fftimehands *ffth;
931 	unsigned int gen, delta;
932 
933 	/*
934 	 * ffclock_windup() called from tc_windup(), safe to rely on
935 	 * th->th_generation only, for correct delta and ffcounter.
936 	 */
937 	do {
938 		th = timehands;
939 		gen = atomic_load_acq_int(&th->th_generation);
940 		ffth = fftimehands;
941 		delta = tc_delta(th);
942 		*ffcount = ffth->tick_ffcount;
943 		atomic_thread_fence_acq();
944 	} while (gen == 0 || gen != th->th_generation);
945 
946 	*ffcount += delta;
947 }
948 
949 void
950 binuptime(struct bintime *bt)
951 {
952 
953 	binuptime_fromclock(bt, sysclock_active);
954 }
955 
956 void
957 nanouptime(struct timespec *tsp)
958 {
959 
960 	nanouptime_fromclock(tsp, sysclock_active);
961 }
962 
963 void
964 microuptime(struct timeval *tvp)
965 {
966 
967 	microuptime_fromclock(tvp, sysclock_active);
968 }
969 
970 void
971 bintime(struct bintime *bt)
972 {
973 
974 	bintime_fromclock(bt, sysclock_active);
975 }
976 
977 void
978 nanotime(struct timespec *tsp)
979 {
980 
981 	nanotime_fromclock(tsp, sysclock_active);
982 }
983 
984 void
985 microtime(struct timeval *tvp)
986 {
987 
988 	microtime_fromclock(tvp, sysclock_active);
989 }
990 
991 void
992 getbinuptime(struct bintime *bt)
993 {
994 
995 	getbinuptime_fromclock(bt, sysclock_active);
996 }
997 
998 void
999 getnanouptime(struct timespec *tsp)
1000 {
1001 
1002 	getnanouptime_fromclock(tsp, sysclock_active);
1003 }
1004 
1005 void
1006 getmicrouptime(struct timeval *tvp)
1007 {
1008 
1009 	getmicrouptime_fromclock(tvp, sysclock_active);
1010 }
1011 
1012 void
1013 getbintime(struct bintime *bt)
1014 {
1015 
1016 	getbintime_fromclock(bt, sysclock_active);
1017 }
1018 
1019 void
1020 getnanotime(struct timespec *tsp)
1021 {
1022 
1023 	getnanotime_fromclock(tsp, sysclock_active);
1024 }
1025 
1026 void
1027 getmicrotime(struct timeval *tvp)
1028 {
1029 
1030 	getmicrouptime_fromclock(tvp, sysclock_active);
1031 }
1032 
1033 #endif /* FFCLOCK */
1034 
1035 /*
1036  * This is a clone of getnanotime and used for walltimestamps.
1037  * The dtrace_ prefix prevents fbt from creating probes for
1038  * it so walltimestamp can be safely used in all fbt probes.
1039  */
1040 void
1041 dtrace_getnanotime(struct timespec *tsp)
1042 {
1043 	struct timehands *th;
1044 	u_int gen;
1045 
1046 	do {
1047 		th = timehands;
1048 		gen = atomic_load_acq_int(&th->th_generation);
1049 		*tsp = th->th_nanotime;
1050 		atomic_thread_fence_acq();
1051 	} while (gen == 0 || gen != th->th_generation);
1052 }
1053 
1054 /*
1055  * System clock currently providing time to the system. Modifiable via sysctl
1056  * when the FFCLOCK option is defined.
1057  */
1058 int sysclock_active = SYSCLOCK_FBCK;
1059 
1060 /* Internal NTP status and error estimates. */
1061 extern int time_status;
1062 extern long time_esterror;
1063 
1064 /*
1065  * Take a snapshot of sysclock data which can be used to compare system clocks
1066  * and generate timestamps after the fact.
1067  */
1068 void
1069 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1070 {
1071 	struct fbclock_info *fbi;
1072 	struct timehands *th;
1073 	struct bintime bt;
1074 	unsigned int delta, gen;
1075 #ifdef FFCLOCK
1076 	ffcounter ffcount;
1077 	struct fftimehands *ffth;
1078 	struct ffclock_info *ffi;
1079 	struct ffclock_estimate cest;
1080 
1081 	ffi = &clock_snap->ff_info;
1082 #endif
1083 
1084 	fbi = &clock_snap->fb_info;
1085 	delta = 0;
1086 
1087 	do {
1088 		th = timehands;
1089 		gen = atomic_load_acq_int(&th->th_generation);
1090 		fbi->th_scale = th->th_scale;
1091 		fbi->tick_time = th->th_offset;
1092 #ifdef FFCLOCK
1093 		ffth = fftimehands;
1094 		ffi->tick_time = ffth->tick_time_lerp;
1095 		ffi->tick_time_lerp = ffth->tick_time_lerp;
1096 		ffi->period = ffth->cest.period;
1097 		ffi->period_lerp = ffth->period_lerp;
1098 		clock_snap->ffcount = ffth->tick_ffcount;
1099 		cest = ffth->cest;
1100 #endif
1101 		if (!fast)
1102 			delta = tc_delta(th);
1103 		atomic_thread_fence_acq();
1104 	} while (gen == 0 || gen != th->th_generation);
1105 
1106 	clock_snap->delta = delta;
1107 	clock_snap->sysclock_active = sysclock_active;
1108 
1109 	/* Record feedback clock status and error. */
1110 	clock_snap->fb_info.status = time_status;
1111 	/* XXX: Very crude estimate of feedback clock error. */
1112 	bt.sec = time_esterror / 1000000;
1113 	bt.frac = ((time_esterror - bt.sec) * 1000000) *
1114 	    (uint64_t)18446744073709ULL;
1115 	clock_snap->fb_info.error = bt;
1116 
1117 #ifdef FFCLOCK
1118 	if (!fast)
1119 		clock_snap->ffcount += delta;
1120 
1121 	/* Record feed-forward clock leap second adjustment. */
1122 	ffi->leapsec_adjustment = cest.leapsec_total;
1123 	if (clock_snap->ffcount > cest.leapsec_next)
1124 		ffi->leapsec_adjustment -= cest.leapsec;
1125 
1126 	/* Record feed-forward clock status and error. */
1127 	clock_snap->ff_info.status = cest.status;
1128 	ffcount = clock_snap->ffcount - cest.update_ffcount;
1129 	ffclock_convert_delta(ffcount, cest.period, &bt);
1130 	/* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1131 	bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1132 	/* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1133 	bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1134 	clock_snap->ff_info.error = bt;
1135 #endif
1136 }
1137 
1138 /*
1139  * Convert a sysclock snapshot into a struct bintime based on the specified
1140  * clock source and flags.
1141  */
1142 int
1143 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1144     int whichclock, uint32_t flags)
1145 {
1146 	struct bintime boottimebin;
1147 #ifdef FFCLOCK
1148 	struct bintime bt2;
1149 	uint64_t period;
1150 #endif
1151 
1152 	switch (whichclock) {
1153 	case SYSCLOCK_FBCK:
1154 		*bt = cs->fb_info.tick_time;
1155 
1156 		/* If snapshot was created with !fast, delta will be >0. */
1157 		if (cs->delta > 0)
1158 			bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1159 
1160 		if ((flags & FBCLOCK_UPTIME) == 0) {
1161 			getboottimebin(&boottimebin);
1162 			bintime_add(bt, &boottimebin);
1163 		}
1164 		break;
1165 #ifdef FFCLOCK
1166 	case SYSCLOCK_FFWD:
1167 		if (flags & FFCLOCK_LERP) {
1168 			*bt = cs->ff_info.tick_time_lerp;
1169 			period = cs->ff_info.period_lerp;
1170 		} else {
1171 			*bt = cs->ff_info.tick_time;
1172 			period = cs->ff_info.period;
1173 		}
1174 
1175 		/* If snapshot was created with !fast, delta will be >0. */
1176 		if (cs->delta > 0) {
1177 			ffclock_convert_delta(cs->delta, period, &bt2);
1178 			bintime_add(bt, &bt2);
1179 		}
1180 
1181 		/* Leap second adjustment. */
1182 		if (flags & FFCLOCK_LEAPSEC)
1183 			bt->sec -= cs->ff_info.leapsec_adjustment;
1184 
1185 		/* Boot time adjustment, for uptime/monotonic clocks. */
1186 		if (flags & FFCLOCK_UPTIME)
1187 			bintime_sub(bt, &ffclock_boottime);
1188 		break;
1189 #endif
1190 	default:
1191 		return (EINVAL);
1192 		break;
1193 	}
1194 
1195 	return (0);
1196 }
1197 
1198 /*
1199  * Initialize a new timecounter and possibly use it.
1200  */
1201 void
1202 tc_init(struct timecounter *tc)
1203 {
1204 	u_int u;
1205 	struct sysctl_oid *tc_root;
1206 
1207 	u = tc->tc_frequency / tc->tc_counter_mask;
1208 	/* XXX: We need some margin here, 10% is a guess */
1209 	u *= 11;
1210 	u /= 10;
1211 	if (u > hz && tc->tc_quality >= 0) {
1212 		tc->tc_quality = -2000;
1213 		if (bootverbose) {
1214 			printf("Timecounter \"%s\" frequency %ju Hz",
1215 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
1216 			printf(" -- Insufficient hz, needs at least %u\n", u);
1217 		}
1218 	} else if (tc->tc_quality >= 0 || bootverbose) {
1219 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1220 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
1221 		    tc->tc_quality);
1222 	}
1223 
1224 	tc->tc_next = timecounters;
1225 	timecounters = tc;
1226 	/*
1227 	 * Set up sysctl tree for this counter.
1228 	 */
1229 	tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL,
1230 	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1231 	    CTLFLAG_RW, 0, "timecounter description", "timecounter");
1232 	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1233 	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1234 	    "mask for implemented bits");
1235 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1236 	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1237 	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
1238 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1239 	    "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1240 	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1241 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1242 	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1243 	    "goodness of time counter");
1244 	/*
1245 	 * Do not automatically switch if the current tc was specifically
1246 	 * chosen.  Never automatically use a timecounter with negative quality.
1247 	 * Even though we run on the dummy counter, switching here may be
1248 	 * worse since this timecounter may not be monotonic.
1249 	 */
1250 	if (tc_chosen)
1251 		return;
1252 	if (tc->tc_quality < 0)
1253 		return;
1254 	if (tc->tc_quality < timecounter->tc_quality)
1255 		return;
1256 	if (tc->tc_quality == timecounter->tc_quality &&
1257 	    tc->tc_frequency < timecounter->tc_frequency)
1258 		return;
1259 	(void)tc->tc_get_timecount(tc);
1260 	(void)tc->tc_get_timecount(tc);
1261 	timecounter = tc;
1262 }
1263 
1264 /* Report the frequency of the current timecounter. */
1265 uint64_t
1266 tc_getfrequency(void)
1267 {
1268 
1269 	return (timehands->th_counter->tc_frequency);
1270 }
1271 
1272 static bool
1273 sleeping_on_old_rtc(struct thread *td)
1274 {
1275 
1276 	/*
1277 	 * td_rtcgen is modified by curthread when it is running,
1278 	 * and by other threads in this function.  By finding the thread
1279 	 * on a sleepqueue and holding the lock on the sleepqueue
1280 	 * chain, we guarantee that the thread is not running and that
1281 	 * modifying td_rtcgen is safe.  Setting td_rtcgen to zero informs
1282 	 * the thread that it was woken due to a real-time clock adjustment.
1283 	 * (The declaration of td_rtcgen refers to this comment.)
1284 	 */
1285 	if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) {
1286 		td->td_rtcgen = 0;
1287 		return (true);
1288 	}
1289 	return (false);
1290 }
1291 
1292 static struct mtx tc_setclock_mtx;
1293 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);
1294 
1295 /*
1296  * Step our concept of UTC.  This is done by modifying our estimate of
1297  * when we booted.
1298  */
1299 void
1300 tc_setclock(struct timespec *ts)
1301 {
1302 	struct timespec tbef, taft;
1303 	struct bintime bt, bt2;
1304 
1305 	timespec2bintime(ts, &bt);
1306 	nanotime(&tbef);
1307 	mtx_lock_spin(&tc_setclock_mtx);
1308 	cpu_tick_calibrate(1);
1309 	binuptime(&bt2);
1310 	bintime_sub(&bt, &bt2);
1311 
1312 	/* XXX fiddle all the little crinkly bits around the fiords... */
1313 	tc_windup(&bt);
1314 	mtx_unlock_spin(&tc_setclock_mtx);
1315 
1316 	/* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */
1317 	atomic_add_rel_int(&rtc_generation, 2);
1318 	sleepq_chains_remove_matching(sleeping_on_old_rtc);
1319 	if (timestepwarnings) {
1320 		nanotime(&taft);
1321 		log(LOG_INFO,
1322 		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1323 		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1324 		    (intmax_t)taft.tv_sec, taft.tv_nsec,
1325 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
1326 	}
1327 }
1328 
1329 /*
1330  * Initialize the next struct timehands in the ring and make
1331  * it the active timehands.  Along the way we might switch to a different
1332  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1333  */
1334 static void
1335 tc_windup(struct bintime *new_boottimebin)
1336 {
1337 	struct bintime bt;
1338 	struct timehands *th, *tho;
1339 	uint64_t scale;
1340 	u_int delta, ncount, ogen;
1341 	int i;
1342 	time_t t;
1343 
1344 	/*
1345 	 * Make the next timehands a copy of the current one, but do
1346 	 * not overwrite the generation or next pointer.  While we
1347 	 * update the contents, the generation must be zero.  We need
1348 	 * to ensure that the zero generation is visible before the
1349 	 * data updates become visible, which requires release fence.
1350 	 * For similar reasons, re-reading of the generation after the
1351 	 * data is read should use acquire fence.
1352 	 */
1353 	tho = timehands;
1354 	th = tho->th_next;
1355 	ogen = th->th_generation;
1356 	th->th_generation = 0;
1357 	atomic_thread_fence_rel();
1358 	memcpy(th, tho, offsetof(struct timehands, th_generation));
1359 	if (new_boottimebin != NULL)
1360 		th->th_boottime = *new_boottimebin;
1361 
1362 	/*
1363 	 * Capture a timecounter delta on the current timecounter and if
1364 	 * changing timecounters, a counter value from the new timecounter.
1365 	 * Update the offset fields accordingly.
1366 	 */
1367 	delta = tc_delta(th);
1368 	if (th->th_counter != timecounter)
1369 		ncount = timecounter->tc_get_timecount(timecounter);
1370 	else
1371 		ncount = 0;
1372 #ifdef FFCLOCK
1373 	ffclock_windup(delta);
1374 #endif
1375 	th->th_offset_count += delta;
1376 	th->th_offset_count &= th->th_counter->tc_counter_mask;
1377 	while (delta > th->th_counter->tc_frequency) {
1378 		/* Eat complete unadjusted seconds. */
1379 		delta -= th->th_counter->tc_frequency;
1380 		th->th_offset.sec++;
1381 	}
1382 	if ((delta > th->th_counter->tc_frequency / 2) &&
1383 	    (th->th_scale * delta < ((uint64_t)1 << 63))) {
1384 		/* The product th_scale * delta just barely overflows. */
1385 		th->th_offset.sec++;
1386 	}
1387 	bintime_addx(&th->th_offset, th->th_scale * delta);
1388 
1389 	/*
1390 	 * Hardware latching timecounters may not generate interrupts on
1391 	 * PPS events, so instead we poll them.  There is a finite risk that
1392 	 * the hardware might capture a count which is later than the one we
1393 	 * got above, and therefore possibly in the next NTP second which might
1394 	 * have a different rate than the current NTP second.  It doesn't
1395 	 * matter in practice.
1396 	 */
1397 	if (tho->th_counter->tc_poll_pps)
1398 		tho->th_counter->tc_poll_pps(tho->th_counter);
1399 
1400 	/*
1401 	 * Deal with NTP second processing.  The for loop normally
1402 	 * iterates at most once, but in extreme situations it might
1403 	 * keep NTP sane if timeouts are not run for several seconds.
1404 	 * At boot, the time step can be large when the TOD hardware
1405 	 * has been read, so on really large steps, we call
1406 	 * ntp_update_second only twice.  We need to call it twice in
1407 	 * case we missed a leap second.
1408 	 */
1409 	bt = th->th_offset;
1410 	bintime_add(&bt, &th->th_boottime);
1411 	i = bt.sec - tho->th_microtime.tv_sec;
1412 	if (i > LARGE_STEP)
1413 		i = 2;
1414 	for (; i > 0; i--) {
1415 		t = bt.sec;
1416 		ntp_update_second(&th->th_adjustment, &bt.sec);
1417 		if (bt.sec != t)
1418 			th->th_boottime.sec += bt.sec - t;
1419 	}
1420 	/* Update the UTC timestamps used by the get*() functions. */
1421 	th->th_bintime = bt;
1422 	bintime2timeval(&bt, &th->th_microtime);
1423 	bintime2timespec(&bt, &th->th_nanotime);
1424 
1425 	/* Now is a good time to change timecounters. */
1426 	if (th->th_counter != timecounter) {
1427 #ifndef __arm__
1428 		if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1429 			cpu_disable_c2_sleep++;
1430 		if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1431 			cpu_disable_c2_sleep--;
1432 #endif
1433 		th->th_counter = timecounter;
1434 		th->th_offset_count = ncount;
1435 		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1436 		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1437 #ifdef FFCLOCK
1438 		ffclock_change_tc(th);
1439 #endif
1440 	}
1441 
1442 	/*-
1443 	 * Recalculate the scaling factor.  We want the number of 1/2^64
1444 	 * fractions of a second per period of the hardware counter, taking
1445 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1446 	 * processing provides us with.
1447 	 *
1448 	 * The th_adjustment is nanoseconds per second with 32 bit binary
1449 	 * fraction and we want 64 bit binary fraction of second:
1450 	 *
1451 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
1452 	 *
1453 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1454 	 * we can only multiply by about 850 without overflowing, that
1455 	 * leaves no suitably precise fractions for multiply before divide.
1456 	 *
1457 	 * Divide before multiply with a fraction of 2199/512 results in a
1458 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
1459 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1460  	 *
1461 	 * We happily sacrifice the lowest of the 64 bits of our result
1462 	 * to the goddess of code clarity.
1463 	 *
1464 	 */
1465 	scale = (uint64_t)1 << 63;
1466 	scale += (th->th_adjustment / 1024) * 2199;
1467 	scale /= th->th_counter->tc_frequency;
1468 	th->th_scale = scale * 2;
1469 
1470 	/*
1471 	 * Now that the struct timehands is again consistent, set the new
1472 	 * generation number, making sure to not make it zero.
1473 	 */
1474 	if (++ogen == 0)
1475 		ogen = 1;
1476 	atomic_store_rel_int(&th->th_generation, ogen);
1477 
1478 	/* Go live with the new struct timehands. */
1479 #ifdef FFCLOCK
1480 	switch (sysclock_active) {
1481 	case SYSCLOCK_FBCK:
1482 #endif
1483 		time_second = th->th_microtime.tv_sec;
1484 		time_uptime = th->th_offset.sec;
1485 #ifdef FFCLOCK
1486 		break;
1487 	case SYSCLOCK_FFWD:
1488 		time_second = fftimehands->tick_time_lerp.sec;
1489 		time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1490 		break;
1491 	}
1492 #endif
1493 
1494 	timehands = th;
1495 	timekeep_push_vdso();
1496 }
1497 
1498 /* Report or change the active timecounter hardware. */
1499 static int
1500 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1501 {
1502 	char newname[32];
1503 	struct timecounter *newtc, *tc;
1504 	int error;
1505 
1506 	tc = timecounter;
1507 	strlcpy(newname, tc->tc_name, sizeof(newname));
1508 
1509 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1510 	if (error != 0 || req->newptr == NULL)
1511 		return (error);
1512 	/* Record that the tc in use now was specifically chosen. */
1513 	tc_chosen = 1;
1514 	if (strcmp(newname, tc->tc_name) == 0)
1515 		return (0);
1516 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1517 		if (strcmp(newname, newtc->tc_name) != 0)
1518 			continue;
1519 
1520 		/* Warm up new timecounter. */
1521 		(void)newtc->tc_get_timecount(newtc);
1522 		(void)newtc->tc_get_timecount(newtc);
1523 
1524 		timecounter = newtc;
1525 
1526 		/*
1527 		 * The vdso timehands update is deferred until the next
1528 		 * 'tc_windup()'.
1529 		 *
1530 		 * This is prudent given that 'timekeep_push_vdso()' does not
1531 		 * use any locking and that it can be called in hard interrupt
1532 		 * context via 'tc_windup()'.
1533 		 */
1534 		return (0);
1535 	}
1536 	return (EINVAL);
1537 }
1538 
1539 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1540     0, 0, sysctl_kern_timecounter_hardware, "A",
1541     "Timecounter hardware selected");
1542 
1543 
1544 /* Report the available timecounter hardware. */
1545 static int
1546 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1547 {
1548 	struct sbuf sb;
1549 	struct timecounter *tc;
1550 	int error;
1551 
1552 	sbuf_new_for_sysctl(&sb, NULL, 0, req);
1553 	for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1554 		if (tc != timecounters)
1555 			sbuf_putc(&sb, ' ');
1556 		sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1557 	}
1558 	error = sbuf_finish(&sb);
1559 	sbuf_delete(&sb);
1560 	return (error);
1561 }
1562 
1563 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1564     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1565 
1566 /*
1567  * RFC 2783 PPS-API implementation.
1568  */
1569 
1570 /*
1571  *  Return true if the driver is aware of the abi version extensions in the
1572  *  pps_state structure, and it supports at least the given abi version number.
1573  */
1574 static inline int
1575 abi_aware(struct pps_state *pps, int vers)
1576 {
1577 
1578 	return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1579 }
1580 
1581 static int
1582 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1583 {
1584 	int err, timo;
1585 	pps_seq_t aseq, cseq;
1586 	struct timeval tv;
1587 
1588 	if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1589 		return (EINVAL);
1590 
1591 	/*
1592 	 * If no timeout is requested, immediately return whatever values were
1593 	 * most recently captured.  If timeout seconds is -1, that's a request
1594 	 * to block without a timeout.  WITNESS won't let us sleep forever
1595 	 * without a lock (we really don't need a lock), so just repeatedly
1596 	 * sleep a long time.
1597 	 */
1598 	if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1599 		if (fapi->timeout.tv_sec == -1)
1600 			timo = 0x7fffffff;
1601 		else {
1602 			tv.tv_sec = fapi->timeout.tv_sec;
1603 			tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1604 			timo = tvtohz(&tv);
1605 		}
1606 		aseq = atomic_load_int(&pps->ppsinfo.assert_sequence);
1607 		cseq = atomic_load_int(&pps->ppsinfo.clear_sequence);
1608 		while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) &&
1609 		    cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) {
1610 			if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1611 				if (pps->flags & PPSFLAG_MTX_SPIN) {
1612 					err = msleep_spin(pps, pps->driver_mtx,
1613 					    "ppsfch", timo);
1614 				} else {
1615 					err = msleep(pps, pps->driver_mtx, PCATCH,
1616 					    "ppsfch", timo);
1617 				}
1618 			} else {
1619 				err = tsleep(pps, PCATCH, "ppsfch", timo);
1620 			}
1621 			if (err == EWOULDBLOCK) {
1622 				if (fapi->timeout.tv_sec == -1) {
1623 					continue;
1624 				} else {
1625 					return (ETIMEDOUT);
1626 				}
1627 			} else if (err != 0) {
1628 				return (err);
1629 			}
1630 		}
1631 	}
1632 
1633 	pps->ppsinfo.current_mode = pps->ppsparam.mode;
1634 	fapi->pps_info_buf = pps->ppsinfo;
1635 
1636 	return (0);
1637 }
1638 
1639 int
1640 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1641 {
1642 	pps_params_t *app;
1643 	struct pps_fetch_args *fapi;
1644 #ifdef FFCLOCK
1645 	struct pps_fetch_ffc_args *fapi_ffc;
1646 #endif
1647 #ifdef PPS_SYNC
1648 	struct pps_kcbind_args *kapi;
1649 #endif
1650 
1651 	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1652 	switch (cmd) {
1653 	case PPS_IOC_CREATE:
1654 		return (0);
1655 	case PPS_IOC_DESTROY:
1656 		return (0);
1657 	case PPS_IOC_SETPARAMS:
1658 		app = (pps_params_t *)data;
1659 		if (app->mode & ~pps->ppscap)
1660 			return (EINVAL);
1661 #ifdef FFCLOCK
1662 		/* Ensure only a single clock is selected for ffc timestamp. */
1663 		if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1664 			return (EINVAL);
1665 #endif
1666 		pps->ppsparam = *app;
1667 		return (0);
1668 	case PPS_IOC_GETPARAMS:
1669 		app = (pps_params_t *)data;
1670 		*app = pps->ppsparam;
1671 		app->api_version = PPS_API_VERS_1;
1672 		return (0);
1673 	case PPS_IOC_GETCAP:
1674 		*(int*)data = pps->ppscap;
1675 		return (0);
1676 	case PPS_IOC_FETCH:
1677 		fapi = (struct pps_fetch_args *)data;
1678 		return (pps_fetch(fapi, pps));
1679 #ifdef FFCLOCK
1680 	case PPS_IOC_FETCH_FFCOUNTER:
1681 		fapi_ffc = (struct pps_fetch_ffc_args *)data;
1682 		if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1683 		    PPS_TSFMT_TSPEC)
1684 			return (EINVAL);
1685 		if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1686 			return (EOPNOTSUPP);
1687 		pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1688 		fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1689 		/* Overwrite timestamps if feedback clock selected. */
1690 		switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1691 		case PPS_TSCLK_FBCK:
1692 			fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1693 			    pps->ppsinfo.assert_timestamp;
1694 			fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1695 			    pps->ppsinfo.clear_timestamp;
1696 			break;
1697 		case PPS_TSCLK_FFWD:
1698 			break;
1699 		default:
1700 			break;
1701 		}
1702 		return (0);
1703 #endif /* FFCLOCK */
1704 	case PPS_IOC_KCBIND:
1705 #ifdef PPS_SYNC
1706 		kapi = (struct pps_kcbind_args *)data;
1707 		/* XXX Only root should be able to do this */
1708 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1709 			return (EINVAL);
1710 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1711 			return (EINVAL);
1712 		if (kapi->edge & ~pps->ppscap)
1713 			return (EINVAL);
1714 		pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1715 		    (pps->kcmode & KCMODE_ABIFLAG);
1716 		return (0);
1717 #else
1718 		return (EOPNOTSUPP);
1719 #endif
1720 	default:
1721 		return (ENOIOCTL);
1722 	}
1723 }
1724 
1725 void
1726 pps_init(struct pps_state *pps)
1727 {
1728 	pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1729 	if (pps->ppscap & PPS_CAPTUREASSERT)
1730 		pps->ppscap |= PPS_OFFSETASSERT;
1731 	if (pps->ppscap & PPS_CAPTURECLEAR)
1732 		pps->ppscap |= PPS_OFFSETCLEAR;
1733 #ifdef FFCLOCK
1734 	pps->ppscap |= PPS_TSCLK_MASK;
1735 #endif
1736 	pps->kcmode &= ~KCMODE_ABIFLAG;
1737 }
1738 
1739 void
1740 pps_init_abi(struct pps_state *pps)
1741 {
1742 
1743 	pps_init(pps);
1744 	if (pps->driver_abi > 0) {
1745 		pps->kcmode |= KCMODE_ABIFLAG;
1746 		pps->kernel_abi = PPS_ABI_VERSION;
1747 	}
1748 }
1749 
1750 void
1751 pps_capture(struct pps_state *pps)
1752 {
1753 	struct timehands *th;
1754 
1755 	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1756 	th = timehands;
1757 	pps->capgen = atomic_load_acq_int(&th->th_generation);
1758 	pps->capth = th;
1759 #ifdef FFCLOCK
1760 	pps->capffth = fftimehands;
1761 #endif
1762 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1763 	atomic_thread_fence_acq();
1764 	if (pps->capgen != th->th_generation)
1765 		pps->capgen = 0;
1766 }
1767 
1768 void
1769 pps_event(struct pps_state *pps, int event)
1770 {
1771 	struct bintime bt;
1772 	struct timespec ts, *tsp, *osp;
1773 	u_int tcount, *pcount;
1774 	int foff;
1775 	pps_seq_t *pseq;
1776 #ifdef FFCLOCK
1777 	struct timespec *tsp_ffc;
1778 	pps_seq_t *pseq_ffc;
1779 	ffcounter *ffcount;
1780 #endif
1781 #ifdef PPS_SYNC
1782 	int fhard;
1783 #endif
1784 
1785 	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1786 	/* Nothing to do if not currently set to capture this event type. */
1787 	if ((event & pps->ppsparam.mode) == 0)
1788 		return;
1789 	/* If the timecounter was wound up underneath us, bail out. */
1790 	if (pps->capgen == 0 || pps->capgen !=
1791 	    atomic_load_acq_int(&pps->capth->th_generation))
1792 		return;
1793 
1794 	/* Things would be easier with arrays. */
1795 	if (event == PPS_CAPTUREASSERT) {
1796 		tsp = &pps->ppsinfo.assert_timestamp;
1797 		osp = &pps->ppsparam.assert_offset;
1798 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1799 #ifdef PPS_SYNC
1800 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1801 #endif
1802 		pcount = &pps->ppscount[0];
1803 		pseq = &pps->ppsinfo.assert_sequence;
1804 #ifdef FFCLOCK
1805 		ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1806 		tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1807 		pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1808 #endif
1809 	} else {
1810 		tsp = &pps->ppsinfo.clear_timestamp;
1811 		osp = &pps->ppsparam.clear_offset;
1812 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1813 #ifdef PPS_SYNC
1814 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1815 #endif
1816 		pcount = &pps->ppscount[1];
1817 		pseq = &pps->ppsinfo.clear_sequence;
1818 #ifdef FFCLOCK
1819 		ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1820 		tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1821 		pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1822 #endif
1823 	}
1824 
1825 	/*
1826 	 * If the timecounter changed, we cannot compare the count values, so
1827 	 * we have to drop the rest of the PPS-stuff until the next event.
1828 	 */
1829 	if (pps->ppstc != pps->capth->th_counter) {
1830 		pps->ppstc = pps->capth->th_counter;
1831 		*pcount = pps->capcount;
1832 		pps->ppscount[2] = pps->capcount;
1833 		return;
1834 	}
1835 
1836 	/* Convert the count to a timespec. */
1837 	tcount = pps->capcount - pps->capth->th_offset_count;
1838 	tcount &= pps->capth->th_counter->tc_counter_mask;
1839 	bt = pps->capth->th_bintime;
1840 	bintime_addx(&bt, pps->capth->th_scale * tcount);
1841 	bintime2timespec(&bt, &ts);
1842 
1843 	/* If the timecounter was wound up underneath us, bail out. */
1844 	atomic_thread_fence_acq();
1845 	if (pps->capgen != pps->capth->th_generation)
1846 		return;
1847 
1848 	*pcount = pps->capcount;
1849 	(*pseq)++;
1850 	*tsp = ts;
1851 
1852 	if (foff) {
1853 		timespecadd(tsp, osp, tsp);
1854 		if (tsp->tv_nsec < 0) {
1855 			tsp->tv_nsec += 1000000000;
1856 			tsp->tv_sec -= 1;
1857 		}
1858 	}
1859 
1860 #ifdef FFCLOCK
1861 	*ffcount = pps->capffth->tick_ffcount + tcount;
1862 	bt = pps->capffth->tick_time;
1863 	ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1864 	bintime_add(&bt, &pps->capffth->tick_time);
1865 	bintime2timespec(&bt, &ts);
1866 	(*pseq_ffc)++;
1867 	*tsp_ffc = ts;
1868 #endif
1869 
1870 #ifdef PPS_SYNC
1871 	if (fhard) {
1872 		uint64_t scale;
1873 
1874 		/*
1875 		 * Feed the NTP PLL/FLL.
1876 		 * The FLL wants to know how many (hardware) nanoseconds
1877 		 * elapsed since the previous event.
1878 		 */
1879 		tcount = pps->capcount - pps->ppscount[2];
1880 		pps->ppscount[2] = pps->capcount;
1881 		tcount &= pps->capth->th_counter->tc_counter_mask;
1882 		scale = (uint64_t)1 << 63;
1883 		scale /= pps->capth->th_counter->tc_frequency;
1884 		scale *= 2;
1885 		bt.sec = 0;
1886 		bt.frac = 0;
1887 		bintime_addx(&bt, scale * tcount);
1888 		bintime2timespec(&bt, &ts);
1889 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1890 	}
1891 #endif
1892 
1893 	/* Wakeup anyone sleeping in pps_fetch().  */
1894 	wakeup(pps);
1895 }
1896 
1897 /*
1898  * Timecounters need to be updated every so often to prevent the hardware
1899  * counter from overflowing.  Updating also recalculates the cached values
1900  * used by the get*() family of functions, so their precision depends on
1901  * the update frequency.
1902  */
1903 
1904 static int tc_tick;
1905 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1906     "Approximate number of hardclock ticks in a millisecond");
1907 
1908 void
1909 tc_ticktock(int cnt)
1910 {
1911 	static int count;
1912 
1913 	if (mtx_trylock_spin(&tc_setclock_mtx)) {
1914 		count += cnt;
1915 		if (count >= tc_tick) {
1916 			count = 0;
1917 			tc_windup(NULL);
1918 		}
1919 		mtx_unlock_spin(&tc_setclock_mtx);
1920 	}
1921 }
1922 
1923 static void __inline
1924 tc_adjprecision(void)
1925 {
1926 	int t;
1927 
1928 	if (tc_timepercentage > 0) {
1929 		t = (99 + tc_timepercentage) / tc_timepercentage;
1930 		tc_precexp = fls(t + (t >> 1)) - 1;
1931 		FREQ2BT(hz / tc_tick, &bt_timethreshold);
1932 		FREQ2BT(hz, &bt_tickthreshold);
1933 		bintime_shift(&bt_timethreshold, tc_precexp);
1934 		bintime_shift(&bt_tickthreshold, tc_precexp);
1935 	} else {
1936 		tc_precexp = 31;
1937 		bt_timethreshold.sec = INT_MAX;
1938 		bt_timethreshold.frac = ~(uint64_t)0;
1939 		bt_tickthreshold = bt_timethreshold;
1940 	}
1941 	sbt_timethreshold = bttosbt(bt_timethreshold);
1942 	sbt_tickthreshold = bttosbt(bt_tickthreshold);
1943 }
1944 
1945 static int
1946 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1947 {
1948 	int error, val;
1949 
1950 	val = tc_timepercentage;
1951 	error = sysctl_handle_int(oidp, &val, 0, req);
1952 	if (error != 0 || req->newptr == NULL)
1953 		return (error);
1954 	tc_timepercentage = val;
1955 	if (cold)
1956 		goto done;
1957 	tc_adjprecision();
1958 done:
1959 	return (0);
1960 }
1961 
1962 /* Set up the requested number of timehands. */
1963 static void
1964 inittimehands(void *dummy)
1965 {
1966 	struct timehands *thp;
1967 	int i;
1968 
1969 	TUNABLE_INT_FETCH("kern.timecounter.timehands_count",
1970 	    &timehands_count);
1971 	if (timehands_count < 1)
1972 		timehands_count = 1;
1973 	if (timehands_count > nitems(ths))
1974 		timehands_count = nitems(ths);
1975 	for (i = 1, thp = &ths[0]; i < timehands_count;  thp = &ths[i++])
1976 		thp->th_next = &ths[i];
1977 	thp->th_next = &ths[0];
1978 }
1979 SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL);
1980 
1981 static void
1982 inittimecounter(void *dummy)
1983 {
1984 	u_int p;
1985 	int tick_rate;
1986 
1987 	/*
1988 	 * Set the initial timeout to
1989 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
1990 	 * People should probably not use the sysctl to set the timeout
1991 	 * to smaller than its initial value, since that value is the
1992 	 * smallest reasonable one.  If they want better timestamps they
1993 	 * should use the non-"get"* functions.
1994 	 */
1995 	if (hz > 1000)
1996 		tc_tick = (hz + 500) / 1000;
1997 	else
1998 		tc_tick = 1;
1999 	tc_adjprecision();
2000 	FREQ2BT(hz, &tick_bt);
2001 	tick_sbt = bttosbt(tick_bt);
2002 	tick_rate = hz / tc_tick;
2003 	FREQ2BT(tick_rate, &tc_tick_bt);
2004 	tc_tick_sbt = bttosbt(tc_tick_bt);
2005 	p = (tc_tick * 1000000) / hz;
2006 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
2007 
2008 #ifdef FFCLOCK
2009 	ffclock_init();
2010 #endif
2011 
2012 	/* warm up new timecounter (again) and get rolling. */
2013 	(void)timecounter->tc_get_timecount(timecounter);
2014 	(void)timecounter->tc_get_timecount(timecounter);
2015 	mtx_lock_spin(&tc_setclock_mtx);
2016 	tc_windup(NULL);
2017 	mtx_unlock_spin(&tc_setclock_mtx);
2018 }
2019 
2020 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
2021 
2022 /* Cpu tick handling -------------------------------------------------*/
2023 
2024 static int cpu_tick_variable;
2025 static uint64_t	cpu_tick_frequency;
2026 
2027 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base);
2028 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last);
2029 
2030 static uint64_t
2031 tc_cpu_ticks(void)
2032 {
2033 	struct timecounter *tc;
2034 	uint64_t res, *base;
2035 	unsigned u, *last;
2036 
2037 	critical_enter();
2038 	base = DPCPU_PTR(tc_cpu_ticks_base);
2039 	last = DPCPU_PTR(tc_cpu_ticks_last);
2040 	tc = timehands->th_counter;
2041 	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
2042 	if (u < *last)
2043 		*base += (uint64_t)tc->tc_counter_mask + 1;
2044 	*last = u;
2045 	res = u + *base;
2046 	critical_exit();
2047 	return (res);
2048 }
2049 
2050 void
2051 cpu_tick_calibration(void)
2052 {
2053 	static time_t last_calib;
2054 
2055 	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
2056 		cpu_tick_calibrate(0);
2057 		last_calib = time_uptime;
2058 	}
2059 }
2060 
2061 /*
2062  * This function gets called every 16 seconds on only one designated
2063  * CPU in the system from hardclock() via cpu_tick_calibration()().
2064  *
2065  * Whenever the real time clock is stepped we get called with reset=1
2066  * to make sure we handle suspend/resume and similar events correctly.
2067  */
2068 
2069 static void
2070 cpu_tick_calibrate(int reset)
2071 {
2072 	static uint64_t c_last;
2073 	uint64_t c_this, c_delta;
2074 	static struct bintime  t_last;
2075 	struct bintime t_this, t_delta;
2076 	uint32_t divi;
2077 
2078 	if (reset) {
2079 		/* The clock was stepped, abort & reset */
2080 		t_last.sec = 0;
2081 		return;
2082 	}
2083 
2084 	/* we don't calibrate fixed rate cputicks */
2085 	if (!cpu_tick_variable)
2086 		return;
2087 
2088 	getbinuptime(&t_this);
2089 	c_this = cpu_ticks();
2090 	if (t_last.sec != 0) {
2091 		c_delta = c_this - c_last;
2092 		t_delta = t_this;
2093 		bintime_sub(&t_delta, &t_last);
2094 		/*
2095 		 * Headroom:
2096 		 * 	2^(64-20) / 16[s] =
2097 		 * 	2^(44) / 16[s] =
2098 		 * 	17.592.186.044.416 / 16 =
2099 		 * 	1.099.511.627.776 [Hz]
2100 		 */
2101 		divi = t_delta.sec << 20;
2102 		divi |= t_delta.frac >> (64 - 20);
2103 		c_delta <<= 20;
2104 		c_delta /= divi;
2105 		if (c_delta > cpu_tick_frequency) {
2106 			if (0 && bootverbose)
2107 				printf("cpu_tick increased to %ju Hz\n",
2108 				    c_delta);
2109 			cpu_tick_frequency = c_delta;
2110 		}
2111 	}
2112 	c_last = c_this;
2113 	t_last = t_this;
2114 }
2115 
2116 void
2117 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
2118 {
2119 
2120 	if (func == NULL) {
2121 		cpu_ticks = tc_cpu_ticks;
2122 	} else {
2123 		cpu_tick_frequency = freq;
2124 		cpu_tick_variable = var;
2125 		cpu_ticks = func;
2126 	}
2127 }
2128 
2129 uint64_t
2130 cpu_tickrate(void)
2131 {
2132 
2133 	if (cpu_ticks == tc_cpu_ticks)
2134 		return (tc_getfrequency());
2135 	return (cpu_tick_frequency);
2136 }
2137 
2138 /*
2139  * We need to be slightly careful converting cputicks to microseconds.
2140  * There is plenty of margin in 64 bits of microseconds (half a million
2141  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2142  * before divide conversion (to retain precision) we find that the
2143  * margin shrinks to 1.5 hours (one millionth of 146y).
2144  * With a three prong approach we never lose significant bits, no
2145  * matter what the cputick rate and length of timeinterval is.
2146  */
2147 
2148 uint64_t
2149 cputick2usec(uint64_t tick)
2150 {
2151 
2152 	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
2153 		return (tick / (cpu_tickrate() / 1000000LL));
2154 	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
2155 		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2156 	else
2157 		return ((tick * 1000000LL) / cpu_tickrate());
2158 }
2159 
2160 cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
2161 
2162 static int vdso_th_enable = 1;
2163 static int
2164 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2165 {
2166 	int old_vdso_th_enable, error;
2167 
2168 	old_vdso_th_enable = vdso_th_enable;
2169 	error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2170 	if (error != 0)
2171 		return (error);
2172 	vdso_th_enable = old_vdso_th_enable;
2173 	return (0);
2174 }
2175 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2176     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2177     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2178 
2179 uint32_t
2180 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2181 {
2182 	struct timehands *th;
2183 	uint32_t enabled;
2184 
2185 	th = timehands;
2186 	vdso_th->th_scale = th->th_scale;
2187 	vdso_th->th_offset_count = th->th_offset_count;
2188 	vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2189 	vdso_th->th_offset = th->th_offset;
2190 	vdso_th->th_boottime = th->th_boottime;
2191 	if (th->th_counter->tc_fill_vdso_timehands != NULL) {
2192 		enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
2193 		    th->th_counter);
2194 	} else
2195 		enabled = 0;
2196 	if (!vdso_th_enable)
2197 		enabled = 0;
2198 	return (enabled);
2199 }
2200 
2201 #ifdef COMPAT_FREEBSD32
2202 uint32_t
2203 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2204 {
2205 	struct timehands *th;
2206 	uint32_t enabled;
2207 
2208 	th = timehands;
2209 	*(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2210 	vdso_th32->th_offset_count = th->th_offset_count;
2211 	vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2212 	vdso_th32->th_offset.sec = th->th_offset.sec;
2213 	*(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2214 	vdso_th32->th_boottime.sec = th->th_boottime.sec;
2215 	*(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
2216 	if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
2217 		enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
2218 		    th->th_counter);
2219 	} else
2220 		enabled = 0;
2221 	if (!vdso_th_enable)
2222 		enabled = 0;
2223 	return (enabled);
2224 }
2225 #endif
2226