xref: /freebsd/sys/kern/kern_tc.c (revision 82431678fce5c893ef9c7418ad6d998ad4187de6)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  */
9 
10 #include <sys/cdefs.h>
11 __FBSDID("$FreeBSD$");
12 
13 #include "opt_ntp.h"
14 
15 #include <sys/param.h>
16 #include <sys/kernel.h>
17 #include <sys/sysctl.h>
18 #include <sys/syslog.h>
19 #include <sys/systm.h>
20 #include <sys/timepps.h>
21 #include <sys/timetc.h>
22 #include <sys/timex.h>
23 
24 /*
25  * A large step happens on boot.  This constant detects such steps.
26  * It is relatively small so that ntp_update_second gets called enough
27  * in the typical 'missed a couple of seconds' case, but doesn't loop
28  * forever when the time step is large.
29  */
30 #define LARGE_STEP	200
31 
32 /*
33  * Implement a dummy timecounter which we can use until we get a real one
34  * in the air.  This allows the console and other early stuff to use
35  * time services.
36  */
37 
38 static u_int
39 dummy_get_timecount(struct timecounter *tc)
40 {
41 	static u_int now;
42 
43 	return (++now);
44 }
45 
46 static struct timecounter dummy_timecounter = {
47 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
48 };
49 
50 struct timehands {
51 	/* These fields must be initialized by the driver. */
52 	struct timecounter	*th_counter;
53 	int64_t			th_adjustment;
54 	u_int64_t		th_scale;
55 	u_int	 		th_offset_count;
56 	struct bintime		th_offset;
57 	struct timeval		th_microtime;
58 	struct timespec		th_nanotime;
59 	/* Fields not to be copied in tc_windup start with th_generation. */
60 	volatile u_int		th_generation;
61 	struct timehands	*th_next;
62 };
63 
64 static struct timehands th0;
65 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74 static struct timehands th0 = {
75 	&dummy_timecounter,
76 	0,
77 	(uint64_t)-1 / 1000000,
78 	0,
79 	{1, 0},
80 	{0, 0},
81 	{0, 0},
82 	1,
83 	&th1
84 };
85 
86 static struct timehands *volatile timehands = &th0;
87 struct timecounter *timecounter = &dummy_timecounter;
88 static struct timecounter *timecounters = &dummy_timecounter;
89 
90 time_t time_second = 1;
91 time_t time_uptime = 1;
92 
93 static struct bintime boottimebin;
94 struct timeval boottime;
95 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
96 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
97     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
98 
99 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
100 SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
101 
102 static int timestepwarnings;
103 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
104     &timestepwarnings, 0, "");
105 
106 static void tc_windup(void);
107 static void cpu_tick_calibrate(int);
108 
109 static int
110 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
111 {
112 #ifdef SCTL_MASK32
113 	int tv[2];
114 
115 	if (req->flags & SCTL_MASK32) {
116 		tv[0] = boottime.tv_sec;
117 		tv[1] = boottime.tv_usec;
118 		return SYSCTL_OUT(req, tv, sizeof(tv));
119 	} else
120 #endif
121 		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
122 }
123 
124 static int
125 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
126 {
127 	u_int ncount;
128 	struct timecounter *tc = arg1;
129 
130 	ncount = tc->tc_get_timecount(tc);
131 	return sysctl_handle_int(oidp, &ncount, 0, req);
132 }
133 
134 static int
135 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
136 {
137 	u_int64_t freq;
138 	struct timecounter *tc = arg1;
139 
140 	freq = tc->tc_frequency;
141 	return sysctl_handle_quad(oidp, &freq, 0, req);
142 }
143 
144 /*
145  * Return the difference between the timehands' counter value now and what
146  * was when we copied it to the timehands' offset_count.
147  */
148 static __inline u_int
149 tc_delta(struct timehands *th)
150 {
151 	struct timecounter *tc;
152 
153 	tc = th->th_counter;
154 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
155 	    tc->tc_counter_mask);
156 }
157 
158 /*
159  * Functions for reading the time.  We have to loop until we are sure that
160  * the timehands that we operated on was not updated under our feet.  See
161  * the comment in <sys/time.h> for a description of these 12 functions.
162  */
163 
164 void
165 binuptime(struct bintime *bt)
166 {
167 	struct timehands *th;
168 	u_int gen;
169 
170 	do {
171 		th = timehands;
172 		gen = th->th_generation;
173 		*bt = th->th_offset;
174 		bintime_addx(bt, th->th_scale * tc_delta(th));
175 	} while (gen == 0 || gen != th->th_generation);
176 }
177 
178 void
179 nanouptime(struct timespec *tsp)
180 {
181 	struct bintime bt;
182 
183 	binuptime(&bt);
184 	bintime2timespec(&bt, tsp);
185 }
186 
187 void
188 microuptime(struct timeval *tvp)
189 {
190 	struct bintime bt;
191 
192 	binuptime(&bt);
193 	bintime2timeval(&bt, tvp);
194 }
195 
196 void
197 bintime(struct bintime *bt)
198 {
199 
200 	binuptime(bt);
201 	bintime_add(bt, &boottimebin);
202 }
203 
204 void
205 nanotime(struct timespec *tsp)
206 {
207 	struct bintime bt;
208 
209 	bintime(&bt);
210 	bintime2timespec(&bt, tsp);
211 }
212 
213 void
214 microtime(struct timeval *tvp)
215 {
216 	struct bintime bt;
217 
218 	bintime(&bt);
219 	bintime2timeval(&bt, tvp);
220 }
221 
222 void
223 getbinuptime(struct bintime *bt)
224 {
225 	struct timehands *th;
226 	u_int gen;
227 
228 	do {
229 		th = timehands;
230 		gen = th->th_generation;
231 		*bt = th->th_offset;
232 	} while (gen == 0 || gen != th->th_generation);
233 }
234 
235 void
236 getnanouptime(struct timespec *tsp)
237 {
238 	struct timehands *th;
239 	u_int gen;
240 
241 	do {
242 		th = timehands;
243 		gen = th->th_generation;
244 		bintime2timespec(&th->th_offset, tsp);
245 	} while (gen == 0 || gen != th->th_generation);
246 }
247 
248 void
249 getmicrouptime(struct timeval *tvp)
250 {
251 	struct timehands *th;
252 	u_int gen;
253 
254 	do {
255 		th = timehands;
256 		gen = th->th_generation;
257 		bintime2timeval(&th->th_offset, tvp);
258 	} while (gen == 0 || gen != th->th_generation);
259 }
260 
261 void
262 getbintime(struct bintime *bt)
263 {
264 	struct timehands *th;
265 	u_int gen;
266 
267 	do {
268 		th = timehands;
269 		gen = th->th_generation;
270 		*bt = th->th_offset;
271 	} while (gen == 0 || gen != th->th_generation);
272 	bintime_add(bt, &boottimebin);
273 }
274 
275 void
276 getnanotime(struct timespec *tsp)
277 {
278 	struct timehands *th;
279 	u_int gen;
280 
281 	do {
282 		th = timehands;
283 		gen = th->th_generation;
284 		*tsp = th->th_nanotime;
285 	} while (gen == 0 || gen != th->th_generation);
286 }
287 
288 void
289 getmicrotime(struct timeval *tvp)
290 {
291 	struct timehands *th;
292 	u_int gen;
293 
294 	do {
295 		th = timehands;
296 		gen = th->th_generation;
297 		*tvp = th->th_microtime;
298 	} while (gen == 0 || gen != th->th_generation);
299 }
300 
301 /*
302  * Initialize a new timecounter and possibly use it.
303  */
304 void
305 tc_init(struct timecounter *tc)
306 {
307 	u_int u;
308 	struct sysctl_oid *tc_root;
309 
310 	u = tc->tc_frequency / tc->tc_counter_mask;
311 	/* XXX: We need some margin here, 10% is a guess */
312 	u *= 11;
313 	u /= 10;
314 	if (u > hz && tc->tc_quality >= 0) {
315 		tc->tc_quality = -2000;
316 		if (bootverbose) {
317 			printf("Timecounter \"%s\" frequency %ju Hz",
318 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
319 			printf(" -- Insufficient hz, needs at least %u\n", u);
320 		}
321 	} else if (tc->tc_quality >= 0 || bootverbose) {
322 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
323 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
324 		    tc->tc_quality);
325 	}
326 
327 	tc->tc_next = timecounters;
328 	timecounters = tc;
329 	/*
330 	 * Set up sysctl tree for this counter.
331 	 */
332 	tc_root = SYSCTL_ADD_NODE(NULL,
333 	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
334 	    CTLFLAG_RW, 0, "timecounter description");
335 	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
336 	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
337 	    "mask for implemented bits");
338 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
339 	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
340 	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
341 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
342 	    "frequency", CTLTYPE_QUAD | CTLFLAG_RD, tc, sizeof(*tc),
343 	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
344 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
345 	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
346 	    "goodness of time counter");
347 	/*
348 	 * Never automatically use a timecounter with negative quality.
349 	 * Even though we run on the dummy counter, switching here may be
350 	 * worse since this timecounter may not be monotonous.
351 	 */
352 	if (tc->tc_quality < 0)
353 		return;
354 	if (tc->tc_quality < timecounter->tc_quality)
355 		return;
356 	if (tc->tc_quality == timecounter->tc_quality &&
357 	    tc->tc_frequency < timecounter->tc_frequency)
358 		return;
359 	(void)tc->tc_get_timecount(tc);
360 	(void)tc->tc_get_timecount(tc);
361 	timecounter = tc;
362 }
363 
364 /* Report the frequency of the current timecounter. */
365 u_int64_t
366 tc_getfrequency(void)
367 {
368 
369 	return (timehands->th_counter->tc_frequency);
370 }
371 
372 /*
373  * Step our concept of UTC.  This is done by modifying our estimate of
374  * when we booted.
375  * XXX: not locked.
376  */
377 void
378 tc_setclock(struct timespec *ts)
379 {
380 	struct timespec tbef, taft;
381 	struct bintime bt, bt2;
382 
383 	cpu_tick_calibrate(1);
384 	nanotime(&tbef);
385 	timespec2bintime(ts, &bt);
386 	binuptime(&bt2);
387 	bintime_sub(&bt, &bt2);
388 	bintime_add(&bt2, &boottimebin);
389 	boottimebin = bt;
390 	bintime2timeval(&bt, &boottime);
391 
392 	/* XXX fiddle all the little crinkly bits around the fiords... */
393 	tc_windup();
394 	nanotime(&taft);
395 	if (timestepwarnings) {
396 		log(LOG_INFO,
397 		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
398 		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
399 		    (intmax_t)taft.tv_sec, taft.tv_nsec,
400 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
401 	}
402 	cpu_tick_calibrate(1);
403 }
404 
405 /*
406  * Initialize the next struct timehands in the ring and make
407  * it the active timehands.  Along the way we might switch to a different
408  * timecounter and/or do seconds processing in NTP.  Slightly magic.
409  */
410 static void
411 tc_windup(void)
412 {
413 	struct bintime bt;
414 	struct timehands *th, *tho;
415 	u_int64_t scale;
416 	u_int delta, ncount, ogen;
417 	int i;
418 	time_t t;
419 
420 	/*
421 	 * Make the next timehands a copy of the current one, but do not
422 	 * overwrite the generation or next pointer.  While we update
423 	 * the contents, the generation must be zero.
424 	 */
425 	tho = timehands;
426 	th = tho->th_next;
427 	ogen = th->th_generation;
428 	th->th_generation = 0;
429 	bcopy(tho, th, offsetof(struct timehands, th_generation));
430 
431 	/*
432 	 * Capture a timecounter delta on the current timecounter and if
433 	 * changing timecounters, a counter value from the new timecounter.
434 	 * Update the offset fields accordingly.
435 	 */
436 	delta = tc_delta(th);
437 	if (th->th_counter != timecounter)
438 		ncount = timecounter->tc_get_timecount(timecounter);
439 	else
440 		ncount = 0;
441 	th->th_offset_count += delta;
442 	th->th_offset_count &= th->th_counter->tc_counter_mask;
443 	bintime_addx(&th->th_offset, th->th_scale * delta);
444 
445 	/*
446 	 * Hardware latching timecounters may not generate interrupts on
447 	 * PPS events, so instead we poll them.  There is a finite risk that
448 	 * the hardware might capture a count which is later than the one we
449 	 * got above, and therefore possibly in the next NTP second which might
450 	 * have a different rate than the current NTP second.  It doesn't
451 	 * matter in practice.
452 	 */
453 	if (tho->th_counter->tc_poll_pps)
454 		tho->th_counter->tc_poll_pps(tho->th_counter);
455 
456 	/*
457 	 * Deal with NTP second processing.  The for loop normally
458 	 * iterates at most once, but in extreme situations it might
459 	 * keep NTP sane if timeouts are not run for several seconds.
460 	 * At boot, the time step can be large when the TOD hardware
461 	 * has been read, so on really large steps, we call
462 	 * ntp_update_second only twice.  We need to call it twice in
463 	 * case we missed a leap second.
464 	 */
465 	bt = th->th_offset;
466 	bintime_add(&bt, &boottimebin);
467 	i = bt.sec - tho->th_microtime.tv_sec;
468 	if (i > LARGE_STEP)
469 		i = 2;
470 	for (; i > 0; i--) {
471 		t = bt.sec;
472 		ntp_update_second(&th->th_adjustment, &bt.sec);
473 		if (bt.sec != t)
474 			boottimebin.sec += bt.sec - t;
475 	}
476 	/* Update the UTC timestamps used by the get*() functions. */
477 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
478 	bintime2timeval(&bt, &th->th_microtime);
479 	bintime2timespec(&bt, &th->th_nanotime);
480 
481 	/* Now is a good time to change timecounters. */
482 	if (th->th_counter != timecounter) {
483 		th->th_counter = timecounter;
484 		th->th_offset_count = ncount;
485 	}
486 
487 	/*-
488 	 * Recalculate the scaling factor.  We want the number of 1/2^64
489 	 * fractions of a second per period of the hardware counter, taking
490 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
491 	 * processing provides us with.
492 	 *
493 	 * The th_adjustment is nanoseconds per second with 32 bit binary
494 	 * fraction and we want 64 bit binary fraction of second:
495 	 *
496 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
497 	 *
498 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
499 	 * we can only multiply by about 850 without overflowing, that
500 	 * leaves no suitably precise fractions for multiply before divide.
501 	 *
502 	 * Divide before multiply with a fraction of 2199/512 results in a
503 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
504 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
505  	 *
506 	 * We happily sacrifice the lowest of the 64 bits of our result
507 	 * to the goddess of code clarity.
508 	 *
509 	 */
510 	scale = (u_int64_t)1 << 63;
511 	scale += (th->th_adjustment / 1024) * 2199;
512 	scale /= th->th_counter->tc_frequency;
513 	th->th_scale = scale * 2;
514 
515 	/*
516 	 * Now that the struct timehands is again consistent, set the new
517 	 * generation number, making sure to not make it zero.
518 	 */
519 	if (++ogen == 0)
520 		ogen = 1;
521 	th->th_generation = ogen;
522 
523 	/* Go live with the new struct timehands. */
524 	time_second = th->th_microtime.tv_sec;
525 	time_uptime = th->th_offset.sec;
526 	timehands = th;
527 }
528 
529 /* Report or change the active timecounter hardware. */
530 static int
531 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
532 {
533 	char newname[32];
534 	struct timecounter *newtc, *tc;
535 	int error;
536 
537 	tc = timecounter;
538 	strlcpy(newname, tc->tc_name, sizeof(newname));
539 
540 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
541 	if (error != 0 || req->newptr == NULL ||
542 	    strcmp(newname, tc->tc_name) == 0)
543 		return (error);
544 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
545 		if (strcmp(newname, newtc->tc_name) != 0)
546 			continue;
547 
548 		/* Warm up new timecounter. */
549 		(void)newtc->tc_get_timecount(newtc);
550 		(void)newtc->tc_get_timecount(newtc);
551 
552 		timecounter = newtc;
553 		return (0);
554 	}
555 	return (EINVAL);
556 }
557 
558 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
559     0, 0, sysctl_kern_timecounter_hardware, "A", "");
560 
561 
562 /* Report or change the active timecounter hardware. */
563 static int
564 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
565 {
566 	char buf[32], *spc;
567 	struct timecounter *tc;
568 	int error;
569 
570 	spc = "";
571 	error = 0;
572 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
573 		sprintf(buf, "%s%s(%d)",
574 		    spc, tc->tc_name, tc->tc_quality);
575 		error = SYSCTL_OUT(req, buf, strlen(buf));
576 		spc = " ";
577 	}
578 	return (error);
579 }
580 
581 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
582     0, 0, sysctl_kern_timecounter_choice, "A", "");
583 
584 /*
585  * RFC 2783 PPS-API implementation.
586  */
587 
588 int
589 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
590 {
591 	pps_params_t *app;
592 	struct pps_fetch_args *fapi;
593 #ifdef PPS_SYNC
594 	struct pps_kcbind_args *kapi;
595 #endif
596 
597 	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
598 	switch (cmd) {
599 	case PPS_IOC_CREATE:
600 		return (0);
601 	case PPS_IOC_DESTROY:
602 		return (0);
603 	case PPS_IOC_SETPARAMS:
604 		app = (pps_params_t *)data;
605 		if (app->mode & ~pps->ppscap)
606 			return (EINVAL);
607 		pps->ppsparam = *app;
608 		return (0);
609 	case PPS_IOC_GETPARAMS:
610 		app = (pps_params_t *)data;
611 		*app = pps->ppsparam;
612 		app->api_version = PPS_API_VERS_1;
613 		return (0);
614 	case PPS_IOC_GETCAP:
615 		*(int*)data = pps->ppscap;
616 		return (0);
617 	case PPS_IOC_FETCH:
618 		fapi = (struct pps_fetch_args *)data;
619 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
620 			return (EINVAL);
621 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
622 			return (EOPNOTSUPP);
623 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
624 		fapi->pps_info_buf = pps->ppsinfo;
625 		return (0);
626 	case PPS_IOC_KCBIND:
627 #ifdef PPS_SYNC
628 		kapi = (struct pps_kcbind_args *)data;
629 		/* XXX Only root should be able to do this */
630 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
631 			return (EINVAL);
632 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
633 			return (EINVAL);
634 		if (kapi->edge & ~pps->ppscap)
635 			return (EINVAL);
636 		pps->kcmode = kapi->edge;
637 		return (0);
638 #else
639 		return (EOPNOTSUPP);
640 #endif
641 	default:
642 		return (ENOIOCTL);
643 	}
644 }
645 
646 void
647 pps_init(struct pps_state *pps)
648 {
649 	pps->ppscap |= PPS_TSFMT_TSPEC;
650 	if (pps->ppscap & PPS_CAPTUREASSERT)
651 		pps->ppscap |= PPS_OFFSETASSERT;
652 	if (pps->ppscap & PPS_CAPTURECLEAR)
653 		pps->ppscap |= PPS_OFFSETCLEAR;
654 }
655 
656 void
657 pps_capture(struct pps_state *pps)
658 {
659 	struct timehands *th;
660 
661 	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
662 	th = timehands;
663 	pps->capgen = th->th_generation;
664 	pps->capth = th;
665 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
666 	if (pps->capgen != th->th_generation)
667 		pps->capgen = 0;
668 }
669 
670 void
671 pps_event(struct pps_state *pps, int event)
672 {
673 	struct bintime bt;
674 	struct timespec ts, *tsp, *osp;
675 	u_int tcount, *pcount;
676 	int foff, fhard;
677 	pps_seq_t *pseq;
678 
679 	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
680 	/* If the timecounter was wound up underneath us, bail out. */
681 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
682 		return;
683 
684 	/* Things would be easier with arrays. */
685 	if (event == PPS_CAPTUREASSERT) {
686 		tsp = &pps->ppsinfo.assert_timestamp;
687 		osp = &pps->ppsparam.assert_offset;
688 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
689 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
690 		pcount = &pps->ppscount[0];
691 		pseq = &pps->ppsinfo.assert_sequence;
692 	} else {
693 		tsp = &pps->ppsinfo.clear_timestamp;
694 		osp = &pps->ppsparam.clear_offset;
695 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
696 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
697 		pcount = &pps->ppscount[1];
698 		pseq = &pps->ppsinfo.clear_sequence;
699 	}
700 
701 	/*
702 	 * If the timecounter changed, we cannot compare the count values, so
703 	 * we have to drop the rest of the PPS-stuff until the next event.
704 	 */
705 	if (pps->ppstc != pps->capth->th_counter) {
706 		pps->ppstc = pps->capth->th_counter;
707 		*pcount = pps->capcount;
708 		pps->ppscount[2] = pps->capcount;
709 		return;
710 	}
711 
712 	/* Convert the count to a timespec. */
713 	tcount = pps->capcount - pps->capth->th_offset_count;
714 	tcount &= pps->capth->th_counter->tc_counter_mask;
715 	bt = pps->capth->th_offset;
716 	bintime_addx(&bt, pps->capth->th_scale * tcount);
717 	bintime_add(&bt, &boottimebin);
718 	bintime2timespec(&bt, &ts);
719 
720 	/* If the timecounter was wound up underneath us, bail out. */
721 	if (pps->capgen != pps->capth->th_generation)
722 		return;
723 
724 	*pcount = pps->capcount;
725 	(*pseq)++;
726 	*tsp = ts;
727 
728 	if (foff) {
729 		timespecadd(tsp, osp);
730 		if (tsp->tv_nsec < 0) {
731 			tsp->tv_nsec += 1000000000;
732 			tsp->tv_sec -= 1;
733 		}
734 	}
735 #ifdef PPS_SYNC
736 	if (fhard) {
737 		u_int64_t scale;
738 
739 		/*
740 		 * Feed the NTP PLL/FLL.
741 		 * The FLL wants to know how many (hardware) nanoseconds
742 		 * elapsed since the previous event.
743 		 */
744 		tcount = pps->capcount - pps->ppscount[2];
745 		pps->ppscount[2] = pps->capcount;
746 		tcount &= pps->capth->th_counter->tc_counter_mask;
747 		scale = (u_int64_t)1 << 63;
748 		scale /= pps->capth->th_counter->tc_frequency;
749 		scale *= 2;
750 		bt.sec = 0;
751 		bt.frac = 0;
752 		bintime_addx(&bt, scale * tcount);
753 		bintime2timespec(&bt, &ts);
754 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
755 	}
756 #endif
757 }
758 
759 /*
760  * Timecounters need to be updated every so often to prevent the hardware
761  * counter from overflowing.  Updating also recalculates the cached values
762  * used by the get*() family of functions, so their precision depends on
763  * the update frequency.
764  */
765 
766 static int tc_tick;
767 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
768 
769 void
770 tc_ticktock(void)
771 {
772 	static int count;
773 	static time_t last_calib;
774 
775 	if (++count < tc_tick)
776 		return;
777 	count = 0;
778 	tc_windup();
779 	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
780 		cpu_tick_calibrate(0);
781 		last_calib = time_uptime;
782 	}
783 }
784 
785 static void
786 inittimecounter(void *dummy)
787 {
788 	u_int p;
789 
790 	/*
791 	 * Set the initial timeout to
792 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
793 	 * People should probably not use the sysctl to set the timeout
794 	 * to smaller than its inital value, since that value is the
795 	 * smallest reasonable one.  If they want better timestamps they
796 	 * should use the non-"get"* functions.
797 	 */
798 	if (hz > 1000)
799 		tc_tick = (hz + 500) / 1000;
800 	else
801 		tc_tick = 1;
802 	p = (tc_tick * 1000000) / hz;
803 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
804 
805 	/* warm up new timecounter (again) and get rolling. */
806 	(void)timecounter->tc_get_timecount(timecounter);
807 	(void)timecounter->tc_get_timecount(timecounter);
808 }
809 
810 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
811 
812 /* Cpu tick handling -------------------------------------------------*/
813 
814 static int cpu_tick_variable;
815 static uint64_t	cpu_tick_frequency;
816 
817 static uint64_t
818 tc_cpu_ticks(void)
819 {
820 	static uint64_t base;
821 	static unsigned last;
822 	unsigned u;
823 	struct timecounter *tc;
824 
825 	tc = timehands->th_counter;
826 	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
827 	if (u < last)
828 		base += (uint64_t)tc->tc_counter_mask + 1;
829 	last = u;
830 	return (u + base);
831 }
832 
833 /*
834  * This function gets called every 16 seconds on only one designated
835  * CPU in the system from hardclock() via tc_ticktock().
836  *
837  * Whenever the real time clock is stepped we get called with reset=1
838  * to make sure we handle suspend/resume and similar events correctly.
839  */
840 
841 static void
842 cpu_tick_calibrate(int reset)
843 {
844 	static uint64_t c_last;
845 	uint64_t c_this, c_delta;
846 	static struct bintime  t_last;
847 	struct bintime t_this, t_delta;
848 	uint32_t divi;
849 
850 	if (reset) {
851 		/* The clock was stepped, abort & reset */
852 		t_last.sec = 0;
853 		return;
854 	}
855 
856 	/* we don't calibrate fixed rate cputicks */
857 	if (!cpu_tick_variable)
858 		return;
859 
860 	getbinuptime(&t_this);
861 	c_this = cpu_ticks();
862 	if (t_last.sec != 0) {
863 		c_delta = c_this - c_last;
864 		t_delta = t_this;
865 		bintime_sub(&t_delta, &t_last);
866 		/*
867 		 * Validate that 16 +/- 1/256 seconds passed.
868 		 * After division by 16 this gives us a precision of
869 		 * roughly 250PPM which is sufficient
870 		 */
871 		if (t_delta.sec > 16 || (
872 		    t_delta.sec == 16 && t_delta.frac >= (0x01LL << 56))) {
873 			/* too long */
874 			if (bootverbose)
875 				printf("t_delta %ju.%016jx too long\n",
876 				    (uintmax_t)t_delta.sec,
877 				    (uintmax_t)t_delta.frac);
878 		} else if (t_delta.sec < 15 ||
879 		    (t_delta.sec == 15 && t_delta.frac <= (0xffLL << 56))) {
880 			/* too short */
881 			if (bootverbose)
882 				printf("t_delta %ju.%016jx too short\n",
883 				    (uintmax_t)t_delta.sec,
884 				    (uintmax_t)t_delta.frac);
885 		} else {
886 			/* just right */
887 			/*
888 			 * Headroom:
889 			 * 	2^(64-20) / 16[s] =
890 			 * 	2^(44) / 16[s] =
891 			 * 	17.592.186.044.416 / 16 =
892 			 * 	1.099.511.627.776 [Hz]
893 			 */
894 			divi = t_delta.sec << 20;
895 			divi |= t_delta.frac >> (64 - 20);
896 			c_delta <<= 20;
897 			c_delta /= divi;
898 			if (c_delta  > cpu_tick_frequency) {
899 				if (0 && bootverbose)
900 					printf("cpu_tick increased to %ju Hz\n",
901 					    c_delta);
902 				cpu_tick_frequency = c_delta;
903 			}
904 		}
905 	}
906 	c_last = c_this;
907 	t_last = t_this;
908 }
909 
910 void
911 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
912 {
913 
914 	if (func == NULL) {
915 		cpu_ticks = tc_cpu_ticks;
916 	} else {
917 		cpu_tick_frequency = freq;
918 		cpu_tick_variable = var;
919 		cpu_ticks = func;
920 	}
921 }
922 
923 uint64_t
924 cpu_tickrate(void)
925 {
926 
927 	if (cpu_ticks == tc_cpu_ticks)
928 		return (tc_getfrequency());
929 	return (cpu_tick_frequency);
930 }
931 
932 /*
933  * We need to be slightly careful converting cputicks to microseconds.
934  * There is plenty of margin in 64 bits of microseconds (half a million
935  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
936  * before divide conversion (to retain precision) we find that the
937  * margin shrinks to 1.5 hours (one millionth of 146y).
938  * With a three prong approach we never lose significant bits, no
939  * matter what the cputick rate and length of timeinterval is.
940  */
941 
942 uint64_t
943 cputick2usec(uint64_t tick)
944 {
945 
946 	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
947 		return (tick / (cpu_tickrate() / 1000000LL));
948 	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
949 		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
950 	else
951 		return ((tick * 1000000LL) / cpu_tickrate());
952 }
953 
954 cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
955