1 /*- 2 * SPDX-License-Identifier: Beerware 3 * 4 * ---------------------------------------------------------------------------- 5 * "THE BEER-WARE LICENSE" (Revision 42): 6 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 7 * can do whatever you want with this stuff. If we meet some day, and you think 8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 9 * ---------------------------------------------------------------------------- 10 * 11 * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation 12 * 13 * Portions of this software were developed by Julien Ridoux at the University 14 * of Melbourne under sponsorship from the FreeBSD Foundation. 15 * 16 * Portions of this software were developed by Konstantin Belousov 17 * under sponsorship from the FreeBSD Foundation. 18 */ 19 20 #include <sys/cdefs.h> 21 __FBSDID("$FreeBSD$"); 22 23 #include "opt_ntp.h" 24 #include "opt_ffclock.h" 25 26 #include <sys/param.h> 27 #include <sys/kernel.h> 28 #include <sys/limits.h> 29 #include <sys/lock.h> 30 #include <sys/mutex.h> 31 #include <sys/proc.h> 32 #include <sys/sbuf.h> 33 #include <sys/sleepqueue.h> 34 #include <sys/sysctl.h> 35 #include <sys/syslog.h> 36 #include <sys/systm.h> 37 #include <sys/timeffc.h> 38 #include <sys/timepps.h> 39 #include <sys/timetc.h> 40 #include <sys/timex.h> 41 #include <sys/vdso.h> 42 43 /* 44 * A large step happens on boot. This constant detects such steps. 45 * It is relatively small so that ntp_update_second gets called enough 46 * in the typical 'missed a couple of seconds' case, but doesn't loop 47 * forever when the time step is large. 48 */ 49 #define LARGE_STEP 200 50 51 /* 52 * Implement a dummy timecounter which we can use until we get a real one 53 * in the air. This allows the console and other early stuff to use 54 * time services. 55 */ 56 57 static u_int 58 dummy_get_timecount(struct timecounter *tc) 59 { 60 static u_int now; 61 62 return (++now); 63 } 64 65 static struct timecounter dummy_timecounter = { 66 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 67 }; 68 69 struct timehands { 70 /* These fields must be initialized by the driver. */ 71 struct timecounter *th_counter; 72 int64_t th_adjustment; 73 uint64_t th_scale; 74 u_int th_large_delta; 75 u_int th_offset_count; 76 struct bintime th_offset; 77 struct bintime th_bintime; 78 struct timeval th_microtime; 79 struct timespec th_nanotime; 80 struct bintime th_boottime; 81 /* Fields not to be copied in tc_windup start with th_generation. */ 82 u_int th_generation; 83 struct timehands *th_next; 84 }; 85 86 static struct timehands ths[16] = { 87 [0] = { 88 .th_counter = &dummy_timecounter, 89 .th_scale = (uint64_t)-1 / 1000000, 90 .th_large_delta = 1000000, 91 .th_offset = { .sec = 1 }, 92 .th_generation = 1, 93 }, 94 }; 95 96 static struct timehands *volatile timehands = &ths[0]; 97 struct timecounter *timecounter = &dummy_timecounter; 98 static struct timecounter *timecounters = &dummy_timecounter; 99 100 /* Mutex to protect the timecounter list. */ 101 static struct mtx tc_lock; 102 MTX_SYSINIT(tc_lock, &tc_lock, "tc", MTX_DEF); 103 104 int tc_min_ticktock_freq = 1; 105 106 volatile time_t time_second = 1; 107 volatile time_t time_uptime = 1; 108 109 /* 110 * The system time is always computed by summing the estimated boot time and the 111 * system uptime. The timehands track boot time, but it changes when the system 112 * time is set by the user, stepped by ntpd or adjusted when resuming. It 113 * is set to new_time - uptime. 114 */ 115 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 116 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, 117 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 118 sysctl_kern_boottime, "S,timeval", 119 "Estimated system boottime"); 120 121 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 122 ""); 123 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, 124 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 125 ""); 126 127 static int timestepwarnings; 128 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RWTUN, 129 ×tepwarnings, 0, "Log time steps"); 130 131 static int timehands_count = 2; 132 SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count, 133 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 134 &timehands_count, 0, "Count of timehands in rotation"); 135 136 struct bintime bt_timethreshold; 137 struct bintime bt_tickthreshold; 138 sbintime_t sbt_timethreshold; 139 sbintime_t sbt_tickthreshold; 140 struct bintime tc_tick_bt; 141 sbintime_t tc_tick_sbt; 142 int tc_precexp; 143 int tc_timepercentage = TC_DEFAULTPERC; 144 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 145 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 146 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 147 sysctl_kern_timecounter_adjprecision, "I", 148 "Allowed time interval deviation in percents"); 149 150 volatile int rtc_generation = 1; 151 152 static int tc_chosen; /* Non-zero if a specific tc was chosen via sysctl. */ 153 static char tc_from_tunable[16]; 154 155 static void tc_windup(struct bintime *new_boottimebin); 156 static void cpu_tick_calibrate(int); 157 158 void dtrace_getnanotime(struct timespec *tsp); 159 void dtrace_getnanouptime(struct timespec *tsp); 160 161 static int 162 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 163 { 164 struct timeval boottime; 165 166 getboottime(&boottime); 167 168 /* i386 is the only arch which uses a 32bits time_t */ 169 #ifdef __amd64__ 170 #ifdef SCTL_MASK32 171 int tv[2]; 172 173 if (req->flags & SCTL_MASK32) { 174 tv[0] = boottime.tv_sec; 175 tv[1] = boottime.tv_usec; 176 return (SYSCTL_OUT(req, tv, sizeof(tv))); 177 } 178 #endif 179 #endif 180 return (SYSCTL_OUT(req, &boottime, sizeof(boottime))); 181 } 182 183 static int 184 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 185 { 186 u_int ncount; 187 struct timecounter *tc = arg1; 188 189 ncount = tc->tc_get_timecount(tc); 190 return (sysctl_handle_int(oidp, &ncount, 0, req)); 191 } 192 193 static int 194 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 195 { 196 uint64_t freq; 197 struct timecounter *tc = arg1; 198 199 freq = tc->tc_frequency; 200 return (sysctl_handle_64(oidp, &freq, 0, req)); 201 } 202 203 /* 204 * Return the difference between the timehands' counter value now and what 205 * was when we copied it to the timehands' offset_count. 206 */ 207 static __inline u_int 208 tc_delta(struct timehands *th) 209 { 210 struct timecounter *tc; 211 212 tc = th->th_counter; 213 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 214 tc->tc_counter_mask); 215 } 216 217 /* 218 * Functions for reading the time. We have to loop until we are sure that 219 * the timehands that we operated on was not updated under our feet. See 220 * the comment in <sys/time.h> for a description of these 12 functions. 221 */ 222 223 static __inline void 224 bintime_off(struct bintime *bt, u_int off) 225 { 226 struct timehands *th; 227 struct bintime *btp; 228 uint64_t scale, x; 229 u_int delta, gen, large_delta; 230 231 do { 232 th = timehands; 233 gen = atomic_load_acq_int(&th->th_generation); 234 btp = (struct bintime *)((vm_offset_t)th + off); 235 *bt = *btp; 236 scale = th->th_scale; 237 delta = tc_delta(th); 238 large_delta = th->th_large_delta; 239 atomic_thread_fence_acq(); 240 } while (gen == 0 || gen != th->th_generation); 241 242 if (__predict_false(delta >= large_delta)) { 243 /* Avoid overflow for scale * delta. */ 244 x = (scale >> 32) * delta; 245 bt->sec += x >> 32; 246 bintime_addx(bt, x << 32); 247 bintime_addx(bt, (scale & 0xffffffff) * delta); 248 } else { 249 bintime_addx(bt, scale * delta); 250 } 251 } 252 #define GETTHBINTIME(dst, member) \ 253 do { \ 254 _Static_assert(_Generic(((struct timehands *)NULL)->member, \ 255 struct bintime: 1, default: 0) == 1, \ 256 "struct timehands member is not of struct bintime type"); \ 257 bintime_off(dst, __offsetof(struct timehands, member)); \ 258 } while (0) 259 260 static __inline void 261 getthmember(void *out, size_t out_size, u_int off) 262 { 263 struct timehands *th; 264 u_int gen; 265 266 do { 267 th = timehands; 268 gen = atomic_load_acq_int(&th->th_generation); 269 memcpy(out, (char *)th + off, out_size); 270 atomic_thread_fence_acq(); 271 } while (gen == 0 || gen != th->th_generation); 272 } 273 #define GETTHMEMBER(dst, member) \ 274 do { \ 275 _Static_assert(_Generic(*dst, \ 276 __typeof(((struct timehands *)NULL)->member): 1, \ 277 default: 0) == 1, \ 278 "*dst and struct timehands member have different types"); \ 279 getthmember(dst, sizeof(*dst), __offsetof(struct timehands, \ 280 member)); \ 281 } while (0) 282 283 #ifdef FFCLOCK 284 void 285 fbclock_binuptime(struct bintime *bt) 286 { 287 288 GETTHBINTIME(bt, th_offset); 289 } 290 291 void 292 fbclock_nanouptime(struct timespec *tsp) 293 { 294 struct bintime bt; 295 296 fbclock_binuptime(&bt); 297 bintime2timespec(&bt, tsp); 298 } 299 300 void 301 fbclock_microuptime(struct timeval *tvp) 302 { 303 struct bintime bt; 304 305 fbclock_binuptime(&bt); 306 bintime2timeval(&bt, tvp); 307 } 308 309 void 310 fbclock_bintime(struct bintime *bt) 311 { 312 313 GETTHBINTIME(bt, th_bintime); 314 } 315 316 void 317 fbclock_nanotime(struct timespec *tsp) 318 { 319 struct bintime bt; 320 321 fbclock_bintime(&bt); 322 bintime2timespec(&bt, tsp); 323 } 324 325 void 326 fbclock_microtime(struct timeval *tvp) 327 { 328 struct bintime bt; 329 330 fbclock_bintime(&bt); 331 bintime2timeval(&bt, tvp); 332 } 333 334 void 335 fbclock_getbinuptime(struct bintime *bt) 336 { 337 338 GETTHMEMBER(bt, th_offset); 339 } 340 341 void 342 fbclock_getnanouptime(struct timespec *tsp) 343 { 344 struct bintime bt; 345 346 GETTHMEMBER(&bt, th_offset); 347 bintime2timespec(&bt, tsp); 348 } 349 350 void 351 fbclock_getmicrouptime(struct timeval *tvp) 352 { 353 struct bintime bt; 354 355 GETTHMEMBER(&bt, th_offset); 356 bintime2timeval(&bt, tvp); 357 } 358 359 void 360 fbclock_getbintime(struct bintime *bt) 361 { 362 363 GETTHMEMBER(bt, th_bintime); 364 } 365 366 void 367 fbclock_getnanotime(struct timespec *tsp) 368 { 369 370 GETTHMEMBER(tsp, th_nanotime); 371 } 372 373 void 374 fbclock_getmicrotime(struct timeval *tvp) 375 { 376 377 GETTHMEMBER(tvp, th_microtime); 378 } 379 #else /* !FFCLOCK */ 380 381 void 382 binuptime(struct bintime *bt) 383 { 384 385 GETTHBINTIME(bt, th_offset); 386 } 387 388 void 389 nanouptime(struct timespec *tsp) 390 { 391 struct bintime bt; 392 393 binuptime(&bt); 394 bintime2timespec(&bt, tsp); 395 } 396 397 void 398 microuptime(struct timeval *tvp) 399 { 400 struct bintime bt; 401 402 binuptime(&bt); 403 bintime2timeval(&bt, tvp); 404 } 405 406 void 407 bintime(struct bintime *bt) 408 { 409 410 GETTHBINTIME(bt, th_bintime); 411 } 412 413 void 414 nanotime(struct timespec *tsp) 415 { 416 struct bintime bt; 417 418 bintime(&bt); 419 bintime2timespec(&bt, tsp); 420 } 421 422 void 423 microtime(struct timeval *tvp) 424 { 425 struct bintime bt; 426 427 bintime(&bt); 428 bintime2timeval(&bt, tvp); 429 } 430 431 void 432 getbinuptime(struct bintime *bt) 433 { 434 435 GETTHMEMBER(bt, th_offset); 436 } 437 438 void 439 getnanouptime(struct timespec *tsp) 440 { 441 struct bintime bt; 442 443 GETTHMEMBER(&bt, th_offset); 444 bintime2timespec(&bt, tsp); 445 } 446 447 void 448 getmicrouptime(struct timeval *tvp) 449 { 450 struct bintime bt; 451 452 GETTHMEMBER(&bt, th_offset); 453 bintime2timeval(&bt, tvp); 454 } 455 456 void 457 getbintime(struct bintime *bt) 458 { 459 460 GETTHMEMBER(bt, th_bintime); 461 } 462 463 void 464 getnanotime(struct timespec *tsp) 465 { 466 467 GETTHMEMBER(tsp, th_nanotime); 468 } 469 470 void 471 getmicrotime(struct timeval *tvp) 472 { 473 474 GETTHMEMBER(tvp, th_microtime); 475 } 476 #endif /* FFCLOCK */ 477 478 void 479 getboottime(struct timeval *boottime) 480 { 481 struct bintime boottimebin; 482 483 getboottimebin(&boottimebin); 484 bintime2timeval(&boottimebin, boottime); 485 } 486 487 void 488 getboottimebin(struct bintime *boottimebin) 489 { 490 491 GETTHMEMBER(boottimebin, th_boottime); 492 } 493 494 #ifdef FFCLOCK 495 /* 496 * Support for feed-forward synchronization algorithms. This is heavily inspired 497 * by the timehands mechanism but kept independent from it. *_windup() functions 498 * have some connection to avoid accessing the timecounter hardware more than 499 * necessary. 500 */ 501 502 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 503 struct ffclock_estimate ffclock_estimate; 504 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 505 uint32_t ffclock_status; /* Feed-forward clock status. */ 506 int8_t ffclock_updated; /* New estimates are available. */ 507 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 508 509 struct fftimehands { 510 struct ffclock_estimate cest; 511 struct bintime tick_time; 512 struct bintime tick_time_lerp; 513 ffcounter tick_ffcount; 514 uint64_t period_lerp; 515 volatile uint8_t gen; 516 struct fftimehands *next; 517 }; 518 519 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 520 521 static struct fftimehands ffth[10]; 522 static struct fftimehands *volatile fftimehands = ffth; 523 524 static void 525 ffclock_init(void) 526 { 527 struct fftimehands *cur; 528 struct fftimehands *last; 529 530 memset(ffth, 0, sizeof(ffth)); 531 532 last = ffth + NUM_ELEMENTS(ffth) - 1; 533 for (cur = ffth; cur < last; cur++) 534 cur->next = cur + 1; 535 last->next = ffth; 536 537 ffclock_updated = 0; 538 ffclock_status = FFCLOCK_STA_UNSYNC; 539 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 540 } 541 542 /* 543 * Reset the feed-forward clock estimates. Called from inittodr() to get things 544 * kick started and uses the timecounter nominal frequency as a first period 545 * estimate. Note: this function may be called several time just after boot. 546 * Note: this is the only function that sets the value of boot time for the 547 * monotonic (i.e. uptime) version of the feed-forward clock. 548 */ 549 void 550 ffclock_reset_clock(struct timespec *ts) 551 { 552 struct timecounter *tc; 553 struct ffclock_estimate cest; 554 555 tc = timehands->th_counter; 556 memset(&cest, 0, sizeof(struct ffclock_estimate)); 557 558 timespec2bintime(ts, &ffclock_boottime); 559 timespec2bintime(ts, &(cest.update_time)); 560 ffclock_read_counter(&cest.update_ffcount); 561 cest.leapsec_next = 0; 562 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 563 cest.errb_abs = 0; 564 cest.errb_rate = 0; 565 cest.status = FFCLOCK_STA_UNSYNC; 566 cest.leapsec_total = 0; 567 cest.leapsec = 0; 568 569 mtx_lock(&ffclock_mtx); 570 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 571 ffclock_updated = INT8_MAX; 572 mtx_unlock(&ffclock_mtx); 573 574 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 575 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 576 (unsigned long)ts->tv_nsec); 577 } 578 579 /* 580 * Sub-routine to convert a time interval measured in RAW counter units to time 581 * in seconds stored in bintime format. 582 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 583 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 584 * extra cycles. 585 */ 586 static void 587 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 588 { 589 struct bintime bt2; 590 ffcounter delta, delta_max; 591 592 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 593 bintime_clear(bt); 594 do { 595 if (ffdelta > delta_max) 596 delta = delta_max; 597 else 598 delta = ffdelta; 599 bt2.sec = 0; 600 bt2.frac = period; 601 bintime_mul(&bt2, (unsigned int)delta); 602 bintime_add(bt, &bt2); 603 ffdelta -= delta; 604 } while (ffdelta > 0); 605 } 606 607 /* 608 * Update the fftimehands. 609 * Push the tick ffcount and time(s) forward based on current clock estimate. 610 * The conversion from ffcounter to bintime relies on the difference clock 611 * principle, whose accuracy relies on computing small time intervals. If a new 612 * clock estimate has been passed by the synchronisation daemon, make it 613 * current, and compute the linear interpolation for monotonic time if needed. 614 */ 615 static void 616 ffclock_windup(unsigned int delta) 617 { 618 struct ffclock_estimate *cest; 619 struct fftimehands *ffth; 620 struct bintime bt, gap_lerp; 621 ffcounter ffdelta; 622 uint64_t frac; 623 unsigned int polling; 624 uint8_t forward_jump, ogen; 625 626 /* 627 * Pick the next timehand, copy current ffclock estimates and move tick 628 * times and counter forward. 629 */ 630 forward_jump = 0; 631 ffth = fftimehands->next; 632 ogen = ffth->gen; 633 ffth->gen = 0; 634 cest = &ffth->cest; 635 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 636 ffdelta = (ffcounter)delta; 637 ffth->period_lerp = fftimehands->period_lerp; 638 639 ffth->tick_time = fftimehands->tick_time; 640 ffclock_convert_delta(ffdelta, cest->period, &bt); 641 bintime_add(&ffth->tick_time, &bt); 642 643 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 644 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 645 bintime_add(&ffth->tick_time_lerp, &bt); 646 647 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 648 649 /* 650 * Assess the status of the clock, if the last update is too old, it is 651 * likely the synchronisation daemon is dead and the clock is free 652 * running. 653 */ 654 if (ffclock_updated == 0) { 655 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 656 ffclock_convert_delta(ffdelta, cest->period, &bt); 657 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 658 ffclock_status |= FFCLOCK_STA_UNSYNC; 659 } 660 661 /* 662 * If available, grab updated clock estimates and make them current. 663 * Recompute time at this tick using the updated estimates. The clock 664 * estimates passed the feed-forward synchronisation daemon may result 665 * in time conversion that is not monotonically increasing (just after 666 * the update). time_lerp is a particular linear interpolation over the 667 * synchronisation algo polling period that ensures monotonicity for the 668 * clock ids requesting it. 669 */ 670 if (ffclock_updated > 0) { 671 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 672 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 673 ffth->tick_time = cest->update_time; 674 ffclock_convert_delta(ffdelta, cest->period, &bt); 675 bintime_add(&ffth->tick_time, &bt); 676 677 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 678 if (ffclock_updated == INT8_MAX) 679 ffth->tick_time_lerp = ffth->tick_time; 680 681 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 682 forward_jump = 1; 683 else 684 forward_jump = 0; 685 686 bintime_clear(&gap_lerp); 687 if (forward_jump) { 688 gap_lerp = ffth->tick_time; 689 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 690 } else { 691 gap_lerp = ffth->tick_time_lerp; 692 bintime_sub(&gap_lerp, &ffth->tick_time); 693 } 694 695 /* 696 * The reset from the RTC clock may be far from accurate, and 697 * reducing the gap between real time and interpolated time 698 * could take a very long time if the interpolated clock insists 699 * on strict monotonicity. The clock is reset under very strict 700 * conditions (kernel time is known to be wrong and 701 * synchronization daemon has been restarted recently. 702 * ffclock_boottime absorbs the jump to ensure boot time is 703 * correct and uptime functions stay consistent. 704 */ 705 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 706 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 707 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 708 if (forward_jump) 709 bintime_add(&ffclock_boottime, &gap_lerp); 710 else 711 bintime_sub(&ffclock_boottime, &gap_lerp); 712 ffth->tick_time_lerp = ffth->tick_time; 713 bintime_clear(&gap_lerp); 714 } 715 716 ffclock_status = cest->status; 717 ffth->period_lerp = cest->period; 718 719 /* 720 * Compute corrected period used for the linear interpolation of 721 * time. The rate of linear interpolation is capped to 5000PPM 722 * (5ms/s). 723 */ 724 if (bintime_isset(&gap_lerp)) { 725 ffdelta = cest->update_ffcount; 726 ffdelta -= fftimehands->cest.update_ffcount; 727 ffclock_convert_delta(ffdelta, cest->period, &bt); 728 polling = bt.sec; 729 bt.sec = 0; 730 bt.frac = 5000000 * (uint64_t)18446744073LL; 731 bintime_mul(&bt, polling); 732 if (bintime_cmp(&gap_lerp, &bt, >)) 733 gap_lerp = bt; 734 735 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 736 frac = 0; 737 if (gap_lerp.sec > 0) { 738 frac -= 1; 739 frac /= ffdelta / gap_lerp.sec; 740 } 741 frac += gap_lerp.frac / ffdelta; 742 743 if (forward_jump) 744 ffth->period_lerp += frac; 745 else 746 ffth->period_lerp -= frac; 747 } 748 749 ffclock_updated = 0; 750 } 751 if (++ogen == 0) 752 ogen = 1; 753 ffth->gen = ogen; 754 fftimehands = ffth; 755 } 756 757 /* 758 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 759 * the old and new hardware counter cannot be read simultaneously. tc_windup() 760 * does read the two counters 'back to back', but a few cycles are effectively 761 * lost, and not accumulated in tick_ffcount. This is a fairly radical 762 * operation for a feed-forward synchronization daemon, and it is its job to not 763 * pushing irrelevant data to the kernel. Because there is no locking here, 764 * simply force to ignore pending or next update to give daemon a chance to 765 * realize the counter has changed. 766 */ 767 static void 768 ffclock_change_tc(struct timehands *th) 769 { 770 struct fftimehands *ffth; 771 struct ffclock_estimate *cest; 772 struct timecounter *tc; 773 uint8_t ogen; 774 775 tc = th->th_counter; 776 ffth = fftimehands->next; 777 ogen = ffth->gen; 778 ffth->gen = 0; 779 780 cest = &ffth->cest; 781 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 782 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 783 cest->errb_abs = 0; 784 cest->errb_rate = 0; 785 cest->status |= FFCLOCK_STA_UNSYNC; 786 787 ffth->tick_ffcount = fftimehands->tick_ffcount; 788 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 789 ffth->tick_time = fftimehands->tick_time; 790 ffth->period_lerp = cest->period; 791 792 /* Do not lock but ignore next update from synchronization daemon. */ 793 ffclock_updated--; 794 795 if (++ogen == 0) 796 ogen = 1; 797 ffth->gen = ogen; 798 fftimehands = ffth; 799 } 800 801 /* 802 * Retrieve feed-forward counter and time of last kernel tick. 803 */ 804 void 805 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 806 { 807 struct fftimehands *ffth; 808 uint8_t gen; 809 810 /* 811 * No locking but check generation has not changed. Also need to make 812 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 813 */ 814 do { 815 ffth = fftimehands; 816 gen = ffth->gen; 817 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 818 *bt = ffth->tick_time_lerp; 819 else 820 *bt = ffth->tick_time; 821 *ffcount = ffth->tick_ffcount; 822 } while (gen == 0 || gen != ffth->gen); 823 } 824 825 /* 826 * Absolute clock conversion. Low level function to convert ffcounter to 827 * bintime. The ffcounter is converted using the current ffclock period estimate 828 * or the "interpolated period" to ensure monotonicity. 829 * NOTE: this conversion may have been deferred, and the clock updated since the 830 * hardware counter has been read. 831 */ 832 void 833 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 834 { 835 struct fftimehands *ffth; 836 struct bintime bt2; 837 ffcounter ffdelta; 838 uint8_t gen; 839 840 /* 841 * No locking but check generation has not changed. Also need to make 842 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 843 */ 844 do { 845 ffth = fftimehands; 846 gen = ffth->gen; 847 if (ffcount > ffth->tick_ffcount) 848 ffdelta = ffcount - ffth->tick_ffcount; 849 else 850 ffdelta = ffth->tick_ffcount - ffcount; 851 852 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 853 *bt = ffth->tick_time_lerp; 854 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 855 } else { 856 *bt = ffth->tick_time; 857 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 858 } 859 860 if (ffcount > ffth->tick_ffcount) 861 bintime_add(bt, &bt2); 862 else 863 bintime_sub(bt, &bt2); 864 } while (gen == 0 || gen != ffth->gen); 865 } 866 867 /* 868 * Difference clock conversion. 869 * Low level function to Convert a time interval measured in RAW counter units 870 * into bintime. The difference clock allows measuring small intervals much more 871 * reliably than the absolute clock. 872 */ 873 void 874 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 875 { 876 struct fftimehands *ffth; 877 uint8_t gen; 878 879 /* No locking but check generation has not changed. */ 880 do { 881 ffth = fftimehands; 882 gen = ffth->gen; 883 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 884 } while (gen == 0 || gen != ffth->gen); 885 } 886 887 /* 888 * Access to current ffcounter value. 889 */ 890 void 891 ffclock_read_counter(ffcounter *ffcount) 892 { 893 struct timehands *th; 894 struct fftimehands *ffth; 895 unsigned int gen, delta; 896 897 /* 898 * ffclock_windup() called from tc_windup(), safe to rely on 899 * th->th_generation only, for correct delta and ffcounter. 900 */ 901 do { 902 th = timehands; 903 gen = atomic_load_acq_int(&th->th_generation); 904 ffth = fftimehands; 905 delta = tc_delta(th); 906 *ffcount = ffth->tick_ffcount; 907 atomic_thread_fence_acq(); 908 } while (gen == 0 || gen != th->th_generation); 909 910 *ffcount += delta; 911 } 912 913 void 914 binuptime(struct bintime *bt) 915 { 916 917 binuptime_fromclock(bt, sysclock_active); 918 } 919 920 void 921 nanouptime(struct timespec *tsp) 922 { 923 924 nanouptime_fromclock(tsp, sysclock_active); 925 } 926 927 void 928 microuptime(struct timeval *tvp) 929 { 930 931 microuptime_fromclock(tvp, sysclock_active); 932 } 933 934 void 935 bintime(struct bintime *bt) 936 { 937 938 bintime_fromclock(bt, sysclock_active); 939 } 940 941 void 942 nanotime(struct timespec *tsp) 943 { 944 945 nanotime_fromclock(tsp, sysclock_active); 946 } 947 948 void 949 microtime(struct timeval *tvp) 950 { 951 952 microtime_fromclock(tvp, sysclock_active); 953 } 954 955 void 956 getbinuptime(struct bintime *bt) 957 { 958 959 getbinuptime_fromclock(bt, sysclock_active); 960 } 961 962 void 963 getnanouptime(struct timespec *tsp) 964 { 965 966 getnanouptime_fromclock(tsp, sysclock_active); 967 } 968 969 void 970 getmicrouptime(struct timeval *tvp) 971 { 972 973 getmicrouptime_fromclock(tvp, sysclock_active); 974 } 975 976 void 977 getbintime(struct bintime *bt) 978 { 979 980 getbintime_fromclock(bt, sysclock_active); 981 } 982 983 void 984 getnanotime(struct timespec *tsp) 985 { 986 987 getnanotime_fromclock(tsp, sysclock_active); 988 } 989 990 void 991 getmicrotime(struct timeval *tvp) 992 { 993 994 getmicrouptime_fromclock(tvp, sysclock_active); 995 } 996 997 #endif /* FFCLOCK */ 998 999 /* 1000 * This is a clone of getnanotime and used for walltimestamps. 1001 * The dtrace_ prefix prevents fbt from creating probes for 1002 * it so walltimestamp can be safely used in all fbt probes. 1003 */ 1004 void 1005 dtrace_getnanotime(struct timespec *tsp) 1006 { 1007 1008 GETTHMEMBER(tsp, th_nanotime); 1009 } 1010 1011 /* 1012 * This is a clone of getnanouptime used for time since boot. 1013 * The dtrace_ prefix prevents fbt from creating probes for 1014 * it so an uptime that can be safely used in all fbt probes. 1015 */ 1016 void 1017 dtrace_getnanouptime(struct timespec *tsp) 1018 { 1019 struct bintime bt; 1020 1021 GETTHMEMBER(&bt, th_offset); 1022 bintime2timespec(&bt, tsp); 1023 } 1024 1025 /* 1026 * System clock currently providing time to the system. Modifiable via sysctl 1027 * when the FFCLOCK option is defined. 1028 */ 1029 int sysclock_active = SYSCLOCK_FBCK; 1030 1031 /* Internal NTP status and error estimates. */ 1032 extern int time_status; 1033 extern long time_esterror; 1034 1035 /* 1036 * Take a snapshot of sysclock data which can be used to compare system clocks 1037 * and generate timestamps after the fact. 1038 */ 1039 void 1040 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 1041 { 1042 struct fbclock_info *fbi; 1043 struct timehands *th; 1044 struct bintime bt; 1045 unsigned int delta, gen; 1046 #ifdef FFCLOCK 1047 ffcounter ffcount; 1048 struct fftimehands *ffth; 1049 struct ffclock_info *ffi; 1050 struct ffclock_estimate cest; 1051 1052 ffi = &clock_snap->ff_info; 1053 #endif 1054 1055 fbi = &clock_snap->fb_info; 1056 delta = 0; 1057 1058 do { 1059 th = timehands; 1060 gen = atomic_load_acq_int(&th->th_generation); 1061 fbi->th_scale = th->th_scale; 1062 fbi->tick_time = th->th_offset; 1063 #ifdef FFCLOCK 1064 ffth = fftimehands; 1065 ffi->tick_time = ffth->tick_time_lerp; 1066 ffi->tick_time_lerp = ffth->tick_time_lerp; 1067 ffi->period = ffth->cest.period; 1068 ffi->period_lerp = ffth->period_lerp; 1069 clock_snap->ffcount = ffth->tick_ffcount; 1070 cest = ffth->cest; 1071 #endif 1072 if (!fast) 1073 delta = tc_delta(th); 1074 atomic_thread_fence_acq(); 1075 } while (gen == 0 || gen != th->th_generation); 1076 1077 clock_snap->delta = delta; 1078 clock_snap->sysclock_active = sysclock_active; 1079 1080 /* Record feedback clock status and error. */ 1081 clock_snap->fb_info.status = time_status; 1082 /* XXX: Very crude estimate of feedback clock error. */ 1083 bt.sec = time_esterror / 1000000; 1084 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1085 (uint64_t)18446744073709ULL; 1086 clock_snap->fb_info.error = bt; 1087 1088 #ifdef FFCLOCK 1089 if (!fast) 1090 clock_snap->ffcount += delta; 1091 1092 /* Record feed-forward clock leap second adjustment. */ 1093 ffi->leapsec_adjustment = cest.leapsec_total; 1094 if (clock_snap->ffcount > cest.leapsec_next) 1095 ffi->leapsec_adjustment -= cest.leapsec; 1096 1097 /* Record feed-forward clock status and error. */ 1098 clock_snap->ff_info.status = cest.status; 1099 ffcount = clock_snap->ffcount - cest.update_ffcount; 1100 ffclock_convert_delta(ffcount, cest.period, &bt); 1101 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1102 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1103 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1104 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1105 clock_snap->ff_info.error = bt; 1106 #endif 1107 } 1108 1109 /* 1110 * Convert a sysclock snapshot into a struct bintime based on the specified 1111 * clock source and flags. 1112 */ 1113 int 1114 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1115 int whichclock, uint32_t flags) 1116 { 1117 struct bintime boottimebin; 1118 #ifdef FFCLOCK 1119 struct bintime bt2; 1120 uint64_t period; 1121 #endif 1122 1123 switch (whichclock) { 1124 case SYSCLOCK_FBCK: 1125 *bt = cs->fb_info.tick_time; 1126 1127 /* If snapshot was created with !fast, delta will be >0. */ 1128 if (cs->delta > 0) 1129 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1130 1131 if ((flags & FBCLOCK_UPTIME) == 0) { 1132 getboottimebin(&boottimebin); 1133 bintime_add(bt, &boottimebin); 1134 } 1135 break; 1136 #ifdef FFCLOCK 1137 case SYSCLOCK_FFWD: 1138 if (flags & FFCLOCK_LERP) { 1139 *bt = cs->ff_info.tick_time_lerp; 1140 period = cs->ff_info.period_lerp; 1141 } else { 1142 *bt = cs->ff_info.tick_time; 1143 period = cs->ff_info.period; 1144 } 1145 1146 /* If snapshot was created with !fast, delta will be >0. */ 1147 if (cs->delta > 0) { 1148 ffclock_convert_delta(cs->delta, period, &bt2); 1149 bintime_add(bt, &bt2); 1150 } 1151 1152 /* Leap second adjustment. */ 1153 if (flags & FFCLOCK_LEAPSEC) 1154 bt->sec -= cs->ff_info.leapsec_adjustment; 1155 1156 /* Boot time adjustment, for uptime/monotonic clocks. */ 1157 if (flags & FFCLOCK_UPTIME) 1158 bintime_sub(bt, &ffclock_boottime); 1159 break; 1160 #endif 1161 default: 1162 return (EINVAL); 1163 break; 1164 } 1165 1166 return (0); 1167 } 1168 1169 /* 1170 * Initialize a new timecounter and possibly use it. 1171 */ 1172 void 1173 tc_init(struct timecounter *tc) 1174 { 1175 u_int u; 1176 struct sysctl_oid *tc_root; 1177 1178 u = tc->tc_frequency / tc->tc_counter_mask; 1179 /* XXX: We need some margin here, 10% is a guess */ 1180 u *= 11; 1181 u /= 10; 1182 if (u > hz && tc->tc_quality >= 0) { 1183 tc->tc_quality = -2000; 1184 if (bootverbose) { 1185 printf("Timecounter \"%s\" frequency %ju Hz", 1186 tc->tc_name, (uintmax_t)tc->tc_frequency); 1187 printf(" -- Insufficient hz, needs at least %u\n", u); 1188 } 1189 } else if (tc->tc_quality >= 0 || bootverbose) { 1190 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1191 tc->tc_name, (uintmax_t)tc->tc_frequency, 1192 tc->tc_quality); 1193 } 1194 1195 /* 1196 * Set up sysctl tree for this counter. 1197 */ 1198 tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL, 1199 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1200 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1201 "timecounter description", "timecounter"); 1202 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1203 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1204 "mask for implemented bits"); 1205 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1206 "counter", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, tc, 1207 sizeof(*tc), sysctl_kern_timecounter_get, "IU", 1208 "current timecounter value"); 1209 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1210 "frequency", CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, tc, 1211 sizeof(*tc), sysctl_kern_timecounter_freq, "QU", 1212 "timecounter frequency"); 1213 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1214 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1215 "goodness of time counter"); 1216 1217 mtx_lock(&tc_lock); 1218 tc->tc_next = timecounters; 1219 timecounters = tc; 1220 1221 /* 1222 * Do not automatically switch if the current tc was specifically 1223 * chosen. Never automatically use a timecounter with negative quality. 1224 * Even though we run on the dummy counter, switching here may be 1225 * worse since this timecounter may not be monotonic. 1226 */ 1227 if (tc_chosen) 1228 goto unlock; 1229 if (tc->tc_quality < 0) 1230 goto unlock; 1231 if (tc_from_tunable[0] != '\0' && 1232 strcmp(tc->tc_name, tc_from_tunable) == 0) { 1233 tc_chosen = 1; 1234 tc_from_tunable[0] = '\0'; 1235 } else { 1236 if (tc->tc_quality < timecounter->tc_quality) 1237 goto unlock; 1238 if (tc->tc_quality == timecounter->tc_quality && 1239 tc->tc_frequency < timecounter->tc_frequency) 1240 goto unlock; 1241 } 1242 (void)tc->tc_get_timecount(tc); 1243 timecounter = tc; 1244 unlock: 1245 mtx_unlock(&tc_lock); 1246 } 1247 1248 /* Report the frequency of the current timecounter. */ 1249 uint64_t 1250 tc_getfrequency(void) 1251 { 1252 1253 return (timehands->th_counter->tc_frequency); 1254 } 1255 1256 static bool 1257 sleeping_on_old_rtc(struct thread *td) 1258 { 1259 1260 /* 1261 * td_rtcgen is modified by curthread when it is running, 1262 * and by other threads in this function. By finding the thread 1263 * on a sleepqueue and holding the lock on the sleepqueue 1264 * chain, we guarantee that the thread is not running and that 1265 * modifying td_rtcgen is safe. Setting td_rtcgen to zero informs 1266 * the thread that it was woken due to a real-time clock adjustment. 1267 * (The declaration of td_rtcgen refers to this comment.) 1268 */ 1269 if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) { 1270 td->td_rtcgen = 0; 1271 return (true); 1272 } 1273 return (false); 1274 } 1275 1276 static struct mtx tc_setclock_mtx; 1277 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN); 1278 1279 /* 1280 * Step our concept of UTC. This is done by modifying our estimate of 1281 * when we booted. 1282 */ 1283 void 1284 tc_setclock(struct timespec *ts) 1285 { 1286 struct timespec tbef, taft; 1287 struct bintime bt, bt2; 1288 1289 timespec2bintime(ts, &bt); 1290 nanotime(&tbef); 1291 mtx_lock_spin(&tc_setclock_mtx); 1292 cpu_tick_calibrate(1); 1293 binuptime(&bt2); 1294 bintime_sub(&bt, &bt2); 1295 1296 /* XXX fiddle all the little crinkly bits around the fiords... */ 1297 tc_windup(&bt); 1298 mtx_unlock_spin(&tc_setclock_mtx); 1299 1300 /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */ 1301 atomic_add_rel_int(&rtc_generation, 2); 1302 sleepq_chains_remove_matching(sleeping_on_old_rtc); 1303 if (timestepwarnings) { 1304 nanotime(&taft); 1305 log(LOG_INFO, 1306 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1307 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1308 (intmax_t)taft.tv_sec, taft.tv_nsec, 1309 (intmax_t)ts->tv_sec, ts->tv_nsec); 1310 } 1311 } 1312 1313 /* 1314 * Initialize the next struct timehands in the ring and make 1315 * it the active timehands. Along the way we might switch to a different 1316 * timecounter and/or do seconds processing in NTP. Slightly magic. 1317 */ 1318 static void 1319 tc_windup(struct bintime *new_boottimebin) 1320 { 1321 struct bintime bt; 1322 struct timehands *th, *tho; 1323 uint64_t scale; 1324 u_int delta, ncount, ogen; 1325 int i; 1326 time_t t; 1327 1328 /* 1329 * Make the next timehands a copy of the current one, but do 1330 * not overwrite the generation or next pointer. While we 1331 * update the contents, the generation must be zero. We need 1332 * to ensure that the zero generation is visible before the 1333 * data updates become visible, which requires release fence. 1334 * For similar reasons, re-reading of the generation after the 1335 * data is read should use acquire fence. 1336 */ 1337 tho = timehands; 1338 th = tho->th_next; 1339 ogen = th->th_generation; 1340 th->th_generation = 0; 1341 atomic_thread_fence_rel(); 1342 memcpy(th, tho, offsetof(struct timehands, th_generation)); 1343 if (new_boottimebin != NULL) 1344 th->th_boottime = *new_boottimebin; 1345 1346 /* 1347 * Capture a timecounter delta on the current timecounter and if 1348 * changing timecounters, a counter value from the new timecounter. 1349 * Update the offset fields accordingly. 1350 */ 1351 delta = tc_delta(th); 1352 if (th->th_counter != timecounter) 1353 ncount = timecounter->tc_get_timecount(timecounter); 1354 else 1355 ncount = 0; 1356 #ifdef FFCLOCK 1357 ffclock_windup(delta); 1358 #endif 1359 th->th_offset_count += delta; 1360 th->th_offset_count &= th->th_counter->tc_counter_mask; 1361 while (delta > th->th_counter->tc_frequency) { 1362 /* Eat complete unadjusted seconds. */ 1363 delta -= th->th_counter->tc_frequency; 1364 th->th_offset.sec++; 1365 } 1366 if ((delta > th->th_counter->tc_frequency / 2) && 1367 (th->th_scale * delta < ((uint64_t)1 << 63))) { 1368 /* The product th_scale * delta just barely overflows. */ 1369 th->th_offset.sec++; 1370 } 1371 bintime_addx(&th->th_offset, th->th_scale * delta); 1372 1373 /* 1374 * Hardware latching timecounters may not generate interrupts on 1375 * PPS events, so instead we poll them. There is a finite risk that 1376 * the hardware might capture a count which is later than the one we 1377 * got above, and therefore possibly in the next NTP second which might 1378 * have a different rate than the current NTP second. It doesn't 1379 * matter in practice. 1380 */ 1381 if (tho->th_counter->tc_poll_pps) 1382 tho->th_counter->tc_poll_pps(tho->th_counter); 1383 1384 /* 1385 * Deal with NTP second processing. The for loop normally 1386 * iterates at most once, but in extreme situations it might 1387 * keep NTP sane if timeouts are not run for several seconds. 1388 * At boot, the time step can be large when the TOD hardware 1389 * has been read, so on really large steps, we call 1390 * ntp_update_second only twice. We need to call it twice in 1391 * case we missed a leap second. 1392 */ 1393 bt = th->th_offset; 1394 bintime_add(&bt, &th->th_boottime); 1395 i = bt.sec - tho->th_microtime.tv_sec; 1396 if (i > LARGE_STEP) 1397 i = 2; 1398 for (; i > 0; i--) { 1399 t = bt.sec; 1400 ntp_update_second(&th->th_adjustment, &bt.sec); 1401 if (bt.sec != t) 1402 th->th_boottime.sec += bt.sec - t; 1403 } 1404 /* Update the UTC timestamps used by the get*() functions. */ 1405 th->th_bintime = bt; 1406 bintime2timeval(&bt, &th->th_microtime); 1407 bintime2timespec(&bt, &th->th_nanotime); 1408 1409 /* Now is a good time to change timecounters. */ 1410 if (th->th_counter != timecounter) { 1411 #ifndef __arm__ 1412 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0) 1413 cpu_disable_c2_sleep++; 1414 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 1415 cpu_disable_c2_sleep--; 1416 #endif 1417 th->th_counter = timecounter; 1418 th->th_offset_count = ncount; 1419 tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 1420 (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1421 #ifdef FFCLOCK 1422 ffclock_change_tc(th); 1423 #endif 1424 } 1425 1426 /*- 1427 * Recalculate the scaling factor. We want the number of 1/2^64 1428 * fractions of a second per period of the hardware counter, taking 1429 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1430 * processing provides us with. 1431 * 1432 * The th_adjustment is nanoseconds per second with 32 bit binary 1433 * fraction and we want 64 bit binary fraction of second: 1434 * 1435 * x = a * 2^32 / 10^9 = a * 4.294967296 1436 * 1437 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1438 * we can only multiply by about 850 without overflowing, that 1439 * leaves no suitably precise fractions for multiply before divide. 1440 * 1441 * Divide before multiply with a fraction of 2199/512 results in a 1442 * systematic undercompensation of 10PPM of th_adjustment. On a 1443 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1444 * 1445 * We happily sacrifice the lowest of the 64 bits of our result 1446 * to the goddess of code clarity. 1447 * 1448 */ 1449 scale = (uint64_t)1 << 63; 1450 scale += (th->th_adjustment / 1024) * 2199; 1451 scale /= th->th_counter->tc_frequency; 1452 th->th_scale = scale * 2; 1453 th->th_large_delta = MIN(((uint64_t)1 << 63) / scale, UINT_MAX); 1454 1455 /* 1456 * Now that the struct timehands is again consistent, set the new 1457 * generation number, making sure to not make it zero. 1458 */ 1459 if (++ogen == 0) 1460 ogen = 1; 1461 atomic_store_rel_int(&th->th_generation, ogen); 1462 1463 /* Go live with the new struct timehands. */ 1464 #ifdef FFCLOCK 1465 switch (sysclock_active) { 1466 case SYSCLOCK_FBCK: 1467 #endif 1468 time_second = th->th_microtime.tv_sec; 1469 time_uptime = th->th_offset.sec; 1470 #ifdef FFCLOCK 1471 break; 1472 case SYSCLOCK_FFWD: 1473 time_second = fftimehands->tick_time_lerp.sec; 1474 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1475 break; 1476 } 1477 #endif 1478 1479 timehands = th; 1480 timekeep_push_vdso(); 1481 } 1482 1483 /* Report or change the active timecounter hardware. */ 1484 static int 1485 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1486 { 1487 char newname[32]; 1488 struct timecounter *newtc, *tc; 1489 int error; 1490 1491 mtx_lock(&tc_lock); 1492 tc = timecounter; 1493 strlcpy(newname, tc->tc_name, sizeof(newname)); 1494 mtx_unlock(&tc_lock); 1495 1496 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1497 if (error != 0 || req->newptr == NULL) 1498 return (error); 1499 1500 mtx_lock(&tc_lock); 1501 /* Record that the tc in use now was specifically chosen. */ 1502 tc_chosen = 1; 1503 if (strcmp(newname, tc->tc_name) == 0) { 1504 mtx_unlock(&tc_lock); 1505 return (0); 1506 } 1507 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1508 if (strcmp(newname, newtc->tc_name) != 0) 1509 continue; 1510 1511 /* Warm up new timecounter. */ 1512 (void)newtc->tc_get_timecount(newtc); 1513 1514 timecounter = newtc; 1515 1516 /* 1517 * The vdso timehands update is deferred until the next 1518 * 'tc_windup()'. 1519 * 1520 * This is prudent given that 'timekeep_push_vdso()' does not 1521 * use any locking and that it can be called in hard interrupt 1522 * context via 'tc_windup()'. 1523 */ 1524 break; 1525 } 1526 mtx_unlock(&tc_lock); 1527 return (newtc != NULL ? 0 : EINVAL); 1528 } 1529 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, 1530 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 0, 0, 1531 sysctl_kern_timecounter_hardware, "A", 1532 "Timecounter hardware selected"); 1533 1534 /* Report the available timecounter hardware. */ 1535 static int 1536 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1537 { 1538 struct sbuf sb; 1539 struct timecounter *tc; 1540 int error; 1541 1542 error = sysctl_wire_old_buffer(req, 0); 1543 if (error != 0) 1544 return (error); 1545 sbuf_new_for_sysctl(&sb, NULL, 0, req); 1546 mtx_lock(&tc_lock); 1547 for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 1548 if (tc != timecounters) 1549 sbuf_putc(&sb, ' '); 1550 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality); 1551 } 1552 mtx_unlock(&tc_lock); 1553 error = sbuf_finish(&sb); 1554 sbuf_delete(&sb); 1555 return (error); 1556 } 1557 1558 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, 1559 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, 1560 sysctl_kern_timecounter_choice, "A", 1561 "Timecounter hardware detected"); 1562 1563 /* 1564 * RFC 2783 PPS-API implementation. 1565 */ 1566 1567 /* 1568 * Return true if the driver is aware of the abi version extensions in the 1569 * pps_state structure, and it supports at least the given abi version number. 1570 */ 1571 static inline int 1572 abi_aware(struct pps_state *pps, int vers) 1573 { 1574 1575 return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers); 1576 } 1577 1578 static int 1579 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1580 { 1581 int err, timo; 1582 pps_seq_t aseq, cseq; 1583 struct timeval tv; 1584 1585 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1586 return (EINVAL); 1587 1588 /* 1589 * If no timeout is requested, immediately return whatever values were 1590 * most recently captured. If timeout seconds is -1, that's a request 1591 * to block without a timeout. WITNESS won't let us sleep forever 1592 * without a lock (we really don't need a lock), so just repeatedly 1593 * sleep a long time. 1594 */ 1595 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1596 if (fapi->timeout.tv_sec == -1) 1597 timo = 0x7fffffff; 1598 else { 1599 tv.tv_sec = fapi->timeout.tv_sec; 1600 tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1601 timo = tvtohz(&tv); 1602 } 1603 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence); 1604 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence); 1605 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) && 1606 cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) { 1607 if (abi_aware(pps, 1) && pps->driver_mtx != NULL) { 1608 if (pps->flags & PPSFLAG_MTX_SPIN) { 1609 err = msleep_spin(pps, pps->driver_mtx, 1610 "ppsfch", timo); 1611 } else { 1612 err = msleep(pps, pps->driver_mtx, PCATCH, 1613 "ppsfch", timo); 1614 } 1615 } else { 1616 err = tsleep(pps, PCATCH, "ppsfch", timo); 1617 } 1618 if (err == EWOULDBLOCK) { 1619 if (fapi->timeout.tv_sec == -1) { 1620 continue; 1621 } else { 1622 return (ETIMEDOUT); 1623 } 1624 } else if (err != 0) { 1625 return (err); 1626 } 1627 } 1628 } 1629 1630 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1631 fapi->pps_info_buf = pps->ppsinfo; 1632 1633 return (0); 1634 } 1635 1636 int 1637 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1638 { 1639 pps_params_t *app; 1640 struct pps_fetch_args *fapi; 1641 #ifdef FFCLOCK 1642 struct pps_fetch_ffc_args *fapi_ffc; 1643 #endif 1644 #ifdef PPS_SYNC 1645 struct pps_kcbind_args *kapi; 1646 #endif 1647 1648 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1649 switch (cmd) { 1650 case PPS_IOC_CREATE: 1651 return (0); 1652 case PPS_IOC_DESTROY: 1653 return (0); 1654 case PPS_IOC_SETPARAMS: 1655 app = (pps_params_t *)data; 1656 if (app->mode & ~pps->ppscap) 1657 return (EINVAL); 1658 #ifdef FFCLOCK 1659 /* Ensure only a single clock is selected for ffc timestamp. */ 1660 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1661 return (EINVAL); 1662 #endif 1663 pps->ppsparam = *app; 1664 return (0); 1665 case PPS_IOC_GETPARAMS: 1666 app = (pps_params_t *)data; 1667 *app = pps->ppsparam; 1668 app->api_version = PPS_API_VERS_1; 1669 return (0); 1670 case PPS_IOC_GETCAP: 1671 *(int*)data = pps->ppscap; 1672 return (0); 1673 case PPS_IOC_FETCH: 1674 fapi = (struct pps_fetch_args *)data; 1675 return (pps_fetch(fapi, pps)); 1676 #ifdef FFCLOCK 1677 case PPS_IOC_FETCH_FFCOUNTER: 1678 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1679 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1680 PPS_TSFMT_TSPEC) 1681 return (EINVAL); 1682 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1683 return (EOPNOTSUPP); 1684 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1685 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1686 /* Overwrite timestamps if feedback clock selected. */ 1687 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1688 case PPS_TSCLK_FBCK: 1689 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1690 pps->ppsinfo.assert_timestamp; 1691 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1692 pps->ppsinfo.clear_timestamp; 1693 break; 1694 case PPS_TSCLK_FFWD: 1695 break; 1696 default: 1697 break; 1698 } 1699 return (0); 1700 #endif /* FFCLOCK */ 1701 case PPS_IOC_KCBIND: 1702 #ifdef PPS_SYNC 1703 kapi = (struct pps_kcbind_args *)data; 1704 /* XXX Only root should be able to do this */ 1705 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1706 return (EINVAL); 1707 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1708 return (EINVAL); 1709 if (kapi->edge & ~pps->ppscap) 1710 return (EINVAL); 1711 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) | 1712 (pps->kcmode & KCMODE_ABIFLAG); 1713 return (0); 1714 #else 1715 return (EOPNOTSUPP); 1716 #endif 1717 default: 1718 return (ENOIOCTL); 1719 } 1720 } 1721 1722 void 1723 pps_init(struct pps_state *pps) 1724 { 1725 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1726 if (pps->ppscap & PPS_CAPTUREASSERT) 1727 pps->ppscap |= PPS_OFFSETASSERT; 1728 if (pps->ppscap & PPS_CAPTURECLEAR) 1729 pps->ppscap |= PPS_OFFSETCLEAR; 1730 #ifdef FFCLOCK 1731 pps->ppscap |= PPS_TSCLK_MASK; 1732 #endif 1733 pps->kcmode &= ~KCMODE_ABIFLAG; 1734 } 1735 1736 void 1737 pps_init_abi(struct pps_state *pps) 1738 { 1739 1740 pps_init(pps); 1741 if (pps->driver_abi > 0) { 1742 pps->kcmode |= KCMODE_ABIFLAG; 1743 pps->kernel_abi = PPS_ABI_VERSION; 1744 } 1745 } 1746 1747 void 1748 pps_capture(struct pps_state *pps) 1749 { 1750 struct timehands *th; 1751 1752 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1753 th = timehands; 1754 pps->capgen = atomic_load_acq_int(&th->th_generation); 1755 pps->capth = th; 1756 #ifdef FFCLOCK 1757 pps->capffth = fftimehands; 1758 #endif 1759 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1760 atomic_thread_fence_acq(); 1761 if (pps->capgen != th->th_generation) 1762 pps->capgen = 0; 1763 } 1764 1765 void 1766 pps_event(struct pps_state *pps, int event) 1767 { 1768 struct bintime bt; 1769 struct timespec ts, *tsp, *osp; 1770 u_int tcount, *pcount; 1771 int foff; 1772 pps_seq_t *pseq; 1773 #ifdef FFCLOCK 1774 struct timespec *tsp_ffc; 1775 pps_seq_t *pseq_ffc; 1776 ffcounter *ffcount; 1777 #endif 1778 #ifdef PPS_SYNC 1779 int fhard; 1780 #endif 1781 1782 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1783 /* Nothing to do if not currently set to capture this event type. */ 1784 if ((event & pps->ppsparam.mode) == 0) 1785 return; 1786 /* If the timecounter was wound up underneath us, bail out. */ 1787 if (pps->capgen == 0 || pps->capgen != 1788 atomic_load_acq_int(&pps->capth->th_generation)) 1789 return; 1790 1791 /* Things would be easier with arrays. */ 1792 if (event == PPS_CAPTUREASSERT) { 1793 tsp = &pps->ppsinfo.assert_timestamp; 1794 osp = &pps->ppsparam.assert_offset; 1795 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1796 #ifdef PPS_SYNC 1797 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1798 #endif 1799 pcount = &pps->ppscount[0]; 1800 pseq = &pps->ppsinfo.assert_sequence; 1801 #ifdef FFCLOCK 1802 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1803 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1804 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1805 #endif 1806 } else { 1807 tsp = &pps->ppsinfo.clear_timestamp; 1808 osp = &pps->ppsparam.clear_offset; 1809 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1810 #ifdef PPS_SYNC 1811 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1812 #endif 1813 pcount = &pps->ppscount[1]; 1814 pseq = &pps->ppsinfo.clear_sequence; 1815 #ifdef FFCLOCK 1816 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1817 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1818 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1819 #endif 1820 } 1821 1822 /* 1823 * If the timecounter changed, we cannot compare the count values, so 1824 * we have to drop the rest of the PPS-stuff until the next event. 1825 */ 1826 if (pps->ppstc != pps->capth->th_counter) { 1827 pps->ppstc = pps->capth->th_counter; 1828 *pcount = pps->capcount; 1829 pps->ppscount[2] = pps->capcount; 1830 return; 1831 } 1832 1833 /* Convert the count to a timespec. */ 1834 tcount = pps->capcount - pps->capth->th_offset_count; 1835 tcount &= pps->capth->th_counter->tc_counter_mask; 1836 bt = pps->capth->th_bintime; 1837 bintime_addx(&bt, pps->capth->th_scale * tcount); 1838 bintime2timespec(&bt, &ts); 1839 1840 /* If the timecounter was wound up underneath us, bail out. */ 1841 atomic_thread_fence_acq(); 1842 if (pps->capgen != pps->capth->th_generation) 1843 return; 1844 1845 *pcount = pps->capcount; 1846 (*pseq)++; 1847 *tsp = ts; 1848 1849 if (foff) { 1850 timespecadd(tsp, osp, tsp); 1851 if (tsp->tv_nsec < 0) { 1852 tsp->tv_nsec += 1000000000; 1853 tsp->tv_sec -= 1; 1854 } 1855 } 1856 1857 #ifdef FFCLOCK 1858 *ffcount = pps->capffth->tick_ffcount + tcount; 1859 bt = pps->capffth->tick_time; 1860 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1861 bintime_add(&bt, &pps->capffth->tick_time); 1862 bintime2timespec(&bt, &ts); 1863 (*pseq_ffc)++; 1864 *tsp_ffc = ts; 1865 #endif 1866 1867 #ifdef PPS_SYNC 1868 if (fhard) { 1869 uint64_t scale; 1870 1871 /* 1872 * Feed the NTP PLL/FLL. 1873 * The FLL wants to know how many (hardware) nanoseconds 1874 * elapsed since the previous event. 1875 */ 1876 tcount = pps->capcount - pps->ppscount[2]; 1877 pps->ppscount[2] = pps->capcount; 1878 tcount &= pps->capth->th_counter->tc_counter_mask; 1879 scale = (uint64_t)1 << 63; 1880 scale /= pps->capth->th_counter->tc_frequency; 1881 scale *= 2; 1882 bt.sec = 0; 1883 bt.frac = 0; 1884 bintime_addx(&bt, scale * tcount); 1885 bintime2timespec(&bt, &ts); 1886 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1887 } 1888 #endif 1889 1890 /* Wakeup anyone sleeping in pps_fetch(). */ 1891 wakeup(pps); 1892 } 1893 1894 /* 1895 * Timecounters need to be updated every so often to prevent the hardware 1896 * counter from overflowing. Updating also recalculates the cached values 1897 * used by the get*() family of functions, so their precision depends on 1898 * the update frequency. 1899 */ 1900 1901 static int tc_tick; 1902 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1903 "Approximate number of hardclock ticks in a millisecond"); 1904 1905 void 1906 tc_ticktock(int cnt) 1907 { 1908 static int count; 1909 1910 if (mtx_trylock_spin(&tc_setclock_mtx)) { 1911 count += cnt; 1912 if (count >= tc_tick) { 1913 count = 0; 1914 tc_windup(NULL); 1915 } 1916 mtx_unlock_spin(&tc_setclock_mtx); 1917 } 1918 } 1919 1920 static void __inline 1921 tc_adjprecision(void) 1922 { 1923 int t; 1924 1925 if (tc_timepercentage > 0) { 1926 t = (99 + tc_timepercentage) / tc_timepercentage; 1927 tc_precexp = fls(t + (t >> 1)) - 1; 1928 FREQ2BT(hz / tc_tick, &bt_timethreshold); 1929 FREQ2BT(hz, &bt_tickthreshold); 1930 bintime_shift(&bt_timethreshold, tc_precexp); 1931 bintime_shift(&bt_tickthreshold, tc_precexp); 1932 } else { 1933 tc_precexp = 31; 1934 bt_timethreshold.sec = INT_MAX; 1935 bt_timethreshold.frac = ~(uint64_t)0; 1936 bt_tickthreshold = bt_timethreshold; 1937 } 1938 sbt_timethreshold = bttosbt(bt_timethreshold); 1939 sbt_tickthreshold = bttosbt(bt_tickthreshold); 1940 } 1941 1942 static int 1943 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 1944 { 1945 int error, val; 1946 1947 val = tc_timepercentage; 1948 error = sysctl_handle_int(oidp, &val, 0, req); 1949 if (error != 0 || req->newptr == NULL) 1950 return (error); 1951 tc_timepercentage = val; 1952 if (cold) 1953 goto done; 1954 tc_adjprecision(); 1955 done: 1956 return (0); 1957 } 1958 1959 /* Set up the requested number of timehands. */ 1960 static void 1961 inittimehands(void *dummy) 1962 { 1963 struct timehands *thp; 1964 int i; 1965 1966 TUNABLE_INT_FETCH("kern.timecounter.timehands_count", 1967 &timehands_count); 1968 if (timehands_count < 1) 1969 timehands_count = 1; 1970 if (timehands_count > nitems(ths)) 1971 timehands_count = nitems(ths); 1972 for (i = 1, thp = &ths[0]; i < timehands_count; thp = &ths[i++]) 1973 thp->th_next = &ths[i]; 1974 thp->th_next = &ths[0]; 1975 1976 TUNABLE_STR_FETCH("kern.timecounter.hardware", tc_from_tunable, 1977 sizeof(tc_from_tunable)); 1978 } 1979 SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL); 1980 1981 static void 1982 inittimecounter(void *dummy) 1983 { 1984 u_int p; 1985 int tick_rate; 1986 1987 /* 1988 * Set the initial timeout to 1989 * max(1, <approx. number of hardclock ticks in a millisecond>). 1990 * People should probably not use the sysctl to set the timeout 1991 * to smaller than its initial value, since that value is the 1992 * smallest reasonable one. If they want better timestamps they 1993 * should use the non-"get"* functions. 1994 */ 1995 if (hz > 1000) 1996 tc_tick = (hz + 500) / 1000; 1997 else 1998 tc_tick = 1; 1999 tc_adjprecision(); 2000 FREQ2BT(hz, &tick_bt); 2001 tick_sbt = bttosbt(tick_bt); 2002 tick_rate = hz / tc_tick; 2003 FREQ2BT(tick_rate, &tc_tick_bt); 2004 tc_tick_sbt = bttosbt(tc_tick_bt); 2005 p = (tc_tick * 1000000) / hz; 2006 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 2007 2008 #ifdef FFCLOCK 2009 ffclock_init(); 2010 #endif 2011 2012 /* warm up new timecounter (again) and get rolling. */ 2013 (void)timecounter->tc_get_timecount(timecounter); 2014 mtx_lock_spin(&tc_setclock_mtx); 2015 tc_windup(NULL); 2016 mtx_unlock_spin(&tc_setclock_mtx); 2017 } 2018 2019 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 2020 2021 /* Cpu tick handling -------------------------------------------------*/ 2022 2023 static int cpu_tick_variable; 2024 static uint64_t cpu_tick_frequency; 2025 2026 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base); 2027 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last); 2028 2029 static uint64_t 2030 tc_cpu_ticks(void) 2031 { 2032 struct timecounter *tc; 2033 uint64_t res, *base; 2034 unsigned u, *last; 2035 2036 critical_enter(); 2037 base = DPCPU_PTR(tc_cpu_ticks_base); 2038 last = DPCPU_PTR(tc_cpu_ticks_last); 2039 tc = timehands->th_counter; 2040 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 2041 if (u < *last) 2042 *base += (uint64_t)tc->tc_counter_mask + 1; 2043 *last = u; 2044 res = u + *base; 2045 critical_exit(); 2046 return (res); 2047 } 2048 2049 void 2050 cpu_tick_calibration(void) 2051 { 2052 static time_t last_calib; 2053 2054 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 2055 cpu_tick_calibrate(0); 2056 last_calib = time_uptime; 2057 } 2058 } 2059 2060 /* 2061 * This function gets called every 16 seconds on only one designated 2062 * CPU in the system from hardclock() via cpu_tick_calibration()(). 2063 * 2064 * Whenever the real time clock is stepped we get called with reset=1 2065 * to make sure we handle suspend/resume and similar events correctly. 2066 */ 2067 2068 static void 2069 cpu_tick_calibrate(int reset) 2070 { 2071 static uint64_t c_last; 2072 uint64_t c_this, c_delta; 2073 static struct bintime t_last; 2074 struct bintime t_this, t_delta; 2075 uint32_t divi; 2076 2077 if (reset) { 2078 /* The clock was stepped, abort & reset */ 2079 t_last.sec = 0; 2080 return; 2081 } 2082 2083 /* we don't calibrate fixed rate cputicks */ 2084 if (!cpu_tick_variable) 2085 return; 2086 2087 getbinuptime(&t_this); 2088 c_this = cpu_ticks(); 2089 if (t_last.sec != 0) { 2090 c_delta = c_this - c_last; 2091 t_delta = t_this; 2092 bintime_sub(&t_delta, &t_last); 2093 /* 2094 * Headroom: 2095 * 2^(64-20) / 16[s] = 2096 * 2^(44) / 16[s] = 2097 * 17.592.186.044.416 / 16 = 2098 * 1.099.511.627.776 [Hz] 2099 */ 2100 divi = t_delta.sec << 20; 2101 divi |= t_delta.frac >> (64 - 20); 2102 c_delta <<= 20; 2103 c_delta /= divi; 2104 if (c_delta > cpu_tick_frequency) { 2105 if (0 && bootverbose) 2106 printf("cpu_tick increased to %ju Hz\n", 2107 c_delta); 2108 cpu_tick_frequency = c_delta; 2109 } 2110 } 2111 c_last = c_this; 2112 t_last = t_this; 2113 } 2114 2115 void 2116 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 2117 { 2118 2119 if (func == NULL) { 2120 cpu_ticks = tc_cpu_ticks; 2121 } else { 2122 cpu_tick_frequency = freq; 2123 cpu_tick_variable = var; 2124 cpu_ticks = func; 2125 } 2126 } 2127 2128 uint64_t 2129 cpu_tickrate(void) 2130 { 2131 2132 if (cpu_ticks == tc_cpu_ticks) 2133 return (tc_getfrequency()); 2134 return (cpu_tick_frequency); 2135 } 2136 2137 /* 2138 * We need to be slightly careful converting cputicks to microseconds. 2139 * There is plenty of margin in 64 bits of microseconds (half a million 2140 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 2141 * before divide conversion (to retain precision) we find that the 2142 * margin shrinks to 1.5 hours (one millionth of 146y). 2143 * With a three prong approach we never lose significant bits, no 2144 * matter what the cputick rate and length of timeinterval is. 2145 */ 2146 2147 uint64_t 2148 cputick2usec(uint64_t tick) 2149 { 2150 2151 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 2152 return (tick / (cpu_tickrate() / 1000000LL)); 2153 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 2154 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 2155 else 2156 return ((tick * 1000000LL) / cpu_tickrate()); 2157 } 2158 2159 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 2160 2161 static int vdso_th_enable = 1; 2162 static int 2163 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 2164 { 2165 int old_vdso_th_enable, error; 2166 2167 old_vdso_th_enable = vdso_th_enable; 2168 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 2169 if (error != 0) 2170 return (error); 2171 vdso_th_enable = old_vdso_th_enable; 2172 return (0); 2173 } 2174 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 2175 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 2176 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 2177 2178 uint32_t 2179 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2180 { 2181 struct timehands *th; 2182 uint32_t enabled; 2183 2184 th = timehands; 2185 vdso_th->th_scale = th->th_scale; 2186 vdso_th->th_offset_count = th->th_offset_count; 2187 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2188 vdso_th->th_offset = th->th_offset; 2189 vdso_th->th_boottime = th->th_boottime; 2190 if (th->th_counter->tc_fill_vdso_timehands != NULL) { 2191 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th, 2192 th->th_counter); 2193 } else 2194 enabled = 0; 2195 if (!vdso_th_enable) 2196 enabled = 0; 2197 return (enabled); 2198 } 2199 2200 #ifdef COMPAT_FREEBSD32 2201 uint32_t 2202 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2203 { 2204 struct timehands *th; 2205 uint32_t enabled; 2206 2207 th = timehands; 2208 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2209 vdso_th32->th_offset_count = th->th_offset_count; 2210 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2211 vdso_th32->th_offset.sec = th->th_offset.sec; 2212 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 2213 vdso_th32->th_boottime.sec = th->th_boottime.sec; 2214 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac; 2215 if (th->th_counter->tc_fill_vdso_timehands32 != NULL) { 2216 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32, 2217 th->th_counter); 2218 } else 2219 enabled = 0; 2220 if (!vdso_th_enable) 2221 enabled = 0; 2222 return (enabled); 2223 } 2224 #endif 2225 2226 #include "opt_ddb.h" 2227 #ifdef DDB 2228 #include <ddb/ddb.h> 2229 2230 DB_SHOW_COMMAND(timecounter, db_show_timecounter) 2231 { 2232 struct timehands *th; 2233 struct timecounter *tc; 2234 u_int val1, val2; 2235 2236 th = timehands; 2237 tc = th->th_counter; 2238 val1 = tc->tc_get_timecount(tc); 2239 __compiler_membar(); 2240 val2 = tc->tc_get_timecount(tc); 2241 2242 db_printf("timecounter %p %s\n", tc, tc->tc_name); 2243 db_printf(" mask %#x freq %ju qual %d flags %#x priv %p\n", 2244 tc->tc_counter_mask, (uintmax_t)tc->tc_frequency, tc->tc_quality, 2245 tc->tc_flags, tc->tc_priv); 2246 db_printf(" val %#x %#x\n", val1, val2); 2247 db_printf("timehands adj %#jx scale %#jx ldelta %d off_cnt %d gen %d\n", 2248 (uintmax_t)th->th_adjustment, (uintmax_t)th->th_scale, 2249 th->th_large_delta, th->th_offset_count, th->th_generation); 2250 db_printf(" offset %jd %jd boottime %jd %jd\n", 2251 (intmax_t)th->th_offset.sec, (uintmax_t)th->th_offset.frac, 2252 (intmax_t)th->th_boottime.sec, (uintmax_t)th->th_boottime.frac); 2253 } 2254 #endif 2255