xref: /freebsd/sys/kern/kern_tc.c (revision 7750ad47a9a7dbc83f87158464170c8640723293)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * Copyright (c) 2011 The FreeBSD Foundation
10  * All rights reserved.
11  *
12  * Portions of this software were developed by Julien Ridoux at the University
13  * of Melbourne under sponsorship from the FreeBSD Foundation.
14  */
15 
16 #include <sys/cdefs.h>
17 __FBSDID("$FreeBSD$");
18 
19 #include "opt_ntp.h"
20 #include "opt_ffclock.h"
21 
22 #include <sys/param.h>
23 #include <sys/kernel.h>
24 #ifdef FFCLOCK
25 #include <sys/lock.h>
26 #include <sys/mutex.h>
27 #endif
28 #include <sys/sysctl.h>
29 #include <sys/syslog.h>
30 #include <sys/systm.h>
31 #include <sys/timeffc.h>
32 #include <sys/timepps.h>
33 #include <sys/timetc.h>
34 #include <sys/timex.h>
35 
36 /*
37  * A large step happens on boot.  This constant detects such steps.
38  * It is relatively small so that ntp_update_second gets called enough
39  * in the typical 'missed a couple of seconds' case, but doesn't loop
40  * forever when the time step is large.
41  */
42 #define LARGE_STEP	200
43 
44 /*
45  * Implement a dummy timecounter which we can use until we get a real one
46  * in the air.  This allows the console and other early stuff to use
47  * time services.
48  */
49 
50 static u_int
51 dummy_get_timecount(struct timecounter *tc)
52 {
53 	static u_int now;
54 
55 	return (++now);
56 }
57 
58 static struct timecounter dummy_timecounter = {
59 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
60 };
61 
62 struct timehands {
63 	/* These fields must be initialized by the driver. */
64 	struct timecounter	*th_counter;
65 	int64_t			th_adjustment;
66 	uint64_t		th_scale;
67 	u_int	 		th_offset_count;
68 	struct bintime		th_offset;
69 	struct timeval		th_microtime;
70 	struct timespec		th_nanotime;
71 	/* Fields not to be copied in tc_windup start with th_generation. */
72 	volatile u_int		th_generation;
73 	struct timehands	*th_next;
74 };
75 
76 static struct timehands th0;
77 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
78 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
79 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
80 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
81 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
82 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
83 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
84 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
85 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
86 static struct timehands th0 = {
87 	&dummy_timecounter,
88 	0,
89 	(uint64_t)-1 / 1000000,
90 	0,
91 	{1, 0},
92 	{0, 0},
93 	{0, 0},
94 	1,
95 	&th1
96 };
97 
98 static struct timehands *volatile timehands = &th0;
99 struct timecounter *timecounter = &dummy_timecounter;
100 static struct timecounter *timecounters = &dummy_timecounter;
101 
102 int tc_min_ticktock_freq = 1;
103 
104 time_t time_second = 1;
105 time_t time_uptime = 1;
106 
107 struct bintime boottimebin;
108 struct timeval boottime;
109 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
110 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
111     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
112 
113 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
114 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
115 
116 static int timestepwarnings;
117 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
118     &timestepwarnings, 0, "Log time steps");
119 
120 static void tc_windup(void);
121 static void cpu_tick_calibrate(int);
122 
123 static int
124 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
125 {
126 #ifndef __mips__
127 #ifdef SCTL_MASK32
128 	int tv[2];
129 
130 	if (req->flags & SCTL_MASK32) {
131 		tv[0] = boottime.tv_sec;
132 		tv[1] = boottime.tv_usec;
133 		return SYSCTL_OUT(req, tv, sizeof(tv));
134 	} else
135 #endif
136 #endif
137 		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
138 }
139 
140 static int
141 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
142 {
143 	u_int ncount;
144 	struct timecounter *tc = arg1;
145 
146 	ncount = tc->tc_get_timecount(tc);
147 	return sysctl_handle_int(oidp, &ncount, 0, req);
148 }
149 
150 static int
151 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
152 {
153 	uint64_t freq;
154 	struct timecounter *tc = arg1;
155 
156 	freq = tc->tc_frequency;
157 	return sysctl_handle_64(oidp, &freq, 0, req);
158 }
159 
160 /*
161  * Return the difference between the timehands' counter value now and what
162  * was when we copied it to the timehands' offset_count.
163  */
164 static __inline u_int
165 tc_delta(struct timehands *th)
166 {
167 	struct timecounter *tc;
168 
169 	tc = th->th_counter;
170 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
171 	    tc->tc_counter_mask);
172 }
173 
174 /*
175  * Functions for reading the time.  We have to loop until we are sure that
176  * the timehands that we operated on was not updated under our feet.  See
177  * the comment in <sys/time.h> for a description of these 12 functions.
178  */
179 
180 #ifdef FFCLOCK
181 void
182 fbclock_binuptime(struct bintime *bt)
183 {
184 	struct timehands *th;
185 	unsigned int gen;
186 
187 	do {
188 		th = timehands;
189 		gen = th->th_generation;
190 		*bt = th->th_offset;
191 		bintime_addx(bt, th->th_scale * tc_delta(th));
192 	} while (gen == 0 || gen != th->th_generation);
193 }
194 
195 void
196 fbclock_nanouptime(struct timespec *tsp)
197 {
198 	struct bintime bt;
199 
200 	fbclock_binuptime(&bt);
201 	bintime2timespec(&bt, tsp);
202 }
203 
204 void
205 fbclock_microuptime(struct timeval *tvp)
206 {
207 	struct bintime bt;
208 
209 	fbclock_binuptime(&bt);
210 	bintime2timeval(&bt, tvp);
211 }
212 
213 void
214 fbclock_bintime(struct bintime *bt)
215 {
216 
217 	fbclock_binuptime(bt);
218 	bintime_add(bt, &boottimebin);
219 }
220 
221 void
222 fbclock_nanotime(struct timespec *tsp)
223 {
224 	struct bintime bt;
225 
226 	fbclock_bintime(&bt);
227 	bintime2timespec(&bt, tsp);
228 }
229 
230 void
231 fbclock_microtime(struct timeval *tvp)
232 {
233 	struct bintime bt;
234 
235 	fbclock_bintime(&bt);
236 	bintime2timeval(&bt, tvp);
237 }
238 
239 void
240 fbclock_getbinuptime(struct bintime *bt)
241 {
242 	struct timehands *th;
243 	unsigned int gen;
244 
245 	do {
246 		th = timehands;
247 		gen = th->th_generation;
248 		*bt = th->th_offset;
249 	} while (gen == 0 || gen != th->th_generation);
250 }
251 
252 void
253 fbclock_getnanouptime(struct timespec *tsp)
254 {
255 	struct timehands *th;
256 	unsigned int gen;
257 
258 	do {
259 		th = timehands;
260 		gen = th->th_generation;
261 		bintime2timespec(&th->th_offset, tsp);
262 	} while (gen == 0 || gen != th->th_generation);
263 }
264 
265 void
266 fbclock_getmicrouptime(struct timeval *tvp)
267 {
268 	struct timehands *th;
269 	unsigned int gen;
270 
271 	do {
272 		th = timehands;
273 		gen = th->th_generation;
274 		bintime2timeval(&th->th_offset, tvp);
275 	} while (gen == 0 || gen != th->th_generation);
276 }
277 
278 void
279 fbclock_getbintime(struct bintime *bt)
280 {
281 	struct timehands *th;
282 	unsigned int gen;
283 
284 	do {
285 		th = timehands;
286 		gen = th->th_generation;
287 		*bt = th->th_offset;
288 	} while (gen == 0 || gen != th->th_generation);
289 	bintime_add(bt, &boottimebin);
290 }
291 
292 void
293 fbclock_getnanotime(struct timespec *tsp)
294 {
295 	struct timehands *th;
296 	unsigned int gen;
297 
298 	do {
299 		th = timehands;
300 		gen = th->th_generation;
301 		*tsp = th->th_nanotime;
302 	} while (gen == 0 || gen != th->th_generation);
303 }
304 
305 void
306 fbclock_getmicrotime(struct timeval *tvp)
307 {
308 	struct timehands *th;
309 	unsigned int gen;
310 
311 	do {
312 		th = timehands;
313 		gen = th->th_generation;
314 		*tvp = th->th_microtime;
315 	} while (gen == 0 || gen != th->th_generation);
316 }
317 #else /* !FFCLOCK */
318 void
319 binuptime(struct bintime *bt)
320 {
321 	struct timehands *th;
322 	u_int gen;
323 
324 	do {
325 		th = timehands;
326 		gen = th->th_generation;
327 		*bt = th->th_offset;
328 		bintime_addx(bt, th->th_scale * tc_delta(th));
329 	} while (gen == 0 || gen != th->th_generation);
330 }
331 
332 void
333 nanouptime(struct timespec *tsp)
334 {
335 	struct bintime bt;
336 
337 	binuptime(&bt);
338 	bintime2timespec(&bt, tsp);
339 }
340 
341 void
342 microuptime(struct timeval *tvp)
343 {
344 	struct bintime bt;
345 
346 	binuptime(&bt);
347 	bintime2timeval(&bt, tvp);
348 }
349 
350 void
351 bintime(struct bintime *bt)
352 {
353 
354 	binuptime(bt);
355 	bintime_add(bt, &boottimebin);
356 }
357 
358 void
359 nanotime(struct timespec *tsp)
360 {
361 	struct bintime bt;
362 
363 	bintime(&bt);
364 	bintime2timespec(&bt, tsp);
365 }
366 
367 void
368 microtime(struct timeval *tvp)
369 {
370 	struct bintime bt;
371 
372 	bintime(&bt);
373 	bintime2timeval(&bt, tvp);
374 }
375 
376 void
377 getbinuptime(struct bintime *bt)
378 {
379 	struct timehands *th;
380 	u_int gen;
381 
382 	do {
383 		th = timehands;
384 		gen = th->th_generation;
385 		*bt = th->th_offset;
386 	} while (gen == 0 || gen != th->th_generation);
387 }
388 
389 void
390 getnanouptime(struct timespec *tsp)
391 {
392 	struct timehands *th;
393 	u_int gen;
394 
395 	do {
396 		th = timehands;
397 		gen = th->th_generation;
398 		bintime2timespec(&th->th_offset, tsp);
399 	} while (gen == 0 || gen != th->th_generation);
400 }
401 
402 void
403 getmicrouptime(struct timeval *tvp)
404 {
405 	struct timehands *th;
406 	u_int gen;
407 
408 	do {
409 		th = timehands;
410 		gen = th->th_generation;
411 		bintime2timeval(&th->th_offset, tvp);
412 	} while (gen == 0 || gen != th->th_generation);
413 }
414 
415 void
416 getbintime(struct bintime *bt)
417 {
418 	struct timehands *th;
419 	u_int gen;
420 
421 	do {
422 		th = timehands;
423 		gen = th->th_generation;
424 		*bt = th->th_offset;
425 	} while (gen == 0 || gen != th->th_generation);
426 	bintime_add(bt, &boottimebin);
427 }
428 
429 void
430 getnanotime(struct timespec *tsp)
431 {
432 	struct timehands *th;
433 	u_int gen;
434 
435 	do {
436 		th = timehands;
437 		gen = th->th_generation;
438 		*tsp = th->th_nanotime;
439 	} while (gen == 0 || gen != th->th_generation);
440 }
441 
442 void
443 getmicrotime(struct timeval *tvp)
444 {
445 	struct timehands *th;
446 	u_int gen;
447 
448 	do {
449 		th = timehands;
450 		gen = th->th_generation;
451 		*tvp = th->th_microtime;
452 	} while (gen == 0 || gen != th->th_generation);
453 }
454 #endif /* FFCLOCK */
455 
456 #ifdef FFCLOCK
457 /*
458  * Support for feed-forward synchronization algorithms. This is heavily inspired
459  * by the timehands mechanism but kept independent from it. *_windup() functions
460  * have some connection to avoid accessing the timecounter hardware more than
461  * necessary.
462  */
463 
464 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
465 struct ffclock_estimate ffclock_estimate;
466 struct bintime ffclock_boottime;	/* Feed-forward boot time estimate. */
467 uint32_t ffclock_status;		/* Feed-forward clock status. */
468 int8_t ffclock_updated;			/* New estimates are available. */
469 struct mtx ffclock_mtx;			/* Mutex on ffclock_estimate. */
470 
471 struct fftimehands {
472 	struct ffclock_estimate	cest;
473 	struct bintime		tick_time;
474 	struct bintime		tick_time_lerp;
475 	ffcounter		tick_ffcount;
476 	uint64_t		period_lerp;
477 	volatile uint8_t	gen;
478 	struct fftimehands	*next;
479 };
480 
481 #define	NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
482 
483 static struct fftimehands ffth[10];
484 static struct fftimehands *volatile fftimehands = ffth;
485 
486 static void
487 ffclock_init(void)
488 {
489 	struct fftimehands *cur;
490 	struct fftimehands *last;
491 
492 	memset(ffth, 0, sizeof(ffth));
493 
494 	last = ffth + NUM_ELEMENTS(ffth) - 1;
495 	for (cur = ffth; cur < last; cur++)
496 		cur->next = cur + 1;
497 	last->next = ffth;
498 
499 	ffclock_updated = 0;
500 	ffclock_status = FFCLOCK_STA_UNSYNC;
501 	mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
502 }
503 
504 /*
505  * Reset the feed-forward clock estimates. Called from inittodr() to get things
506  * kick started and uses the timecounter nominal frequency as a first period
507  * estimate. Note: this function may be called several time just after boot.
508  * Note: this is the only function that sets the value of boot time for the
509  * monotonic (i.e. uptime) version of the feed-forward clock.
510  */
511 void
512 ffclock_reset_clock(struct timespec *ts)
513 {
514 	struct timecounter *tc;
515 	struct ffclock_estimate cest;
516 
517 	tc = timehands->th_counter;
518 	memset(&cest, 0, sizeof(struct ffclock_estimate));
519 
520 	timespec2bintime(ts, &ffclock_boottime);
521 	timespec2bintime(ts, &(cest.update_time));
522 	ffclock_read_counter(&cest.update_ffcount);
523 	cest.leapsec_next = 0;
524 	cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
525 	cest.errb_abs = 0;
526 	cest.errb_rate = 0;
527 	cest.status = FFCLOCK_STA_UNSYNC;
528 	cest.leapsec_total = 0;
529 	cest.leapsec = 0;
530 
531 	mtx_lock(&ffclock_mtx);
532 	bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
533 	ffclock_updated = INT8_MAX;
534 	mtx_unlock(&ffclock_mtx);
535 
536 	printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
537 	    (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
538 	    (unsigned long)ts->tv_nsec);
539 }
540 
541 /*
542  * Sub-routine to convert a time interval measured in RAW counter units to time
543  * in seconds stored in bintime format.
544  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
545  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
546  * extra cycles.
547  */
548 static void
549 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
550 {
551 	struct bintime bt2;
552 	ffcounter delta, delta_max;
553 
554 	delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
555 	bintime_clear(bt);
556 	do {
557 		if (ffdelta > delta_max)
558 			delta = delta_max;
559 		else
560 			delta = ffdelta;
561 		bt2.sec = 0;
562 		bt2.frac = period;
563 		bintime_mul(&bt2, (unsigned int)delta);
564 		bintime_add(bt, &bt2);
565 		ffdelta -= delta;
566 	} while (ffdelta > 0);
567 }
568 
569 /*
570  * Update the fftimehands.
571  * Push the tick ffcount and time(s) forward based on current clock estimate.
572  * The conversion from ffcounter to bintime relies on the difference clock
573  * principle, whose accuracy relies on computing small time intervals. If a new
574  * clock estimate has been passed by the synchronisation daemon, make it
575  * current, and compute the linear interpolation for monotonic time if needed.
576  */
577 static void
578 ffclock_windup(unsigned int delta)
579 {
580 	struct ffclock_estimate *cest;
581 	struct fftimehands *ffth;
582 	struct bintime bt, gap_lerp;
583 	ffcounter ffdelta;
584 	uint64_t frac;
585 	unsigned int polling;
586 	uint8_t forward_jump, ogen;
587 
588 	/*
589 	 * Pick the next timehand, copy current ffclock estimates and move tick
590 	 * times and counter forward.
591 	 */
592 	forward_jump = 0;
593 	ffth = fftimehands->next;
594 	ogen = ffth->gen;
595 	ffth->gen = 0;
596 	cest = &ffth->cest;
597 	bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
598 	ffdelta = (ffcounter)delta;
599 	ffth->period_lerp = fftimehands->period_lerp;
600 
601 	ffth->tick_time = fftimehands->tick_time;
602 	ffclock_convert_delta(ffdelta, cest->period, &bt);
603 	bintime_add(&ffth->tick_time, &bt);
604 
605 	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
606 	ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
607 	bintime_add(&ffth->tick_time_lerp, &bt);
608 
609 	ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
610 
611 	/*
612 	 * Assess the status of the clock, if the last update is too old, it is
613 	 * likely the synchronisation daemon is dead and the clock is free
614 	 * running.
615 	 */
616 	if (ffclock_updated == 0) {
617 		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
618 		ffclock_convert_delta(ffdelta, cest->period, &bt);
619 		if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
620 			ffclock_status |= FFCLOCK_STA_UNSYNC;
621 	}
622 
623 	/*
624 	 * If available, grab updated clock estimates and make them current.
625 	 * Recompute time at this tick using the updated estimates. The clock
626 	 * estimates passed the feed-forward synchronisation daemon may result
627 	 * in time conversion that is not monotonically increasing (just after
628 	 * the update). time_lerp is a particular linear interpolation over the
629 	 * synchronisation algo polling period that ensures monotonicity for the
630 	 * clock ids requesting it.
631 	 */
632 	if (ffclock_updated > 0) {
633 		bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
634 		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
635 		ffth->tick_time = cest->update_time;
636 		ffclock_convert_delta(ffdelta, cest->period, &bt);
637 		bintime_add(&ffth->tick_time, &bt);
638 
639 		/* ffclock_reset sets ffclock_updated to INT8_MAX */
640 		if (ffclock_updated == INT8_MAX)
641 			ffth->tick_time_lerp = ffth->tick_time;
642 
643 		if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
644 			forward_jump = 1;
645 		else
646 			forward_jump = 0;
647 
648 		bintime_clear(&gap_lerp);
649 		if (forward_jump) {
650 			gap_lerp = ffth->tick_time;
651 			bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
652 		} else {
653 			gap_lerp = ffth->tick_time_lerp;
654 			bintime_sub(&gap_lerp, &ffth->tick_time);
655 		}
656 
657 		/*
658 		 * The reset from the RTC clock may be far from accurate, and
659 		 * reducing the gap between real time and interpolated time
660 		 * could take a very long time if the interpolated clock insists
661 		 * on strict monotonicity. The clock is reset under very strict
662 		 * conditions (kernel time is known to be wrong and
663 		 * synchronization daemon has been restarted recently.
664 		 * ffclock_boottime absorbs the jump to ensure boot time is
665 		 * correct and uptime functions stay consistent.
666 		 */
667 		if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
668 		    ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
669 		    ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
670 			if (forward_jump)
671 				bintime_add(&ffclock_boottime, &gap_lerp);
672 			else
673 				bintime_sub(&ffclock_boottime, &gap_lerp);
674 			ffth->tick_time_lerp = ffth->tick_time;
675 			bintime_clear(&gap_lerp);
676 		}
677 
678 		ffclock_status = cest->status;
679 		ffth->period_lerp = cest->period;
680 
681 		/*
682 		 * Compute corrected period used for the linear interpolation of
683 		 * time. The rate of linear interpolation is capped to 5000PPM
684 		 * (5ms/s).
685 		 */
686 		if (bintime_isset(&gap_lerp)) {
687 			ffdelta = cest->update_ffcount;
688 			ffdelta -= fftimehands->cest.update_ffcount;
689 			ffclock_convert_delta(ffdelta, cest->period, &bt);
690 			polling = bt.sec;
691 			bt.sec = 0;
692 			bt.frac = 5000000 * (uint64_t)18446744073LL;
693 			bintime_mul(&bt, polling);
694 			if (bintime_cmp(&gap_lerp, &bt, >))
695 				gap_lerp = bt;
696 
697 			/* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
698 			frac = 0;
699 			if (gap_lerp.sec > 0) {
700 				frac -= 1;
701 				frac /= ffdelta / gap_lerp.sec;
702 			}
703 			frac += gap_lerp.frac / ffdelta;
704 
705 			if (forward_jump)
706 				ffth->period_lerp += frac;
707 			else
708 				ffth->period_lerp -= frac;
709 		}
710 
711 		ffclock_updated = 0;
712 	}
713 	if (++ogen == 0)
714 		ogen = 1;
715 	ffth->gen = ogen;
716 	fftimehands = ffth;
717 }
718 
719 /*
720  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
721  * the old and new hardware counter cannot be read simultaneously. tc_windup()
722  * does read the two counters 'back to back', but a few cycles are effectively
723  * lost, and not accumulated in tick_ffcount. This is a fairly radical
724  * operation for a feed-forward synchronization daemon, and it is its job to not
725  * pushing irrelevant data to the kernel. Because there is no locking here,
726  * simply force to ignore pending or next update to give daemon a chance to
727  * realize the counter has changed.
728  */
729 static void
730 ffclock_change_tc(struct timehands *th)
731 {
732 	struct fftimehands *ffth;
733 	struct ffclock_estimate *cest;
734 	struct timecounter *tc;
735 	uint8_t ogen;
736 
737 	tc = th->th_counter;
738 	ffth = fftimehands->next;
739 	ogen = ffth->gen;
740 	ffth->gen = 0;
741 
742 	cest = &ffth->cest;
743 	bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
744 	cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
745 	cest->errb_abs = 0;
746 	cest->errb_rate = 0;
747 	cest->status |= FFCLOCK_STA_UNSYNC;
748 
749 	ffth->tick_ffcount = fftimehands->tick_ffcount;
750 	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
751 	ffth->tick_time = fftimehands->tick_time;
752 	ffth->period_lerp = cest->period;
753 
754 	/* Do not lock but ignore next update from synchronization daemon. */
755 	ffclock_updated--;
756 
757 	if (++ogen == 0)
758 		ogen = 1;
759 	ffth->gen = ogen;
760 	fftimehands = ffth;
761 }
762 
763 /*
764  * Retrieve feed-forward counter and time of last kernel tick.
765  */
766 void
767 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
768 {
769 	struct fftimehands *ffth;
770 	uint8_t gen;
771 
772 	/*
773 	 * No locking but check generation has not changed. Also need to make
774 	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
775 	 */
776 	do {
777 		ffth = fftimehands;
778 		gen = ffth->gen;
779 		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
780 			*bt = ffth->tick_time_lerp;
781 		else
782 			*bt = ffth->tick_time;
783 		*ffcount = ffth->tick_ffcount;
784 	} while (gen == 0 || gen != ffth->gen);
785 }
786 
787 /*
788  * Absolute clock conversion. Low level function to convert ffcounter to
789  * bintime. The ffcounter is converted using the current ffclock period estimate
790  * or the "interpolated period" to ensure monotonicity.
791  * NOTE: this conversion may have been deferred, and the clock updated since the
792  * hardware counter has been read.
793  */
794 void
795 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
796 {
797 	struct fftimehands *ffth;
798 	struct bintime bt2;
799 	ffcounter ffdelta;
800 	uint8_t gen;
801 
802 	/*
803 	 * No locking but check generation has not changed. Also need to make
804 	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
805 	 */
806 	do {
807 		ffth = fftimehands;
808 		gen = ffth->gen;
809 		if (ffcount > ffth->tick_ffcount)
810 			ffdelta = ffcount - ffth->tick_ffcount;
811 		else
812 			ffdelta = ffth->tick_ffcount - ffcount;
813 
814 		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
815 			*bt = ffth->tick_time_lerp;
816 			ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
817 		} else {
818 			*bt = ffth->tick_time;
819 			ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
820 		}
821 
822 		if (ffcount > ffth->tick_ffcount)
823 			bintime_add(bt, &bt2);
824 		else
825 			bintime_sub(bt, &bt2);
826 	} while (gen == 0 || gen != ffth->gen);
827 }
828 
829 /*
830  * Difference clock conversion.
831  * Low level function to Convert a time interval measured in RAW counter units
832  * into bintime. The difference clock allows measuring small intervals much more
833  * reliably than the absolute clock.
834  */
835 void
836 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
837 {
838 	struct fftimehands *ffth;
839 	uint8_t gen;
840 
841 	/* No locking but check generation has not changed. */
842 	do {
843 		ffth = fftimehands;
844 		gen = ffth->gen;
845 		ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
846 	} while (gen == 0 || gen != ffth->gen);
847 }
848 
849 /*
850  * Access to current ffcounter value.
851  */
852 void
853 ffclock_read_counter(ffcounter *ffcount)
854 {
855 	struct timehands *th;
856 	struct fftimehands *ffth;
857 	unsigned int gen, delta;
858 
859 	/*
860 	 * ffclock_windup() called from tc_windup(), safe to rely on
861 	 * th->th_generation only, for correct delta and ffcounter.
862 	 */
863 	do {
864 		th = timehands;
865 		gen = th->th_generation;
866 		ffth = fftimehands;
867 		delta = tc_delta(th);
868 		*ffcount = ffth->tick_ffcount;
869 	} while (gen == 0 || gen != th->th_generation);
870 
871 	*ffcount += delta;
872 }
873 
874 void
875 binuptime(struct bintime *bt)
876 {
877 
878 	binuptime_fromclock(bt, sysclock_active);
879 }
880 
881 void
882 nanouptime(struct timespec *tsp)
883 {
884 
885 	nanouptime_fromclock(tsp, sysclock_active);
886 }
887 
888 void
889 microuptime(struct timeval *tvp)
890 {
891 
892 	microuptime_fromclock(tvp, sysclock_active);
893 }
894 
895 void
896 bintime(struct bintime *bt)
897 {
898 
899 	bintime_fromclock(bt, sysclock_active);
900 }
901 
902 void
903 nanotime(struct timespec *tsp)
904 {
905 
906 	nanotime_fromclock(tsp, sysclock_active);
907 }
908 
909 void
910 microtime(struct timeval *tvp)
911 {
912 
913 	microtime_fromclock(tvp, sysclock_active);
914 }
915 
916 void
917 getbinuptime(struct bintime *bt)
918 {
919 
920 	getbinuptime_fromclock(bt, sysclock_active);
921 }
922 
923 void
924 getnanouptime(struct timespec *tsp)
925 {
926 
927 	getnanouptime_fromclock(tsp, sysclock_active);
928 }
929 
930 void
931 getmicrouptime(struct timeval *tvp)
932 {
933 
934 	getmicrouptime_fromclock(tvp, sysclock_active);
935 }
936 
937 void
938 getbintime(struct bintime *bt)
939 {
940 
941 	getbintime_fromclock(bt, sysclock_active);
942 }
943 
944 void
945 getnanotime(struct timespec *tsp)
946 {
947 
948 	getnanotime_fromclock(tsp, sysclock_active);
949 }
950 
951 void
952 getmicrotime(struct timeval *tvp)
953 {
954 
955 	getmicrouptime_fromclock(tvp, sysclock_active);
956 }
957 
958 #endif /* FFCLOCK */
959 
960 /*
961  * System clock currently providing time to the system. Modifiable via sysctl
962  * when the FFCLOCK option is defined.
963  */
964 int sysclock_active = SYSCLOCK_FBCK;
965 
966 /* Internal NTP status and error estimates. */
967 extern int time_status;
968 extern long time_esterror;
969 
970 /*
971  * Take a snapshot of sysclock data which can be used to compare system clocks
972  * and generate timestamps after the fact.
973  */
974 void
975 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
976 {
977 	struct fbclock_info *fbi;
978 	struct timehands *th;
979 	struct bintime bt;
980 	unsigned int delta, gen;
981 #ifdef FFCLOCK
982 	ffcounter ffcount;
983 	struct fftimehands *ffth;
984 	struct ffclock_info *ffi;
985 	struct ffclock_estimate cest;
986 
987 	ffi = &clock_snap->ff_info;
988 #endif
989 
990 	fbi = &clock_snap->fb_info;
991 	delta = 0;
992 
993 	do {
994 		th = timehands;
995 		gen = th->th_generation;
996 		fbi->th_scale = th->th_scale;
997 		fbi->tick_time = th->th_offset;
998 #ifdef FFCLOCK
999 		ffth = fftimehands;
1000 		ffi->tick_time = ffth->tick_time_lerp;
1001 		ffi->tick_time_lerp = ffth->tick_time_lerp;
1002 		ffi->period = ffth->cest.period;
1003 		ffi->period_lerp = ffth->period_lerp;
1004 		clock_snap->ffcount = ffth->tick_ffcount;
1005 		cest = ffth->cest;
1006 #endif
1007 		if (!fast)
1008 			delta = tc_delta(th);
1009 	} while (gen == 0 || gen != th->th_generation);
1010 
1011 	clock_snap->delta = delta;
1012 	clock_snap->sysclock_active = sysclock_active;
1013 
1014 	/* Record feedback clock status and error. */
1015 	clock_snap->fb_info.status = time_status;
1016 	/* XXX: Very crude estimate of feedback clock error. */
1017 	bt.sec = time_esterror / 1000000;
1018 	bt.frac = ((time_esterror - bt.sec) * 1000000) *
1019 	    (uint64_t)18446744073709ULL;
1020 	clock_snap->fb_info.error = bt;
1021 
1022 #ifdef FFCLOCK
1023 	if (!fast)
1024 		clock_snap->ffcount += delta;
1025 
1026 	/* Record feed-forward clock leap second adjustment. */
1027 	ffi->leapsec_adjustment = cest.leapsec_total;
1028 	if (clock_snap->ffcount > cest.leapsec_next)
1029 		ffi->leapsec_adjustment -= cest.leapsec;
1030 
1031 	/* Record feed-forward clock status and error. */
1032 	clock_snap->ff_info.status = cest.status;
1033 	ffcount = clock_snap->ffcount - cest.update_ffcount;
1034 	ffclock_convert_delta(ffcount, cest.period, &bt);
1035 	/* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1036 	bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1037 	/* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1038 	bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1039 	clock_snap->ff_info.error = bt;
1040 #endif
1041 }
1042 
1043 /*
1044  * Convert a sysclock snapshot into a struct bintime based on the specified
1045  * clock source and flags.
1046  */
1047 int
1048 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1049     int whichclock, uint32_t flags)
1050 {
1051 #ifdef FFCLOCK
1052 	struct bintime bt2;
1053 	uint64_t period;
1054 #endif
1055 
1056 	switch (whichclock) {
1057 	case SYSCLOCK_FBCK:
1058 		*bt = cs->fb_info.tick_time;
1059 
1060 		/* If snapshot was created with !fast, delta will be >0. */
1061 		if (cs->delta > 0)
1062 			bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1063 
1064 		if ((flags & FBCLOCK_UPTIME) == 0)
1065 			bintime_add(bt, &boottimebin);
1066 		break;
1067 #ifdef FFCLOCK
1068 	case SYSCLOCK_FFWD:
1069 		if (flags & FFCLOCK_LERP) {
1070 			*bt = cs->ff_info.tick_time_lerp;
1071 			period = cs->ff_info.period_lerp;
1072 		} else {
1073 			*bt = cs->ff_info.tick_time;
1074 			period = cs->ff_info.period;
1075 		}
1076 
1077 		/* If snapshot was created with !fast, delta will be >0. */
1078 		if (cs->delta > 0) {
1079 			ffclock_convert_delta(cs->delta, period, &bt2);
1080 			bintime_add(bt, &bt2);
1081 		}
1082 
1083 		/* Leap second adjustment. */
1084 		if (flags & FFCLOCK_LEAPSEC)
1085 			bt->sec -= cs->ff_info.leapsec_adjustment;
1086 
1087 		/* Boot time adjustment, for uptime/monotonic clocks. */
1088 		if (flags & FFCLOCK_UPTIME)
1089 			bintime_sub(bt, &ffclock_boottime);
1090 		break;
1091 #endif
1092 	default:
1093 		return (EINVAL);
1094 		break;
1095 	}
1096 
1097 	return (0);
1098 }
1099 
1100 /*
1101  * Initialize a new timecounter and possibly use it.
1102  */
1103 void
1104 tc_init(struct timecounter *tc)
1105 {
1106 	u_int u;
1107 	struct sysctl_oid *tc_root;
1108 
1109 	u = tc->tc_frequency / tc->tc_counter_mask;
1110 	/* XXX: We need some margin here, 10% is a guess */
1111 	u *= 11;
1112 	u /= 10;
1113 	if (u > hz && tc->tc_quality >= 0) {
1114 		tc->tc_quality = -2000;
1115 		if (bootverbose) {
1116 			printf("Timecounter \"%s\" frequency %ju Hz",
1117 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
1118 			printf(" -- Insufficient hz, needs at least %u\n", u);
1119 		}
1120 	} else if (tc->tc_quality >= 0 || bootverbose) {
1121 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1122 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
1123 		    tc->tc_quality);
1124 	}
1125 
1126 	tc->tc_next = timecounters;
1127 	timecounters = tc;
1128 	/*
1129 	 * Set up sysctl tree for this counter.
1130 	 */
1131 	tc_root = SYSCTL_ADD_NODE(NULL,
1132 	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1133 	    CTLFLAG_RW, 0, "timecounter description");
1134 	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1135 	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1136 	    "mask for implemented bits");
1137 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1138 	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1139 	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
1140 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1141 	    "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1142 	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1143 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1144 	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1145 	    "goodness of time counter");
1146 	/*
1147 	 * Never automatically use a timecounter with negative quality.
1148 	 * Even though we run on the dummy counter, switching here may be
1149 	 * worse since this timecounter may not be monotonous.
1150 	 */
1151 	if (tc->tc_quality < 0)
1152 		return;
1153 	if (tc->tc_quality < timecounter->tc_quality)
1154 		return;
1155 	if (tc->tc_quality == timecounter->tc_quality &&
1156 	    tc->tc_frequency < timecounter->tc_frequency)
1157 		return;
1158 	(void)tc->tc_get_timecount(tc);
1159 	(void)tc->tc_get_timecount(tc);
1160 	timecounter = tc;
1161 }
1162 
1163 /* Report the frequency of the current timecounter. */
1164 uint64_t
1165 tc_getfrequency(void)
1166 {
1167 
1168 	return (timehands->th_counter->tc_frequency);
1169 }
1170 
1171 /*
1172  * Step our concept of UTC.  This is done by modifying our estimate of
1173  * when we booted.
1174  * XXX: not locked.
1175  */
1176 void
1177 tc_setclock(struct timespec *ts)
1178 {
1179 	struct timespec tbef, taft;
1180 	struct bintime bt, bt2;
1181 
1182 	cpu_tick_calibrate(1);
1183 	nanotime(&tbef);
1184 	timespec2bintime(ts, &bt);
1185 	binuptime(&bt2);
1186 	bintime_sub(&bt, &bt2);
1187 	bintime_add(&bt2, &boottimebin);
1188 	boottimebin = bt;
1189 	bintime2timeval(&bt, &boottime);
1190 
1191 	/* XXX fiddle all the little crinkly bits around the fiords... */
1192 	tc_windup();
1193 	nanotime(&taft);
1194 	if (timestepwarnings) {
1195 		log(LOG_INFO,
1196 		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1197 		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1198 		    (intmax_t)taft.tv_sec, taft.tv_nsec,
1199 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
1200 	}
1201 	cpu_tick_calibrate(1);
1202 }
1203 
1204 /*
1205  * Initialize the next struct timehands in the ring and make
1206  * it the active timehands.  Along the way we might switch to a different
1207  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1208  */
1209 static void
1210 tc_windup(void)
1211 {
1212 	struct bintime bt;
1213 	struct timehands *th, *tho;
1214 	uint64_t scale;
1215 	u_int delta, ncount, ogen;
1216 	int i;
1217 	time_t t;
1218 
1219 	/*
1220 	 * Make the next timehands a copy of the current one, but do not
1221 	 * overwrite the generation or next pointer.  While we update
1222 	 * the contents, the generation must be zero.
1223 	 */
1224 	tho = timehands;
1225 	th = tho->th_next;
1226 	ogen = th->th_generation;
1227 	th->th_generation = 0;
1228 	bcopy(tho, th, offsetof(struct timehands, th_generation));
1229 
1230 	/*
1231 	 * Capture a timecounter delta on the current timecounter and if
1232 	 * changing timecounters, a counter value from the new timecounter.
1233 	 * Update the offset fields accordingly.
1234 	 */
1235 	delta = tc_delta(th);
1236 	if (th->th_counter != timecounter)
1237 		ncount = timecounter->tc_get_timecount(timecounter);
1238 	else
1239 		ncount = 0;
1240 #ifdef FFCLOCK
1241 	ffclock_windup(delta);
1242 #endif
1243 	th->th_offset_count += delta;
1244 	th->th_offset_count &= th->th_counter->tc_counter_mask;
1245 	while (delta > th->th_counter->tc_frequency) {
1246 		/* Eat complete unadjusted seconds. */
1247 		delta -= th->th_counter->tc_frequency;
1248 		th->th_offset.sec++;
1249 	}
1250 	if ((delta > th->th_counter->tc_frequency / 2) &&
1251 	    (th->th_scale * delta < ((uint64_t)1 << 63))) {
1252 		/* The product th_scale * delta just barely overflows. */
1253 		th->th_offset.sec++;
1254 	}
1255 	bintime_addx(&th->th_offset, th->th_scale * delta);
1256 
1257 	/*
1258 	 * Hardware latching timecounters may not generate interrupts on
1259 	 * PPS events, so instead we poll them.  There is a finite risk that
1260 	 * the hardware might capture a count which is later than the one we
1261 	 * got above, and therefore possibly in the next NTP second which might
1262 	 * have a different rate than the current NTP second.  It doesn't
1263 	 * matter in practice.
1264 	 */
1265 	if (tho->th_counter->tc_poll_pps)
1266 		tho->th_counter->tc_poll_pps(tho->th_counter);
1267 
1268 	/*
1269 	 * Deal with NTP second processing.  The for loop normally
1270 	 * iterates at most once, but in extreme situations it might
1271 	 * keep NTP sane if timeouts are not run for several seconds.
1272 	 * At boot, the time step can be large when the TOD hardware
1273 	 * has been read, so on really large steps, we call
1274 	 * ntp_update_second only twice.  We need to call it twice in
1275 	 * case we missed a leap second.
1276 	 */
1277 	bt = th->th_offset;
1278 	bintime_add(&bt, &boottimebin);
1279 	i = bt.sec - tho->th_microtime.tv_sec;
1280 	if (i > LARGE_STEP)
1281 		i = 2;
1282 	for (; i > 0; i--) {
1283 		t = bt.sec;
1284 		ntp_update_second(&th->th_adjustment, &bt.sec);
1285 		if (bt.sec != t)
1286 			boottimebin.sec += bt.sec - t;
1287 	}
1288 	/* Update the UTC timestamps used by the get*() functions. */
1289 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
1290 	bintime2timeval(&bt, &th->th_microtime);
1291 	bintime2timespec(&bt, &th->th_nanotime);
1292 
1293 	/* Now is a good time to change timecounters. */
1294 	if (th->th_counter != timecounter) {
1295 #ifndef __arm__
1296 		if ((timecounter->tc_flags & TC_FLAGS_C3STOP) != 0)
1297 			cpu_disable_deep_sleep++;
1298 		if ((th->th_counter->tc_flags & TC_FLAGS_C3STOP) != 0)
1299 			cpu_disable_deep_sleep--;
1300 #endif
1301 		th->th_counter = timecounter;
1302 		th->th_offset_count = ncount;
1303 		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1304 		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1305 #ifdef FFCLOCK
1306 		ffclock_change_tc(th);
1307 #endif
1308 	}
1309 
1310 	/*-
1311 	 * Recalculate the scaling factor.  We want the number of 1/2^64
1312 	 * fractions of a second per period of the hardware counter, taking
1313 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1314 	 * processing provides us with.
1315 	 *
1316 	 * The th_adjustment is nanoseconds per second with 32 bit binary
1317 	 * fraction and we want 64 bit binary fraction of second:
1318 	 *
1319 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
1320 	 *
1321 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1322 	 * we can only multiply by about 850 without overflowing, that
1323 	 * leaves no suitably precise fractions for multiply before divide.
1324 	 *
1325 	 * Divide before multiply with a fraction of 2199/512 results in a
1326 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
1327 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1328  	 *
1329 	 * We happily sacrifice the lowest of the 64 bits of our result
1330 	 * to the goddess of code clarity.
1331 	 *
1332 	 */
1333 	scale = (uint64_t)1 << 63;
1334 	scale += (th->th_adjustment / 1024) * 2199;
1335 	scale /= th->th_counter->tc_frequency;
1336 	th->th_scale = scale * 2;
1337 
1338 	/*
1339 	 * Now that the struct timehands is again consistent, set the new
1340 	 * generation number, making sure to not make it zero.
1341 	 */
1342 	if (++ogen == 0)
1343 		ogen = 1;
1344 	th->th_generation = ogen;
1345 
1346 	/* Go live with the new struct timehands. */
1347 #ifdef FFCLOCK
1348 	switch (sysclock_active) {
1349 	case SYSCLOCK_FBCK:
1350 #endif
1351 		time_second = th->th_microtime.tv_sec;
1352 		time_uptime = th->th_offset.sec;
1353 #ifdef FFCLOCK
1354 		break;
1355 	case SYSCLOCK_FFWD:
1356 		time_second = fftimehands->tick_time_lerp.sec;
1357 		time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1358 		break;
1359 	}
1360 #endif
1361 
1362 	timehands = th;
1363 }
1364 
1365 /* Report or change the active timecounter hardware. */
1366 static int
1367 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1368 {
1369 	char newname[32];
1370 	struct timecounter *newtc, *tc;
1371 	int error;
1372 
1373 	tc = timecounter;
1374 	strlcpy(newname, tc->tc_name, sizeof(newname));
1375 
1376 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1377 	if (error != 0 || req->newptr == NULL ||
1378 	    strcmp(newname, tc->tc_name) == 0)
1379 		return (error);
1380 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1381 		if (strcmp(newname, newtc->tc_name) != 0)
1382 			continue;
1383 
1384 		/* Warm up new timecounter. */
1385 		(void)newtc->tc_get_timecount(newtc);
1386 		(void)newtc->tc_get_timecount(newtc);
1387 
1388 		timecounter = newtc;
1389 		return (0);
1390 	}
1391 	return (EINVAL);
1392 }
1393 
1394 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1395     0, 0, sysctl_kern_timecounter_hardware, "A",
1396     "Timecounter hardware selected");
1397 
1398 
1399 /* Report or change the active timecounter hardware. */
1400 static int
1401 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1402 {
1403 	char buf[32], *spc;
1404 	struct timecounter *tc;
1405 	int error;
1406 
1407 	spc = "";
1408 	error = 0;
1409 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
1410 		sprintf(buf, "%s%s(%d)",
1411 		    spc, tc->tc_name, tc->tc_quality);
1412 		error = SYSCTL_OUT(req, buf, strlen(buf));
1413 		spc = " ";
1414 	}
1415 	return (error);
1416 }
1417 
1418 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1419     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1420 
1421 /*
1422  * RFC 2783 PPS-API implementation.
1423  */
1424 
1425 int
1426 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1427 {
1428 	pps_params_t *app;
1429 	struct pps_fetch_args *fapi;
1430 #ifdef FFCLOCK
1431 	struct pps_fetch_ffc_args *fapi_ffc;
1432 #endif
1433 #ifdef PPS_SYNC
1434 	struct pps_kcbind_args *kapi;
1435 #endif
1436 
1437 	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1438 	switch (cmd) {
1439 	case PPS_IOC_CREATE:
1440 		return (0);
1441 	case PPS_IOC_DESTROY:
1442 		return (0);
1443 	case PPS_IOC_SETPARAMS:
1444 		app = (pps_params_t *)data;
1445 		if (app->mode & ~pps->ppscap)
1446 			return (EINVAL);
1447 #ifdef FFCLOCK
1448 		/* Ensure only a single clock is selected for ffc timestamp. */
1449 		if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1450 			return (EINVAL);
1451 #endif
1452 		pps->ppsparam = *app;
1453 		return (0);
1454 	case PPS_IOC_GETPARAMS:
1455 		app = (pps_params_t *)data;
1456 		*app = pps->ppsparam;
1457 		app->api_version = PPS_API_VERS_1;
1458 		return (0);
1459 	case PPS_IOC_GETCAP:
1460 		*(int*)data = pps->ppscap;
1461 		return (0);
1462 	case PPS_IOC_FETCH:
1463 		fapi = (struct pps_fetch_args *)data;
1464 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1465 			return (EINVAL);
1466 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1467 			return (EOPNOTSUPP);
1468 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
1469 		fapi->pps_info_buf = pps->ppsinfo;
1470 		return (0);
1471 #ifdef FFCLOCK
1472 	case PPS_IOC_FETCH_FFCOUNTER:
1473 		fapi_ffc = (struct pps_fetch_ffc_args *)data;
1474 		if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1475 		    PPS_TSFMT_TSPEC)
1476 			return (EINVAL);
1477 		if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1478 			return (EOPNOTSUPP);
1479 		pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1480 		fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1481 		/* Overwrite timestamps if feedback clock selected. */
1482 		switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1483 		case PPS_TSCLK_FBCK:
1484 			fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1485 			    pps->ppsinfo.assert_timestamp;
1486 			fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1487 			    pps->ppsinfo.clear_timestamp;
1488 			break;
1489 		case PPS_TSCLK_FFWD:
1490 			break;
1491 		default:
1492 			break;
1493 		}
1494 		return (0);
1495 #endif /* FFCLOCK */
1496 	case PPS_IOC_KCBIND:
1497 #ifdef PPS_SYNC
1498 		kapi = (struct pps_kcbind_args *)data;
1499 		/* XXX Only root should be able to do this */
1500 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1501 			return (EINVAL);
1502 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1503 			return (EINVAL);
1504 		if (kapi->edge & ~pps->ppscap)
1505 			return (EINVAL);
1506 		pps->kcmode = kapi->edge;
1507 		return (0);
1508 #else
1509 		return (EOPNOTSUPP);
1510 #endif
1511 	default:
1512 		return (ENOIOCTL);
1513 	}
1514 }
1515 
1516 void
1517 pps_init(struct pps_state *pps)
1518 {
1519 	pps->ppscap |= PPS_TSFMT_TSPEC;
1520 	if (pps->ppscap & PPS_CAPTUREASSERT)
1521 		pps->ppscap |= PPS_OFFSETASSERT;
1522 	if (pps->ppscap & PPS_CAPTURECLEAR)
1523 		pps->ppscap |= PPS_OFFSETCLEAR;
1524 #ifdef FFCLOCK
1525 	pps->ppscap |= PPS_TSCLK_MASK;
1526 #endif
1527 }
1528 
1529 void
1530 pps_capture(struct pps_state *pps)
1531 {
1532 	struct timehands *th;
1533 
1534 	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1535 	th = timehands;
1536 	pps->capgen = th->th_generation;
1537 	pps->capth = th;
1538 #ifdef FFCLOCK
1539 	pps->capffth = fftimehands;
1540 #endif
1541 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1542 	if (pps->capgen != th->th_generation)
1543 		pps->capgen = 0;
1544 }
1545 
1546 void
1547 pps_event(struct pps_state *pps, int event)
1548 {
1549 	struct bintime bt;
1550 	struct timespec ts, *tsp, *osp;
1551 	u_int tcount, *pcount;
1552 	int foff, fhard;
1553 	pps_seq_t *pseq;
1554 #ifdef FFCLOCK
1555 	struct timespec *tsp_ffc;
1556 	pps_seq_t *pseq_ffc;
1557 	ffcounter *ffcount;
1558 #endif
1559 
1560 	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1561 	/* If the timecounter was wound up underneath us, bail out. */
1562 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
1563 		return;
1564 
1565 	/* Things would be easier with arrays. */
1566 	if (event == PPS_CAPTUREASSERT) {
1567 		tsp = &pps->ppsinfo.assert_timestamp;
1568 		osp = &pps->ppsparam.assert_offset;
1569 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1570 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1571 		pcount = &pps->ppscount[0];
1572 		pseq = &pps->ppsinfo.assert_sequence;
1573 #ifdef FFCLOCK
1574 		ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1575 		tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1576 		pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1577 #endif
1578 	} else {
1579 		tsp = &pps->ppsinfo.clear_timestamp;
1580 		osp = &pps->ppsparam.clear_offset;
1581 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1582 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1583 		pcount = &pps->ppscount[1];
1584 		pseq = &pps->ppsinfo.clear_sequence;
1585 #ifdef FFCLOCK
1586 		ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1587 		tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1588 		pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1589 #endif
1590 	}
1591 
1592 	/*
1593 	 * If the timecounter changed, we cannot compare the count values, so
1594 	 * we have to drop the rest of the PPS-stuff until the next event.
1595 	 */
1596 	if (pps->ppstc != pps->capth->th_counter) {
1597 		pps->ppstc = pps->capth->th_counter;
1598 		*pcount = pps->capcount;
1599 		pps->ppscount[2] = pps->capcount;
1600 		return;
1601 	}
1602 
1603 	/* Convert the count to a timespec. */
1604 	tcount = pps->capcount - pps->capth->th_offset_count;
1605 	tcount &= pps->capth->th_counter->tc_counter_mask;
1606 	bt = pps->capth->th_offset;
1607 	bintime_addx(&bt, pps->capth->th_scale * tcount);
1608 	bintime_add(&bt, &boottimebin);
1609 	bintime2timespec(&bt, &ts);
1610 
1611 	/* If the timecounter was wound up underneath us, bail out. */
1612 	if (pps->capgen != pps->capth->th_generation)
1613 		return;
1614 
1615 	*pcount = pps->capcount;
1616 	(*pseq)++;
1617 	*tsp = ts;
1618 
1619 	if (foff) {
1620 		timespecadd(tsp, osp);
1621 		if (tsp->tv_nsec < 0) {
1622 			tsp->tv_nsec += 1000000000;
1623 			tsp->tv_sec -= 1;
1624 		}
1625 	}
1626 
1627 #ifdef FFCLOCK
1628 	*ffcount = pps->capffth->tick_ffcount + tcount;
1629 	bt = pps->capffth->tick_time;
1630 	ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1631 	bintime_add(&bt, &pps->capffth->tick_time);
1632 	bintime2timespec(&bt, &ts);
1633 	(*pseq_ffc)++;
1634 	*tsp_ffc = ts;
1635 #endif
1636 
1637 #ifdef PPS_SYNC
1638 	if (fhard) {
1639 		uint64_t scale;
1640 
1641 		/*
1642 		 * Feed the NTP PLL/FLL.
1643 		 * The FLL wants to know how many (hardware) nanoseconds
1644 		 * elapsed since the previous event.
1645 		 */
1646 		tcount = pps->capcount - pps->ppscount[2];
1647 		pps->ppscount[2] = pps->capcount;
1648 		tcount &= pps->capth->th_counter->tc_counter_mask;
1649 		scale = (uint64_t)1 << 63;
1650 		scale /= pps->capth->th_counter->tc_frequency;
1651 		scale *= 2;
1652 		bt.sec = 0;
1653 		bt.frac = 0;
1654 		bintime_addx(&bt, scale * tcount);
1655 		bintime2timespec(&bt, &ts);
1656 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1657 	}
1658 #endif
1659 }
1660 
1661 /*
1662  * Timecounters need to be updated every so often to prevent the hardware
1663  * counter from overflowing.  Updating also recalculates the cached values
1664  * used by the get*() family of functions, so their precision depends on
1665  * the update frequency.
1666  */
1667 
1668 static int tc_tick;
1669 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1670     "Approximate number of hardclock ticks in a millisecond");
1671 
1672 void
1673 tc_ticktock(int cnt)
1674 {
1675 	static int count;
1676 
1677 	count += cnt;
1678 	if (count < tc_tick)
1679 		return;
1680 	count = 0;
1681 	tc_windup();
1682 }
1683 
1684 static void
1685 inittimecounter(void *dummy)
1686 {
1687 	u_int p;
1688 
1689 	/*
1690 	 * Set the initial timeout to
1691 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
1692 	 * People should probably not use the sysctl to set the timeout
1693 	 * to smaller than its inital value, since that value is the
1694 	 * smallest reasonable one.  If they want better timestamps they
1695 	 * should use the non-"get"* functions.
1696 	 */
1697 	if (hz > 1000)
1698 		tc_tick = (hz + 500) / 1000;
1699 	else
1700 		tc_tick = 1;
1701 	p = (tc_tick * 1000000) / hz;
1702 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1703 
1704 #ifdef FFCLOCK
1705 	ffclock_init();
1706 #endif
1707 	/* warm up new timecounter (again) and get rolling. */
1708 	(void)timecounter->tc_get_timecount(timecounter);
1709 	(void)timecounter->tc_get_timecount(timecounter);
1710 	tc_windup();
1711 }
1712 
1713 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1714 
1715 /* Cpu tick handling -------------------------------------------------*/
1716 
1717 static int cpu_tick_variable;
1718 static uint64_t	cpu_tick_frequency;
1719 
1720 static uint64_t
1721 tc_cpu_ticks(void)
1722 {
1723 	static uint64_t base;
1724 	static unsigned last;
1725 	unsigned u;
1726 	struct timecounter *tc;
1727 
1728 	tc = timehands->th_counter;
1729 	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
1730 	if (u < last)
1731 		base += (uint64_t)tc->tc_counter_mask + 1;
1732 	last = u;
1733 	return (u + base);
1734 }
1735 
1736 void
1737 cpu_tick_calibration(void)
1738 {
1739 	static time_t last_calib;
1740 
1741 	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
1742 		cpu_tick_calibrate(0);
1743 		last_calib = time_uptime;
1744 	}
1745 }
1746 
1747 /*
1748  * This function gets called every 16 seconds on only one designated
1749  * CPU in the system from hardclock() via cpu_tick_calibration()().
1750  *
1751  * Whenever the real time clock is stepped we get called with reset=1
1752  * to make sure we handle suspend/resume and similar events correctly.
1753  */
1754 
1755 static void
1756 cpu_tick_calibrate(int reset)
1757 {
1758 	static uint64_t c_last;
1759 	uint64_t c_this, c_delta;
1760 	static struct bintime  t_last;
1761 	struct bintime t_this, t_delta;
1762 	uint32_t divi;
1763 
1764 	if (reset) {
1765 		/* The clock was stepped, abort & reset */
1766 		t_last.sec = 0;
1767 		return;
1768 	}
1769 
1770 	/* we don't calibrate fixed rate cputicks */
1771 	if (!cpu_tick_variable)
1772 		return;
1773 
1774 	getbinuptime(&t_this);
1775 	c_this = cpu_ticks();
1776 	if (t_last.sec != 0) {
1777 		c_delta = c_this - c_last;
1778 		t_delta = t_this;
1779 		bintime_sub(&t_delta, &t_last);
1780 		/*
1781 		 * Headroom:
1782 		 * 	2^(64-20) / 16[s] =
1783 		 * 	2^(44) / 16[s] =
1784 		 * 	17.592.186.044.416 / 16 =
1785 		 * 	1.099.511.627.776 [Hz]
1786 		 */
1787 		divi = t_delta.sec << 20;
1788 		divi |= t_delta.frac >> (64 - 20);
1789 		c_delta <<= 20;
1790 		c_delta /= divi;
1791 		if (c_delta > cpu_tick_frequency) {
1792 			if (0 && bootverbose)
1793 				printf("cpu_tick increased to %ju Hz\n",
1794 				    c_delta);
1795 			cpu_tick_frequency = c_delta;
1796 		}
1797 	}
1798 	c_last = c_this;
1799 	t_last = t_this;
1800 }
1801 
1802 void
1803 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
1804 {
1805 
1806 	if (func == NULL) {
1807 		cpu_ticks = tc_cpu_ticks;
1808 	} else {
1809 		cpu_tick_frequency = freq;
1810 		cpu_tick_variable = var;
1811 		cpu_ticks = func;
1812 	}
1813 }
1814 
1815 uint64_t
1816 cpu_tickrate(void)
1817 {
1818 
1819 	if (cpu_ticks == tc_cpu_ticks)
1820 		return (tc_getfrequency());
1821 	return (cpu_tick_frequency);
1822 }
1823 
1824 /*
1825  * We need to be slightly careful converting cputicks to microseconds.
1826  * There is plenty of margin in 64 bits of microseconds (half a million
1827  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
1828  * before divide conversion (to retain precision) we find that the
1829  * margin shrinks to 1.5 hours (one millionth of 146y).
1830  * With a three prong approach we never lose significant bits, no
1831  * matter what the cputick rate and length of timeinterval is.
1832  */
1833 
1834 uint64_t
1835 cputick2usec(uint64_t tick)
1836 {
1837 
1838 	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
1839 		return (tick / (cpu_tickrate() / 1000000LL));
1840 	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
1841 		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
1842 	else
1843 		return ((tick * 1000000LL) / cpu_tickrate());
1844 }
1845 
1846 cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
1847