1 /*- 2 * ---------------------------------------------------------------------------- 3 * "THE BEER-WARE LICENSE" (Revision 42): 4 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 5 * can do whatever you want with this stuff. If we meet some day, and you think 6 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 7 * ---------------------------------------------------------------------------- 8 * 9 * Copyright (c) 2011 The FreeBSD Foundation 10 * All rights reserved. 11 * 12 * Portions of this software were developed by Julien Ridoux at the University 13 * of Melbourne under sponsorship from the FreeBSD Foundation. 14 */ 15 16 #include <sys/cdefs.h> 17 __FBSDID("$FreeBSD$"); 18 19 #include "opt_ntp.h" 20 #include "opt_ffclock.h" 21 22 #include <sys/param.h> 23 #include <sys/kernel.h> 24 #ifdef FFCLOCK 25 #include <sys/lock.h> 26 #include <sys/mutex.h> 27 #endif 28 #include <sys/sysctl.h> 29 #include <sys/syslog.h> 30 #include <sys/systm.h> 31 #include <sys/timeffc.h> 32 #include <sys/timepps.h> 33 #include <sys/timetc.h> 34 #include <sys/timex.h> 35 36 /* 37 * A large step happens on boot. This constant detects such steps. 38 * It is relatively small so that ntp_update_second gets called enough 39 * in the typical 'missed a couple of seconds' case, but doesn't loop 40 * forever when the time step is large. 41 */ 42 #define LARGE_STEP 200 43 44 /* 45 * Implement a dummy timecounter which we can use until we get a real one 46 * in the air. This allows the console and other early stuff to use 47 * time services. 48 */ 49 50 static u_int 51 dummy_get_timecount(struct timecounter *tc) 52 { 53 static u_int now; 54 55 return (++now); 56 } 57 58 static struct timecounter dummy_timecounter = { 59 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 60 }; 61 62 struct timehands { 63 /* These fields must be initialized by the driver. */ 64 struct timecounter *th_counter; 65 int64_t th_adjustment; 66 uint64_t th_scale; 67 u_int th_offset_count; 68 struct bintime th_offset; 69 struct timeval th_microtime; 70 struct timespec th_nanotime; 71 /* Fields not to be copied in tc_windup start with th_generation. */ 72 volatile u_int th_generation; 73 struct timehands *th_next; 74 }; 75 76 static struct timehands th0; 77 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0}; 78 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9}; 79 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8}; 80 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7}; 81 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6}; 82 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5}; 83 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4}; 84 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3}; 85 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2}; 86 static struct timehands th0 = { 87 &dummy_timecounter, 88 0, 89 (uint64_t)-1 / 1000000, 90 0, 91 {1, 0}, 92 {0, 0}, 93 {0, 0}, 94 1, 95 &th1 96 }; 97 98 static struct timehands *volatile timehands = &th0; 99 struct timecounter *timecounter = &dummy_timecounter; 100 static struct timecounter *timecounters = &dummy_timecounter; 101 102 int tc_min_ticktock_freq = 1; 103 104 time_t time_second = 1; 105 time_t time_uptime = 1; 106 107 struct bintime boottimebin; 108 struct timeval boottime; 109 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 110 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD, 111 NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime"); 112 113 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, ""); 114 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, ""); 115 116 static int timestepwarnings; 117 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW, 118 ×tepwarnings, 0, "Log time steps"); 119 120 static void tc_windup(void); 121 static void cpu_tick_calibrate(int); 122 123 static int 124 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 125 { 126 #ifndef __mips__ 127 #ifdef SCTL_MASK32 128 int tv[2]; 129 130 if (req->flags & SCTL_MASK32) { 131 tv[0] = boottime.tv_sec; 132 tv[1] = boottime.tv_usec; 133 return SYSCTL_OUT(req, tv, sizeof(tv)); 134 } else 135 #endif 136 #endif 137 return SYSCTL_OUT(req, &boottime, sizeof(boottime)); 138 } 139 140 static int 141 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 142 { 143 u_int ncount; 144 struct timecounter *tc = arg1; 145 146 ncount = tc->tc_get_timecount(tc); 147 return sysctl_handle_int(oidp, &ncount, 0, req); 148 } 149 150 static int 151 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 152 { 153 uint64_t freq; 154 struct timecounter *tc = arg1; 155 156 freq = tc->tc_frequency; 157 return sysctl_handle_64(oidp, &freq, 0, req); 158 } 159 160 /* 161 * Return the difference between the timehands' counter value now and what 162 * was when we copied it to the timehands' offset_count. 163 */ 164 static __inline u_int 165 tc_delta(struct timehands *th) 166 { 167 struct timecounter *tc; 168 169 tc = th->th_counter; 170 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 171 tc->tc_counter_mask); 172 } 173 174 /* 175 * Functions for reading the time. We have to loop until we are sure that 176 * the timehands that we operated on was not updated under our feet. See 177 * the comment in <sys/time.h> for a description of these 12 functions. 178 */ 179 180 #ifdef FFCLOCK 181 void 182 fbclock_binuptime(struct bintime *bt) 183 { 184 struct timehands *th; 185 unsigned int gen; 186 187 do { 188 th = timehands; 189 gen = th->th_generation; 190 *bt = th->th_offset; 191 bintime_addx(bt, th->th_scale * tc_delta(th)); 192 } while (gen == 0 || gen != th->th_generation); 193 } 194 195 void 196 fbclock_nanouptime(struct timespec *tsp) 197 { 198 struct bintime bt; 199 200 fbclock_binuptime(&bt); 201 bintime2timespec(&bt, tsp); 202 } 203 204 void 205 fbclock_microuptime(struct timeval *tvp) 206 { 207 struct bintime bt; 208 209 fbclock_binuptime(&bt); 210 bintime2timeval(&bt, tvp); 211 } 212 213 void 214 fbclock_bintime(struct bintime *bt) 215 { 216 217 fbclock_binuptime(bt); 218 bintime_add(bt, &boottimebin); 219 } 220 221 void 222 fbclock_nanotime(struct timespec *tsp) 223 { 224 struct bintime bt; 225 226 fbclock_bintime(&bt); 227 bintime2timespec(&bt, tsp); 228 } 229 230 void 231 fbclock_microtime(struct timeval *tvp) 232 { 233 struct bintime bt; 234 235 fbclock_bintime(&bt); 236 bintime2timeval(&bt, tvp); 237 } 238 239 void 240 fbclock_getbinuptime(struct bintime *bt) 241 { 242 struct timehands *th; 243 unsigned int gen; 244 245 do { 246 th = timehands; 247 gen = th->th_generation; 248 *bt = th->th_offset; 249 } while (gen == 0 || gen != th->th_generation); 250 } 251 252 void 253 fbclock_getnanouptime(struct timespec *tsp) 254 { 255 struct timehands *th; 256 unsigned int gen; 257 258 do { 259 th = timehands; 260 gen = th->th_generation; 261 bintime2timespec(&th->th_offset, tsp); 262 } while (gen == 0 || gen != th->th_generation); 263 } 264 265 void 266 fbclock_getmicrouptime(struct timeval *tvp) 267 { 268 struct timehands *th; 269 unsigned int gen; 270 271 do { 272 th = timehands; 273 gen = th->th_generation; 274 bintime2timeval(&th->th_offset, tvp); 275 } while (gen == 0 || gen != th->th_generation); 276 } 277 278 void 279 fbclock_getbintime(struct bintime *bt) 280 { 281 struct timehands *th; 282 unsigned int gen; 283 284 do { 285 th = timehands; 286 gen = th->th_generation; 287 *bt = th->th_offset; 288 } while (gen == 0 || gen != th->th_generation); 289 bintime_add(bt, &boottimebin); 290 } 291 292 void 293 fbclock_getnanotime(struct timespec *tsp) 294 { 295 struct timehands *th; 296 unsigned int gen; 297 298 do { 299 th = timehands; 300 gen = th->th_generation; 301 *tsp = th->th_nanotime; 302 } while (gen == 0 || gen != th->th_generation); 303 } 304 305 void 306 fbclock_getmicrotime(struct timeval *tvp) 307 { 308 struct timehands *th; 309 unsigned int gen; 310 311 do { 312 th = timehands; 313 gen = th->th_generation; 314 *tvp = th->th_microtime; 315 } while (gen == 0 || gen != th->th_generation); 316 } 317 #else /* !FFCLOCK */ 318 void 319 binuptime(struct bintime *bt) 320 { 321 struct timehands *th; 322 u_int gen; 323 324 do { 325 th = timehands; 326 gen = th->th_generation; 327 *bt = th->th_offset; 328 bintime_addx(bt, th->th_scale * tc_delta(th)); 329 } while (gen == 0 || gen != th->th_generation); 330 } 331 332 void 333 nanouptime(struct timespec *tsp) 334 { 335 struct bintime bt; 336 337 binuptime(&bt); 338 bintime2timespec(&bt, tsp); 339 } 340 341 void 342 microuptime(struct timeval *tvp) 343 { 344 struct bintime bt; 345 346 binuptime(&bt); 347 bintime2timeval(&bt, tvp); 348 } 349 350 void 351 bintime(struct bintime *bt) 352 { 353 354 binuptime(bt); 355 bintime_add(bt, &boottimebin); 356 } 357 358 void 359 nanotime(struct timespec *tsp) 360 { 361 struct bintime bt; 362 363 bintime(&bt); 364 bintime2timespec(&bt, tsp); 365 } 366 367 void 368 microtime(struct timeval *tvp) 369 { 370 struct bintime bt; 371 372 bintime(&bt); 373 bintime2timeval(&bt, tvp); 374 } 375 376 void 377 getbinuptime(struct bintime *bt) 378 { 379 struct timehands *th; 380 u_int gen; 381 382 do { 383 th = timehands; 384 gen = th->th_generation; 385 *bt = th->th_offset; 386 } while (gen == 0 || gen != th->th_generation); 387 } 388 389 void 390 getnanouptime(struct timespec *tsp) 391 { 392 struct timehands *th; 393 u_int gen; 394 395 do { 396 th = timehands; 397 gen = th->th_generation; 398 bintime2timespec(&th->th_offset, tsp); 399 } while (gen == 0 || gen != th->th_generation); 400 } 401 402 void 403 getmicrouptime(struct timeval *tvp) 404 { 405 struct timehands *th; 406 u_int gen; 407 408 do { 409 th = timehands; 410 gen = th->th_generation; 411 bintime2timeval(&th->th_offset, tvp); 412 } while (gen == 0 || gen != th->th_generation); 413 } 414 415 void 416 getbintime(struct bintime *bt) 417 { 418 struct timehands *th; 419 u_int gen; 420 421 do { 422 th = timehands; 423 gen = th->th_generation; 424 *bt = th->th_offset; 425 } while (gen == 0 || gen != th->th_generation); 426 bintime_add(bt, &boottimebin); 427 } 428 429 void 430 getnanotime(struct timespec *tsp) 431 { 432 struct timehands *th; 433 u_int gen; 434 435 do { 436 th = timehands; 437 gen = th->th_generation; 438 *tsp = th->th_nanotime; 439 } while (gen == 0 || gen != th->th_generation); 440 } 441 442 void 443 getmicrotime(struct timeval *tvp) 444 { 445 struct timehands *th; 446 u_int gen; 447 448 do { 449 th = timehands; 450 gen = th->th_generation; 451 *tvp = th->th_microtime; 452 } while (gen == 0 || gen != th->th_generation); 453 } 454 #endif /* FFCLOCK */ 455 456 #ifdef FFCLOCK 457 /* 458 * Support for feed-forward synchronization algorithms. This is heavily inspired 459 * by the timehands mechanism but kept independent from it. *_windup() functions 460 * have some connection to avoid accessing the timecounter hardware more than 461 * necessary. 462 */ 463 464 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 465 struct ffclock_estimate ffclock_estimate; 466 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 467 uint32_t ffclock_status; /* Feed-forward clock status. */ 468 int8_t ffclock_updated; /* New estimates are available. */ 469 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 470 471 struct fftimehands { 472 struct ffclock_estimate cest; 473 struct bintime tick_time; 474 struct bintime tick_time_lerp; 475 ffcounter tick_ffcount; 476 uint64_t period_lerp; 477 volatile uint8_t gen; 478 struct fftimehands *next; 479 }; 480 481 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 482 483 static struct fftimehands ffth[10]; 484 static struct fftimehands *volatile fftimehands = ffth; 485 486 static void 487 ffclock_init(void) 488 { 489 struct fftimehands *cur; 490 struct fftimehands *last; 491 492 memset(ffth, 0, sizeof(ffth)); 493 494 last = ffth + NUM_ELEMENTS(ffth) - 1; 495 for (cur = ffth; cur < last; cur++) 496 cur->next = cur + 1; 497 last->next = ffth; 498 499 ffclock_updated = 0; 500 ffclock_status = FFCLOCK_STA_UNSYNC; 501 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 502 } 503 504 /* 505 * Reset the feed-forward clock estimates. Called from inittodr() to get things 506 * kick started and uses the timecounter nominal frequency as a first period 507 * estimate. Note: this function may be called several time just after boot. 508 * Note: this is the only function that sets the value of boot time for the 509 * monotonic (i.e. uptime) version of the feed-forward clock. 510 */ 511 void 512 ffclock_reset_clock(struct timespec *ts) 513 { 514 struct timecounter *tc; 515 struct ffclock_estimate cest; 516 517 tc = timehands->th_counter; 518 memset(&cest, 0, sizeof(struct ffclock_estimate)); 519 520 timespec2bintime(ts, &ffclock_boottime); 521 timespec2bintime(ts, &(cest.update_time)); 522 ffclock_read_counter(&cest.update_ffcount); 523 cest.leapsec_next = 0; 524 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 525 cest.errb_abs = 0; 526 cest.errb_rate = 0; 527 cest.status = FFCLOCK_STA_UNSYNC; 528 cest.leapsec_total = 0; 529 cest.leapsec = 0; 530 531 mtx_lock(&ffclock_mtx); 532 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 533 ffclock_updated = INT8_MAX; 534 mtx_unlock(&ffclock_mtx); 535 536 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 537 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 538 (unsigned long)ts->tv_nsec); 539 } 540 541 /* 542 * Sub-routine to convert a time interval measured in RAW counter units to time 543 * in seconds stored in bintime format. 544 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 545 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 546 * extra cycles. 547 */ 548 static void 549 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 550 { 551 struct bintime bt2; 552 ffcounter delta, delta_max; 553 554 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 555 bintime_clear(bt); 556 do { 557 if (ffdelta > delta_max) 558 delta = delta_max; 559 else 560 delta = ffdelta; 561 bt2.sec = 0; 562 bt2.frac = period; 563 bintime_mul(&bt2, (unsigned int)delta); 564 bintime_add(bt, &bt2); 565 ffdelta -= delta; 566 } while (ffdelta > 0); 567 } 568 569 /* 570 * Update the fftimehands. 571 * Push the tick ffcount and time(s) forward based on current clock estimate. 572 * The conversion from ffcounter to bintime relies on the difference clock 573 * principle, whose accuracy relies on computing small time intervals. If a new 574 * clock estimate has been passed by the synchronisation daemon, make it 575 * current, and compute the linear interpolation for monotonic time if needed. 576 */ 577 static void 578 ffclock_windup(unsigned int delta) 579 { 580 struct ffclock_estimate *cest; 581 struct fftimehands *ffth; 582 struct bintime bt, gap_lerp; 583 ffcounter ffdelta; 584 uint64_t frac; 585 unsigned int polling; 586 uint8_t forward_jump, ogen; 587 588 /* 589 * Pick the next timehand, copy current ffclock estimates and move tick 590 * times and counter forward. 591 */ 592 forward_jump = 0; 593 ffth = fftimehands->next; 594 ogen = ffth->gen; 595 ffth->gen = 0; 596 cest = &ffth->cest; 597 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 598 ffdelta = (ffcounter)delta; 599 ffth->period_lerp = fftimehands->period_lerp; 600 601 ffth->tick_time = fftimehands->tick_time; 602 ffclock_convert_delta(ffdelta, cest->period, &bt); 603 bintime_add(&ffth->tick_time, &bt); 604 605 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 606 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 607 bintime_add(&ffth->tick_time_lerp, &bt); 608 609 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 610 611 /* 612 * Assess the status of the clock, if the last update is too old, it is 613 * likely the synchronisation daemon is dead and the clock is free 614 * running. 615 */ 616 if (ffclock_updated == 0) { 617 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 618 ffclock_convert_delta(ffdelta, cest->period, &bt); 619 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 620 ffclock_status |= FFCLOCK_STA_UNSYNC; 621 } 622 623 /* 624 * If available, grab updated clock estimates and make them current. 625 * Recompute time at this tick using the updated estimates. The clock 626 * estimates passed the feed-forward synchronisation daemon may result 627 * in time conversion that is not monotonically increasing (just after 628 * the update). time_lerp is a particular linear interpolation over the 629 * synchronisation algo polling period that ensures monotonicity for the 630 * clock ids requesting it. 631 */ 632 if (ffclock_updated > 0) { 633 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 634 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 635 ffth->tick_time = cest->update_time; 636 ffclock_convert_delta(ffdelta, cest->period, &bt); 637 bintime_add(&ffth->tick_time, &bt); 638 639 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 640 if (ffclock_updated == INT8_MAX) 641 ffth->tick_time_lerp = ffth->tick_time; 642 643 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 644 forward_jump = 1; 645 else 646 forward_jump = 0; 647 648 bintime_clear(&gap_lerp); 649 if (forward_jump) { 650 gap_lerp = ffth->tick_time; 651 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 652 } else { 653 gap_lerp = ffth->tick_time_lerp; 654 bintime_sub(&gap_lerp, &ffth->tick_time); 655 } 656 657 /* 658 * The reset from the RTC clock may be far from accurate, and 659 * reducing the gap between real time and interpolated time 660 * could take a very long time if the interpolated clock insists 661 * on strict monotonicity. The clock is reset under very strict 662 * conditions (kernel time is known to be wrong and 663 * synchronization daemon has been restarted recently. 664 * ffclock_boottime absorbs the jump to ensure boot time is 665 * correct and uptime functions stay consistent. 666 */ 667 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 668 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 669 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 670 if (forward_jump) 671 bintime_add(&ffclock_boottime, &gap_lerp); 672 else 673 bintime_sub(&ffclock_boottime, &gap_lerp); 674 ffth->tick_time_lerp = ffth->tick_time; 675 bintime_clear(&gap_lerp); 676 } 677 678 ffclock_status = cest->status; 679 ffth->period_lerp = cest->period; 680 681 /* 682 * Compute corrected period used for the linear interpolation of 683 * time. The rate of linear interpolation is capped to 5000PPM 684 * (5ms/s). 685 */ 686 if (bintime_isset(&gap_lerp)) { 687 ffdelta = cest->update_ffcount; 688 ffdelta -= fftimehands->cest.update_ffcount; 689 ffclock_convert_delta(ffdelta, cest->period, &bt); 690 polling = bt.sec; 691 bt.sec = 0; 692 bt.frac = 5000000 * (uint64_t)18446744073LL; 693 bintime_mul(&bt, polling); 694 if (bintime_cmp(&gap_lerp, &bt, >)) 695 gap_lerp = bt; 696 697 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 698 frac = 0; 699 if (gap_lerp.sec > 0) { 700 frac -= 1; 701 frac /= ffdelta / gap_lerp.sec; 702 } 703 frac += gap_lerp.frac / ffdelta; 704 705 if (forward_jump) 706 ffth->period_lerp += frac; 707 else 708 ffth->period_lerp -= frac; 709 } 710 711 ffclock_updated = 0; 712 } 713 if (++ogen == 0) 714 ogen = 1; 715 ffth->gen = ogen; 716 fftimehands = ffth; 717 } 718 719 /* 720 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 721 * the old and new hardware counter cannot be read simultaneously. tc_windup() 722 * does read the two counters 'back to back', but a few cycles are effectively 723 * lost, and not accumulated in tick_ffcount. This is a fairly radical 724 * operation for a feed-forward synchronization daemon, and it is its job to not 725 * pushing irrelevant data to the kernel. Because there is no locking here, 726 * simply force to ignore pending or next update to give daemon a chance to 727 * realize the counter has changed. 728 */ 729 static void 730 ffclock_change_tc(struct timehands *th) 731 { 732 struct fftimehands *ffth; 733 struct ffclock_estimate *cest; 734 struct timecounter *tc; 735 uint8_t ogen; 736 737 tc = th->th_counter; 738 ffth = fftimehands->next; 739 ogen = ffth->gen; 740 ffth->gen = 0; 741 742 cest = &ffth->cest; 743 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 744 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 745 cest->errb_abs = 0; 746 cest->errb_rate = 0; 747 cest->status |= FFCLOCK_STA_UNSYNC; 748 749 ffth->tick_ffcount = fftimehands->tick_ffcount; 750 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 751 ffth->tick_time = fftimehands->tick_time; 752 ffth->period_lerp = cest->period; 753 754 /* Do not lock but ignore next update from synchronization daemon. */ 755 ffclock_updated--; 756 757 if (++ogen == 0) 758 ogen = 1; 759 ffth->gen = ogen; 760 fftimehands = ffth; 761 } 762 763 /* 764 * Retrieve feed-forward counter and time of last kernel tick. 765 */ 766 void 767 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 768 { 769 struct fftimehands *ffth; 770 uint8_t gen; 771 772 /* 773 * No locking but check generation has not changed. Also need to make 774 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 775 */ 776 do { 777 ffth = fftimehands; 778 gen = ffth->gen; 779 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 780 *bt = ffth->tick_time_lerp; 781 else 782 *bt = ffth->tick_time; 783 *ffcount = ffth->tick_ffcount; 784 } while (gen == 0 || gen != ffth->gen); 785 } 786 787 /* 788 * Absolute clock conversion. Low level function to convert ffcounter to 789 * bintime. The ffcounter is converted using the current ffclock period estimate 790 * or the "interpolated period" to ensure monotonicity. 791 * NOTE: this conversion may have been deferred, and the clock updated since the 792 * hardware counter has been read. 793 */ 794 void 795 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 796 { 797 struct fftimehands *ffth; 798 struct bintime bt2; 799 ffcounter ffdelta; 800 uint8_t gen; 801 802 /* 803 * No locking but check generation has not changed. Also need to make 804 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 805 */ 806 do { 807 ffth = fftimehands; 808 gen = ffth->gen; 809 if (ffcount > ffth->tick_ffcount) 810 ffdelta = ffcount - ffth->tick_ffcount; 811 else 812 ffdelta = ffth->tick_ffcount - ffcount; 813 814 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 815 *bt = ffth->tick_time_lerp; 816 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 817 } else { 818 *bt = ffth->tick_time; 819 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 820 } 821 822 if (ffcount > ffth->tick_ffcount) 823 bintime_add(bt, &bt2); 824 else 825 bintime_sub(bt, &bt2); 826 } while (gen == 0 || gen != ffth->gen); 827 } 828 829 /* 830 * Difference clock conversion. 831 * Low level function to Convert a time interval measured in RAW counter units 832 * into bintime. The difference clock allows measuring small intervals much more 833 * reliably than the absolute clock. 834 */ 835 void 836 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 837 { 838 struct fftimehands *ffth; 839 uint8_t gen; 840 841 /* No locking but check generation has not changed. */ 842 do { 843 ffth = fftimehands; 844 gen = ffth->gen; 845 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 846 } while (gen == 0 || gen != ffth->gen); 847 } 848 849 /* 850 * Access to current ffcounter value. 851 */ 852 void 853 ffclock_read_counter(ffcounter *ffcount) 854 { 855 struct timehands *th; 856 struct fftimehands *ffth; 857 unsigned int gen, delta; 858 859 /* 860 * ffclock_windup() called from tc_windup(), safe to rely on 861 * th->th_generation only, for correct delta and ffcounter. 862 */ 863 do { 864 th = timehands; 865 gen = th->th_generation; 866 ffth = fftimehands; 867 delta = tc_delta(th); 868 *ffcount = ffth->tick_ffcount; 869 } while (gen == 0 || gen != th->th_generation); 870 871 *ffcount += delta; 872 } 873 874 void 875 binuptime(struct bintime *bt) 876 { 877 878 binuptime_fromclock(bt, sysclock_active); 879 } 880 881 void 882 nanouptime(struct timespec *tsp) 883 { 884 885 nanouptime_fromclock(tsp, sysclock_active); 886 } 887 888 void 889 microuptime(struct timeval *tvp) 890 { 891 892 microuptime_fromclock(tvp, sysclock_active); 893 } 894 895 void 896 bintime(struct bintime *bt) 897 { 898 899 bintime_fromclock(bt, sysclock_active); 900 } 901 902 void 903 nanotime(struct timespec *tsp) 904 { 905 906 nanotime_fromclock(tsp, sysclock_active); 907 } 908 909 void 910 microtime(struct timeval *tvp) 911 { 912 913 microtime_fromclock(tvp, sysclock_active); 914 } 915 916 void 917 getbinuptime(struct bintime *bt) 918 { 919 920 getbinuptime_fromclock(bt, sysclock_active); 921 } 922 923 void 924 getnanouptime(struct timespec *tsp) 925 { 926 927 getnanouptime_fromclock(tsp, sysclock_active); 928 } 929 930 void 931 getmicrouptime(struct timeval *tvp) 932 { 933 934 getmicrouptime_fromclock(tvp, sysclock_active); 935 } 936 937 void 938 getbintime(struct bintime *bt) 939 { 940 941 getbintime_fromclock(bt, sysclock_active); 942 } 943 944 void 945 getnanotime(struct timespec *tsp) 946 { 947 948 getnanotime_fromclock(tsp, sysclock_active); 949 } 950 951 void 952 getmicrotime(struct timeval *tvp) 953 { 954 955 getmicrouptime_fromclock(tvp, sysclock_active); 956 } 957 958 #endif /* FFCLOCK */ 959 960 /* 961 * System clock currently providing time to the system. Modifiable via sysctl 962 * when the FFCLOCK option is defined. 963 */ 964 int sysclock_active = SYSCLOCK_FBCK; 965 966 /* Internal NTP status and error estimates. */ 967 extern int time_status; 968 extern long time_esterror; 969 970 /* 971 * Take a snapshot of sysclock data which can be used to compare system clocks 972 * and generate timestamps after the fact. 973 */ 974 void 975 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 976 { 977 struct fbclock_info *fbi; 978 struct timehands *th; 979 struct bintime bt; 980 unsigned int delta, gen; 981 #ifdef FFCLOCK 982 ffcounter ffcount; 983 struct fftimehands *ffth; 984 struct ffclock_info *ffi; 985 struct ffclock_estimate cest; 986 987 ffi = &clock_snap->ff_info; 988 #endif 989 990 fbi = &clock_snap->fb_info; 991 delta = 0; 992 993 do { 994 th = timehands; 995 gen = th->th_generation; 996 fbi->th_scale = th->th_scale; 997 fbi->tick_time = th->th_offset; 998 #ifdef FFCLOCK 999 ffth = fftimehands; 1000 ffi->tick_time = ffth->tick_time_lerp; 1001 ffi->tick_time_lerp = ffth->tick_time_lerp; 1002 ffi->period = ffth->cest.period; 1003 ffi->period_lerp = ffth->period_lerp; 1004 clock_snap->ffcount = ffth->tick_ffcount; 1005 cest = ffth->cest; 1006 #endif 1007 if (!fast) 1008 delta = tc_delta(th); 1009 } while (gen == 0 || gen != th->th_generation); 1010 1011 clock_snap->delta = delta; 1012 clock_snap->sysclock_active = sysclock_active; 1013 1014 /* Record feedback clock status and error. */ 1015 clock_snap->fb_info.status = time_status; 1016 /* XXX: Very crude estimate of feedback clock error. */ 1017 bt.sec = time_esterror / 1000000; 1018 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1019 (uint64_t)18446744073709ULL; 1020 clock_snap->fb_info.error = bt; 1021 1022 #ifdef FFCLOCK 1023 if (!fast) 1024 clock_snap->ffcount += delta; 1025 1026 /* Record feed-forward clock leap second adjustment. */ 1027 ffi->leapsec_adjustment = cest.leapsec_total; 1028 if (clock_snap->ffcount > cest.leapsec_next) 1029 ffi->leapsec_adjustment -= cest.leapsec; 1030 1031 /* Record feed-forward clock status and error. */ 1032 clock_snap->ff_info.status = cest.status; 1033 ffcount = clock_snap->ffcount - cest.update_ffcount; 1034 ffclock_convert_delta(ffcount, cest.period, &bt); 1035 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1036 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1037 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1038 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1039 clock_snap->ff_info.error = bt; 1040 #endif 1041 } 1042 1043 /* 1044 * Convert a sysclock snapshot into a struct bintime based on the specified 1045 * clock source and flags. 1046 */ 1047 int 1048 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1049 int whichclock, uint32_t flags) 1050 { 1051 #ifdef FFCLOCK 1052 struct bintime bt2; 1053 uint64_t period; 1054 #endif 1055 1056 switch (whichclock) { 1057 case SYSCLOCK_FBCK: 1058 *bt = cs->fb_info.tick_time; 1059 1060 /* If snapshot was created with !fast, delta will be >0. */ 1061 if (cs->delta > 0) 1062 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1063 1064 if ((flags & FBCLOCK_UPTIME) == 0) 1065 bintime_add(bt, &boottimebin); 1066 break; 1067 #ifdef FFCLOCK 1068 case SYSCLOCK_FFWD: 1069 if (flags & FFCLOCK_LERP) { 1070 *bt = cs->ff_info.tick_time_lerp; 1071 period = cs->ff_info.period_lerp; 1072 } else { 1073 *bt = cs->ff_info.tick_time; 1074 period = cs->ff_info.period; 1075 } 1076 1077 /* If snapshot was created with !fast, delta will be >0. */ 1078 if (cs->delta > 0) { 1079 ffclock_convert_delta(cs->delta, period, &bt2); 1080 bintime_add(bt, &bt2); 1081 } 1082 1083 /* Leap second adjustment. */ 1084 if (flags & FFCLOCK_LEAPSEC) 1085 bt->sec -= cs->ff_info.leapsec_adjustment; 1086 1087 /* Boot time adjustment, for uptime/monotonic clocks. */ 1088 if (flags & FFCLOCK_UPTIME) 1089 bintime_sub(bt, &ffclock_boottime); 1090 break; 1091 #endif 1092 default: 1093 return (EINVAL); 1094 break; 1095 } 1096 1097 return (0); 1098 } 1099 1100 /* 1101 * Initialize a new timecounter and possibly use it. 1102 */ 1103 void 1104 tc_init(struct timecounter *tc) 1105 { 1106 u_int u; 1107 struct sysctl_oid *tc_root; 1108 1109 u = tc->tc_frequency / tc->tc_counter_mask; 1110 /* XXX: We need some margin here, 10% is a guess */ 1111 u *= 11; 1112 u /= 10; 1113 if (u > hz && tc->tc_quality >= 0) { 1114 tc->tc_quality = -2000; 1115 if (bootverbose) { 1116 printf("Timecounter \"%s\" frequency %ju Hz", 1117 tc->tc_name, (uintmax_t)tc->tc_frequency); 1118 printf(" -- Insufficient hz, needs at least %u\n", u); 1119 } 1120 } else if (tc->tc_quality >= 0 || bootverbose) { 1121 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1122 tc->tc_name, (uintmax_t)tc->tc_frequency, 1123 tc->tc_quality); 1124 } 1125 1126 tc->tc_next = timecounters; 1127 timecounters = tc; 1128 /* 1129 * Set up sysctl tree for this counter. 1130 */ 1131 tc_root = SYSCTL_ADD_NODE(NULL, 1132 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1133 CTLFLAG_RW, 0, "timecounter description"); 1134 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1135 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1136 "mask for implemented bits"); 1137 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1138 "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc), 1139 sysctl_kern_timecounter_get, "IU", "current timecounter value"); 1140 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1141 "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc), 1142 sysctl_kern_timecounter_freq, "QU", "timecounter frequency"); 1143 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1144 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1145 "goodness of time counter"); 1146 /* 1147 * Never automatically use a timecounter with negative quality. 1148 * Even though we run on the dummy counter, switching here may be 1149 * worse since this timecounter may not be monotonous. 1150 */ 1151 if (tc->tc_quality < 0) 1152 return; 1153 if (tc->tc_quality < timecounter->tc_quality) 1154 return; 1155 if (tc->tc_quality == timecounter->tc_quality && 1156 tc->tc_frequency < timecounter->tc_frequency) 1157 return; 1158 (void)tc->tc_get_timecount(tc); 1159 (void)tc->tc_get_timecount(tc); 1160 timecounter = tc; 1161 } 1162 1163 /* Report the frequency of the current timecounter. */ 1164 uint64_t 1165 tc_getfrequency(void) 1166 { 1167 1168 return (timehands->th_counter->tc_frequency); 1169 } 1170 1171 /* 1172 * Step our concept of UTC. This is done by modifying our estimate of 1173 * when we booted. 1174 * XXX: not locked. 1175 */ 1176 void 1177 tc_setclock(struct timespec *ts) 1178 { 1179 struct timespec tbef, taft; 1180 struct bintime bt, bt2; 1181 1182 cpu_tick_calibrate(1); 1183 nanotime(&tbef); 1184 timespec2bintime(ts, &bt); 1185 binuptime(&bt2); 1186 bintime_sub(&bt, &bt2); 1187 bintime_add(&bt2, &boottimebin); 1188 boottimebin = bt; 1189 bintime2timeval(&bt, &boottime); 1190 1191 /* XXX fiddle all the little crinkly bits around the fiords... */ 1192 tc_windup(); 1193 nanotime(&taft); 1194 if (timestepwarnings) { 1195 log(LOG_INFO, 1196 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1197 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1198 (intmax_t)taft.tv_sec, taft.tv_nsec, 1199 (intmax_t)ts->tv_sec, ts->tv_nsec); 1200 } 1201 cpu_tick_calibrate(1); 1202 } 1203 1204 /* 1205 * Initialize the next struct timehands in the ring and make 1206 * it the active timehands. Along the way we might switch to a different 1207 * timecounter and/or do seconds processing in NTP. Slightly magic. 1208 */ 1209 static void 1210 tc_windup(void) 1211 { 1212 struct bintime bt; 1213 struct timehands *th, *tho; 1214 uint64_t scale; 1215 u_int delta, ncount, ogen; 1216 int i; 1217 time_t t; 1218 1219 /* 1220 * Make the next timehands a copy of the current one, but do not 1221 * overwrite the generation or next pointer. While we update 1222 * the contents, the generation must be zero. 1223 */ 1224 tho = timehands; 1225 th = tho->th_next; 1226 ogen = th->th_generation; 1227 th->th_generation = 0; 1228 bcopy(tho, th, offsetof(struct timehands, th_generation)); 1229 1230 /* 1231 * Capture a timecounter delta on the current timecounter and if 1232 * changing timecounters, a counter value from the new timecounter. 1233 * Update the offset fields accordingly. 1234 */ 1235 delta = tc_delta(th); 1236 if (th->th_counter != timecounter) 1237 ncount = timecounter->tc_get_timecount(timecounter); 1238 else 1239 ncount = 0; 1240 #ifdef FFCLOCK 1241 ffclock_windup(delta); 1242 #endif 1243 th->th_offset_count += delta; 1244 th->th_offset_count &= th->th_counter->tc_counter_mask; 1245 while (delta > th->th_counter->tc_frequency) { 1246 /* Eat complete unadjusted seconds. */ 1247 delta -= th->th_counter->tc_frequency; 1248 th->th_offset.sec++; 1249 } 1250 if ((delta > th->th_counter->tc_frequency / 2) && 1251 (th->th_scale * delta < ((uint64_t)1 << 63))) { 1252 /* The product th_scale * delta just barely overflows. */ 1253 th->th_offset.sec++; 1254 } 1255 bintime_addx(&th->th_offset, th->th_scale * delta); 1256 1257 /* 1258 * Hardware latching timecounters may not generate interrupts on 1259 * PPS events, so instead we poll them. There is a finite risk that 1260 * the hardware might capture a count which is later than the one we 1261 * got above, and therefore possibly in the next NTP second which might 1262 * have a different rate than the current NTP second. It doesn't 1263 * matter in practice. 1264 */ 1265 if (tho->th_counter->tc_poll_pps) 1266 tho->th_counter->tc_poll_pps(tho->th_counter); 1267 1268 /* 1269 * Deal with NTP second processing. The for loop normally 1270 * iterates at most once, but in extreme situations it might 1271 * keep NTP sane if timeouts are not run for several seconds. 1272 * At boot, the time step can be large when the TOD hardware 1273 * has been read, so on really large steps, we call 1274 * ntp_update_second only twice. We need to call it twice in 1275 * case we missed a leap second. 1276 */ 1277 bt = th->th_offset; 1278 bintime_add(&bt, &boottimebin); 1279 i = bt.sec - tho->th_microtime.tv_sec; 1280 if (i > LARGE_STEP) 1281 i = 2; 1282 for (; i > 0; i--) { 1283 t = bt.sec; 1284 ntp_update_second(&th->th_adjustment, &bt.sec); 1285 if (bt.sec != t) 1286 boottimebin.sec += bt.sec - t; 1287 } 1288 /* Update the UTC timestamps used by the get*() functions. */ 1289 /* XXX shouldn't do this here. Should force non-`get' versions. */ 1290 bintime2timeval(&bt, &th->th_microtime); 1291 bintime2timespec(&bt, &th->th_nanotime); 1292 1293 /* Now is a good time to change timecounters. */ 1294 if (th->th_counter != timecounter) { 1295 #ifndef __arm__ 1296 if ((timecounter->tc_flags & TC_FLAGS_C3STOP) != 0) 1297 cpu_disable_deep_sleep++; 1298 if ((th->th_counter->tc_flags & TC_FLAGS_C3STOP) != 0) 1299 cpu_disable_deep_sleep--; 1300 #endif 1301 th->th_counter = timecounter; 1302 th->th_offset_count = ncount; 1303 tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 1304 (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1305 #ifdef FFCLOCK 1306 ffclock_change_tc(th); 1307 #endif 1308 } 1309 1310 /*- 1311 * Recalculate the scaling factor. We want the number of 1/2^64 1312 * fractions of a second per period of the hardware counter, taking 1313 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1314 * processing provides us with. 1315 * 1316 * The th_adjustment is nanoseconds per second with 32 bit binary 1317 * fraction and we want 64 bit binary fraction of second: 1318 * 1319 * x = a * 2^32 / 10^9 = a * 4.294967296 1320 * 1321 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1322 * we can only multiply by about 850 without overflowing, that 1323 * leaves no suitably precise fractions for multiply before divide. 1324 * 1325 * Divide before multiply with a fraction of 2199/512 results in a 1326 * systematic undercompensation of 10PPM of th_adjustment. On a 1327 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1328 * 1329 * We happily sacrifice the lowest of the 64 bits of our result 1330 * to the goddess of code clarity. 1331 * 1332 */ 1333 scale = (uint64_t)1 << 63; 1334 scale += (th->th_adjustment / 1024) * 2199; 1335 scale /= th->th_counter->tc_frequency; 1336 th->th_scale = scale * 2; 1337 1338 /* 1339 * Now that the struct timehands is again consistent, set the new 1340 * generation number, making sure to not make it zero. 1341 */ 1342 if (++ogen == 0) 1343 ogen = 1; 1344 th->th_generation = ogen; 1345 1346 /* Go live with the new struct timehands. */ 1347 #ifdef FFCLOCK 1348 switch (sysclock_active) { 1349 case SYSCLOCK_FBCK: 1350 #endif 1351 time_second = th->th_microtime.tv_sec; 1352 time_uptime = th->th_offset.sec; 1353 #ifdef FFCLOCK 1354 break; 1355 case SYSCLOCK_FFWD: 1356 time_second = fftimehands->tick_time_lerp.sec; 1357 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1358 break; 1359 } 1360 #endif 1361 1362 timehands = th; 1363 } 1364 1365 /* Report or change the active timecounter hardware. */ 1366 static int 1367 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1368 { 1369 char newname[32]; 1370 struct timecounter *newtc, *tc; 1371 int error; 1372 1373 tc = timecounter; 1374 strlcpy(newname, tc->tc_name, sizeof(newname)); 1375 1376 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1377 if (error != 0 || req->newptr == NULL || 1378 strcmp(newname, tc->tc_name) == 0) 1379 return (error); 1380 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1381 if (strcmp(newname, newtc->tc_name) != 0) 1382 continue; 1383 1384 /* Warm up new timecounter. */ 1385 (void)newtc->tc_get_timecount(newtc); 1386 (void)newtc->tc_get_timecount(newtc); 1387 1388 timecounter = newtc; 1389 return (0); 1390 } 1391 return (EINVAL); 1392 } 1393 1394 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW, 1395 0, 0, sysctl_kern_timecounter_hardware, "A", 1396 "Timecounter hardware selected"); 1397 1398 1399 /* Report or change the active timecounter hardware. */ 1400 static int 1401 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1402 { 1403 char buf[32], *spc; 1404 struct timecounter *tc; 1405 int error; 1406 1407 spc = ""; 1408 error = 0; 1409 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) { 1410 sprintf(buf, "%s%s(%d)", 1411 spc, tc->tc_name, tc->tc_quality); 1412 error = SYSCTL_OUT(req, buf, strlen(buf)); 1413 spc = " "; 1414 } 1415 return (error); 1416 } 1417 1418 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD, 1419 0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected"); 1420 1421 /* 1422 * RFC 2783 PPS-API implementation. 1423 */ 1424 1425 int 1426 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1427 { 1428 pps_params_t *app; 1429 struct pps_fetch_args *fapi; 1430 #ifdef FFCLOCK 1431 struct pps_fetch_ffc_args *fapi_ffc; 1432 #endif 1433 #ifdef PPS_SYNC 1434 struct pps_kcbind_args *kapi; 1435 #endif 1436 1437 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1438 switch (cmd) { 1439 case PPS_IOC_CREATE: 1440 return (0); 1441 case PPS_IOC_DESTROY: 1442 return (0); 1443 case PPS_IOC_SETPARAMS: 1444 app = (pps_params_t *)data; 1445 if (app->mode & ~pps->ppscap) 1446 return (EINVAL); 1447 #ifdef FFCLOCK 1448 /* Ensure only a single clock is selected for ffc timestamp. */ 1449 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1450 return (EINVAL); 1451 #endif 1452 pps->ppsparam = *app; 1453 return (0); 1454 case PPS_IOC_GETPARAMS: 1455 app = (pps_params_t *)data; 1456 *app = pps->ppsparam; 1457 app->api_version = PPS_API_VERS_1; 1458 return (0); 1459 case PPS_IOC_GETCAP: 1460 *(int*)data = pps->ppscap; 1461 return (0); 1462 case PPS_IOC_FETCH: 1463 fapi = (struct pps_fetch_args *)data; 1464 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1465 return (EINVAL); 1466 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1467 return (EOPNOTSUPP); 1468 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1469 fapi->pps_info_buf = pps->ppsinfo; 1470 return (0); 1471 #ifdef FFCLOCK 1472 case PPS_IOC_FETCH_FFCOUNTER: 1473 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1474 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1475 PPS_TSFMT_TSPEC) 1476 return (EINVAL); 1477 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1478 return (EOPNOTSUPP); 1479 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1480 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1481 /* Overwrite timestamps if feedback clock selected. */ 1482 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1483 case PPS_TSCLK_FBCK: 1484 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1485 pps->ppsinfo.assert_timestamp; 1486 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1487 pps->ppsinfo.clear_timestamp; 1488 break; 1489 case PPS_TSCLK_FFWD: 1490 break; 1491 default: 1492 break; 1493 } 1494 return (0); 1495 #endif /* FFCLOCK */ 1496 case PPS_IOC_KCBIND: 1497 #ifdef PPS_SYNC 1498 kapi = (struct pps_kcbind_args *)data; 1499 /* XXX Only root should be able to do this */ 1500 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1501 return (EINVAL); 1502 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1503 return (EINVAL); 1504 if (kapi->edge & ~pps->ppscap) 1505 return (EINVAL); 1506 pps->kcmode = kapi->edge; 1507 return (0); 1508 #else 1509 return (EOPNOTSUPP); 1510 #endif 1511 default: 1512 return (ENOIOCTL); 1513 } 1514 } 1515 1516 void 1517 pps_init(struct pps_state *pps) 1518 { 1519 pps->ppscap |= PPS_TSFMT_TSPEC; 1520 if (pps->ppscap & PPS_CAPTUREASSERT) 1521 pps->ppscap |= PPS_OFFSETASSERT; 1522 if (pps->ppscap & PPS_CAPTURECLEAR) 1523 pps->ppscap |= PPS_OFFSETCLEAR; 1524 #ifdef FFCLOCK 1525 pps->ppscap |= PPS_TSCLK_MASK; 1526 #endif 1527 } 1528 1529 void 1530 pps_capture(struct pps_state *pps) 1531 { 1532 struct timehands *th; 1533 1534 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1535 th = timehands; 1536 pps->capgen = th->th_generation; 1537 pps->capth = th; 1538 #ifdef FFCLOCK 1539 pps->capffth = fftimehands; 1540 #endif 1541 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1542 if (pps->capgen != th->th_generation) 1543 pps->capgen = 0; 1544 } 1545 1546 void 1547 pps_event(struct pps_state *pps, int event) 1548 { 1549 struct bintime bt; 1550 struct timespec ts, *tsp, *osp; 1551 u_int tcount, *pcount; 1552 int foff, fhard; 1553 pps_seq_t *pseq; 1554 #ifdef FFCLOCK 1555 struct timespec *tsp_ffc; 1556 pps_seq_t *pseq_ffc; 1557 ffcounter *ffcount; 1558 #endif 1559 1560 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1561 /* If the timecounter was wound up underneath us, bail out. */ 1562 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation) 1563 return; 1564 1565 /* Things would be easier with arrays. */ 1566 if (event == PPS_CAPTUREASSERT) { 1567 tsp = &pps->ppsinfo.assert_timestamp; 1568 osp = &pps->ppsparam.assert_offset; 1569 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1570 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1571 pcount = &pps->ppscount[0]; 1572 pseq = &pps->ppsinfo.assert_sequence; 1573 #ifdef FFCLOCK 1574 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1575 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1576 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1577 #endif 1578 } else { 1579 tsp = &pps->ppsinfo.clear_timestamp; 1580 osp = &pps->ppsparam.clear_offset; 1581 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1582 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1583 pcount = &pps->ppscount[1]; 1584 pseq = &pps->ppsinfo.clear_sequence; 1585 #ifdef FFCLOCK 1586 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1587 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1588 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1589 #endif 1590 } 1591 1592 /* 1593 * If the timecounter changed, we cannot compare the count values, so 1594 * we have to drop the rest of the PPS-stuff until the next event. 1595 */ 1596 if (pps->ppstc != pps->capth->th_counter) { 1597 pps->ppstc = pps->capth->th_counter; 1598 *pcount = pps->capcount; 1599 pps->ppscount[2] = pps->capcount; 1600 return; 1601 } 1602 1603 /* Convert the count to a timespec. */ 1604 tcount = pps->capcount - pps->capth->th_offset_count; 1605 tcount &= pps->capth->th_counter->tc_counter_mask; 1606 bt = pps->capth->th_offset; 1607 bintime_addx(&bt, pps->capth->th_scale * tcount); 1608 bintime_add(&bt, &boottimebin); 1609 bintime2timespec(&bt, &ts); 1610 1611 /* If the timecounter was wound up underneath us, bail out. */ 1612 if (pps->capgen != pps->capth->th_generation) 1613 return; 1614 1615 *pcount = pps->capcount; 1616 (*pseq)++; 1617 *tsp = ts; 1618 1619 if (foff) { 1620 timespecadd(tsp, osp); 1621 if (tsp->tv_nsec < 0) { 1622 tsp->tv_nsec += 1000000000; 1623 tsp->tv_sec -= 1; 1624 } 1625 } 1626 1627 #ifdef FFCLOCK 1628 *ffcount = pps->capffth->tick_ffcount + tcount; 1629 bt = pps->capffth->tick_time; 1630 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1631 bintime_add(&bt, &pps->capffth->tick_time); 1632 bintime2timespec(&bt, &ts); 1633 (*pseq_ffc)++; 1634 *tsp_ffc = ts; 1635 #endif 1636 1637 #ifdef PPS_SYNC 1638 if (fhard) { 1639 uint64_t scale; 1640 1641 /* 1642 * Feed the NTP PLL/FLL. 1643 * The FLL wants to know how many (hardware) nanoseconds 1644 * elapsed since the previous event. 1645 */ 1646 tcount = pps->capcount - pps->ppscount[2]; 1647 pps->ppscount[2] = pps->capcount; 1648 tcount &= pps->capth->th_counter->tc_counter_mask; 1649 scale = (uint64_t)1 << 63; 1650 scale /= pps->capth->th_counter->tc_frequency; 1651 scale *= 2; 1652 bt.sec = 0; 1653 bt.frac = 0; 1654 bintime_addx(&bt, scale * tcount); 1655 bintime2timespec(&bt, &ts); 1656 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1657 } 1658 #endif 1659 } 1660 1661 /* 1662 * Timecounters need to be updated every so often to prevent the hardware 1663 * counter from overflowing. Updating also recalculates the cached values 1664 * used by the get*() family of functions, so their precision depends on 1665 * the update frequency. 1666 */ 1667 1668 static int tc_tick; 1669 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1670 "Approximate number of hardclock ticks in a millisecond"); 1671 1672 void 1673 tc_ticktock(int cnt) 1674 { 1675 static int count; 1676 1677 count += cnt; 1678 if (count < tc_tick) 1679 return; 1680 count = 0; 1681 tc_windup(); 1682 } 1683 1684 static void 1685 inittimecounter(void *dummy) 1686 { 1687 u_int p; 1688 1689 /* 1690 * Set the initial timeout to 1691 * max(1, <approx. number of hardclock ticks in a millisecond>). 1692 * People should probably not use the sysctl to set the timeout 1693 * to smaller than its inital value, since that value is the 1694 * smallest reasonable one. If they want better timestamps they 1695 * should use the non-"get"* functions. 1696 */ 1697 if (hz > 1000) 1698 tc_tick = (hz + 500) / 1000; 1699 else 1700 tc_tick = 1; 1701 p = (tc_tick * 1000000) / hz; 1702 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 1703 1704 #ifdef FFCLOCK 1705 ffclock_init(); 1706 #endif 1707 /* warm up new timecounter (again) and get rolling. */ 1708 (void)timecounter->tc_get_timecount(timecounter); 1709 (void)timecounter->tc_get_timecount(timecounter); 1710 tc_windup(); 1711 } 1712 1713 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 1714 1715 /* Cpu tick handling -------------------------------------------------*/ 1716 1717 static int cpu_tick_variable; 1718 static uint64_t cpu_tick_frequency; 1719 1720 static uint64_t 1721 tc_cpu_ticks(void) 1722 { 1723 static uint64_t base; 1724 static unsigned last; 1725 unsigned u; 1726 struct timecounter *tc; 1727 1728 tc = timehands->th_counter; 1729 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 1730 if (u < last) 1731 base += (uint64_t)tc->tc_counter_mask + 1; 1732 last = u; 1733 return (u + base); 1734 } 1735 1736 void 1737 cpu_tick_calibration(void) 1738 { 1739 static time_t last_calib; 1740 1741 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 1742 cpu_tick_calibrate(0); 1743 last_calib = time_uptime; 1744 } 1745 } 1746 1747 /* 1748 * This function gets called every 16 seconds on only one designated 1749 * CPU in the system from hardclock() via cpu_tick_calibration()(). 1750 * 1751 * Whenever the real time clock is stepped we get called with reset=1 1752 * to make sure we handle suspend/resume and similar events correctly. 1753 */ 1754 1755 static void 1756 cpu_tick_calibrate(int reset) 1757 { 1758 static uint64_t c_last; 1759 uint64_t c_this, c_delta; 1760 static struct bintime t_last; 1761 struct bintime t_this, t_delta; 1762 uint32_t divi; 1763 1764 if (reset) { 1765 /* The clock was stepped, abort & reset */ 1766 t_last.sec = 0; 1767 return; 1768 } 1769 1770 /* we don't calibrate fixed rate cputicks */ 1771 if (!cpu_tick_variable) 1772 return; 1773 1774 getbinuptime(&t_this); 1775 c_this = cpu_ticks(); 1776 if (t_last.sec != 0) { 1777 c_delta = c_this - c_last; 1778 t_delta = t_this; 1779 bintime_sub(&t_delta, &t_last); 1780 /* 1781 * Headroom: 1782 * 2^(64-20) / 16[s] = 1783 * 2^(44) / 16[s] = 1784 * 17.592.186.044.416 / 16 = 1785 * 1.099.511.627.776 [Hz] 1786 */ 1787 divi = t_delta.sec << 20; 1788 divi |= t_delta.frac >> (64 - 20); 1789 c_delta <<= 20; 1790 c_delta /= divi; 1791 if (c_delta > cpu_tick_frequency) { 1792 if (0 && bootverbose) 1793 printf("cpu_tick increased to %ju Hz\n", 1794 c_delta); 1795 cpu_tick_frequency = c_delta; 1796 } 1797 } 1798 c_last = c_this; 1799 t_last = t_this; 1800 } 1801 1802 void 1803 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 1804 { 1805 1806 if (func == NULL) { 1807 cpu_ticks = tc_cpu_ticks; 1808 } else { 1809 cpu_tick_frequency = freq; 1810 cpu_tick_variable = var; 1811 cpu_ticks = func; 1812 } 1813 } 1814 1815 uint64_t 1816 cpu_tickrate(void) 1817 { 1818 1819 if (cpu_ticks == tc_cpu_ticks) 1820 return (tc_getfrequency()); 1821 return (cpu_tick_frequency); 1822 } 1823 1824 /* 1825 * We need to be slightly careful converting cputicks to microseconds. 1826 * There is plenty of margin in 64 bits of microseconds (half a million 1827 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 1828 * before divide conversion (to retain precision) we find that the 1829 * margin shrinks to 1.5 hours (one millionth of 146y). 1830 * With a three prong approach we never lose significant bits, no 1831 * matter what the cputick rate and length of timeinterval is. 1832 */ 1833 1834 uint64_t 1835 cputick2usec(uint64_t tick) 1836 { 1837 1838 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 1839 return (tick / (cpu_tickrate() / 1000000LL)); 1840 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 1841 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 1842 else 1843 return ((tick * 1000000LL) / cpu_tickrate()); 1844 } 1845 1846 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 1847