xref: /freebsd/sys/kern/kern_tc.c (revision 729362425c09cf6b362366aabc6fb547eee8035a)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * $FreeBSD$
10  */
11 
12 #include "opt_ntp.h"
13 
14 #include <sys/param.h>
15 #include <sys/kernel.h>
16 #include <sys/sysctl.h>
17 #include <sys/systm.h>
18 #include <sys/timepps.h>
19 #include <sys/timetc.h>
20 #include <sys/timex.h>
21 
22 /*
23  * Implement a dummy timecounter which we can use until we get a real one
24  * in the air.  This allows the console and other early stuff to use
25  * time services.
26  */
27 
28 static u_int
29 dummy_get_timecount(struct timecounter *tc)
30 {
31 	static u_int now;
32 
33 	return (++now);
34 }
35 
36 static struct timecounter dummy_timecounter = {
37 	dummy_get_timecount, 0, ~0u, 1000000, "dummy",
38 };
39 
40 struct timehands {
41 	/* These fields must be initialized by the driver. */
42 	struct timecounter	*th_counter;
43 	int64_t			th_adjustment;
44 	u_int64_t		th_scale;
45 	u_int	 		th_offset_count;
46 	struct bintime		th_offset;
47 	struct timeval		th_microtime;
48 	struct timespec		th_nanotime;
49 	/* Fields not to be copied in tc_windup start with th_generation. */
50 	volatile u_int		th_generation;
51 	struct timehands	*th_next;
52 };
53 
54 extern struct timehands th0;
55 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
56 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
57 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
58 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
59 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
60 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
61 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
62 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
63 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
64 static struct timehands th0 = {
65 	&dummy_timecounter,
66 	0,
67 	(uint64_t)-1 / 1000000,
68 	0,
69 	{1, 0},
70 	{0, 0},
71 	{0, 0},
72 	1,
73 	&th1
74 };
75 
76 static struct timehands *volatile timehands = &th0;
77 struct timecounter *timecounter = &dummy_timecounter;
78 static struct timecounter *timecounters = &dummy_timecounter;
79 
80 time_t time_second = 1;
81 time_t time_uptime = 0;
82 
83 static struct bintime boottimebin;
84 struct timeval boottime;
85 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
86     &boottime, timeval, "System boottime");
87 
88 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
89 
90 #define TC_STATS(foo) \
91 	static u_int foo; \
92 	SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
93 	struct __hack
94 
95 TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
96 TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
97 TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
98 TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
99 TC_STATS(nsetclock);
100 
101 #undef TC_STATS
102 
103 static void tc_windup(void);
104 
105 /*
106  * Return the difference between the timehands' counter value now and what
107  * was when we copied it to the timehands' offset_count.
108  */
109 static __inline u_int
110 tc_delta(struct timehands *th)
111 {
112 	struct timecounter *tc;
113 
114 	tc = th->th_counter;
115 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
116 	    tc->tc_counter_mask);
117 }
118 
119 /*
120  * Functions for reading the time.  We have to loop until we are sure that
121  * the timehands that we operated on was not updated under our feet.  See
122  * the comment in <sys/time.h> for a description of these 12 functions.
123  */
124 
125 void
126 binuptime(struct bintime *bt)
127 {
128 	struct timehands *th;
129 	u_int gen;
130 
131 	nbinuptime++;
132 	do {
133 		th = timehands;
134 		gen = th->th_generation;
135 		*bt = th->th_offset;
136 		bintime_addx(bt, th->th_scale * tc_delta(th));
137 	} while (gen == 0 || gen != th->th_generation);
138 }
139 
140 void
141 nanouptime(struct timespec *tsp)
142 {
143 	struct bintime bt;
144 
145 	nnanouptime++;
146 	binuptime(&bt);
147 	bintime2timespec(&bt, tsp);
148 }
149 
150 void
151 microuptime(struct timeval *tvp)
152 {
153 	struct bintime bt;
154 
155 	nmicrouptime++;
156 	binuptime(&bt);
157 	bintime2timeval(&bt, tvp);
158 }
159 
160 void
161 bintime(struct bintime *bt)
162 {
163 
164 	nbintime++;
165 	binuptime(bt);
166 	bintime_add(bt, &boottimebin);
167 }
168 
169 void
170 nanotime(struct timespec *tsp)
171 {
172 	struct bintime bt;
173 
174 	nnanotime++;
175 	bintime(&bt);
176 	bintime2timespec(&bt, tsp);
177 }
178 
179 void
180 microtime(struct timeval *tvp)
181 {
182 	struct bintime bt;
183 
184 	nmicrotime++;
185 	bintime(&bt);
186 	bintime2timeval(&bt, tvp);
187 }
188 
189 void
190 getbinuptime(struct bintime *bt)
191 {
192 	struct timehands *th;
193 	u_int gen;
194 
195 	ngetbinuptime++;
196 	do {
197 		th = timehands;
198 		gen = th->th_generation;
199 		*bt = th->th_offset;
200 	} while (gen == 0 || gen != th->th_generation);
201 }
202 
203 void
204 getnanouptime(struct timespec *tsp)
205 {
206 	struct timehands *th;
207 	u_int gen;
208 
209 	ngetnanouptime++;
210 	do {
211 		th = timehands;
212 		gen = th->th_generation;
213 		bintime2timespec(&th->th_offset, tsp);
214 	} while (gen == 0 || gen != th->th_generation);
215 }
216 
217 void
218 getmicrouptime(struct timeval *tvp)
219 {
220 	struct timehands *th;
221 	u_int gen;
222 
223 	ngetmicrouptime++;
224 	do {
225 		th = timehands;
226 		gen = th->th_generation;
227 		bintime2timeval(&th->th_offset, tvp);
228 	} while (gen == 0 || gen != th->th_generation);
229 }
230 
231 void
232 getbintime(struct bintime *bt)
233 {
234 	struct timehands *th;
235 	u_int gen;
236 
237 	ngetbintime++;
238 	do {
239 		th = timehands;
240 		gen = th->th_generation;
241 		*bt = th->th_offset;
242 	} while (gen == 0 || gen != th->th_generation);
243 	bintime_add(bt, &boottimebin);
244 }
245 
246 void
247 getnanotime(struct timespec *tsp)
248 {
249 	struct timehands *th;
250 	u_int gen;
251 
252 	ngetnanotime++;
253 	do {
254 		th = timehands;
255 		gen = th->th_generation;
256 		*tsp = th->th_nanotime;
257 	} while (gen == 0 || gen != th->th_generation);
258 }
259 
260 void
261 getmicrotime(struct timeval *tvp)
262 {
263 	struct timehands *th;
264 	u_int gen;
265 
266 	ngetmicrotime++;
267 	do {
268 		th = timehands;
269 		gen = th->th_generation;
270 		*tvp = th->th_microtime;
271 	} while (gen == 0 || gen != th->th_generation);
272 }
273 
274 /*
275  * Initialize a new timecounter.
276  * We should really try to rank the timecounters and intelligently determine
277  * if the new timecounter is better than the current one.  This is subject
278  * to further study.  For now always use the new timecounter.
279  */
280 void
281 tc_init(struct timecounter *tc)
282 {
283 	unsigned u;
284 
285 	printf("Timecounter \"%s\"  frequency %ju Hz",
286 	    tc->tc_name, (intmax_t)tc->tc_frequency);
287 
288 	u = tc->tc_frequency / tc->tc_counter_mask;
289 	if (u > hz) {
290 		printf(" -- Insufficient hz, needs at least %u\n", u);
291 		return;
292 	}
293 	tc->tc_next = timecounters;
294 	timecounters = tc;
295 	printf("\n");
296 	(void)tc->tc_get_timecount(tc);
297 	(void)tc->tc_get_timecount(tc);
298 	timecounter = tc;
299 }
300 
301 /* Report the frequency of the current timecounter. */
302 u_int64_t
303 tc_getfrequency(void)
304 {
305 
306 	return (timehands->th_counter->tc_frequency);
307 }
308 
309 /*
310  * Step our concept of GMT.  This is done by modifying our estimate of
311  * when we booted.  XXX: needs futher work.
312  */
313 void
314 tc_setclock(struct timespec *ts)
315 {
316 	struct timespec ts2;
317 
318 	nsetclock++;
319 	nanouptime(&ts2);
320 	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
321 	/* XXX boottime should probably be a timespec. */
322 	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
323 	if (boottime.tv_usec < 0) {
324 		boottime.tv_usec += 1000000;
325 		boottime.tv_sec--;
326 	}
327 	timeval2bintime(&boottime, &boottimebin);
328 
329 	/* XXX fiddle all the little crinkly bits around the fiords... */
330 	tc_windup();
331 }
332 
333 /*
334  * Initialize the next struct timehands in the ring and make
335  * it the active timehands.  Along the way we might switch to a different
336  * timecounter and/or do seconds processing in NTP.  Slightly magic.
337  */
338 static void
339 tc_windup(void)
340 {
341 	struct bintime bt;
342 	struct timehands *th, *tho;
343 	u_int64_t scale;
344 	u_int delta, ncount, ogen;
345 	int i;
346 
347 	/*
348 	 * Make the next timehands a copy of the current one, but do not
349 	 * overwrite the generation or next pointer.  While we update
350 	 * the contents, the generation must be zero.
351 	 */
352 	tho = timehands;
353 	th = tho->th_next;
354 	ogen = th->th_generation;
355 	th->th_generation = 0;
356 	bcopy(tho, th, offsetof(struct timehands, th_generation));
357 
358 	/*
359 	 * Capture a timecounter delta on the current timecounter and if
360 	 * changing timecounters, a counter value from the new timecounter.
361 	 * Update the offset fields accordingly.
362 	 */
363 	delta = tc_delta(th);
364 	if (th->th_counter != timecounter)
365 		ncount = timecounter->tc_get_timecount(timecounter);
366 	else
367 		ncount = 0;
368 	th->th_offset_count += delta;
369 	th->th_offset_count &= th->th_counter->tc_counter_mask;
370 	bintime_addx(&th->th_offset, th->th_scale * delta);
371 
372 	/*
373 	 * Hardware latching timecounters may not generate interrupts on
374 	 * PPS events, so instead we poll them.  There is a finite risk that
375 	 * the hardware might capture a count which is later than the one we
376 	 * got above, and therefore possibly in the next NTP second which might
377 	 * have a different rate than the current NTP second.  It doesn't
378 	 * matter in practice.
379 	 */
380 	if (tho->th_counter->tc_poll_pps)
381 		tho->th_counter->tc_poll_pps(tho->th_counter);
382 
383 	/*
384 	 * Deal with NTP second processing.  The for loop normally only
385 	 * iterates once, but in extreme situations it might keep NTP sane
386 	 * if timeouts are not run for several seconds.
387 	 */
388 	for (i = th->th_offset.sec - tho->th_offset.sec; i > 0; i--)
389 		ntp_update_second(&th->th_adjustment, &th->th_offset.sec);
390 
391 	/* Now is a good time to change timecounters. */
392 	if (th->th_counter != timecounter) {
393 		th->th_counter = timecounter;
394 		th->th_offset_count = ncount;
395 	}
396 
397 	/*-
398 	 * Recalculate the scaling factor.  We want the number of 1/2^64
399 	 * fractions of a second per period of the hardware counter, taking
400 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
401 	 * processing provides us with.
402 	 *
403 	 * The th_adjustment is nanoseconds per second with 32 bit binary
404 	 * fraction and want 64 bit binary fraction of second:
405 	 *
406 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
407 	 *
408 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
409 	 * we can only multiply by about 850 without overflowing, but that
410 	 * leaves suitably precise fractions for multiply before divide.
411 	 *
412 	 * Divide before multiply with a fraction of 2199/512 results in a
413 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
414 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
415  	 *
416 	 * We happily sacrifice the lowest of the 64 bits of our result
417 	 * to the goddess of code clarity.
418 	 *
419 	 */
420 	scale = (u_int64_t)1 << 63;
421 	scale += (th->th_adjustment / 1024) * 2199;
422 	scale /= th->th_counter->tc_frequency;
423 	th->th_scale = scale * 2;
424 
425 	/* Update the GMT timestamps used for the get*() functions. */
426 	bt = th->th_offset;
427 	bintime_add(&bt, &boottimebin);
428 	bintime2timeval(&bt, &th->th_microtime);
429 	bintime2timespec(&bt, &th->th_nanotime);
430 
431 	/*
432 	 * Now that the struct timehands is again consistent, set the new
433 	 * generation number, making sure to not make it zero.
434 	 */
435 	if (++ogen == 0)
436 		ogen = 1;
437 	th->th_generation = ogen;
438 
439 	/* Go live with the new struct timehands. */
440 	time_second = th->th_microtime.tv_sec;
441 	time_uptime = th->th_offset.sec;
442 	timehands = th;
443 }
444 
445 /* Report or change the active timecounter hardware. */
446 static int
447 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
448 {
449 	char newname[32];
450 	struct timecounter *newtc, *tc;
451 	int error;
452 
453 	tc = timecounter;
454 	strlcpy(newname, tc->tc_name, sizeof(newname));
455 
456 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
457 	if (error != 0 || req->newptr == NULL ||
458 	    strcmp(newname, tc->tc_name) == 0)
459 		return (error);
460 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
461 		if (strcmp(newname, newtc->tc_name) != 0)
462 			continue;
463 
464 		/* Warm up new timecounter. */
465 		(void)newtc->tc_get_timecount(newtc);
466 		(void)newtc->tc_get_timecount(newtc);
467 
468 		timecounter = newtc;
469 		return (0);
470 	}
471 	return (EINVAL);
472 }
473 
474 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
475     0, 0, sysctl_kern_timecounter_hardware, "A", "");
476 
477 /*
478  * RFC 2783 PPS-API implementation.
479  */
480 
481 int
482 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
483 {
484 	pps_params_t *app;
485 	struct pps_fetch_args *fapi;
486 #ifdef PPS_SYNC
487 	struct pps_kcbind_args *kapi;
488 #endif
489 
490 	switch (cmd) {
491 	case PPS_IOC_CREATE:
492 		return (0);
493 	case PPS_IOC_DESTROY:
494 		return (0);
495 	case PPS_IOC_SETPARAMS:
496 		app = (pps_params_t *)data;
497 		if (app->mode & ~pps->ppscap)
498 			return (EINVAL);
499 		pps->ppsparam = *app;
500 		return (0);
501 	case PPS_IOC_GETPARAMS:
502 		app = (pps_params_t *)data;
503 		*app = pps->ppsparam;
504 		app->api_version = PPS_API_VERS_1;
505 		return (0);
506 	case PPS_IOC_GETCAP:
507 		*(int*)data = pps->ppscap;
508 		return (0);
509 	case PPS_IOC_FETCH:
510 		fapi = (struct pps_fetch_args *)data;
511 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
512 			return (EINVAL);
513 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
514 			return (EOPNOTSUPP);
515 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
516 		fapi->pps_info_buf = pps->ppsinfo;
517 		return (0);
518 	case PPS_IOC_KCBIND:
519 #ifdef PPS_SYNC
520 		kapi = (struct pps_kcbind_args *)data;
521 		/* XXX Only root should be able to do this */
522 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
523 			return (EINVAL);
524 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
525 			return (EINVAL);
526 		if (kapi->edge & ~pps->ppscap)
527 			return (EINVAL);
528 		pps->kcmode = kapi->edge;
529 		return (0);
530 #else
531 		return (EOPNOTSUPP);
532 #endif
533 	default:
534 		return (ENOTTY);
535 	}
536 }
537 
538 void
539 pps_init(struct pps_state *pps)
540 {
541 	pps->ppscap |= PPS_TSFMT_TSPEC;
542 	if (pps->ppscap & PPS_CAPTUREASSERT)
543 		pps->ppscap |= PPS_OFFSETASSERT;
544 	if (pps->ppscap & PPS_CAPTURECLEAR)
545 		pps->ppscap |= PPS_OFFSETCLEAR;
546 }
547 
548 void
549 pps_capture(struct pps_state *pps)
550 {
551 	struct timehands *th;
552 
553 	th = timehands;
554 	pps->capgen = th->th_generation;
555 	pps->capth = th;
556 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
557 	if (pps->capgen != th->th_generation)
558 		pps->capgen = 0;
559 }
560 
561 void
562 pps_event(struct pps_state *pps, int event)
563 {
564 	struct bintime bt;
565 	struct timespec ts, *tsp, *osp;
566 	u_int tcount, *pcount;
567 	int foff, fhard;
568 	pps_seq_t *pseq;
569 
570 	/* If the timecounter was wound up underneath us, bail out. */
571 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
572 		return;
573 
574 	/* Things would be easier with arrays. */
575 	if (event == PPS_CAPTUREASSERT) {
576 		tsp = &pps->ppsinfo.assert_timestamp;
577 		osp = &pps->ppsparam.assert_offset;
578 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
579 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
580 		pcount = &pps->ppscount[0];
581 		pseq = &pps->ppsinfo.assert_sequence;
582 	} else {
583 		tsp = &pps->ppsinfo.clear_timestamp;
584 		osp = &pps->ppsparam.clear_offset;
585 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
586 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
587 		pcount = &pps->ppscount[1];
588 		pseq = &pps->ppsinfo.clear_sequence;
589 	}
590 
591 	/*
592 	 * If the timecounter changed, we cannot compare the count values, so
593 	 * we have to drop the rest of the PPS-stuff until the next event.
594 	 */
595 	if (pps->ppstc != pps->capth->th_counter) {
596 		pps->ppstc = pps->capth->th_counter;
597 		*pcount = pps->capcount;
598 		pps->ppscount[2] = pps->capcount;
599 		return;
600 	}
601 
602 	/* Return if nothing really happened. */
603 	if (*pcount == pps->capcount)
604 		return;
605 
606 	/* Convert the count to a timespec. */
607 	tcount = pps->capcount - pps->capth->th_offset_count;
608 	tcount &= pps->capth->th_counter->tc_counter_mask;
609 	bt = pps->capth->th_offset;
610 	bintime_addx(&bt, pps->capth->th_scale * tcount);
611 	bintime_add(&bt, &boottimebin);
612 	bintime2timespec(&bt, &ts);
613 
614 	/* If the timecounter was wound up underneath us, bail out. */
615 	if (pps->capgen != pps->capth->th_generation)
616 		return;
617 
618 	*pcount = pps->capcount;
619 	(*pseq)++;
620 	*tsp = ts;
621 
622 	if (foff) {
623 		timespecadd(tsp, osp);
624 		if (tsp->tv_nsec < 0) {
625 			tsp->tv_nsec += 1000000000;
626 			tsp->tv_sec -= 1;
627 		}
628 	}
629 #ifdef PPS_SYNC
630 	if (fhard) {
631 		u_int64_t scale;
632 
633 		/*
634 		 * Feed the NTP PLL/FLL.
635 		 * The FLL wants to know how many (hardware) nanoseconds
636 		 * elapsed since the previous event.
637 		 */
638 		tcount = pps->capcount - pps->ppscount[2];
639 		pps->ppscount[2] = pps->capcount;
640 		tcount &= pps->capth->th_counter->tc_counter_mask;
641 		scale = (u_int64_t)1 << 63;
642 		scale /= pps->capth->th_counter->tc_frequency;
643 		scale *= 2;
644 		bt.sec = 0;
645 		bt.frac = 0;
646 		bintime_addx(&bt, scale * tcount);
647 		bintime2timespec(&bt, &ts);
648 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
649 	}
650 #endif
651 }
652 
653 /*
654  * Timecounters need to be updated every so often to prevent the hardware
655  * counter from overflowing.  Updating also recalculates the cached values
656  * used by the get*() family of functions, so their precision depends on
657  * the update frequency.
658  */
659 
660 static int tc_tick;
661 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
662 
663 void
664 tc_ticktock(void)
665 {
666 	static int count;
667 
668 	if (++count < tc_tick)
669 		return;
670 	count = 0;
671 	tc_windup();
672 }
673 
674 static void
675 inittimecounter(void *dummy)
676 {
677 	u_int p;
678 
679 	/*
680 	 * Set the initial timeout to
681 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
682 	 * People should probably not use the sysctl to set the timeout
683 	 * to smaller than its inital value, since that value is the
684 	 * smallest reasonable one.  If they want better timestamps they
685 	 * should use the non-"get"* functions.
686 	 */
687 	if (hz > 1000)
688 		tc_tick = (hz + 500) / 1000;
689 	else
690 		tc_tick = 1;
691 	p = (tc_tick * 1000000) / hz;
692 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
693 
694 	/* warm up new timecounter (again) and get rolling. */
695 	(void)timecounter->tc_get_timecount(timecounter);
696 	(void)timecounter->tc_get_timecount(timecounter);
697 }
698 
699 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
700