xref: /freebsd/sys/kern/kern_tc.c (revision 6fd05b64b5b65dd4ba9b86482a0634a5f0b96c29)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  */
9 
10 #include <sys/cdefs.h>
11 __FBSDID("$FreeBSD$");
12 
13 #include "opt_ntp.h"
14 
15 #include <sys/param.h>
16 #include <sys/kernel.h>
17 #include <sys/sysctl.h>
18 #include <sys/syslog.h>
19 #include <sys/systm.h>
20 #include <sys/timepps.h>
21 #include <sys/timetc.h>
22 #include <sys/timex.h>
23 
24 /*
25  * A large step happens on boot.  This constant detects such steps.
26  * It is relatively small so that ntp_update_second gets called enough
27  * in the typical 'missed a couple of seconds' case, but doesn't loop
28  * forever when the time step is large.
29  */
30 #define LARGE_STEP	200
31 
32 /*
33  * Implement a dummy timecounter which we can use until we get a real one
34  * in the air.  This allows the console and other early stuff to use
35  * time services.
36  */
37 
38 static u_int
39 dummy_get_timecount(struct timecounter *tc)
40 {
41 	static u_int now;
42 
43 	return (++now);
44 }
45 
46 static struct timecounter dummy_timecounter = {
47 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
48 };
49 
50 struct timehands {
51 	/* These fields must be initialized by the driver. */
52 	struct timecounter	*th_counter;
53 	int64_t			th_adjustment;
54 	u_int64_t		th_scale;
55 	u_int	 		th_offset_count;
56 	struct bintime		th_offset;
57 	struct timeval		th_microtime;
58 	struct timespec		th_nanotime;
59 	/* Fields not to be copied in tc_windup start with th_generation. */
60 	volatile u_int		th_generation;
61 	struct timehands	*th_next;
62 };
63 
64 extern struct timehands th0;
65 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74 static struct timehands th0 = {
75 	&dummy_timecounter,
76 	0,
77 	(uint64_t)-1 / 1000000,
78 	0,
79 	{1, 0},
80 	{0, 0},
81 	{0, 0},
82 	1,
83 	&th1
84 };
85 
86 static struct timehands *volatile timehands = &th0;
87 struct timecounter *timecounter = &dummy_timecounter;
88 static struct timecounter *timecounters = &dummy_timecounter;
89 
90 time_t time_second = 1;
91 time_t time_uptime = 0;
92 
93 static struct bintime boottimebin;
94 struct timeval boottime;
95 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
96     &boottime, timeval, "System boottime");
97 
98 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
99 
100 static int timestepwarnings;
101 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
102     &timestepwarnings, 0, "");
103 
104 #define TC_STATS(foo) \
105 	static u_int foo; \
106 	SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
107 	struct __hack
108 
109 TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
110 TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
111 TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
112 TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
113 TC_STATS(nsetclock);
114 
115 #undef TC_STATS
116 
117 static void tc_windup(void);
118 
119 /*
120  * Return the difference between the timehands' counter value now and what
121  * was when we copied it to the timehands' offset_count.
122  */
123 static __inline u_int
124 tc_delta(struct timehands *th)
125 {
126 	struct timecounter *tc;
127 
128 	tc = th->th_counter;
129 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
130 	    tc->tc_counter_mask);
131 }
132 
133 /*
134  * Functions for reading the time.  We have to loop until we are sure that
135  * the timehands that we operated on was not updated under our feet.  See
136  * the comment in <sys/time.h> for a description of these 12 functions.
137  */
138 
139 void
140 binuptime(struct bintime *bt)
141 {
142 	struct timehands *th;
143 	u_int gen;
144 
145 	nbinuptime++;
146 	do {
147 		th = timehands;
148 		gen = th->th_generation;
149 		*bt = th->th_offset;
150 		bintime_addx(bt, th->th_scale * tc_delta(th));
151 	} while (gen == 0 || gen != th->th_generation);
152 }
153 
154 void
155 nanouptime(struct timespec *tsp)
156 {
157 	struct bintime bt;
158 
159 	nnanouptime++;
160 	binuptime(&bt);
161 	bintime2timespec(&bt, tsp);
162 }
163 
164 void
165 microuptime(struct timeval *tvp)
166 {
167 	struct bintime bt;
168 
169 	nmicrouptime++;
170 	binuptime(&bt);
171 	bintime2timeval(&bt, tvp);
172 }
173 
174 void
175 bintime(struct bintime *bt)
176 {
177 
178 	nbintime++;
179 	binuptime(bt);
180 	bintime_add(bt, &boottimebin);
181 }
182 
183 void
184 nanotime(struct timespec *tsp)
185 {
186 	struct bintime bt;
187 
188 	nnanotime++;
189 	bintime(&bt);
190 	bintime2timespec(&bt, tsp);
191 }
192 
193 void
194 microtime(struct timeval *tvp)
195 {
196 	struct bintime bt;
197 
198 	nmicrotime++;
199 	bintime(&bt);
200 	bintime2timeval(&bt, tvp);
201 }
202 
203 void
204 getbinuptime(struct bintime *bt)
205 {
206 	struct timehands *th;
207 	u_int gen;
208 
209 	ngetbinuptime++;
210 	do {
211 		th = timehands;
212 		gen = th->th_generation;
213 		*bt = th->th_offset;
214 	} while (gen == 0 || gen != th->th_generation);
215 }
216 
217 void
218 getnanouptime(struct timespec *tsp)
219 {
220 	struct timehands *th;
221 	u_int gen;
222 
223 	ngetnanouptime++;
224 	do {
225 		th = timehands;
226 		gen = th->th_generation;
227 		bintime2timespec(&th->th_offset, tsp);
228 	} while (gen == 0 || gen != th->th_generation);
229 }
230 
231 void
232 getmicrouptime(struct timeval *tvp)
233 {
234 	struct timehands *th;
235 	u_int gen;
236 
237 	ngetmicrouptime++;
238 	do {
239 		th = timehands;
240 		gen = th->th_generation;
241 		bintime2timeval(&th->th_offset, tvp);
242 	} while (gen == 0 || gen != th->th_generation);
243 }
244 
245 void
246 getbintime(struct bintime *bt)
247 {
248 	struct timehands *th;
249 	u_int gen;
250 
251 	ngetbintime++;
252 	do {
253 		th = timehands;
254 		gen = th->th_generation;
255 		*bt = th->th_offset;
256 	} while (gen == 0 || gen != th->th_generation);
257 	bintime_add(bt, &boottimebin);
258 }
259 
260 void
261 getnanotime(struct timespec *tsp)
262 {
263 	struct timehands *th;
264 	u_int gen;
265 
266 	ngetnanotime++;
267 	do {
268 		th = timehands;
269 		gen = th->th_generation;
270 		*tsp = th->th_nanotime;
271 	} while (gen == 0 || gen != th->th_generation);
272 }
273 
274 void
275 getmicrotime(struct timeval *tvp)
276 {
277 	struct timehands *th;
278 	u_int gen;
279 
280 	ngetmicrotime++;
281 	do {
282 		th = timehands;
283 		gen = th->th_generation;
284 		*tvp = th->th_microtime;
285 	} while (gen == 0 || gen != th->th_generation);
286 }
287 
288 /*
289  * Initialize a new timecounter and possibly use it.
290  */
291 void
292 tc_init(struct timecounter *tc)
293 {
294 	u_int u;
295 
296 	u = tc->tc_frequency / tc->tc_counter_mask;
297 	/* XXX: We need some margin here, 10% is a guess */
298 	u *= 11;
299 	u /= 10;
300 	if (u > hz && tc->tc_quality >= 0) {
301 		tc->tc_quality = -2000;
302 		if (bootverbose) {
303 			printf("Timecounter \"%s\" frequency %ju Hz",
304 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
305 			printf(" -- Insufficient hz, needs at least %u\n", u);
306 		}
307 	} else if (tc->tc_quality >= 0 || bootverbose) {
308 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
309 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
310 		    tc->tc_quality);
311 	}
312 
313 	tc->tc_next = timecounters;
314 	timecounters = tc;
315 	/*
316 	 * Never automatically use a timecounter with negative quality.
317 	 * Even though we run on the dummy counter, switching here may be
318 	 * worse since this timecounter may not be monotonous.
319 	 */
320 	if (tc->tc_quality < 0)
321 		return;
322 	if (tc->tc_quality < timecounter->tc_quality)
323 		return;
324 	if (tc->tc_quality == timecounter->tc_quality &&
325 	    tc->tc_frequency < timecounter->tc_frequency)
326 		return;
327 	(void)tc->tc_get_timecount(tc);
328 	(void)tc->tc_get_timecount(tc);
329 	timecounter = tc;
330 }
331 
332 /* Report the frequency of the current timecounter. */
333 u_int64_t
334 tc_getfrequency(void)
335 {
336 
337 	return (timehands->th_counter->tc_frequency);
338 }
339 
340 /*
341  * Step our concept of UTC.  This is done by modifying our estimate of
342  * when we booted.
343  * XXX: not locked.
344  */
345 void
346 tc_setclock(struct timespec *ts)
347 {
348 	struct timespec ts2;
349 	struct bintime bt, bt2;
350 
351 	nsetclock++;
352 	binuptime(&bt2);
353 	timespec2bintime(ts, &bt);
354 	bintime_sub(&bt, &bt2);
355 	bintime_add(&bt2, &boottimebin);
356 	boottimebin = bt;
357 	bintime2timeval(&bt, &boottime);
358 
359 	/* XXX fiddle all the little crinkly bits around the fiords... */
360 	tc_windup();
361 	if (timestepwarnings) {
362 		bintime2timespec(&bt2, &ts2);
363 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
364 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
365 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
366 	}
367 }
368 
369 /*
370  * Initialize the next struct timehands in the ring and make
371  * it the active timehands.  Along the way we might switch to a different
372  * timecounter and/or do seconds processing in NTP.  Slightly magic.
373  */
374 static void
375 tc_windup(void)
376 {
377 	struct bintime bt;
378 	struct timehands *th, *tho;
379 	u_int64_t scale;
380 	u_int delta, ncount, ogen;
381 	int i;
382 	time_t t;
383 
384 	/*
385 	 * Make the next timehands a copy of the current one, but do not
386 	 * overwrite the generation or next pointer.  While we update
387 	 * the contents, the generation must be zero.
388 	 */
389 	tho = timehands;
390 	th = tho->th_next;
391 	ogen = th->th_generation;
392 	th->th_generation = 0;
393 	bcopy(tho, th, offsetof(struct timehands, th_generation));
394 
395 	/*
396 	 * Capture a timecounter delta on the current timecounter and if
397 	 * changing timecounters, a counter value from the new timecounter.
398 	 * Update the offset fields accordingly.
399 	 */
400 	delta = tc_delta(th);
401 	if (th->th_counter != timecounter)
402 		ncount = timecounter->tc_get_timecount(timecounter);
403 	else
404 		ncount = 0;
405 	th->th_offset_count += delta;
406 	th->th_offset_count &= th->th_counter->tc_counter_mask;
407 	bintime_addx(&th->th_offset, th->th_scale * delta);
408 
409 	/*
410 	 * Hardware latching timecounters may not generate interrupts on
411 	 * PPS events, so instead we poll them.  There is a finite risk that
412 	 * the hardware might capture a count which is later than the one we
413 	 * got above, and therefore possibly in the next NTP second which might
414 	 * have a different rate than the current NTP second.  It doesn't
415 	 * matter in practice.
416 	 */
417 	if (tho->th_counter->tc_poll_pps)
418 		tho->th_counter->tc_poll_pps(tho->th_counter);
419 
420 	/*
421 	 * Deal with NTP second processing.  The for loop normally
422 	 * iterates at most once, but in extreme situations it might
423 	 * keep NTP sane if timeouts are not run for several seconds.
424 	 * At boot, the time step can be large when the TOD hardware
425 	 * has been read, so on really large steps, we call
426 	 * ntp_update_second only twice.  We need to call it twice in
427 	 * case we missed a leap second.
428 	 */
429 	bt = th->th_offset;
430 	bintime_add(&bt, &boottimebin);
431 	i = bt.sec - tho->th_microtime.tv_sec;
432 	if (i > LARGE_STEP)
433 		i = 2;
434 	for (; i > 0; i--) {
435 		t = bt.sec;
436 		ntp_update_second(&th->th_adjustment, &bt.sec);
437 		if (bt.sec != t)
438 			boottimebin.sec += bt.sec - t;
439 	}
440 	/* Update the UTC timestamps used by the get*() functions. */
441 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
442 	bintime2timeval(&bt, &th->th_microtime);
443 	bintime2timespec(&bt, &th->th_nanotime);
444 
445 	/* Now is a good time to change timecounters. */
446 	if (th->th_counter != timecounter) {
447 		th->th_counter = timecounter;
448 		th->th_offset_count = ncount;
449 	}
450 
451 	/*-
452 	 * Recalculate the scaling factor.  We want the number of 1/2^64
453 	 * fractions of a second per period of the hardware counter, taking
454 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
455 	 * processing provides us with.
456 	 *
457 	 * The th_adjustment is nanoseconds per second with 32 bit binary
458 	 * fraction and we want 64 bit binary fraction of second:
459 	 *
460 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
461 	 *
462 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
463 	 * we can only multiply by about 850 without overflowing, but that
464 	 * leaves suitably precise fractions for multiply before divide.
465 	 *
466 	 * Divide before multiply with a fraction of 2199/512 results in a
467 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
468 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
469  	 *
470 	 * We happily sacrifice the lowest of the 64 bits of our result
471 	 * to the goddess of code clarity.
472 	 *
473 	 */
474 	scale = (u_int64_t)1 << 63;
475 	scale += (th->th_adjustment / 1024) * 2199;
476 	scale /= th->th_counter->tc_frequency;
477 	th->th_scale = scale * 2;
478 
479 	/*
480 	 * Now that the struct timehands is again consistent, set the new
481 	 * generation number, making sure to not make it zero.
482 	 */
483 	if (++ogen == 0)
484 		ogen = 1;
485 	th->th_generation = ogen;
486 
487 	/* Go live with the new struct timehands. */
488 	time_second = th->th_microtime.tv_sec;
489 	time_uptime = th->th_offset.sec;
490 	timehands = th;
491 }
492 
493 /* Report or change the active timecounter hardware. */
494 static int
495 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
496 {
497 	char newname[32];
498 	struct timecounter *newtc, *tc;
499 	int error;
500 
501 	tc = timecounter;
502 	strlcpy(newname, tc->tc_name, sizeof(newname));
503 
504 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
505 	if (error != 0 || req->newptr == NULL ||
506 	    strcmp(newname, tc->tc_name) == 0)
507 		return (error);
508 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
509 		if (strcmp(newname, newtc->tc_name) != 0)
510 			continue;
511 
512 		/* Warm up new timecounter. */
513 		(void)newtc->tc_get_timecount(newtc);
514 		(void)newtc->tc_get_timecount(newtc);
515 
516 		timecounter = newtc;
517 		return (0);
518 	}
519 	return (EINVAL);
520 }
521 
522 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
523     0, 0, sysctl_kern_timecounter_hardware, "A", "");
524 
525 
526 /* Report or change the active timecounter hardware. */
527 static int
528 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
529 {
530 	char buf[32], *spc;
531 	struct timecounter *tc;
532 	int error;
533 
534 	spc = "";
535 	error = 0;
536 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
537 		sprintf(buf, "%s%s(%d)",
538 		    spc, tc->tc_name, tc->tc_quality);
539 		error = SYSCTL_OUT(req, buf, strlen(buf));
540 		spc = " ";
541 	}
542 	return (error);
543 }
544 
545 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
546     0, 0, sysctl_kern_timecounter_choice, "A", "");
547 
548 /*
549  * RFC 2783 PPS-API implementation.
550  */
551 
552 int
553 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
554 {
555 	pps_params_t *app;
556 	struct pps_fetch_args *fapi;
557 #ifdef PPS_SYNC
558 	struct pps_kcbind_args *kapi;
559 #endif
560 
561 	switch (cmd) {
562 	case PPS_IOC_CREATE:
563 		return (0);
564 	case PPS_IOC_DESTROY:
565 		return (0);
566 	case PPS_IOC_SETPARAMS:
567 		app = (pps_params_t *)data;
568 		if (app->mode & ~pps->ppscap)
569 			return (EINVAL);
570 		pps->ppsparam = *app;
571 		return (0);
572 	case PPS_IOC_GETPARAMS:
573 		app = (pps_params_t *)data;
574 		*app = pps->ppsparam;
575 		app->api_version = PPS_API_VERS_1;
576 		return (0);
577 	case PPS_IOC_GETCAP:
578 		*(int*)data = pps->ppscap;
579 		return (0);
580 	case PPS_IOC_FETCH:
581 		fapi = (struct pps_fetch_args *)data;
582 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
583 			return (EINVAL);
584 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
585 			return (EOPNOTSUPP);
586 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
587 		fapi->pps_info_buf = pps->ppsinfo;
588 		return (0);
589 	case PPS_IOC_KCBIND:
590 #ifdef PPS_SYNC
591 		kapi = (struct pps_kcbind_args *)data;
592 		/* XXX Only root should be able to do this */
593 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
594 			return (EINVAL);
595 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
596 			return (EINVAL);
597 		if (kapi->edge & ~pps->ppscap)
598 			return (EINVAL);
599 		pps->kcmode = kapi->edge;
600 		return (0);
601 #else
602 		return (EOPNOTSUPP);
603 #endif
604 	default:
605 		return (ENOTTY);
606 	}
607 }
608 
609 void
610 pps_init(struct pps_state *pps)
611 {
612 	pps->ppscap |= PPS_TSFMT_TSPEC;
613 	if (pps->ppscap & PPS_CAPTUREASSERT)
614 		pps->ppscap |= PPS_OFFSETASSERT;
615 	if (pps->ppscap & PPS_CAPTURECLEAR)
616 		pps->ppscap |= PPS_OFFSETCLEAR;
617 }
618 
619 void
620 pps_capture(struct pps_state *pps)
621 {
622 	struct timehands *th;
623 
624 	th = timehands;
625 	pps->capgen = th->th_generation;
626 	pps->capth = th;
627 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
628 	if (pps->capgen != th->th_generation)
629 		pps->capgen = 0;
630 }
631 
632 void
633 pps_event(struct pps_state *pps, int event)
634 {
635 	struct bintime bt;
636 	struct timespec ts, *tsp, *osp;
637 	u_int tcount, *pcount;
638 	int foff, fhard;
639 	pps_seq_t *pseq;
640 
641 	/* If the timecounter was wound up underneath us, bail out. */
642 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
643 		return;
644 
645 	/* Things would be easier with arrays. */
646 	if (event == PPS_CAPTUREASSERT) {
647 		tsp = &pps->ppsinfo.assert_timestamp;
648 		osp = &pps->ppsparam.assert_offset;
649 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
650 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
651 		pcount = &pps->ppscount[0];
652 		pseq = &pps->ppsinfo.assert_sequence;
653 	} else {
654 		tsp = &pps->ppsinfo.clear_timestamp;
655 		osp = &pps->ppsparam.clear_offset;
656 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
657 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
658 		pcount = &pps->ppscount[1];
659 		pseq = &pps->ppsinfo.clear_sequence;
660 	}
661 
662 	/*
663 	 * If the timecounter changed, we cannot compare the count values, so
664 	 * we have to drop the rest of the PPS-stuff until the next event.
665 	 */
666 	if (pps->ppstc != pps->capth->th_counter) {
667 		pps->ppstc = pps->capth->th_counter;
668 		*pcount = pps->capcount;
669 		pps->ppscount[2] = pps->capcount;
670 		return;
671 	}
672 
673 	/* Convert the count to a timespec. */
674 	tcount = pps->capcount - pps->capth->th_offset_count;
675 	tcount &= pps->capth->th_counter->tc_counter_mask;
676 	bt = pps->capth->th_offset;
677 	bintime_addx(&bt, pps->capth->th_scale * tcount);
678 	bintime_add(&bt, &boottimebin);
679 	bintime2timespec(&bt, &ts);
680 
681 	/* If the timecounter was wound up underneath us, bail out. */
682 	if (pps->capgen != pps->capth->th_generation)
683 		return;
684 
685 	*pcount = pps->capcount;
686 	(*pseq)++;
687 	*tsp = ts;
688 
689 	if (foff) {
690 		timespecadd(tsp, osp);
691 		if (tsp->tv_nsec < 0) {
692 			tsp->tv_nsec += 1000000000;
693 			tsp->tv_sec -= 1;
694 		}
695 	}
696 #ifdef PPS_SYNC
697 	if (fhard) {
698 		u_int64_t scale;
699 
700 		/*
701 		 * Feed the NTP PLL/FLL.
702 		 * The FLL wants to know how many (hardware) nanoseconds
703 		 * elapsed since the previous event.
704 		 */
705 		tcount = pps->capcount - pps->ppscount[2];
706 		pps->ppscount[2] = pps->capcount;
707 		tcount &= pps->capth->th_counter->tc_counter_mask;
708 		scale = (u_int64_t)1 << 63;
709 		scale /= pps->capth->th_counter->tc_frequency;
710 		scale *= 2;
711 		bt.sec = 0;
712 		bt.frac = 0;
713 		bintime_addx(&bt, scale * tcount);
714 		bintime2timespec(&bt, &ts);
715 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
716 	}
717 #endif
718 }
719 
720 /*
721  * Timecounters need to be updated every so often to prevent the hardware
722  * counter from overflowing.  Updating also recalculates the cached values
723  * used by the get*() family of functions, so their precision depends on
724  * the update frequency.
725  */
726 
727 static int tc_tick;
728 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
729 
730 void
731 tc_ticktock(void)
732 {
733 	static int count;
734 
735 	if (++count < tc_tick)
736 		return;
737 	count = 0;
738 	tc_windup();
739 }
740 
741 static void
742 inittimecounter(void *dummy)
743 {
744 	u_int p;
745 
746 	/*
747 	 * Set the initial timeout to
748 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
749 	 * People should probably not use the sysctl to set the timeout
750 	 * to smaller than its inital value, since that value is the
751 	 * smallest reasonable one.  If they want better timestamps they
752 	 * should use the non-"get"* functions.
753 	 */
754 	if (hz > 1000)
755 		tc_tick = (hz + 500) / 1000;
756 	else
757 		tc_tick = 1;
758 	p = (tc_tick * 1000000) / hz;
759 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
760 
761 	/* warm up new timecounter (again) and get rolling. */
762 	(void)timecounter->tc_get_timecount(timecounter);
763 	(void)timecounter->tc_get_timecount(timecounter);
764 }
765 
766 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
767