xref: /freebsd/sys/kern/kern_tc.c (revision 6af83ee0d2941d18880b6aaa2b4facd1d30c6106)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  */
9 
10 #include <sys/cdefs.h>
11 __FBSDID("$FreeBSD$");
12 
13 #include "opt_ntp.h"
14 
15 #include <sys/param.h>
16 #include <sys/kernel.h>
17 #include <sys/sysctl.h>
18 #include <sys/syslog.h>
19 #include <sys/systm.h>
20 #include <sys/timepps.h>
21 #include <sys/timetc.h>
22 #include <sys/timex.h>
23 
24 /*
25  * A large step happens on boot.  This constant detects such steps.
26  * It is relatively small so that ntp_update_second gets called enough
27  * in the typical 'missed a couple of seconds' case, but doesn't loop
28  * forever when the time step is large.
29  */
30 #define LARGE_STEP	200
31 
32 /*
33  * Implement a dummy timecounter which we can use until we get a real one
34  * in the air.  This allows the console and other early stuff to use
35  * time services.
36  */
37 
38 static u_int
39 dummy_get_timecount(struct timecounter *tc)
40 {
41 	static u_int now;
42 
43 	return (++now);
44 }
45 
46 static struct timecounter dummy_timecounter = {
47 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
48 };
49 
50 struct timehands {
51 	/* These fields must be initialized by the driver. */
52 	struct timecounter	*th_counter;
53 	int64_t			th_adjustment;
54 	u_int64_t		th_scale;
55 	u_int	 		th_offset_count;
56 	struct bintime		th_offset;
57 	struct timeval		th_microtime;
58 	struct timespec		th_nanotime;
59 	/* Fields not to be copied in tc_windup start with th_generation. */
60 	volatile u_int		th_generation;
61 	struct timehands	*th_next;
62 };
63 
64 extern struct timehands th0;
65 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74 static struct timehands th0 = {
75 	&dummy_timecounter,
76 	0,
77 	(uint64_t)-1 / 1000000,
78 	0,
79 	{1, 0},
80 	{0, 0},
81 	{0, 0},
82 	1,
83 	&th1
84 };
85 
86 static struct timehands *volatile timehands = &th0;
87 struct timecounter *timecounter = &dummy_timecounter;
88 static struct timecounter *timecounters = &dummy_timecounter;
89 
90 time_t time_second = 1;
91 time_t time_uptime = 0;
92 
93 static struct bintime boottimebin;
94 struct timeval boottime;
95 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
96 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
97     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
98 
99 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
100 
101 static int timestepwarnings;
102 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
103     &timestepwarnings, 0, "");
104 
105 #define TC_STATS(foo) \
106 	static u_int foo; \
107 	SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
108 	struct __hack
109 
110 TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
111 TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
112 TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
113 TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
114 TC_STATS(nsetclock);
115 
116 #undef TC_STATS
117 
118 static void tc_windup(void);
119 
120 static int
121 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
122 {
123 #ifdef SCTL_MASK32
124 	int tv[2];
125 
126 	if (req->flags & SCTL_MASK32) {
127 		tv[0] = boottime.tv_sec;
128 		tv[1] = boottime.tv_usec;
129 		return SYSCTL_OUT(req, tv, sizeof(tv));
130 	} else
131 #endif
132 		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
133 }
134 /*
135  * Return the difference between the timehands' counter value now and what
136  * was when we copied it to the timehands' offset_count.
137  */
138 static __inline u_int
139 tc_delta(struct timehands *th)
140 {
141 	struct timecounter *tc;
142 
143 	tc = th->th_counter;
144 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
145 	    tc->tc_counter_mask);
146 }
147 
148 /*
149  * Functions for reading the time.  We have to loop until we are sure that
150  * the timehands that we operated on was not updated under our feet.  See
151  * the comment in <sys/time.h> for a description of these 12 functions.
152  */
153 
154 void
155 binuptime(struct bintime *bt)
156 {
157 	struct timehands *th;
158 	u_int gen;
159 
160 	nbinuptime++;
161 	do {
162 		th = timehands;
163 		gen = th->th_generation;
164 		*bt = th->th_offset;
165 		bintime_addx(bt, th->th_scale * tc_delta(th));
166 	} while (gen == 0 || gen != th->th_generation);
167 }
168 
169 void
170 nanouptime(struct timespec *tsp)
171 {
172 	struct bintime bt;
173 
174 	nnanouptime++;
175 	binuptime(&bt);
176 	bintime2timespec(&bt, tsp);
177 }
178 
179 void
180 microuptime(struct timeval *tvp)
181 {
182 	struct bintime bt;
183 
184 	nmicrouptime++;
185 	binuptime(&bt);
186 	bintime2timeval(&bt, tvp);
187 }
188 
189 void
190 bintime(struct bintime *bt)
191 {
192 
193 	nbintime++;
194 	binuptime(bt);
195 	bintime_add(bt, &boottimebin);
196 }
197 
198 void
199 nanotime(struct timespec *tsp)
200 {
201 	struct bintime bt;
202 
203 	nnanotime++;
204 	bintime(&bt);
205 	bintime2timespec(&bt, tsp);
206 }
207 
208 void
209 microtime(struct timeval *tvp)
210 {
211 	struct bintime bt;
212 
213 	nmicrotime++;
214 	bintime(&bt);
215 	bintime2timeval(&bt, tvp);
216 }
217 
218 void
219 getbinuptime(struct bintime *bt)
220 {
221 	struct timehands *th;
222 	u_int gen;
223 
224 	ngetbinuptime++;
225 	do {
226 		th = timehands;
227 		gen = th->th_generation;
228 		*bt = th->th_offset;
229 	} while (gen == 0 || gen != th->th_generation);
230 }
231 
232 void
233 getnanouptime(struct timespec *tsp)
234 {
235 	struct timehands *th;
236 	u_int gen;
237 
238 	ngetnanouptime++;
239 	do {
240 		th = timehands;
241 		gen = th->th_generation;
242 		bintime2timespec(&th->th_offset, tsp);
243 	} while (gen == 0 || gen != th->th_generation);
244 }
245 
246 void
247 getmicrouptime(struct timeval *tvp)
248 {
249 	struct timehands *th;
250 	u_int gen;
251 
252 	ngetmicrouptime++;
253 	do {
254 		th = timehands;
255 		gen = th->th_generation;
256 		bintime2timeval(&th->th_offset, tvp);
257 	} while (gen == 0 || gen != th->th_generation);
258 }
259 
260 void
261 getbintime(struct bintime *bt)
262 {
263 	struct timehands *th;
264 	u_int gen;
265 
266 	ngetbintime++;
267 	do {
268 		th = timehands;
269 		gen = th->th_generation;
270 		*bt = th->th_offset;
271 	} while (gen == 0 || gen != th->th_generation);
272 	bintime_add(bt, &boottimebin);
273 }
274 
275 void
276 getnanotime(struct timespec *tsp)
277 {
278 	struct timehands *th;
279 	u_int gen;
280 
281 	ngetnanotime++;
282 	do {
283 		th = timehands;
284 		gen = th->th_generation;
285 		*tsp = th->th_nanotime;
286 	} while (gen == 0 || gen != th->th_generation);
287 }
288 
289 void
290 getmicrotime(struct timeval *tvp)
291 {
292 	struct timehands *th;
293 	u_int gen;
294 
295 	ngetmicrotime++;
296 	do {
297 		th = timehands;
298 		gen = th->th_generation;
299 		*tvp = th->th_microtime;
300 	} while (gen == 0 || gen != th->th_generation);
301 }
302 
303 /*
304  * Initialize a new timecounter and possibly use it.
305  */
306 void
307 tc_init(struct timecounter *tc)
308 {
309 	u_int u;
310 
311 	u = tc->tc_frequency / tc->tc_counter_mask;
312 	/* XXX: We need some margin here, 10% is a guess */
313 	u *= 11;
314 	u /= 10;
315 	if (u > hz && tc->tc_quality >= 0) {
316 		tc->tc_quality = -2000;
317 		if (bootverbose) {
318 			printf("Timecounter \"%s\" frequency %ju Hz",
319 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
320 			printf(" -- Insufficient hz, needs at least %u\n", u);
321 		}
322 	} else if (tc->tc_quality >= 0 || bootverbose) {
323 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
324 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
325 		    tc->tc_quality);
326 	}
327 
328 	tc->tc_next = timecounters;
329 	timecounters = tc;
330 	/*
331 	 * Never automatically use a timecounter with negative quality.
332 	 * Even though we run on the dummy counter, switching here may be
333 	 * worse since this timecounter may not be monotonous.
334 	 */
335 	if (tc->tc_quality < 0)
336 		return;
337 	if (tc->tc_quality < timecounter->tc_quality)
338 		return;
339 	if (tc->tc_quality == timecounter->tc_quality &&
340 	    tc->tc_frequency < timecounter->tc_frequency)
341 		return;
342 	(void)tc->tc_get_timecount(tc);
343 	(void)tc->tc_get_timecount(tc);
344 	timecounter = tc;
345 }
346 
347 /* Report the frequency of the current timecounter. */
348 u_int64_t
349 tc_getfrequency(void)
350 {
351 
352 	return (timehands->th_counter->tc_frequency);
353 }
354 
355 /*
356  * Step our concept of UTC.  This is done by modifying our estimate of
357  * when we booted.
358  * XXX: not locked.
359  */
360 void
361 tc_setclock(struct timespec *ts)
362 {
363 	struct timespec ts2;
364 	struct bintime bt, bt2;
365 
366 	nsetclock++;
367 	binuptime(&bt2);
368 	timespec2bintime(ts, &bt);
369 	bintime_sub(&bt, &bt2);
370 	bintime_add(&bt2, &boottimebin);
371 	boottimebin = bt;
372 	bintime2timeval(&bt, &boottime);
373 
374 	/* XXX fiddle all the little crinkly bits around the fiords... */
375 	tc_windup();
376 	if (timestepwarnings) {
377 		bintime2timespec(&bt2, &ts2);
378 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
379 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
380 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
381 	}
382 }
383 
384 /*
385  * Initialize the next struct timehands in the ring and make
386  * it the active timehands.  Along the way we might switch to a different
387  * timecounter and/or do seconds processing in NTP.  Slightly magic.
388  */
389 static void
390 tc_windup(void)
391 {
392 	struct bintime bt;
393 	struct timehands *th, *tho;
394 	u_int64_t scale;
395 	u_int delta, ncount, ogen;
396 	int i;
397 	time_t t;
398 
399 	/*
400 	 * Make the next timehands a copy of the current one, but do not
401 	 * overwrite the generation or next pointer.  While we update
402 	 * the contents, the generation must be zero.
403 	 */
404 	tho = timehands;
405 	th = tho->th_next;
406 	ogen = th->th_generation;
407 	th->th_generation = 0;
408 	bcopy(tho, th, offsetof(struct timehands, th_generation));
409 
410 	/*
411 	 * Capture a timecounter delta on the current timecounter and if
412 	 * changing timecounters, a counter value from the new timecounter.
413 	 * Update the offset fields accordingly.
414 	 */
415 	delta = tc_delta(th);
416 	if (th->th_counter != timecounter)
417 		ncount = timecounter->tc_get_timecount(timecounter);
418 	else
419 		ncount = 0;
420 	th->th_offset_count += delta;
421 	th->th_offset_count &= th->th_counter->tc_counter_mask;
422 	bintime_addx(&th->th_offset, th->th_scale * delta);
423 
424 	/*
425 	 * Hardware latching timecounters may not generate interrupts on
426 	 * PPS events, so instead we poll them.  There is a finite risk that
427 	 * the hardware might capture a count which is later than the one we
428 	 * got above, and therefore possibly in the next NTP second which might
429 	 * have a different rate than the current NTP second.  It doesn't
430 	 * matter in practice.
431 	 */
432 	if (tho->th_counter->tc_poll_pps)
433 		tho->th_counter->tc_poll_pps(tho->th_counter);
434 
435 	/*
436 	 * Deal with NTP second processing.  The for loop normally
437 	 * iterates at most once, but in extreme situations it might
438 	 * keep NTP sane if timeouts are not run for several seconds.
439 	 * At boot, the time step can be large when the TOD hardware
440 	 * has been read, so on really large steps, we call
441 	 * ntp_update_second only twice.  We need to call it twice in
442 	 * case we missed a leap second.
443 	 */
444 	bt = th->th_offset;
445 	bintime_add(&bt, &boottimebin);
446 	i = bt.sec - tho->th_microtime.tv_sec;
447 	if (i > LARGE_STEP)
448 		i = 2;
449 	for (; i > 0; i--) {
450 		t = bt.sec;
451 		ntp_update_second(&th->th_adjustment, &bt.sec);
452 		if (bt.sec != t)
453 			boottimebin.sec += bt.sec - t;
454 	}
455 	/* Update the UTC timestamps used by the get*() functions. */
456 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
457 	bintime2timeval(&bt, &th->th_microtime);
458 	bintime2timespec(&bt, &th->th_nanotime);
459 
460 	/* Now is a good time to change timecounters. */
461 	if (th->th_counter != timecounter) {
462 		th->th_counter = timecounter;
463 		th->th_offset_count = ncount;
464 	}
465 
466 	/*-
467 	 * Recalculate the scaling factor.  We want the number of 1/2^64
468 	 * fractions of a second per period of the hardware counter, taking
469 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
470 	 * processing provides us with.
471 	 *
472 	 * The th_adjustment is nanoseconds per second with 32 bit binary
473 	 * fraction and we want 64 bit binary fraction of second:
474 	 *
475 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
476 	 *
477 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
478 	 * we can only multiply by about 850 without overflowing, but that
479 	 * leaves suitably precise fractions for multiply before divide.
480 	 *
481 	 * Divide before multiply with a fraction of 2199/512 results in a
482 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
483 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
484  	 *
485 	 * We happily sacrifice the lowest of the 64 bits of our result
486 	 * to the goddess of code clarity.
487 	 *
488 	 */
489 	scale = (u_int64_t)1 << 63;
490 	scale += (th->th_adjustment / 1024) * 2199;
491 	scale /= th->th_counter->tc_frequency;
492 	th->th_scale = scale * 2;
493 
494 	/*
495 	 * Now that the struct timehands is again consistent, set the new
496 	 * generation number, making sure to not make it zero.
497 	 */
498 	if (++ogen == 0)
499 		ogen = 1;
500 	th->th_generation = ogen;
501 
502 	/* Go live with the new struct timehands. */
503 	time_second = th->th_microtime.tv_sec;
504 	time_uptime = th->th_offset.sec;
505 	timehands = th;
506 }
507 
508 /* Report or change the active timecounter hardware. */
509 static int
510 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
511 {
512 	char newname[32];
513 	struct timecounter *newtc, *tc;
514 	int error;
515 
516 	tc = timecounter;
517 	strlcpy(newname, tc->tc_name, sizeof(newname));
518 
519 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
520 	if (error != 0 || req->newptr == NULL ||
521 	    strcmp(newname, tc->tc_name) == 0)
522 		return (error);
523 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
524 		if (strcmp(newname, newtc->tc_name) != 0)
525 			continue;
526 
527 		/* Warm up new timecounter. */
528 		(void)newtc->tc_get_timecount(newtc);
529 		(void)newtc->tc_get_timecount(newtc);
530 
531 		timecounter = newtc;
532 		return (0);
533 	}
534 	return (EINVAL);
535 }
536 
537 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
538     0, 0, sysctl_kern_timecounter_hardware, "A", "");
539 
540 
541 /* Report or change the active timecounter hardware. */
542 static int
543 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
544 {
545 	char buf[32], *spc;
546 	struct timecounter *tc;
547 	int error;
548 
549 	spc = "";
550 	error = 0;
551 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
552 		sprintf(buf, "%s%s(%d)",
553 		    spc, tc->tc_name, tc->tc_quality);
554 		error = SYSCTL_OUT(req, buf, strlen(buf));
555 		spc = " ";
556 	}
557 	return (error);
558 }
559 
560 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
561     0, 0, sysctl_kern_timecounter_choice, "A", "");
562 
563 /*
564  * RFC 2783 PPS-API implementation.
565  */
566 
567 int
568 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
569 {
570 	pps_params_t *app;
571 	struct pps_fetch_args *fapi;
572 #ifdef PPS_SYNC
573 	struct pps_kcbind_args *kapi;
574 #endif
575 
576 	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
577 	switch (cmd) {
578 	case PPS_IOC_CREATE:
579 		return (0);
580 	case PPS_IOC_DESTROY:
581 		return (0);
582 	case PPS_IOC_SETPARAMS:
583 		app = (pps_params_t *)data;
584 		if (app->mode & ~pps->ppscap)
585 			return (EINVAL);
586 		pps->ppsparam = *app;
587 		return (0);
588 	case PPS_IOC_GETPARAMS:
589 		app = (pps_params_t *)data;
590 		*app = pps->ppsparam;
591 		app->api_version = PPS_API_VERS_1;
592 		return (0);
593 	case PPS_IOC_GETCAP:
594 		*(int*)data = pps->ppscap;
595 		return (0);
596 	case PPS_IOC_FETCH:
597 		fapi = (struct pps_fetch_args *)data;
598 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
599 			return (EINVAL);
600 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
601 			return (EOPNOTSUPP);
602 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
603 		fapi->pps_info_buf = pps->ppsinfo;
604 		return (0);
605 	case PPS_IOC_KCBIND:
606 #ifdef PPS_SYNC
607 		kapi = (struct pps_kcbind_args *)data;
608 		/* XXX Only root should be able to do this */
609 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
610 			return (EINVAL);
611 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
612 			return (EINVAL);
613 		if (kapi->edge & ~pps->ppscap)
614 			return (EINVAL);
615 		pps->kcmode = kapi->edge;
616 		return (0);
617 #else
618 		return (EOPNOTSUPP);
619 #endif
620 	default:
621 		return (ENOTTY);
622 	}
623 }
624 
625 void
626 pps_init(struct pps_state *pps)
627 {
628 	pps->ppscap |= PPS_TSFMT_TSPEC;
629 	if (pps->ppscap & PPS_CAPTUREASSERT)
630 		pps->ppscap |= PPS_OFFSETASSERT;
631 	if (pps->ppscap & PPS_CAPTURECLEAR)
632 		pps->ppscap |= PPS_OFFSETCLEAR;
633 }
634 
635 void
636 pps_capture(struct pps_state *pps)
637 {
638 	struct timehands *th;
639 
640 	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
641 	th = timehands;
642 	pps->capgen = th->th_generation;
643 	pps->capth = th;
644 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
645 	if (pps->capgen != th->th_generation)
646 		pps->capgen = 0;
647 }
648 
649 void
650 pps_event(struct pps_state *pps, int event)
651 {
652 	struct bintime bt;
653 	struct timespec ts, *tsp, *osp;
654 	u_int tcount, *pcount;
655 	int foff, fhard;
656 	pps_seq_t *pseq;
657 
658 	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
659 	/* If the timecounter was wound up underneath us, bail out. */
660 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
661 		return;
662 
663 	/* Things would be easier with arrays. */
664 	if (event == PPS_CAPTUREASSERT) {
665 		tsp = &pps->ppsinfo.assert_timestamp;
666 		osp = &pps->ppsparam.assert_offset;
667 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
668 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
669 		pcount = &pps->ppscount[0];
670 		pseq = &pps->ppsinfo.assert_sequence;
671 	} else {
672 		tsp = &pps->ppsinfo.clear_timestamp;
673 		osp = &pps->ppsparam.clear_offset;
674 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
675 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
676 		pcount = &pps->ppscount[1];
677 		pseq = &pps->ppsinfo.clear_sequence;
678 	}
679 
680 	/*
681 	 * If the timecounter changed, we cannot compare the count values, so
682 	 * we have to drop the rest of the PPS-stuff until the next event.
683 	 */
684 	if (pps->ppstc != pps->capth->th_counter) {
685 		pps->ppstc = pps->capth->th_counter;
686 		*pcount = pps->capcount;
687 		pps->ppscount[2] = pps->capcount;
688 		return;
689 	}
690 
691 	/* Convert the count to a timespec. */
692 	tcount = pps->capcount - pps->capth->th_offset_count;
693 	tcount &= pps->capth->th_counter->tc_counter_mask;
694 	bt = pps->capth->th_offset;
695 	bintime_addx(&bt, pps->capth->th_scale * tcount);
696 	bintime_add(&bt, &boottimebin);
697 	bintime2timespec(&bt, &ts);
698 
699 	/* If the timecounter was wound up underneath us, bail out. */
700 	if (pps->capgen != pps->capth->th_generation)
701 		return;
702 
703 	*pcount = pps->capcount;
704 	(*pseq)++;
705 	*tsp = ts;
706 
707 	if (foff) {
708 		timespecadd(tsp, osp);
709 		if (tsp->tv_nsec < 0) {
710 			tsp->tv_nsec += 1000000000;
711 			tsp->tv_sec -= 1;
712 		}
713 	}
714 #ifdef PPS_SYNC
715 	if (fhard) {
716 		u_int64_t scale;
717 
718 		/*
719 		 * Feed the NTP PLL/FLL.
720 		 * The FLL wants to know how many (hardware) nanoseconds
721 		 * elapsed since the previous event.
722 		 */
723 		tcount = pps->capcount - pps->ppscount[2];
724 		pps->ppscount[2] = pps->capcount;
725 		tcount &= pps->capth->th_counter->tc_counter_mask;
726 		scale = (u_int64_t)1 << 63;
727 		scale /= pps->capth->th_counter->tc_frequency;
728 		scale *= 2;
729 		bt.sec = 0;
730 		bt.frac = 0;
731 		bintime_addx(&bt, scale * tcount);
732 		bintime2timespec(&bt, &ts);
733 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
734 	}
735 #endif
736 }
737 
738 /*
739  * Timecounters need to be updated every so often to prevent the hardware
740  * counter from overflowing.  Updating also recalculates the cached values
741  * used by the get*() family of functions, so their precision depends on
742  * the update frequency.
743  */
744 
745 static int tc_tick;
746 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
747 
748 void
749 tc_ticktock(void)
750 {
751 	static int count;
752 
753 	if (++count < tc_tick)
754 		return;
755 	count = 0;
756 	tc_windup();
757 }
758 
759 static void
760 inittimecounter(void *dummy)
761 {
762 	u_int p;
763 
764 	/*
765 	 * Set the initial timeout to
766 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
767 	 * People should probably not use the sysctl to set the timeout
768 	 * to smaller than its inital value, since that value is the
769 	 * smallest reasonable one.  If they want better timestamps they
770 	 * should use the non-"get"* functions.
771 	 */
772 	if (hz > 1000)
773 		tc_tick = (hz + 500) / 1000;
774 	else
775 		tc_tick = 1;
776 	p = (tc_tick * 1000000) / hz;
777 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
778 
779 	/* warm up new timecounter (again) and get rolling. */
780 	(void)timecounter->tc_get_timecount(timecounter);
781 	(void)timecounter->tc_get_timecount(timecounter);
782 }
783 
784 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
785