xref: /freebsd/sys/kern/kern_tc.c (revision 69c9999d0ca45b210e75706ab4952ad5a33ce6ec)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * $FreeBSD$
10  */
11 
12 #include "opt_ntp.h"
13 
14 #include <sys/param.h>
15 #include <sys/kernel.h>
16 #include <sys/sysctl.h>
17 #include <sys/systm.h>
18 #include <sys/timepps.h>
19 #include <sys/timetc.h>
20 #include <sys/timex.h>
21 
22 /*
23  * Implement a dummy timecounter which we can use until we get a real one
24  * in the air.  This allows the console and other early stuff to use
25  * time services.
26  */
27 
28 static u_int
29 dummy_get_timecount(struct timecounter *tc)
30 {
31 	static u_int now;
32 
33 	return (++now);
34 }
35 
36 static struct timecounter dummy_timecounter = {
37 	dummy_get_timecount, 0, ~0u, 1000000, "dummy",
38 };
39 
40 struct timehands {
41 	/* These fields must be initialized by the driver. */
42 	struct timecounter	*th_counter;
43 	int64_t			th_adjustment;
44 	u_int64_t		th_scale;
45 	u_int	 		th_offset_count;
46 	struct bintime		th_offset;
47 	struct timeval		th_microtime;
48 	struct timespec		th_nanotime;
49 	/* Fields not to be copied in tc_windup start with th_generation. */
50 	volatile u_int		th_generation;
51 	struct timehands	*th_next;
52 };
53 
54 extern struct timehands th0;
55 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
56 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
57 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
58 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
59 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
60 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
61 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
62 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
63 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
64 static struct timehands th0 = {
65 	&dummy_timecounter,
66 	0,
67 	(uint64_t)-1 / 1000000,
68 	0,
69 	{1, 0},
70 	{0, 0},
71 	{0, 0},
72 	1,
73 	&th1
74 };
75 
76 static struct timehands *volatile timehands = &th0;
77 struct timecounter *timecounter = &dummy_timecounter;
78 static struct timecounter *timecounters = &dummy_timecounter;
79 
80 time_t time_second = 1;
81 time_t time_uptime = 0;
82 
83 static struct bintime boottimebin;
84 struct timeval boottime;
85 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
86     &boottime, timeval, "System boottime");
87 
88 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
89 
90 #define TC_STATS(foo) \
91 	static u_int foo; \
92 	SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
93 	struct __hack
94 
95 TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
96 TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
97 TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
98 TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
99 
100 #undef TC_STATS
101 
102 static void tc_windup(void);
103 
104 /*
105  * Return the difference between the timehands' counter value now and what
106  * was when we copied it to the timehands' offset_count.
107  */
108 static __inline u_int
109 tc_delta(struct timehands *th)
110 {
111 	struct timecounter *tc;
112 
113 	tc = th->th_counter;
114 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
115 	    tc->tc_counter_mask);
116 }
117 
118 /*
119  * Functions for reading the time.  We have to loop until we are sure that
120  * the timehands that we operated on was not updated under our feet.  See
121  * the comment in <sys/time.h> for a description of these 12 functions.
122  */
123 
124 void
125 binuptime(struct bintime *bt)
126 {
127 	struct timehands *th;
128 	u_int gen;
129 
130 	nbinuptime++;
131 	do {
132 		th = timehands;
133 		gen = th->th_generation;
134 		*bt = th->th_offset;
135 		bintime_addx(bt, th->th_scale * tc_delta(th));
136 	} while (gen == 0 || gen != th->th_generation);
137 }
138 
139 void
140 nanouptime(struct timespec *tsp)
141 {
142 	struct bintime bt;
143 
144 	nnanouptime++;
145 	binuptime(&bt);
146 	bintime2timespec(&bt, tsp);
147 }
148 
149 void
150 microuptime(struct timeval *tvp)
151 {
152 	struct bintime bt;
153 
154 	nmicrouptime++;
155 	binuptime(&bt);
156 	bintime2timeval(&bt, tvp);
157 }
158 
159 void
160 bintime(struct bintime *bt)
161 {
162 
163 	nbintime++;
164 	binuptime(bt);
165 	bintime_add(bt, &boottimebin);
166 }
167 
168 void
169 nanotime(struct timespec *tsp)
170 {
171 	struct bintime bt;
172 
173 	nnanotime++;
174 	bintime(&bt);
175 	bintime2timespec(&bt, tsp);
176 }
177 
178 void
179 microtime(struct timeval *tvp)
180 {
181 	struct bintime bt;
182 
183 	nmicrotime++;
184 	bintime(&bt);
185 	bintime2timeval(&bt, tvp);
186 }
187 
188 void
189 getbinuptime(struct bintime *bt)
190 {
191 	struct timehands *th;
192 	u_int gen;
193 
194 	ngetbinuptime++;
195 	do {
196 		th = timehands;
197 		gen = th->th_generation;
198 		*bt = th->th_offset;
199 	} while (gen == 0 || gen != th->th_generation);
200 }
201 
202 void
203 getnanouptime(struct timespec *tsp)
204 {
205 	struct timehands *th;
206 	u_int gen;
207 
208 	ngetnanouptime++;
209 	do {
210 		th = timehands;
211 		gen = th->th_generation;
212 		bintime2timespec(&th->th_offset, tsp);
213 	} while (gen == 0 || gen != th->th_generation);
214 }
215 
216 void
217 getmicrouptime(struct timeval *tvp)
218 {
219 	struct timehands *th;
220 	u_int gen;
221 
222 	ngetmicrouptime++;
223 	do {
224 		th = timehands;
225 		gen = th->th_generation;
226 		bintime2timeval(&th->th_offset, tvp);
227 	} while (gen == 0 || gen != th->th_generation);
228 }
229 
230 void
231 getbintime(struct bintime *bt)
232 {
233 	struct timehands *th;
234 	u_int gen;
235 
236 	ngetbintime++;
237 	do {
238 		th = timehands;
239 		gen = th->th_generation;
240 		*bt = th->th_offset;
241 	} while (gen == 0 || gen != th->th_generation);
242 	bintime_add(bt, &boottimebin);
243 }
244 
245 void
246 getnanotime(struct timespec *tsp)
247 {
248 	struct timehands *th;
249 	u_int gen;
250 
251 	ngetnanotime++;
252 	do {
253 		th = timehands;
254 		gen = th->th_generation;
255 		*tsp = th->th_nanotime;
256 	} while (gen == 0 || gen != th->th_generation);
257 }
258 
259 void
260 getmicrotime(struct timeval *tvp)
261 {
262 	struct timehands *th;
263 	u_int gen;
264 
265 	ngetmicrotime++;
266 	do {
267 		th = timehands;
268 		gen = th->th_generation;
269 		*tvp = th->th_microtime;
270 	} while (gen == 0 || gen != th->th_generation);
271 }
272 
273 /*
274  * Initialize a new timecounter.
275  * We should really try to rank the timecounters and intelligently determine
276  * if the new timecounter is better than the current one.  This is subject
277  * to further study.  For now always use the new timecounter.
278  */
279 void
280 tc_init(struct timecounter *tc)
281 {
282 	unsigned u;
283 
284 	printf("Timecounter \"%s\"  frequency %lu Hz",
285 	    tc->tc_name, (u_long)tc->tc_frequency);
286 
287 	u = tc->tc_frequency / tc->tc_counter_mask;
288 	if (u > hz) {
289 		printf(" -- Insufficient hz, needs at least %u\n", u);
290 		return;
291 	}
292 	tc->tc_next = timecounters;
293 	timecounters = tc;
294 	printf("\n");
295 	(void)tc->tc_get_timecount(tc);
296 	(void)tc->tc_get_timecount(tc);
297 	timecounter = tc;
298 }
299 
300 /* Report the frequency of the current timecounter. */
301 u_int32_t
302 tc_getfrequency(void)
303 {
304 
305 	return (timehands->th_counter->tc_frequency);
306 }
307 
308 /*
309  * Step our concept of GMT.  This is done by modifying our estimate of
310  * when we booted.  XXX: needs futher work.
311  */
312 void
313 tc_setclock(struct timespec *ts)
314 {
315 	struct timespec ts2;
316 
317 	nanouptime(&ts2);
318 	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
319 	/* XXX boottime should probably be a timespec. */
320 	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
321 	if (boottime.tv_usec < 0) {
322 		boottime.tv_usec += 1000000;
323 		boottime.tv_sec--;
324 	}
325 	timeval2bintime(&boottime, &boottimebin);
326 
327 	/* XXX fiddle all the little crinkly bits around the fiords... */
328 	tc_windup();
329 }
330 
331 /*
332  * Initialize the next struct timehands in the ring and make
333  * it the active timehands.  Along the way we might switch to a different
334  * timecounter and/or do seconds processing in NTP.  Slightly magic.
335  */
336 static void
337 tc_windup(void)
338 {
339 	struct bintime bt;
340 	struct timehands *th, *tho;
341 	u_int64_t scale;
342 	u_int delta, ncount, ogen;
343 	int i;
344 
345 	/*
346 	 * Make the next timehands a copy of the current one, but do not
347 	 * overwrite the generation or next pointer.  While we update
348 	 * the contents, the generation must be zero.
349 	 */
350 	tho = timehands;
351 	th = tho->th_next;
352 	ogen = th->th_generation;
353 	th->th_generation = 0;
354 	bcopy(tho, th, offsetof(struct timehands, th_generation));
355 
356 	/*
357 	 * Capture a timecounter delta on the current timecounter and if
358 	 * changing timecounters, a counter value from the new timecounter.
359 	 * Update the offset fields accordingly.
360 	 */
361 	delta = tc_delta(th);
362 	if (th->th_counter != timecounter)
363 		ncount = timecounter->tc_get_timecount(timecounter);
364 	else
365 		ncount = 0;
366 	th->th_offset_count += delta;
367 	th->th_offset_count &= th->th_counter->tc_counter_mask;
368 	bintime_addx(&th->th_offset, th->th_scale * delta);
369 
370 	/*
371 	 * Hardware latching timecounters may not generate interrupts on
372 	 * PPS events, so instead we poll them.  There is a finite risk that
373 	 * the hardware might capture a count which is later than the one we
374 	 * got above, and therefore possibly in the next NTP second which might
375 	 * have a different rate than the current NTP second.  It doesn't
376 	 * matter in practice.
377 	 */
378 	if (tho->th_counter->tc_poll_pps)
379 		tho->th_counter->tc_poll_pps(tho->th_counter);
380 
381 	/*
382 	 * Deal with NTP second processing.  The for loop normally only
383 	 * iterates once, but in extreme situations it might keep NTP sane
384 	 * if timeouts are not run for several seconds.
385 	 */
386 	for (i = th->th_offset.sec - tho->th_offset.sec; i > 0; i--)
387 		ntp_update_second(&th->th_adjustment, &th->th_offset.sec);
388 
389 	/* Now is a good time to change timecounters. */
390 	if (th->th_counter != timecounter) {
391 		th->th_counter = timecounter;
392 		th->th_offset_count = ncount;
393 	}
394 
395 	/*-
396 	 * Recalculate the scaling factor.  We want the number of 1/2^64
397 	 * fractions of a second per period of the hardware counter, taking
398 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
399 	 * processing provides us with.
400 	 *
401 	 * The th_adjustment is nanoseconds per second with 32 bit binary
402 	 * fraction and want 64 bit binary fraction of second:
403 	 *
404 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
405 	 *
406 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
407 	 * we can only multiply by about 850 without overflowing, but that
408 	 * leaves suitably precise fractions for multiply before divide.
409 	 *
410 	 * Divide before multiply with a fraction of 2199/512 results in a
411 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
412 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
413  	 *
414 	 * We happily sacrifice the lowest of the 64 bits of our result
415 	 * to the goddess of code clarity.
416 	 *
417 	 */
418 	scale = (u_int64_t)1 << 63;
419 	scale += (th->th_adjustment / 1024) * 2199;
420 	scale /= th->th_counter->tc_frequency;
421 	th->th_scale = scale * 2;
422 
423 	/* Update the GMT timestamps used for the get*() functions. */
424 	bt = th->th_offset;
425 	bintime_add(&bt, &boottimebin);
426 	bintime2timeval(&bt, &th->th_microtime);
427 	bintime2timespec(&bt, &th->th_nanotime);
428 
429 	/*
430 	 * Now that the struct timehands is again consistent, set the new
431 	 * generation number, making sure to not make it zero.
432 	 */
433 	if (++ogen == 0)
434 		ogen = 1;
435 	th->th_generation = ogen;
436 
437 	/* Go live with the new struct timehands. */
438 	time_second = th->th_microtime.tv_sec;
439 	time_uptime = th->th_offset.sec;
440 	timehands = th;
441 }
442 
443 /* Report or change the active timecounter hardware. */
444 static int
445 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
446 {
447 	char newname[32];
448 	struct timecounter *newtc, *tc;
449 	int error;
450 
451 	tc = timecounter;
452 	strlcpy(newname, tc->tc_name, sizeof(newname));
453 
454 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
455 	if (error != 0 || req->newptr == NULL ||
456 	    strcmp(newname, tc->tc_name) == 0)
457 		return (error);
458 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
459 		if (strcmp(newname, newtc->tc_name) != 0)
460 			continue;
461 
462 		/* Warm up new timecounter. */
463 		(void)newtc->tc_get_timecount(newtc);
464 		(void)newtc->tc_get_timecount(newtc);
465 
466 		timecounter = newtc;
467 		return (0);
468 	}
469 	return (EINVAL);
470 }
471 
472 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
473     0, 0, sysctl_kern_timecounter_hardware, "A", "");
474 
475 /*
476  * RFC 2783 PPS-API implementation.
477  */
478 
479 int
480 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
481 {
482 	pps_params_t *app;
483 	struct pps_fetch_args *fapi;
484 #ifdef PPS_SYNC
485 	struct pps_kcbind_args *kapi;
486 #endif
487 
488 	switch (cmd) {
489 	case PPS_IOC_CREATE:
490 		return (0);
491 	case PPS_IOC_DESTROY:
492 		return (0);
493 	case PPS_IOC_SETPARAMS:
494 		app = (pps_params_t *)data;
495 		if (app->mode & ~pps->ppscap)
496 			return (EINVAL);
497 		pps->ppsparam = *app;
498 		return (0);
499 	case PPS_IOC_GETPARAMS:
500 		app = (pps_params_t *)data;
501 		*app = pps->ppsparam;
502 		app->api_version = PPS_API_VERS_1;
503 		return (0);
504 	case PPS_IOC_GETCAP:
505 		*(int*)data = pps->ppscap;
506 		return (0);
507 	case PPS_IOC_FETCH:
508 		fapi = (struct pps_fetch_args *)data;
509 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
510 			return (EINVAL);
511 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
512 			return (EOPNOTSUPP);
513 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
514 		fapi->pps_info_buf = pps->ppsinfo;
515 		return (0);
516 	case PPS_IOC_KCBIND:
517 #ifdef PPS_SYNC
518 		kapi = (struct pps_kcbind_args *)data;
519 		/* XXX Only root should be able to do this */
520 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
521 			return (EINVAL);
522 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
523 			return (EINVAL);
524 		if (kapi->edge & ~pps->ppscap)
525 			return (EINVAL);
526 		pps->kcmode = kapi->edge;
527 		return (0);
528 #else
529 		return (EOPNOTSUPP);
530 #endif
531 	default:
532 		return (ENOTTY);
533 	}
534 }
535 
536 void
537 pps_init(struct pps_state *pps)
538 {
539 	pps->ppscap |= PPS_TSFMT_TSPEC;
540 	if (pps->ppscap & PPS_CAPTUREASSERT)
541 		pps->ppscap |= PPS_OFFSETASSERT;
542 	if (pps->ppscap & PPS_CAPTURECLEAR)
543 		pps->ppscap |= PPS_OFFSETCLEAR;
544 }
545 
546 void
547 pps_capture(struct pps_state *pps)
548 {
549 	struct timehands *th;
550 
551 	th = timehands;
552 	pps->capgen = th->th_generation;
553 	pps->capth = th;
554 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
555 	if (pps->capgen != th->th_generation)
556 		pps->capgen = 0;
557 }
558 
559 void
560 pps_event(struct pps_state *pps, int event)
561 {
562 	struct bintime bt;
563 	struct timespec ts, *tsp, *osp;
564 	u_int tcount, *pcount;
565 	int foff, fhard;
566 	pps_seq_t *pseq;
567 
568 	/* If the timecounter was wound up underneath us, bail out. */
569 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
570 		return;
571 
572 	/* Things would be easier with arrays. */
573 	if (event == PPS_CAPTUREASSERT) {
574 		tsp = &pps->ppsinfo.assert_timestamp;
575 		osp = &pps->ppsparam.assert_offset;
576 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
577 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
578 		pcount = &pps->ppscount[0];
579 		pseq = &pps->ppsinfo.assert_sequence;
580 	} else {
581 		tsp = &pps->ppsinfo.clear_timestamp;
582 		osp = &pps->ppsparam.clear_offset;
583 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
584 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
585 		pcount = &pps->ppscount[1];
586 		pseq = &pps->ppsinfo.clear_sequence;
587 	}
588 
589 	/*
590 	 * If the timecounter changed, we cannot compare the count values, so
591 	 * we have to drop the rest of the PPS-stuff until the next event.
592 	 */
593 	if (pps->ppstc != pps->capth->th_counter) {
594 		pps->ppstc = pps->capth->th_counter;
595 		*pcount = pps->capcount;
596 		pps->ppscount[2] = pps->capcount;
597 		return;
598 	}
599 
600 	/* Return if nothing really happened. */
601 	if (*pcount == pps->capcount)
602 		return;
603 
604 	/* Convert the count to a timespec. */
605 	tcount = pps->capcount - pps->capth->th_offset_count;
606 	tcount &= pps->capth->th_counter->tc_counter_mask;
607 	bt = pps->capth->th_offset;
608 	bintime_addx(&bt, pps->capth->th_scale * tcount);
609 	bintime_add(&bt, &boottimebin);
610 	bintime2timespec(&bt, &ts);
611 
612 	/* If the timecounter was wound up underneath us, bail out. */
613 	if (pps->capgen != pps->capth->th_generation)
614 		return;
615 
616 	*pcount = pps->capcount;
617 	(*pseq)++;
618 	*tsp = ts;
619 
620 	if (foff) {
621 		timespecadd(tsp, osp);
622 		if (tsp->tv_nsec < 0) {
623 			tsp->tv_nsec += 1000000000;
624 			tsp->tv_sec -= 1;
625 		}
626 	}
627 #ifdef PPS_SYNC
628 	if (fhard) {
629 		/*
630 		 * Feed the NTP PLL/FLL.
631 		 * The FLL wants to know how many nanoseconds elapsed since
632 		 * the previous event.
633 		 * I have never been able to convince myself that this code
634 		 * is actually correct:  Using th_scale is bound to contain
635 		 * a phase correction component from userland, when running
636 		 * as FLL, so the number hardpps() gets is not meaningful IMO.
637 		 */
638 		tcount = pps->capcount - pps->ppscount[2];
639 		pps->ppscount[2] = pps->capcount;
640 		tcount &= pps->capth->th_counter->tc_counter_mask;
641 		bt.sec = 0;
642 		bt.frac = 0;
643 		bintime_addx(&bt, pps->capth->th_scale * tcount);
644 		bintime2timespec(&bt, &ts);
645 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
646 	}
647 #endif
648 }
649 
650 /*
651  * Timecounters need to be updated every so often to prevent the hardware
652  * counter from overflowing.  Updating also recalculates the cached values
653  * used by the get*() family of functions, so their precision depends on
654  * the update frequency.
655  */
656 
657 static int tc_tick;
658 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
659 
660 void
661 tc_ticktock(void)
662 {
663 	static int count;
664 
665 	if (++count < tc_tick)
666 		return;
667 	count = 0;
668 	tc_windup();
669 }
670 
671 static void
672 inittimecounter(void *dummy)
673 {
674 	u_int p;
675 
676 	/*
677 	 * Set the initial timeout to
678 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
679 	 * People should probably not use the sysctl to set the timeout
680 	 * to smaller than its inital value, since that value is the
681 	 * smallest reasonable one.  If they want better timestamps they
682 	 * should use the non-"get"* functions.
683 	 */
684 	if (hz > 1000)
685 		tc_tick = (hz + 500) / 1000;
686 	else
687 		tc_tick = 1;
688 	p = (tc_tick * 1000000) / hz;
689 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
690 
691 	/* warm up new timecounter (again) and get rolling. */
692 	(void)timecounter->tc_get_timecount(timecounter);
693 	(void)timecounter->tc_get_timecount(timecounter);
694 }
695 
696 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
697