1 /*- 2 * ---------------------------------------------------------------------------- 3 * "THE BEER-WARE LICENSE" (Revision 42): 4 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 5 * can do whatever you want with this stuff. If we meet some day, and you think 6 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 7 * ---------------------------------------------------------------------------- 8 * 9 * Copyright (c) 2011 The FreeBSD Foundation 10 * All rights reserved. 11 * 12 * Portions of this software were developed by Julien Ridoux at the University 13 * of Melbourne under sponsorship from the FreeBSD Foundation. 14 */ 15 16 #include <sys/cdefs.h> 17 __FBSDID("$FreeBSD$"); 18 19 #include "opt_ntp.h" 20 #include "opt_ffclock.h" 21 22 #include <sys/param.h> 23 #include <sys/kernel.h> 24 #ifdef FFCLOCK 25 #include <sys/lock.h> 26 #include <sys/mutex.h> 27 #endif 28 #include <sys/sysctl.h> 29 #include <sys/syslog.h> 30 #include <sys/systm.h> 31 #ifdef FFCLOCK 32 #include <sys/timeffc.h> 33 #endif 34 #include <sys/timepps.h> 35 #include <sys/timetc.h> 36 #include <sys/timex.h> 37 38 /* 39 * A large step happens on boot. This constant detects such steps. 40 * It is relatively small so that ntp_update_second gets called enough 41 * in the typical 'missed a couple of seconds' case, but doesn't loop 42 * forever when the time step is large. 43 */ 44 #define LARGE_STEP 200 45 46 /* 47 * Implement a dummy timecounter which we can use until we get a real one 48 * in the air. This allows the console and other early stuff to use 49 * time services. 50 */ 51 52 static u_int 53 dummy_get_timecount(struct timecounter *tc) 54 { 55 static u_int now; 56 57 return (++now); 58 } 59 60 static struct timecounter dummy_timecounter = { 61 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 62 }; 63 64 struct timehands { 65 /* These fields must be initialized by the driver. */ 66 struct timecounter *th_counter; 67 int64_t th_adjustment; 68 uint64_t th_scale; 69 u_int th_offset_count; 70 struct bintime th_offset; 71 struct timeval th_microtime; 72 struct timespec th_nanotime; 73 /* Fields not to be copied in tc_windup start with th_generation. */ 74 volatile u_int th_generation; 75 struct timehands *th_next; 76 }; 77 78 static struct timehands th0; 79 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0}; 80 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9}; 81 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8}; 82 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7}; 83 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6}; 84 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5}; 85 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4}; 86 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3}; 87 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2}; 88 static struct timehands th0 = { 89 &dummy_timecounter, 90 0, 91 (uint64_t)-1 / 1000000, 92 0, 93 {1, 0}, 94 {0, 0}, 95 {0, 0}, 96 1, 97 &th1 98 }; 99 100 static struct timehands *volatile timehands = &th0; 101 struct timecounter *timecounter = &dummy_timecounter; 102 static struct timecounter *timecounters = &dummy_timecounter; 103 104 int tc_min_ticktock_freq = 1; 105 106 time_t time_second = 1; 107 time_t time_uptime = 1; 108 109 struct bintime boottimebin; 110 struct timeval boottime; 111 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 112 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD, 113 NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime"); 114 115 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, ""); 116 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, ""); 117 118 static int timestepwarnings; 119 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW, 120 ×tepwarnings, 0, "Log time steps"); 121 122 static void tc_windup(void); 123 static void cpu_tick_calibrate(int); 124 125 static int 126 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 127 { 128 #ifdef SCTL_MASK32 129 int tv[2]; 130 131 if (req->flags & SCTL_MASK32) { 132 tv[0] = boottime.tv_sec; 133 tv[1] = boottime.tv_usec; 134 return SYSCTL_OUT(req, tv, sizeof(tv)); 135 } else 136 #endif 137 return SYSCTL_OUT(req, &boottime, sizeof(boottime)); 138 } 139 140 static int 141 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 142 { 143 u_int ncount; 144 struct timecounter *tc = arg1; 145 146 ncount = tc->tc_get_timecount(tc); 147 return sysctl_handle_int(oidp, &ncount, 0, req); 148 } 149 150 static int 151 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 152 { 153 uint64_t freq; 154 struct timecounter *tc = arg1; 155 156 freq = tc->tc_frequency; 157 return sysctl_handle_64(oidp, &freq, 0, req); 158 } 159 160 /* 161 * Return the difference between the timehands' counter value now and what 162 * was when we copied it to the timehands' offset_count. 163 */ 164 static __inline u_int 165 tc_delta(struct timehands *th) 166 { 167 struct timecounter *tc; 168 169 tc = th->th_counter; 170 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 171 tc->tc_counter_mask); 172 } 173 174 /* 175 * Functions for reading the time. We have to loop until we are sure that 176 * the timehands that we operated on was not updated under our feet. See 177 * the comment in <sys/time.h> for a description of these 12 functions. 178 */ 179 180 #ifdef FFCLOCK 181 void 182 fbclock_binuptime(struct bintime *bt) 183 { 184 struct timehands *th; 185 unsigned int gen; 186 187 do { 188 th = timehands; 189 gen = th->th_generation; 190 *bt = th->th_offset; 191 bintime_addx(bt, th->th_scale * tc_delta(th)); 192 } while (gen == 0 || gen != th->th_generation); 193 } 194 195 void 196 fbclock_nanouptime(struct timespec *tsp) 197 { 198 struct bintime bt; 199 200 fbclock_binuptime(&bt); 201 bintime2timespec(&bt, tsp); 202 } 203 204 void 205 fbclock_microuptime(struct timeval *tvp) 206 { 207 struct bintime bt; 208 209 fbclock_binuptime(&bt); 210 bintime2timeval(&bt, tvp); 211 } 212 213 void 214 fbclock_bintime(struct bintime *bt) 215 { 216 217 fbclock_binuptime(bt); 218 bintime_add(bt, &boottimebin); 219 } 220 221 void 222 fbclock_nanotime(struct timespec *tsp) 223 { 224 struct bintime bt; 225 226 fbclock_bintime(&bt); 227 bintime2timespec(&bt, tsp); 228 } 229 230 void 231 fbclock_microtime(struct timeval *tvp) 232 { 233 struct bintime bt; 234 235 fbclock_bintime(&bt); 236 bintime2timeval(&bt, tvp); 237 } 238 239 void 240 fbclock_getbinuptime(struct bintime *bt) 241 { 242 struct timehands *th; 243 unsigned int gen; 244 245 do { 246 th = timehands; 247 gen = th->th_generation; 248 *bt = th->th_offset; 249 } while (gen == 0 || gen != th->th_generation); 250 } 251 252 void 253 fbclock_getnanouptime(struct timespec *tsp) 254 { 255 struct timehands *th; 256 unsigned int gen; 257 258 do { 259 th = timehands; 260 gen = th->th_generation; 261 bintime2timespec(&th->th_offset, tsp); 262 } while (gen == 0 || gen != th->th_generation); 263 } 264 265 void 266 fbclock_getmicrouptime(struct timeval *tvp) 267 { 268 struct timehands *th; 269 unsigned int gen; 270 271 do { 272 th = timehands; 273 gen = th->th_generation; 274 bintime2timeval(&th->th_offset, tvp); 275 } while (gen == 0 || gen != th->th_generation); 276 } 277 278 void 279 fbclock_getbintime(struct bintime *bt) 280 { 281 struct timehands *th; 282 unsigned int gen; 283 284 do { 285 th = timehands; 286 gen = th->th_generation; 287 *bt = th->th_offset; 288 } while (gen == 0 || gen != th->th_generation); 289 bintime_add(bt, &boottimebin); 290 } 291 292 void 293 fbclock_getnanotime(struct timespec *tsp) 294 { 295 struct timehands *th; 296 unsigned int gen; 297 298 do { 299 th = timehands; 300 gen = th->th_generation; 301 *tsp = th->th_nanotime; 302 } while (gen == 0 || gen != th->th_generation); 303 } 304 305 void 306 fbclock_getmicrotime(struct timeval *tvp) 307 { 308 struct timehands *th; 309 unsigned int gen; 310 311 do { 312 th = timehands; 313 gen = th->th_generation; 314 *tvp = th->th_microtime; 315 } while (gen == 0 || gen != th->th_generation); 316 } 317 #else /* !FFCLOCK */ 318 void 319 binuptime(struct bintime *bt) 320 { 321 struct timehands *th; 322 u_int gen; 323 324 do { 325 th = timehands; 326 gen = th->th_generation; 327 *bt = th->th_offset; 328 bintime_addx(bt, th->th_scale * tc_delta(th)); 329 } while (gen == 0 || gen != th->th_generation); 330 } 331 332 void 333 nanouptime(struct timespec *tsp) 334 { 335 struct bintime bt; 336 337 binuptime(&bt); 338 bintime2timespec(&bt, tsp); 339 } 340 341 void 342 microuptime(struct timeval *tvp) 343 { 344 struct bintime bt; 345 346 binuptime(&bt); 347 bintime2timeval(&bt, tvp); 348 } 349 350 void 351 bintime(struct bintime *bt) 352 { 353 354 binuptime(bt); 355 bintime_add(bt, &boottimebin); 356 } 357 358 void 359 nanotime(struct timespec *tsp) 360 { 361 struct bintime bt; 362 363 bintime(&bt); 364 bintime2timespec(&bt, tsp); 365 } 366 367 void 368 microtime(struct timeval *tvp) 369 { 370 struct bintime bt; 371 372 bintime(&bt); 373 bintime2timeval(&bt, tvp); 374 } 375 376 void 377 getbinuptime(struct bintime *bt) 378 { 379 struct timehands *th; 380 u_int gen; 381 382 do { 383 th = timehands; 384 gen = th->th_generation; 385 *bt = th->th_offset; 386 } while (gen == 0 || gen != th->th_generation); 387 } 388 389 void 390 getnanouptime(struct timespec *tsp) 391 { 392 struct timehands *th; 393 u_int gen; 394 395 do { 396 th = timehands; 397 gen = th->th_generation; 398 bintime2timespec(&th->th_offset, tsp); 399 } while (gen == 0 || gen != th->th_generation); 400 } 401 402 void 403 getmicrouptime(struct timeval *tvp) 404 { 405 struct timehands *th; 406 u_int gen; 407 408 do { 409 th = timehands; 410 gen = th->th_generation; 411 bintime2timeval(&th->th_offset, tvp); 412 } while (gen == 0 || gen != th->th_generation); 413 } 414 415 void 416 getbintime(struct bintime *bt) 417 { 418 struct timehands *th; 419 u_int gen; 420 421 do { 422 th = timehands; 423 gen = th->th_generation; 424 *bt = th->th_offset; 425 } while (gen == 0 || gen != th->th_generation); 426 bintime_add(bt, &boottimebin); 427 } 428 429 void 430 getnanotime(struct timespec *tsp) 431 { 432 struct timehands *th; 433 u_int gen; 434 435 do { 436 th = timehands; 437 gen = th->th_generation; 438 *tsp = th->th_nanotime; 439 } while (gen == 0 || gen != th->th_generation); 440 } 441 442 void 443 getmicrotime(struct timeval *tvp) 444 { 445 struct timehands *th; 446 u_int gen; 447 448 do { 449 th = timehands; 450 gen = th->th_generation; 451 *tvp = th->th_microtime; 452 } while (gen == 0 || gen != th->th_generation); 453 } 454 #endif /* FFCLOCK */ 455 456 #ifdef FFCLOCK 457 /* 458 * Support for feed-forward synchronization algorithms. This is heavily inspired 459 * by the timehands mechanism but kept independent from it. *_windup() functions 460 * have some connection to avoid accessing the timecounter hardware more than 461 * necessary. 462 */ 463 464 int sysclock_active = SYSCLOCK_FBCK; 465 466 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 467 struct ffclock_estimate ffclock_estimate; 468 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 469 uint32_t ffclock_status; /* Feed-forward clock status. */ 470 int8_t ffclock_updated; /* New estimates are available. */ 471 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 472 473 struct fftimehands { 474 struct ffclock_estimate cest; 475 struct bintime tick_time; 476 struct bintime tick_time_lerp; 477 ffcounter tick_ffcount; 478 uint64_t period_lerp; 479 volatile uint8_t gen; 480 struct fftimehands *next; 481 }; 482 483 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 484 485 static struct fftimehands ffth[10]; 486 static struct fftimehands *volatile fftimehands = ffth; 487 488 static void 489 ffclock_init(void) 490 { 491 struct fftimehands *cur; 492 struct fftimehands *last; 493 494 memset(ffth, 0, sizeof(ffth)); 495 496 last = ffth + NUM_ELEMENTS(ffth) - 1; 497 for (cur = ffth; cur < last; cur++) 498 cur->next = cur + 1; 499 last->next = ffth; 500 501 ffclock_updated = 0; 502 ffclock_status = FFCLOCK_STA_UNSYNC; 503 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 504 } 505 506 /* 507 * Reset the feed-forward clock estimates. Called from inittodr() to get things 508 * kick started and uses the timecounter nominal frequency as a first period 509 * estimate. Note: this function may be called several time just after boot. 510 * Note: this is the only function that sets the value of boot time for the 511 * monotonic (i.e. uptime) version of the feed-forward clock. 512 */ 513 void 514 ffclock_reset_clock(struct timespec *ts) 515 { 516 struct timecounter *tc; 517 struct ffclock_estimate cest; 518 519 tc = timehands->th_counter; 520 memset(&cest, 0, sizeof(struct ffclock_estimate)); 521 522 timespec2bintime(ts, &ffclock_boottime); 523 timespec2bintime(ts, &(cest.update_time)); 524 ffclock_read_counter(&cest.update_ffcount); 525 cest.leapsec_next = 0; 526 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 527 cest.errb_abs = 0; 528 cest.errb_rate = 0; 529 cest.status = FFCLOCK_STA_UNSYNC; 530 cest.leapsec_total = 0; 531 cest.leapsec = 0; 532 533 mtx_lock(&ffclock_mtx); 534 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 535 ffclock_updated = INT8_MAX; 536 mtx_unlock(&ffclock_mtx); 537 538 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 539 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 540 (unsigned long)ts->tv_nsec); 541 } 542 543 /* 544 * Sub-routine to convert a time interval measured in RAW counter units to time 545 * in seconds stored in bintime format. 546 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 547 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 548 * extra cycles. 549 */ 550 static void 551 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 552 { 553 struct bintime bt2; 554 ffcounter delta, delta_max; 555 556 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 557 bintime_clear(bt); 558 do { 559 if (ffdelta > delta_max) 560 delta = delta_max; 561 else 562 delta = ffdelta; 563 bt2.sec = 0; 564 bt2.frac = period; 565 bintime_mul(&bt2, (unsigned int)delta); 566 bintime_add(bt, &bt2); 567 ffdelta -= delta; 568 } while (ffdelta > 0); 569 } 570 571 /* 572 * Update the fftimehands. 573 * Push the tick ffcount and time(s) forward based on current clock estimate. 574 * The conversion from ffcounter to bintime relies on the difference clock 575 * principle, whose accuracy relies on computing small time intervals. If a new 576 * clock estimate has been passed by the synchronisation daemon, make it 577 * current, and compute the linear interpolation for monotonic time if needed. 578 */ 579 static void 580 ffclock_windup(unsigned int delta) 581 { 582 struct ffclock_estimate *cest; 583 struct fftimehands *ffth; 584 struct bintime bt, gap_lerp; 585 ffcounter ffdelta; 586 uint64_t frac; 587 unsigned int polling; 588 uint8_t forward_jump, ogen; 589 590 /* 591 * Pick the next timehand, copy current ffclock estimates and move tick 592 * times and counter forward. 593 */ 594 forward_jump = 0; 595 ffth = fftimehands->next; 596 ogen = ffth->gen; 597 ffth->gen = 0; 598 cest = &ffth->cest; 599 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 600 ffdelta = (ffcounter)delta; 601 ffth->period_lerp = fftimehands->period_lerp; 602 603 ffth->tick_time = fftimehands->tick_time; 604 ffclock_convert_delta(ffdelta, cest->period, &bt); 605 bintime_add(&ffth->tick_time, &bt); 606 607 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 608 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 609 bintime_add(&ffth->tick_time_lerp, &bt); 610 611 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 612 613 /* 614 * Assess the status of the clock, if the last update is too old, it is 615 * likely the synchronisation daemon is dead and the clock is free 616 * running. 617 */ 618 if (ffclock_updated == 0) { 619 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 620 ffclock_convert_delta(ffdelta, cest->period, &bt); 621 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 622 ffclock_status |= FFCLOCK_STA_UNSYNC; 623 } 624 625 /* 626 * If available, grab updated clock estimates and make them current. 627 * Recompute time at this tick using the updated estimates. The clock 628 * estimates passed the feed-forward synchronisation daemon may result 629 * in time conversion that is not monotonically increasing (just after 630 * the update). time_lerp is a particular linear interpolation over the 631 * synchronisation algo polling period that ensures monotonicity for the 632 * clock ids requesting it. 633 */ 634 if (ffclock_updated > 0) { 635 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 636 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 637 ffth->tick_time = cest->update_time; 638 ffclock_convert_delta(ffdelta, cest->period, &bt); 639 bintime_add(&ffth->tick_time, &bt); 640 641 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 642 if (ffclock_updated == INT8_MAX) 643 ffth->tick_time_lerp = ffth->tick_time; 644 645 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 646 forward_jump = 1; 647 else 648 forward_jump = 0; 649 650 bintime_clear(&gap_lerp); 651 if (forward_jump) { 652 gap_lerp = ffth->tick_time; 653 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 654 } else { 655 gap_lerp = ffth->tick_time_lerp; 656 bintime_sub(&gap_lerp, &ffth->tick_time); 657 } 658 659 /* 660 * The reset from the RTC clock may be far from accurate, and 661 * reducing the gap between real time and interpolated time 662 * could take a very long time if the interpolated clock insists 663 * on strict monotonicity. The clock is reset under very strict 664 * conditions (kernel time is known to be wrong and 665 * synchronization daemon has been restarted recently. 666 * ffclock_boottime absorbs the jump to ensure boot time is 667 * correct and uptime functions stay consistent. 668 */ 669 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 670 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 671 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 672 if (forward_jump) 673 bintime_add(&ffclock_boottime, &gap_lerp); 674 else 675 bintime_sub(&ffclock_boottime, &gap_lerp); 676 ffth->tick_time_lerp = ffth->tick_time; 677 bintime_clear(&gap_lerp); 678 } 679 680 ffclock_status = cest->status; 681 ffth->period_lerp = cest->period; 682 683 /* 684 * Compute corrected period used for the linear interpolation of 685 * time. The rate of linear interpolation is capped to 5000PPM 686 * (5ms/s). 687 */ 688 if (bintime_isset(&gap_lerp)) { 689 ffdelta = cest->update_ffcount; 690 ffdelta -= fftimehands->cest.update_ffcount; 691 ffclock_convert_delta(ffdelta, cest->period, &bt); 692 polling = bt.sec; 693 bt.sec = 0; 694 bt.frac = 5000000 * (uint64_t)18446744073LL; 695 bintime_mul(&bt, polling); 696 if (bintime_cmp(&gap_lerp, &bt, >)) 697 gap_lerp = bt; 698 699 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 700 frac = 0; 701 if (gap_lerp.sec > 0) { 702 frac -= 1; 703 frac /= ffdelta / gap_lerp.sec; 704 } 705 frac += gap_lerp.frac / ffdelta; 706 707 if (forward_jump) 708 ffth->period_lerp += frac; 709 else 710 ffth->period_lerp -= frac; 711 } 712 713 ffclock_updated = 0; 714 } 715 if (++ogen == 0) 716 ogen = 1; 717 ffth->gen = ogen; 718 fftimehands = ffth; 719 } 720 721 /* 722 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 723 * the old and new hardware counter cannot be read simultaneously. tc_windup() 724 * does read the two counters 'back to back', but a few cycles are effectively 725 * lost, and not accumulated in tick_ffcount. This is a fairly radical 726 * operation for a feed-forward synchronization daemon, and it is its job to not 727 * pushing irrelevant data to the kernel. Because there is no locking here, 728 * simply force to ignore pending or next update to give daemon a chance to 729 * realize the counter has changed. 730 */ 731 static void 732 ffclock_change_tc(struct timehands *th) 733 { 734 struct fftimehands *ffth; 735 struct ffclock_estimate *cest; 736 struct timecounter *tc; 737 uint8_t ogen; 738 739 tc = th->th_counter; 740 ffth = fftimehands->next; 741 ogen = ffth->gen; 742 ffth->gen = 0; 743 744 cest = &ffth->cest; 745 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 746 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 747 cest->errb_abs = 0; 748 cest->errb_rate = 0; 749 cest->status |= FFCLOCK_STA_UNSYNC; 750 751 ffth->tick_ffcount = fftimehands->tick_ffcount; 752 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 753 ffth->tick_time = fftimehands->tick_time; 754 ffth->period_lerp = cest->period; 755 756 /* Do not lock but ignore next update from synchronization daemon. */ 757 ffclock_updated--; 758 759 if (++ogen == 0) 760 ogen = 1; 761 ffth->gen = ogen; 762 fftimehands = ffth; 763 } 764 765 /* 766 * Retrieve feed-forward counter and time of last kernel tick. 767 */ 768 void 769 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 770 { 771 struct fftimehands *ffth; 772 uint8_t gen; 773 774 /* 775 * No locking but check generation has not changed. Also need to make 776 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 777 */ 778 do { 779 ffth = fftimehands; 780 gen = ffth->gen; 781 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 782 *bt = ffth->tick_time_lerp; 783 else 784 *bt = ffth->tick_time; 785 *ffcount = ffth->tick_ffcount; 786 } while (gen == 0 || gen != ffth->gen); 787 } 788 789 /* 790 * Absolute clock conversion. Low level function to convert ffcounter to 791 * bintime. The ffcounter is converted using the current ffclock period estimate 792 * or the "interpolated period" to ensure monotonicity. 793 * NOTE: this conversion may have been deferred, and the clock updated since the 794 * hardware counter has been read. 795 */ 796 void 797 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 798 { 799 struct fftimehands *ffth; 800 struct bintime bt2; 801 ffcounter ffdelta; 802 uint8_t gen; 803 804 /* 805 * No locking but check generation has not changed. Also need to make 806 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 807 */ 808 do { 809 ffth = fftimehands; 810 gen = ffth->gen; 811 if (ffcount > ffth->tick_ffcount) 812 ffdelta = ffcount - ffth->tick_ffcount; 813 else 814 ffdelta = ffth->tick_ffcount - ffcount; 815 816 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 817 *bt = ffth->tick_time_lerp; 818 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 819 } else { 820 *bt = ffth->tick_time; 821 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 822 } 823 824 if (ffcount > ffth->tick_ffcount) 825 bintime_add(bt, &bt2); 826 else 827 bintime_sub(bt, &bt2); 828 } while (gen == 0 || gen != ffth->gen); 829 } 830 831 /* 832 * Difference clock conversion. 833 * Low level function to Convert a time interval measured in RAW counter units 834 * into bintime. The difference clock allows measuring small intervals much more 835 * reliably than the absolute clock. 836 */ 837 void 838 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 839 { 840 struct fftimehands *ffth; 841 uint8_t gen; 842 843 /* No locking but check generation has not changed. */ 844 do { 845 ffth = fftimehands; 846 gen = ffth->gen; 847 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 848 } while (gen == 0 || gen != ffth->gen); 849 } 850 851 /* 852 * Access to current ffcounter value. 853 */ 854 void 855 ffclock_read_counter(ffcounter *ffcount) 856 { 857 struct timehands *th; 858 struct fftimehands *ffth; 859 unsigned int gen, delta; 860 861 /* 862 * ffclock_windup() called from tc_windup(), safe to rely on 863 * th->th_generation only, for correct delta and ffcounter. 864 */ 865 do { 866 th = timehands; 867 gen = th->th_generation; 868 ffth = fftimehands; 869 delta = tc_delta(th); 870 *ffcount = ffth->tick_ffcount; 871 } while (gen == 0 || gen != th->th_generation); 872 873 *ffcount += delta; 874 } 875 876 void 877 binuptime(struct bintime *bt) 878 { 879 880 binuptime_fromclock(bt, sysclock_active); 881 } 882 883 void 884 nanouptime(struct timespec *tsp) 885 { 886 887 nanouptime_fromclock(tsp, sysclock_active); 888 } 889 890 void 891 microuptime(struct timeval *tvp) 892 { 893 894 microuptime_fromclock(tvp, sysclock_active); 895 } 896 897 void 898 bintime(struct bintime *bt) 899 { 900 901 bintime_fromclock(bt, sysclock_active); 902 } 903 904 void 905 nanotime(struct timespec *tsp) 906 { 907 908 nanotime_fromclock(tsp, sysclock_active); 909 } 910 911 void 912 microtime(struct timeval *tvp) 913 { 914 915 microtime_fromclock(tvp, sysclock_active); 916 } 917 918 void 919 getbinuptime(struct bintime *bt) 920 { 921 922 getbinuptime_fromclock(bt, sysclock_active); 923 } 924 925 void 926 getnanouptime(struct timespec *tsp) 927 { 928 929 getnanouptime_fromclock(tsp, sysclock_active); 930 } 931 932 void 933 getmicrouptime(struct timeval *tvp) 934 { 935 936 getmicrouptime_fromclock(tvp, sysclock_active); 937 } 938 939 void 940 getbintime(struct bintime *bt) 941 { 942 943 getbintime_fromclock(bt, sysclock_active); 944 } 945 946 void 947 getnanotime(struct timespec *tsp) 948 { 949 950 getnanotime_fromclock(tsp, sysclock_active); 951 } 952 953 void 954 getmicrotime(struct timeval *tvp) 955 { 956 957 getmicrouptime_fromclock(tvp, sysclock_active); 958 } 959 #endif /* FFCLOCK */ 960 961 /* 962 * Initialize a new timecounter and possibly use it. 963 */ 964 void 965 tc_init(struct timecounter *tc) 966 { 967 u_int u; 968 struct sysctl_oid *tc_root; 969 970 u = tc->tc_frequency / tc->tc_counter_mask; 971 /* XXX: We need some margin here, 10% is a guess */ 972 u *= 11; 973 u /= 10; 974 if (u > hz && tc->tc_quality >= 0) { 975 tc->tc_quality = -2000; 976 if (bootverbose) { 977 printf("Timecounter \"%s\" frequency %ju Hz", 978 tc->tc_name, (uintmax_t)tc->tc_frequency); 979 printf(" -- Insufficient hz, needs at least %u\n", u); 980 } 981 } else if (tc->tc_quality >= 0 || bootverbose) { 982 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 983 tc->tc_name, (uintmax_t)tc->tc_frequency, 984 tc->tc_quality); 985 } 986 987 tc->tc_next = timecounters; 988 timecounters = tc; 989 /* 990 * Set up sysctl tree for this counter. 991 */ 992 tc_root = SYSCTL_ADD_NODE(NULL, 993 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 994 CTLFLAG_RW, 0, "timecounter description"); 995 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 996 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 997 "mask for implemented bits"); 998 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 999 "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc), 1000 sysctl_kern_timecounter_get, "IU", "current timecounter value"); 1001 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1002 "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc), 1003 sysctl_kern_timecounter_freq, "QU", "timecounter frequency"); 1004 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1005 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1006 "goodness of time counter"); 1007 /* 1008 * Never automatically use a timecounter with negative quality. 1009 * Even though we run on the dummy counter, switching here may be 1010 * worse since this timecounter may not be monotonous. 1011 */ 1012 if (tc->tc_quality < 0) 1013 return; 1014 if (tc->tc_quality < timecounter->tc_quality) 1015 return; 1016 if (tc->tc_quality == timecounter->tc_quality && 1017 tc->tc_frequency < timecounter->tc_frequency) 1018 return; 1019 (void)tc->tc_get_timecount(tc); 1020 (void)tc->tc_get_timecount(tc); 1021 timecounter = tc; 1022 } 1023 1024 /* Report the frequency of the current timecounter. */ 1025 uint64_t 1026 tc_getfrequency(void) 1027 { 1028 1029 return (timehands->th_counter->tc_frequency); 1030 } 1031 1032 /* 1033 * Step our concept of UTC. This is done by modifying our estimate of 1034 * when we booted. 1035 * XXX: not locked. 1036 */ 1037 void 1038 tc_setclock(struct timespec *ts) 1039 { 1040 struct timespec tbef, taft; 1041 struct bintime bt, bt2; 1042 1043 cpu_tick_calibrate(1); 1044 nanotime(&tbef); 1045 timespec2bintime(ts, &bt); 1046 binuptime(&bt2); 1047 bintime_sub(&bt, &bt2); 1048 bintime_add(&bt2, &boottimebin); 1049 boottimebin = bt; 1050 bintime2timeval(&bt, &boottime); 1051 1052 /* XXX fiddle all the little crinkly bits around the fiords... */ 1053 tc_windup(); 1054 nanotime(&taft); 1055 if (timestepwarnings) { 1056 log(LOG_INFO, 1057 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1058 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1059 (intmax_t)taft.tv_sec, taft.tv_nsec, 1060 (intmax_t)ts->tv_sec, ts->tv_nsec); 1061 } 1062 cpu_tick_calibrate(1); 1063 } 1064 1065 /* 1066 * Initialize the next struct timehands in the ring and make 1067 * it the active timehands. Along the way we might switch to a different 1068 * timecounter and/or do seconds processing in NTP. Slightly magic. 1069 */ 1070 static void 1071 tc_windup(void) 1072 { 1073 struct bintime bt; 1074 struct timehands *th, *tho; 1075 uint64_t scale; 1076 u_int delta, ncount, ogen; 1077 int i; 1078 time_t t; 1079 1080 /* 1081 * Make the next timehands a copy of the current one, but do not 1082 * overwrite the generation or next pointer. While we update 1083 * the contents, the generation must be zero. 1084 */ 1085 tho = timehands; 1086 th = tho->th_next; 1087 ogen = th->th_generation; 1088 th->th_generation = 0; 1089 bcopy(tho, th, offsetof(struct timehands, th_generation)); 1090 1091 /* 1092 * Capture a timecounter delta on the current timecounter and if 1093 * changing timecounters, a counter value from the new timecounter. 1094 * Update the offset fields accordingly. 1095 */ 1096 delta = tc_delta(th); 1097 if (th->th_counter != timecounter) 1098 ncount = timecounter->tc_get_timecount(timecounter); 1099 else 1100 ncount = 0; 1101 #ifdef FFCLOCK 1102 ffclock_windup(delta); 1103 #endif 1104 th->th_offset_count += delta; 1105 th->th_offset_count &= th->th_counter->tc_counter_mask; 1106 while (delta > th->th_counter->tc_frequency) { 1107 /* Eat complete unadjusted seconds. */ 1108 delta -= th->th_counter->tc_frequency; 1109 th->th_offset.sec++; 1110 } 1111 if ((delta > th->th_counter->tc_frequency / 2) && 1112 (th->th_scale * delta < ((uint64_t)1 << 63))) { 1113 /* The product th_scale * delta just barely overflows. */ 1114 th->th_offset.sec++; 1115 } 1116 bintime_addx(&th->th_offset, th->th_scale * delta); 1117 1118 /* 1119 * Hardware latching timecounters may not generate interrupts on 1120 * PPS events, so instead we poll them. There is a finite risk that 1121 * the hardware might capture a count which is later than the one we 1122 * got above, and therefore possibly in the next NTP second which might 1123 * have a different rate than the current NTP second. It doesn't 1124 * matter in practice. 1125 */ 1126 if (tho->th_counter->tc_poll_pps) 1127 tho->th_counter->tc_poll_pps(tho->th_counter); 1128 1129 /* 1130 * Deal with NTP second processing. The for loop normally 1131 * iterates at most once, but in extreme situations it might 1132 * keep NTP sane if timeouts are not run for several seconds. 1133 * At boot, the time step can be large when the TOD hardware 1134 * has been read, so on really large steps, we call 1135 * ntp_update_second only twice. We need to call it twice in 1136 * case we missed a leap second. 1137 */ 1138 bt = th->th_offset; 1139 bintime_add(&bt, &boottimebin); 1140 i = bt.sec - tho->th_microtime.tv_sec; 1141 if (i > LARGE_STEP) 1142 i = 2; 1143 for (; i > 0; i--) { 1144 t = bt.sec; 1145 ntp_update_second(&th->th_adjustment, &bt.sec); 1146 if (bt.sec != t) 1147 boottimebin.sec += bt.sec - t; 1148 } 1149 /* Update the UTC timestamps used by the get*() functions. */ 1150 /* XXX shouldn't do this here. Should force non-`get' versions. */ 1151 bintime2timeval(&bt, &th->th_microtime); 1152 bintime2timespec(&bt, &th->th_nanotime); 1153 1154 /* Now is a good time to change timecounters. */ 1155 if (th->th_counter != timecounter) { 1156 #ifndef __arm__ 1157 if ((timecounter->tc_flags & TC_FLAGS_C3STOP) != 0) 1158 cpu_disable_deep_sleep++; 1159 if ((th->th_counter->tc_flags & TC_FLAGS_C3STOP) != 0) 1160 cpu_disable_deep_sleep--; 1161 #endif 1162 th->th_counter = timecounter; 1163 th->th_offset_count = ncount; 1164 tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 1165 (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1166 #ifdef FFCLOCK 1167 ffclock_change_tc(th); 1168 #endif 1169 } 1170 1171 /*- 1172 * Recalculate the scaling factor. We want the number of 1/2^64 1173 * fractions of a second per period of the hardware counter, taking 1174 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1175 * processing provides us with. 1176 * 1177 * The th_adjustment is nanoseconds per second with 32 bit binary 1178 * fraction and we want 64 bit binary fraction of second: 1179 * 1180 * x = a * 2^32 / 10^9 = a * 4.294967296 1181 * 1182 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1183 * we can only multiply by about 850 without overflowing, that 1184 * leaves no suitably precise fractions for multiply before divide. 1185 * 1186 * Divide before multiply with a fraction of 2199/512 results in a 1187 * systematic undercompensation of 10PPM of th_adjustment. On a 1188 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1189 * 1190 * We happily sacrifice the lowest of the 64 bits of our result 1191 * to the goddess of code clarity. 1192 * 1193 */ 1194 scale = (uint64_t)1 << 63; 1195 scale += (th->th_adjustment / 1024) * 2199; 1196 scale /= th->th_counter->tc_frequency; 1197 th->th_scale = scale * 2; 1198 1199 /* 1200 * Now that the struct timehands is again consistent, set the new 1201 * generation number, making sure to not make it zero. 1202 */ 1203 if (++ogen == 0) 1204 ogen = 1; 1205 th->th_generation = ogen; 1206 1207 /* Go live with the new struct timehands. */ 1208 #ifdef FFCLOCK 1209 switch (sysclock_active) { 1210 case SYSCLOCK_FBCK: 1211 #endif 1212 time_second = th->th_microtime.tv_sec; 1213 time_uptime = th->th_offset.sec; 1214 #ifdef FFCLOCK 1215 break; 1216 case SYSCLOCK_FFWD: 1217 time_second = fftimehands->tick_time_lerp.sec; 1218 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1219 break; 1220 } 1221 #endif 1222 1223 timehands = th; 1224 } 1225 1226 /* Report or change the active timecounter hardware. */ 1227 static int 1228 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1229 { 1230 char newname[32]; 1231 struct timecounter *newtc, *tc; 1232 int error; 1233 1234 tc = timecounter; 1235 strlcpy(newname, tc->tc_name, sizeof(newname)); 1236 1237 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1238 if (error != 0 || req->newptr == NULL || 1239 strcmp(newname, tc->tc_name) == 0) 1240 return (error); 1241 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1242 if (strcmp(newname, newtc->tc_name) != 0) 1243 continue; 1244 1245 /* Warm up new timecounter. */ 1246 (void)newtc->tc_get_timecount(newtc); 1247 (void)newtc->tc_get_timecount(newtc); 1248 1249 timecounter = newtc; 1250 return (0); 1251 } 1252 return (EINVAL); 1253 } 1254 1255 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW, 1256 0, 0, sysctl_kern_timecounter_hardware, "A", 1257 "Timecounter hardware selected"); 1258 1259 1260 /* Report or change the active timecounter hardware. */ 1261 static int 1262 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1263 { 1264 char buf[32], *spc; 1265 struct timecounter *tc; 1266 int error; 1267 1268 spc = ""; 1269 error = 0; 1270 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) { 1271 sprintf(buf, "%s%s(%d)", 1272 spc, tc->tc_name, tc->tc_quality); 1273 error = SYSCTL_OUT(req, buf, strlen(buf)); 1274 spc = " "; 1275 } 1276 return (error); 1277 } 1278 1279 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD, 1280 0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected"); 1281 1282 /* 1283 * RFC 2783 PPS-API implementation. 1284 */ 1285 1286 int 1287 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1288 { 1289 pps_params_t *app; 1290 struct pps_fetch_args *fapi; 1291 #ifdef FFCLOCK 1292 struct pps_fetch_ffc_args *fapi_ffc; 1293 #endif 1294 #ifdef PPS_SYNC 1295 struct pps_kcbind_args *kapi; 1296 #endif 1297 1298 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1299 switch (cmd) { 1300 case PPS_IOC_CREATE: 1301 return (0); 1302 case PPS_IOC_DESTROY: 1303 return (0); 1304 case PPS_IOC_SETPARAMS: 1305 app = (pps_params_t *)data; 1306 if (app->mode & ~pps->ppscap) 1307 return (EINVAL); 1308 #ifdef FFCLOCK 1309 /* Ensure only a single clock is selected for ffc timestamp. */ 1310 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1311 return (EINVAL); 1312 #endif 1313 pps->ppsparam = *app; 1314 return (0); 1315 case PPS_IOC_GETPARAMS: 1316 app = (pps_params_t *)data; 1317 *app = pps->ppsparam; 1318 app->api_version = PPS_API_VERS_1; 1319 return (0); 1320 case PPS_IOC_GETCAP: 1321 *(int*)data = pps->ppscap; 1322 return (0); 1323 case PPS_IOC_FETCH: 1324 fapi = (struct pps_fetch_args *)data; 1325 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1326 return (EINVAL); 1327 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1328 return (EOPNOTSUPP); 1329 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1330 fapi->pps_info_buf = pps->ppsinfo; 1331 return (0); 1332 #ifdef FFCLOCK 1333 case PPS_IOC_FETCH_FFCOUNTER: 1334 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1335 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1336 PPS_TSFMT_TSPEC) 1337 return (EINVAL); 1338 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1339 return (EOPNOTSUPP); 1340 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1341 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1342 /* Overwrite timestamps if feedback clock selected. */ 1343 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1344 case PPS_TSCLK_FBCK: 1345 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1346 pps->ppsinfo.assert_timestamp; 1347 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1348 pps->ppsinfo.clear_timestamp; 1349 break; 1350 case PPS_TSCLK_FFWD: 1351 break; 1352 default: 1353 break; 1354 } 1355 return (0); 1356 #endif /* FFCLOCK */ 1357 case PPS_IOC_KCBIND: 1358 #ifdef PPS_SYNC 1359 kapi = (struct pps_kcbind_args *)data; 1360 /* XXX Only root should be able to do this */ 1361 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1362 return (EINVAL); 1363 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1364 return (EINVAL); 1365 if (kapi->edge & ~pps->ppscap) 1366 return (EINVAL); 1367 pps->kcmode = kapi->edge; 1368 return (0); 1369 #else 1370 return (EOPNOTSUPP); 1371 #endif 1372 default: 1373 return (ENOIOCTL); 1374 } 1375 } 1376 1377 void 1378 pps_init(struct pps_state *pps) 1379 { 1380 pps->ppscap |= PPS_TSFMT_TSPEC; 1381 if (pps->ppscap & PPS_CAPTUREASSERT) 1382 pps->ppscap |= PPS_OFFSETASSERT; 1383 if (pps->ppscap & PPS_CAPTURECLEAR) 1384 pps->ppscap |= PPS_OFFSETCLEAR; 1385 #ifdef FFCLOCK 1386 pps->ppscap |= PPS_TSCLK_MASK; 1387 #endif 1388 } 1389 1390 void 1391 pps_capture(struct pps_state *pps) 1392 { 1393 struct timehands *th; 1394 1395 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1396 th = timehands; 1397 pps->capgen = th->th_generation; 1398 pps->capth = th; 1399 #ifdef FFCLOCK 1400 pps->capffth = fftimehands; 1401 #endif 1402 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1403 if (pps->capgen != th->th_generation) 1404 pps->capgen = 0; 1405 } 1406 1407 void 1408 pps_event(struct pps_state *pps, int event) 1409 { 1410 struct bintime bt; 1411 struct timespec ts, *tsp, *osp; 1412 u_int tcount, *pcount; 1413 int foff, fhard; 1414 pps_seq_t *pseq; 1415 #ifdef FFCLOCK 1416 struct timespec *tsp_ffc; 1417 pps_seq_t *pseq_ffc; 1418 ffcounter *ffcount; 1419 #endif 1420 1421 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1422 /* If the timecounter was wound up underneath us, bail out. */ 1423 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation) 1424 return; 1425 1426 /* Things would be easier with arrays. */ 1427 if (event == PPS_CAPTUREASSERT) { 1428 tsp = &pps->ppsinfo.assert_timestamp; 1429 osp = &pps->ppsparam.assert_offset; 1430 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1431 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1432 pcount = &pps->ppscount[0]; 1433 pseq = &pps->ppsinfo.assert_sequence; 1434 #ifdef FFCLOCK 1435 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1436 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1437 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1438 #endif 1439 } else { 1440 tsp = &pps->ppsinfo.clear_timestamp; 1441 osp = &pps->ppsparam.clear_offset; 1442 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1443 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1444 pcount = &pps->ppscount[1]; 1445 pseq = &pps->ppsinfo.clear_sequence; 1446 #ifdef FFCLOCK 1447 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1448 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1449 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1450 #endif 1451 } 1452 1453 /* 1454 * If the timecounter changed, we cannot compare the count values, so 1455 * we have to drop the rest of the PPS-stuff until the next event. 1456 */ 1457 if (pps->ppstc != pps->capth->th_counter) { 1458 pps->ppstc = pps->capth->th_counter; 1459 *pcount = pps->capcount; 1460 pps->ppscount[2] = pps->capcount; 1461 return; 1462 } 1463 1464 /* Convert the count to a timespec. */ 1465 tcount = pps->capcount - pps->capth->th_offset_count; 1466 tcount &= pps->capth->th_counter->tc_counter_mask; 1467 bt = pps->capth->th_offset; 1468 bintime_addx(&bt, pps->capth->th_scale * tcount); 1469 bintime_add(&bt, &boottimebin); 1470 bintime2timespec(&bt, &ts); 1471 1472 /* If the timecounter was wound up underneath us, bail out. */ 1473 if (pps->capgen != pps->capth->th_generation) 1474 return; 1475 1476 *pcount = pps->capcount; 1477 (*pseq)++; 1478 *tsp = ts; 1479 1480 if (foff) { 1481 timespecadd(tsp, osp); 1482 if (tsp->tv_nsec < 0) { 1483 tsp->tv_nsec += 1000000000; 1484 tsp->tv_sec -= 1; 1485 } 1486 } 1487 1488 #ifdef FFCLOCK 1489 *ffcount = pps->capffth->tick_ffcount + tcount; 1490 bt = pps->capffth->tick_time; 1491 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1492 bintime_add(&bt, &pps->capffth->tick_time); 1493 bintime2timespec(&bt, &ts); 1494 (*pseq_ffc)++; 1495 *tsp_ffc = ts; 1496 #endif 1497 1498 #ifdef PPS_SYNC 1499 if (fhard) { 1500 uint64_t scale; 1501 1502 /* 1503 * Feed the NTP PLL/FLL. 1504 * The FLL wants to know how many (hardware) nanoseconds 1505 * elapsed since the previous event. 1506 */ 1507 tcount = pps->capcount - pps->ppscount[2]; 1508 pps->ppscount[2] = pps->capcount; 1509 tcount &= pps->capth->th_counter->tc_counter_mask; 1510 scale = (uint64_t)1 << 63; 1511 scale /= pps->capth->th_counter->tc_frequency; 1512 scale *= 2; 1513 bt.sec = 0; 1514 bt.frac = 0; 1515 bintime_addx(&bt, scale * tcount); 1516 bintime2timespec(&bt, &ts); 1517 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1518 } 1519 #endif 1520 } 1521 1522 /* 1523 * Timecounters need to be updated every so often to prevent the hardware 1524 * counter from overflowing. Updating also recalculates the cached values 1525 * used by the get*() family of functions, so their precision depends on 1526 * the update frequency. 1527 */ 1528 1529 static int tc_tick; 1530 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1531 "Approximate number of hardclock ticks in a millisecond"); 1532 1533 void 1534 tc_ticktock(int cnt) 1535 { 1536 static int count; 1537 1538 count += cnt; 1539 if (count < tc_tick) 1540 return; 1541 count = 0; 1542 tc_windup(); 1543 } 1544 1545 static void 1546 inittimecounter(void *dummy) 1547 { 1548 u_int p; 1549 1550 /* 1551 * Set the initial timeout to 1552 * max(1, <approx. number of hardclock ticks in a millisecond>). 1553 * People should probably not use the sysctl to set the timeout 1554 * to smaller than its inital value, since that value is the 1555 * smallest reasonable one. If they want better timestamps they 1556 * should use the non-"get"* functions. 1557 */ 1558 if (hz > 1000) 1559 tc_tick = (hz + 500) / 1000; 1560 else 1561 tc_tick = 1; 1562 p = (tc_tick * 1000000) / hz; 1563 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 1564 1565 #ifdef FFCLOCK 1566 ffclock_init(); 1567 #endif 1568 /* warm up new timecounter (again) and get rolling. */ 1569 (void)timecounter->tc_get_timecount(timecounter); 1570 (void)timecounter->tc_get_timecount(timecounter); 1571 tc_windup(); 1572 } 1573 1574 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 1575 1576 /* Cpu tick handling -------------------------------------------------*/ 1577 1578 static int cpu_tick_variable; 1579 static uint64_t cpu_tick_frequency; 1580 1581 static uint64_t 1582 tc_cpu_ticks(void) 1583 { 1584 static uint64_t base; 1585 static unsigned last; 1586 unsigned u; 1587 struct timecounter *tc; 1588 1589 tc = timehands->th_counter; 1590 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 1591 if (u < last) 1592 base += (uint64_t)tc->tc_counter_mask + 1; 1593 last = u; 1594 return (u + base); 1595 } 1596 1597 void 1598 cpu_tick_calibration(void) 1599 { 1600 static time_t last_calib; 1601 1602 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 1603 cpu_tick_calibrate(0); 1604 last_calib = time_uptime; 1605 } 1606 } 1607 1608 /* 1609 * This function gets called every 16 seconds on only one designated 1610 * CPU in the system from hardclock() via cpu_tick_calibration()(). 1611 * 1612 * Whenever the real time clock is stepped we get called with reset=1 1613 * to make sure we handle suspend/resume and similar events correctly. 1614 */ 1615 1616 static void 1617 cpu_tick_calibrate(int reset) 1618 { 1619 static uint64_t c_last; 1620 uint64_t c_this, c_delta; 1621 static struct bintime t_last; 1622 struct bintime t_this, t_delta; 1623 uint32_t divi; 1624 1625 if (reset) { 1626 /* The clock was stepped, abort & reset */ 1627 t_last.sec = 0; 1628 return; 1629 } 1630 1631 /* we don't calibrate fixed rate cputicks */ 1632 if (!cpu_tick_variable) 1633 return; 1634 1635 getbinuptime(&t_this); 1636 c_this = cpu_ticks(); 1637 if (t_last.sec != 0) { 1638 c_delta = c_this - c_last; 1639 t_delta = t_this; 1640 bintime_sub(&t_delta, &t_last); 1641 /* 1642 * Headroom: 1643 * 2^(64-20) / 16[s] = 1644 * 2^(44) / 16[s] = 1645 * 17.592.186.044.416 / 16 = 1646 * 1.099.511.627.776 [Hz] 1647 */ 1648 divi = t_delta.sec << 20; 1649 divi |= t_delta.frac >> (64 - 20); 1650 c_delta <<= 20; 1651 c_delta /= divi; 1652 if (c_delta > cpu_tick_frequency) { 1653 if (0 && bootverbose) 1654 printf("cpu_tick increased to %ju Hz\n", 1655 c_delta); 1656 cpu_tick_frequency = c_delta; 1657 } 1658 } 1659 c_last = c_this; 1660 t_last = t_this; 1661 } 1662 1663 void 1664 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 1665 { 1666 1667 if (func == NULL) { 1668 cpu_ticks = tc_cpu_ticks; 1669 } else { 1670 cpu_tick_frequency = freq; 1671 cpu_tick_variable = var; 1672 cpu_ticks = func; 1673 } 1674 } 1675 1676 uint64_t 1677 cpu_tickrate(void) 1678 { 1679 1680 if (cpu_ticks == tc_cpu_ticks) 1681 return (tc_getfrequency()); 1682 return (cpu_tick_frequency); 1683 } 1684 1685 /* 1686 * We need to be slightly careful converting cputicks to microseconds. 1687 * There is plenty of margin in 64 bits of microseconds (half a million 1688 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 1689 * before divide conversion (to retain precision) we find that the 1690 * margin shrinks to 1.5 hours (one millionth of 146y). 1691 * With a three prong approach we never lose significant bits, no 1692 * matter what the cputick rate and length of timeinterval is. 1693 */ 1694 1695 uint64_t 1696 cputick2usec(uint64_t tick) 1697 { 1698 1699 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 1700 return (tick / (cpu_tickrate() / 1000000LL)); 1701 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 1702 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 1703 else 1704 return ((tick * 1000000LL) / cpu_tickrate()); 1705 } 1706 1707 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 1708