1 /*- 2 * SPDX-License-Identifier: Beerware 3 * 4 * ---------------------------------------------------------------------------- 5 * "THE BEER-WARE LICENSE" (Revision 42): 6 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 7 * can do whatever you want with this stuff. If we meet some day, and you think 8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 9 * ---------------------------------------------------------------------------- 10 * 11 * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation 12 * All rights reserved. 13 * 14 * Portions of this software were developed by Julien Ridoux at the University 15 * of Melbourne under sponsorship from the FreeBSD Foundation. 16 * 17 * Portions of this software were developed by Konstantin Belousov 18 * under sponsorship from the FreeBSD Foundation. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include "opt_ntp.h" 25 #include "opt_ffclock.h" 26 27 #include <sys/param.h> 28 #include <sys/kernel.h> 29 #include <sys/limits.h> 30 #include <sys/lock.h> 31 #include <sys/mutex.h> 32 #include <sys/proc.h> 33 #include <sys/sbuf.h> 34 #include <sys/sleepqueue.h> 35 #include <sys/sysctl.h> 36 #include <sys/syslog.h> 37 #include <sys/systm.h> 38 #include <sys/timeffc.h> 39 #include <sys/timepps.h> 40 #include <sys/timetc.h> 41 #include <sys/timex.h> 42 #include <sys/vdso.h> 43 44 /* 45 * A large step happens on boot. This constant detects such steps. 46 * It is relatively small so that ntp_update_second gets called enough 47 * in the typical 'missed a couple of seconds' case, but doesn't loop 48 * forever when the time step is large. 49 */ 50 #define LARGE_STEP 200 51 52 /* 53 * Implement a dummy timecounter which we can use until we get a real one 54 * in the air. This allows the console and other early stuff to use 55 * time services. 56 */ 57 58 static u_int 59 dummy_get_timecount(struct timecounter *tc) 60 { 61 static u_int now; 62 63 return (++now); 64 } 65 66 static struct timecounter dummy_timecounter = { 67 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 68 }; 69 70 struct timehands { 71 /* These fields must be initialized by the driver. */ 72 struct timecounter *th_counter; 73 int64_t th_adjustment; 74 uint64_t th_scale; 75 u_int th_large_delta; 76 u_int th_offset_count; 77 struct bintime th_offset; 78 struct bintime th_bintime; 79 struct timeval th_microtime; 80 struct timespec th_nanotime; 81 struct bintime th_boottime; 82 /* Fields not to be copied in tc_windup start with th_generation. */ 83 u_int th_generation; 84 struct timehands *th_next; 85 }; 86 87 static struct timehands ths[16] = { 88 [0] = { 89 .th_counter = &dummy_timecounter, 90 .th_scale = (uint64_t)-1 / 1000000, 91 .th_large_delta = 1000000, 92 .th_offset = { .sec = 1 }, 93 .th_generation = 1, 94 }, 95 }; 96 97 static struct timehands *volatile timehands = &ths[0]; 98 struct timecounter *timecounter = &dummy_timecounter; 99 static struct timecounter *timecounters = &dummy_timecounter; 100 101 int tc_min_ticktock_freq = 1; 102 103 volatile time_t time_second = 1; 104 volatile time_t time_uptime = 1; 105 106 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 107 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, 108 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 109 sysctl_kern_boottime, "S,timeval", 110 "System boottime"); 111 112 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 113 ""); 114 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, 115 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 116 ""); 117 118 static int timestepwarnings; 119 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW, 120 ×tepwarnings, 0, "Log time steps"); 121 122 static int timehands_count = 2; 123 SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count, 124 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 125 &timehands_count, 0, "Count of timehands in rotation"); 126 127 struct bintime bt_timethreshold; 128 struct bintime bt_tickthreshold; 129 sbintime_t sbt_timethreshold; 130 sbintime_t sbt_tickthreshold; 131 struct bintime tc_tick_bt; 132 sbintime_t tc_tick_sbt; 133 int tc_precexp; 134 int tc_timepercentage = TC_DEFAULTPERC; 135 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 136 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 137 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 138 sysctl_kern_timecounter_adjprecision, "I", 139 "Allowed time interval deviation in percents"); 140 141 volatile int rtc_generation = 1; 142 143 static int tc_chosen; /* Non-zero if a specific tc was chosen via sysctl. */ 144 145 static void tc_windup(struct bintime *new_boottimebin); 146 static void cpu_tick_calibrate(int); 147 148 void dtrace_getnanotime(struct timespec *tsp); 149 150 static int 151 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 152 { 153 struct timeval boottime; 154 155 getboottime(&boottime); 156 157 /* i386 is the only arch which uses a 32bits time_t */ 158 #ifdef __amd64__ 159 #ifdef SCTL_MASK32 160 int tv[2]; 161 162 if (req->flags & SCTL_MASK32) { 163 tv[0] = boottime.tv_sec; 164 tv[1] = boottime.tv_usec; 165 return (SYSCTL_OUT(req, tv, sizeof(tv))); 166 } 167 #endif 168 #endif 169 return (SYSCTL_OUT(req, &boottime, sizeof(boottime))); 170 } 171 172 static int 173 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 174 { 175 u_int ncount; 176 struct timecounter *tc = arg1; 177 178 ncount = tc->tc_get_timecount(tc); 179 return (sysctl_handle_int(oidp, &ncount, 0, req)); 180 } 181 182 static int 183 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 184 { 185 uint64_t freq; 186 struct timecounter *tc = arg1; 187 188 freq = tc->tc_frequency; 189 return (sysctl_handle_64(oidp, &freq, 0, req)); 190 } 191 192 /* 193 * Return the difference between the timehands' counter value now and what 194 * was when we copied it to the timehands' offset_count. 195 */ 196 static __inline u_int 197 tc_delta(struct timehands *th) 198 { 199 struct timecounter *tc; 200 201 tc = th->th_counter; 202 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 203 tc->tc_counter_mask); 204 } 205 206 /* 207 * Functions for reading the time. We have to loop until we are sure that 208 * the timehands that we operated on was not updated under our feet. See 209 * the comment in <sys/time.h> for a description of these 12 functions. 210 */ 211 212 static __inline void 213 bintime_off(struct bintime *bt, u_int off) 214 { 215 struct timehands *th; 216 struct bintime *btp; 217 uint64_t scale, x; 218 u_int delta, gen, large_delta; 219 220 do { 221 th = timehands; 222 gen = atomic_load_acq_int(&th->th_generation); 223 btp = (struct bintime *)((vm_offset_t)th + off); 224 *bt = *btp; 225 scale = th->th_scale; 226 delta = tc_delta(th); 227 large_delta = th->th_large_delta; 228 atomic_thread_fence_acq(); 229 } while (gen == 0 || gen != th->th_generation); 230 231 if (__predict_false(delta >= large_delta)) { 232 /* Avoid overflow for scale * delta. */ 233 x = (scale >> 32) * delta; 234 bt->sec += x >> 32; 235 bintime_addx(bt, x << 32); 236 bintime_addx(bt, (scale & 0xffffffff) * delta); 237 } else { 238 bintime_addx(bt, scale * delta); 239 } 240 } 241 #define GETTHBINTIME(dst, member) \ 242 do { \ 243 _Static_assert(_Generic(((struct timehands *)NULL)->member, \ 244 struct bintime: 1, default: 0) == 1, \ 245 "struct timehands member is not of struct bintime type"); \ 246 bintime_off(dst, __offsetof(struct timehands, member)); \ 247 } while (0) 248 249 static __inline void 250 getthmember(void *out, size_t out_size, u_int off) 251 { 252 struct timehands *th; 253 u_int gen; 254 255 do { 256 th = timehands; 257 gen = atomic_load_acq_int(&th->th_generation); 258 memcpy(out, (char *)th + off, out_size); 259 atomic_thread_fence_acq(); 260 } while (gen == 0 || gen != th->th_generation); 261 } 262 #define GETTHMEMBER(dst, member) \ 263 do { \ 264 _Static_assert(_Generic(*dst, \ 265 __typeof(((struct timehands *)NULL)->member): 1, \ 266 default: 0) == 1, \ 267 "*dst and struct timehands member have different types"); \ 268 getthmember(dst, sizeof(*dst), __offsetof(struct timehands, \ 269 member)); \ 270 } while (0) 271 272 #ifdef FFCLOCK 273 void 274 fbclock_binuptime(struct bintime *bt) 275 { 276 277 GETTHBINTIME(bt, th_offset); 278 } 279 280 void 281 fbclock_nanouptime(struct timespec *tsp) 282 { 283 struct bintime bt; 284 285 fbclock_binuptime(&bt); 286 bintime2timespec(&bt, tsp); 287 } 288 289 void 290 fbclock_microuptime(struct timeval *tvp) 291 { 292 struct bintime bt; 293 294 fbclock_binuptime(&bt); 295 bintime2timeval(&bt, tvp); 296 } 297 298 void 299 fbclock_bintime(struct bintime *bt) 300 { 301 302 GETTHBINTIME(bt, th_bintime); 303 } 304 305 void 306 fbclock_nanotime(struct timespec *tsp) 307 { 308 struct bintime bt; 309 310 fbclock_bintime(&bt); 311 bintime2timespec(&bt, tsp); 312 } 313 314 void 315 fbclock_microtime(struct timeval *tvp) 316 { 317 struct bintime bt; 318 319 fbclock_bintime(&bt); 320 bintime2timeval(&bt, tvp); 321 } 322 323 void 324 fbclock_getbinuptime(struct bintime *bt) 325 { 326 327 GETTHMEMBER(bt, th_offset); 328 } 329 330 void 331 fbclock_getnanouptime(struct timespec *tsp) 332 { 333 struct bintime bt; 334 335 GETTHMEMBER(&bt, th_offset); 336 bintime2timespec(&bt, tsp); 337 } 338 339 void 340 fbclock_getmicrouptime(struct timeval *tvp) 341 { 342 struct bintime bt; 343 344 GETTHMEMBER(&bt, th_offset); 345 bintime2timeval(&bt, tvp); 346 } 347 348 void 349 fbclock_getbintime(struct bintime *bt) 350 { 351 352 GETTHMEMBER(bt, th_bintime); 353 } 354 355 void 356 fbclock_getnanotime(struct timespec *tsp) 357 { 358 359 GETTHMEMBER(tsp, th_nanotime); 360 } 361 362 void 363 fbclock_getmicrotime(struct timeval *tvp) 364 { 365 366 GETTHMEMBER(tvp, th_microtime); 367 } 368 #else /* !FFCLOCK */ 369 370 void 371 binuptime(struct bintime *bt) 372 { 373 374 GETTHBINTIME(bt, th_offset); 375 } 376 377 void 378 nanouptime(struct timespec *tsp) 379 { 380 struct bintime bt; 381 382 binuptime(&bt); 383 bintime2timespec(&bt, tsp); 384 } 385 386 void 387 microuptime(struct timeval *tvp) 388 { 389 struct bintime bt; 390 391 binuptime(&bt); 392 bintime2timeval(&bt, tvp); 393 } 394 395 void 396 bintime(struct bintime *bt) 397 { 398 399 GETTHBINTIME(bt, th_bintime); 400 } 401 402 void 403 nanotime(struct timespec *tsp) 404 { 405 struct bintime bt; 406 407 bintime(&bt); 408 bintime2timespec(&bt, tsp); 409 } 410 411 void 412 microtime(struct timeval *tvp) 413 { 414 struct bintime bt; 415 416 bintime(&bt); 417 bintime2timeval(&bt, tvp); 418 } 419 420 void 421 getbinuptime(struct bintime *bt) 422 { 423 424 GETTHMEMBER(bt, th_offset); 425 } 426 427 void 428 getnanouptime(struct timespec *tsp) 429 { 430 struct bintime bt; 431 432 GETTHMEMBER(&bt, th_offset); 433 bintime2timespec(&bt, tsp); 434 } 435 436 void 437 getmicrouptime(struct timeval *tvp) 438 { 439 struct bintime bt; 440 441 GETTHMEMBER(&bt, th_offset); 442 bintime2timeval(&bt, tvp); 443 } 444 445 void 446 getbintime(struct bintime *bt) 447 { 448 449 GETTHMEMBER(bt, th_bintime); 450 } 451 452 void 453 getnanotime(struct timespec *tsp) 454 { 455 456 GETTHMEMBER(tsp, th_nanotime); 457 } 458 459 void 460 getmicrotime(struct timeval *tvp) 461 { 462 463 GETTHMEMBER(tvp, th_microtime); 464 } 465 #endif /* FFCLOCK */ 466 467 void 468 getboottime(struct timeval *boottime) 469 { 470 struct bintime boottimebin; 471 472 getboottimebin(&boottimebin); 473 bintime2timeval(&boottimebin, boottime); 474 } 475 476 void 477 getboottimebin(struct bintime *boottimebin) 478 { 479 480 GETTHMEMBER(boottimebin, th_boottime); 481 } 482 483 #ifdef FFCLOCK 484 /* 485 * Support for feed-forward synchronization algorithms. This is heavily inspired 486 * by the timehands mechanism but kept independent from it. *_windup() functions 487 * have some connection to avoid accessing the timecounter hardware more than 488 * necessary. 489 */ 490 491 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 492 struct ffclock_estimate ffclock_estimate; 493 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 494 uint32_t ffclock_status; /* Feed-forward clock status. */ 495 int8_t ffclock_updated; /* New estimates are available. */ 496 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 497 498 struct fftimehands { 499 struct ffclock_estimate cest; 500 struct bintime tick_time; 501 struct bintime tick_time_lerp; 502 ffcounter tick_ffcount; 503 uint64_t period_lerp; 504 volatile uint8_t gen; 505 struct fftimehands *next; 506 }; 507 508 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 509 510 static struct fftimehands ffth[10]; 511 static struct fftimehands *volatile fftimehands = ffth; 512 513 static void 514 ffclock_init(void) 515 { 516 struct fftimehands *cur; 517 struct fftimehands *last; 518 519 memset(ffth, 0, sizeof(ffth)); 520 521 last = ffth + NUM_ELEMENTS(ffth) - 1; 522 for (cur = ffth; cur < last; cur++) 523 cur->next = cur + 1; 524 last->next = ffth; 525 526 ffclock_updated = 0; 527 ffclock_status = FFCLOCK_STA_UNSYNC; 528 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 529 } 530 531 /* 532 * Reset the feed-forward clock estimates. Called from inittodr() to get things 533 * kick started and uses the timecounter nominal frequency as a first period 534 * estimate. Note: this function may be called several time just after boot. 535 * Note: this is the only function that sets the value of boot time for the 536 * monotonic (i.e. uptime) version of the feed-forward clock. 537 */ 538 void 539 ffclock_reset_clock(struct timespec *ts) 540 { 541 struct timecounter *tc; 542 struct ffclock_estimate cest; 543 544 tc = timehands->th_counter; 545 memset(&cest, 0, sizeof(struct ffclock_estimate)); 546 547 timespec2bintime(ts, &ffclock_boottime); 548 timespec2bintime(ts, &(cest.update_time)); 549 ffclock_read_counter(&cest.update_ffcount); 550 cest.leapsec_next = 0; 551 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 552 cest.errb_abs = 0; 553 cest.errb_rate = 0; 554 cest.status = FFCLOCK_STA_UNSYNC; 555 cest.leapsec_total = 0; 556 cest.leapsec = 0; 557 558 mtx_lock(&ffclock_mtx); 559 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 560 ffclock_updated = INT8_MAX; 561 mtx_unlock(&ffclock_mtx); 562 563 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 564 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 565 (unsigned long)ts->tv_nsec); 566 } 567 568 /* 569 * Sub-routine to convert a time interval measured in RAW counter units to time 570 * in seconds stored in bintime format. 571 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 572 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 573 * extra cycles. 574 */ 575 static void 576 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 577 { 578 struct bintime bt2; 579 ffcounter delta, delta_max; 580 581 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 582 bintime_clear(bt); 583 do { 584 if (ffdelta > delta_max) 585 delta = delta_max; 586 else 587 delta = ffdelta; 588 bt2.sec = 0; 589 bt2.frac = period; 590 bintime_mul(&bt2, (unsigned int)delta); 591 bintime_add(bt, &bt2); 592 ffdelta -= delta; 593 } while (ffdelta > 0); 594 } 595 596 /* 597 * Update the fftimehands. 598 * Push the tick ffcount and time(s) forward based on current clock estimate. 599 * The conversion from ffcounter to bintime relies on the difference clock 600 * principle, whose accuracy relies on computing small time intervals. If a new 601 * clock estimate has been passed by the synchronisation daemon, make it 602 * current, and compute the linear interpolation for monotonic time if needed. 603 */ 604 static void 605 ffclock_windup(unsigned int delta) 606 { 607 struct ffclock_estimate *cest; 608 struct fftimehands *ffth; 609 struct bintime bt, gap_lerp; 610 ffcounter ffdelta; 611 uint64_t frac; 612 unsigned int polling; 613 uint8_t forward_jump, ogen; 614 615 /* 616 * Pick the next timehand, copy current ffclock estimates and move tick 617 * times and counter forward. 618 */ 619 forward_jump = 0; 620 ffth = fftimehands->next; 621 ogen = ffth->gen; 622 ffth->gen = 0; 623 cest = &ffth->cest; 624 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 625 ffdelta = (ffcounter)delta; 626 ffth->period_lerp = fftimehands->period_lerp; 627 628 ffth->tick_time = fftimehands->tick_time; 629 ffclock_convert_delta(ffdelta, cest->period, &bt); 630 bintime_add(&ffth->tick_time, &bt); 631 632 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 633 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 634 bintime_add(&ffth->tick_time_lerp, &bt); 635 636 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 637 638 /* 639 * Assess the status of the clock, if the last update is too old, it is 640 * likely the synchronisation daemon is dead and the clock is free 641 * running. 642 */ 643 if (ffclock_updated == 0) { 644 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 645 ffclock_convert_delta(ffdelta, cest->period, &bt); 646 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 647 ffclock_status |= FFCLOCK_STA_UNSYNC; 648 } 649 650 /* 651 * If available, grab updated clock estimates and make them current. 652 * Recompute time at this tick using the updated estimates. The clock 653 * estimates passed the feed-forward synchronisation daemon may result 654 * in time conversion that is not monotonically increasing (just after 655 * the update). time_lerp is a particular linear interpolation over the 656 * synchronisation algo polling period that ensures monotonicity for the 657 * clock ids requesting it. 658 */ 659 if (ffclock_updated > 0) { 660 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 661 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 662 ffth->tick_time = cest->update_time; 663 ffclock_convert_delta(ffdelta, cest->period, &bt); 664 bintime_add(&ffth->tick_time, &bt); 665 666 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 667 if (ffclock_updated == INT8_MAX) 668 ffth->tick_time_lerp = ffth->tick_time; 669 670 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 671 forward_jump = 1; 672 else 673 forward_jump = 0; 674 675 bintime_clear(&gap_lerp); 676 if (forward_jump) { 677 gap_lerp = ffth->tick_time; 678 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 679 } else { 680 gap_lerp = ffth->tick_time_lerp; 681 bintime_sub(&gap_lerp, &ffth->tick_time); 682 } 683 684 /* 685 * The reset from the RTC clock may be far from accurate, and 686 * reducing the gap between real time and interpolated time 687 * could take a very long time if the interpolated clock insists 688 * on strict monotonicity. The clock is reset under very strict 689 * conditions (kernel time is known to be wrong and 690 * synchronization daemon has been restarted recently. 691 * ffclock_boottime absorbs the jump to ensure boot time is 692 * correct and uptime functions stay consistent. 693 */ 694 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 695 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 696 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 697 if (forward_jump) 698 bintime_add(&ffclock_boottime, &gap_lerp); 699 else 700 bintime_sub(&ffclock_boottime, &gap_lerp); 701 ffth->tick_time_lerp = ffth->tick_time; 702 bintime_clear(&gap_lerp); 703 } 704 705 ffclock_status = cest->status; 706 ffth->period_lerp = cest->period; 707 708 /* 709 * Compute corrected period used for the linear interpolation of 710 * time. The rate of linear interpolation is capped to 5000PPM 711 * (5ms/s). 712 */ 713 if (bintime_isset(&gap_lerp)) { 714 ffdelta = cest->update_ffcount; 715 ffdelta -= fftimehands->cest.update_ffcount; 716 ffclock_convert_delta(ffdelta, cest->period, &bt); 717 polling = bt.sec; 718 bt.sec = 0; 719 bt.frac = 5000000 * (uint64_t)18446744073LL; 720 bintime_mul(&bt, polling); 721 if (bintime_cmp(&gap_lerp, &bt, >)) 722 gap_lerp = bt; 723 724 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 725 frac = 0; 726 if (gap_lerp.sec > 0) { 727 frac -= 1; 728 frac /= ffdelta / gap_lerp.sec; 729 } 730 frac += gap_lerp.frac / ffdelta; 731 732 if (forward_jump) 733 ffth->period_lerp += frac; 734 else 735 ffth->period_lerp -= frac; 736 } 737 738 ffclock_updated = 0; 739 } 740 if (++ogen == 0) 741 ogen = 1; 742 ffth->gen = ogen; 743 fftimehands = ffth; 744 } 745 746 /* 747 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 748 * the old and new hardware counter cannot be read simultaneously. tc_windup() 749 * does read the two counters 'back to back', but a few cycles are effectively 750 * lost, and not accumulated in tick_ffcount. This is a fairly radical 751 * operation for a feed-forward synchronization daemon, and it is its job to not 752 * pushing irrelevant data to the kernel. Because there is no locking here, 753 * simply force to ignore pending or next update to give daemon a chance to 754 * realize the counter has changed. 755 */ 756 static void 757 ffclock_change_tc(struct timehands *th) 758 { 759 struct fftimehands *ffth; 760 struct ffclock_estimate *cest; 761 struct timecounter *tc; 762 uint8_t ogen; 763 764 tc = th->th_counter; 765 ffth = fftimehands->next; 766 ogen = ffth->gen; 767 ffth->gen = 0; 768 769 cest = &ffth->cest; 770 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 771 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 772 cest->errb_abs = 0; 773 cest->errb_rate = 0; 774 cest->status |= FFCLOCK_STA_UNSYNC; 775 776 ffth->tick_ffcount = fftimehands->tick_ffcount; 777 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 778 ffth->tick_time = fftimehands->tick_time; 779 ffth->period_lerp = cest->period; 780 781 /* Do not lock but ignore next update from synchronization daemon. */ 782 ffclock_updated--; 783 784 if (++ogen == 0) 785 ogen = 1; 786 ffth->gen = ogen; 787 fftimehands = ffth; 788 } 789 790 /* 791 * Retrieve feed-forward counter and time of last kernel tick. 792 */ 793 void 794 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 795 { 796 struct fftimehands *ffth; 797 uint8_t gen; 798 799 /* 800 * No locking but check generation has not changed. Also need to make 801 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 802 */ 803 do { 804 ffth = fftimehands; 805 gen = ffth->gen; 806 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 807 *bt = ffth->tick_time_lerp; 808 else 809 *bt = ffth->tick_time; 810 *ffcount = ffth->tick_ffcount; 811 } while (gen == 0 || gen != ffth->gen); 812 } 813 814 /* 815 * Absolute clock conversion. Low level function to convert ffcounter to 816 * bintime. The ffcounter is converted using the current ffclock period estimate 817 * or the "interpolated period" to ensure monotonicity. 818 * NOTE: this conversion may have been deferred, and the clock updated since the 819 * hardware counter has been read. 820 */ 821 void 822 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 823 { 824 struct fftimehands *ffth; 825 struct bintime bt2; 826 ffcounter ffdelta; 827 uint8_t gen; 828 829 /* 830 * No locking but check generation has not changed. Also need to make 831 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 832 */ 833 do { 834 ffth = fftimehands; 835 gen = ffth->gen; 836 if (ffcount > ffth->tick_ffcount) 837 ffdelta = ffcount - ffth->tick_ffcount; 838 else 839 ffdelta = ffth->tick_ffcount - ffcount; 840 841 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 842 *bt = ffth->tick_time_lerp; 843 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 844 } else { 845 *bt = ffth->tick_time; 846 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 847 } 848 849 if (ffcount > ffth->tick_ffcount) 850 bintime_add(bt, &bt2); 851 else 852 bintime_sub(bt, &bt2); 853 } while (gen == 0 || gen != ffth->gen); 854 } 855 856 /* 857 * Difference clock conversion. 858 * Low level function to Convert a time interval measured in RAW counter units 859 * into bintime. The difference clock allows measuring small intervals much more 860 * reliably than the absolute clock. 861 */ 862 void 863 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 864 { 865 struct fftimehands *ffth; 866 uint8_t gen; 867 868 /* No locking but check generation has not changed. */ 869 do { 870 ffth = fftimehands; 871 gen = ffth->gen; 872 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 873 } while (gen == 0 || gen != ffth->gen); 874 } 875 876 /* 877 * Access to current ffcounter value. 878 */ 879 void 880 ffclock_read_counter(ffcounter *ffcount) 881 { 882 struct timehands *th; 883 struct fftimehands *ffth; 884 unsigned int gen, delta; 885 886 /* 887 * ffclock_windup() called from tc_windup(), safe to rely on 888 * th->th_generation only, for correct delta and ffcounter. 889 */ 890 do { 891 th = timehands; 892 gen = atomic_load_acq_int(&th->th_generation); 893 ffth = fftimehands; 894 delta = tc_delta(th); 895 *ffcount = ffth->tick_ffcount; 896 atomic_thread_fence_acq(); 897 } while (gen == 0 || gen != th->th_generation); 898 899 *ffcount += delta; 900 } 901 902 void 903 binuptime(struct bintime *bt) 904 { 905 906 binuptime_fromclock(bt, sysclock_active); 907 } 908 909 void 910 nanouptime(struct timespec *tsp) 911 { 912 913 nanouptime_fromclock(tsp, sysclock_active); 914 } 915 916 void 917 microuptime(struct timeval *tvp) 918 { 919 920 microuptime_fromclock(tvp, sysclock_active); 921 } 922 923 void 924 bintime(struct bintime *bt) 925 { 926 927 bintime_fromclock(bt, sysclock_active); 928 } 929 930 void 931 nanotime(struct timespec *tsp) 932 { 933 934 nanotime_fromclock(tsp, sysclock_active); 935 } 936 937 void 938 microtime(struct timeval *tvp) 939 { 940 941 microtime_fromclock(tvp, sysclock_active); 942 } 943 944 void 945 getbinuptime(struct bintime *bt) 946 { 947 948 getbinuptime_fromclock(bt, sysclock_active); 949 } 950 951 void 952 getnanouptime(struct timespec *tsp) 953 { 954 955 getnanouptime_fromclock(tsp, sysclock_active); 956 } 957 958 void 959 getmicrouptime(struct timeval *tvp) 960 { 961 962 getmicrouptime_fromclock(tvp, sysclock_active); 963 } 964 965 void 966 getbintime(struct bintime *bt) 967 { 968 969 getbintime_fromclock(bt, sysclock_active); 970 } 971 972 void 973 getnanotime(struct timespec *tsp) 974 { 975 976 getnanotime_fromclock(tsp, sysclock_active); 977 } 978 979 void 980 getmicrotime(struct timeval *tvp) 981 { 982 983 getmicrouptime_fromclock(tvp, sysclock_active); 984 } 985 986 #endif /* FFCLOCK */ 987 988 /* 989 * This is a clone of getnanotime and used for walltimestamps. 990 * The dtrace_ prefix prevents fbt from creating probes for 991 * it so walltimestamp can be safely used in all fbt probes. 992 */ 993 void 994 dtrace_getnanotime(struct timespec *tsp) 995 { 996 997 GETTHMEMBER(tsp, th_nanotime); 998 } 999 1000 /* 1001 * System clock currently providing time to the system. Modifiable via sysctl 1002 * when the FFCLOCK option is defined. 1003 */ 1004 int sysclock_active = SYSCLOCK_FBCK; 1005 1006 /* Internal NTP status and error estimates. */ 1007 extern int time_status; 1008 extern long time_esterror; 1009 1010 /* 1011 * Take a snapshot of sysclock data which can be used to compare system clocks 1012 * and generate timestamps after the fact. 1013 */ 1014 void 1015 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 1016 { 1017 struct fbclock_info *fbi; 1018 struct timehands *th; 1019 struct bintime bt; 1020 unsigned int delta, gen; 1021 #ifdef FFCLOCK 1022 ffcounter ffcount; 1023 struct fftimehands *ffth; 1024 struct ffclock_info *ffi; 1025 struct ffclock_estimate cest; 1026 1027 ffi = &clock_snap->ff_info; 1028 #endif 1029 1030 fbi = &clock_snap->fb_info; 1031 delta = 0; 1032 1033 do { 1034 th = timehands; 1035 gen = atomic_load_acq_int(&th->th_generation); 1036 fbi->th_scale = th->th_scale; 1037 fbi->tick_time = th->th_offset; 1038 #ifdef FFCLOCK 1039 ffth = fftimehands; 1040 ffi->tick_time = ffth->tick_time_lerp; 1041 ffi->tick_time_lerp = ffth->tick_time_lerp; 1042 ffi->period = ffth->cest.period; 1043 ffi->period_lerp = ffth->period_lerp; 1044 clock_snap->ffcount = ffth->tick_ffcount; 1045 cest = ffth->cest; 1046 #endif 1047 if (!fast) 1048 delta = tc_delta(th); 1049 atomic_thread_fence_acq(); 1050 } while (gen == 0 || gen != th->th_generation); 1051 1052 clock_snap->delta = delta; 1053 clock_snap->sysclock_active = sysclock_active; 1054 1055 /* Record feedback clock status and error. */ 1056 clock_snap->fb_info.status = time_status; 1057 /* XXX: Very crude estimate of feedback clock error. */ 1058 bt.sec = time_esterror / 1000000; 1059 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1060 (uint64_t)18446744073709ULL; 1061 clock_snap->fb_info.error = bt; 1062 1063 #ifdef FFCLOCK 1064 if (!fast) 1065 clock_snap->ffcount += delta; 1066 1067 /* Record feed-forward clock leap second adjustment. */ 1068 ffi->leapsec_adjustment = cest.leapsec_total; 1069 if (clock_snap->ffcount > cest.leapsec_next) 1070 ffi->leapsec_adjustment -= cest.leapsec; 1071 1072 /* Record feed-forward clock status and error. */ 1073 clock_snap->ff_info.status = cest.status; 1074 ffcount = clock_snap->ffcount - cest.update_ffcount; 1075 ffclock_convert_delta(ffcount, cest.period, &bt); 1076 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1077 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1078 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1079 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1080 clock_snap->ff_info.error = bt; 1081 #endif 1082 } 1083 1084 /* 1085 * Convert a sysclock snapshot into a struct bintime based on the specified 1086 * clock source and flags. 1087 */ 1088 int 1089 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1090 int whichclock, uint32_t flags) 1091 { 1092 struct bintime boottimebin; 1093 #ifdef FFCLOCK 1094 struct bintime bt2; 1095 uint64_t period; 1096 #endif 1097 1098 switch (whichclock) { 1099 case SYSCLOCK_FBCK: 1100 *bt = cs->fb_info.tick_time; 1101 1102 /* If snapshot was created with !fast, delta will be >0. */ 1103 if (cs->delta > 0) 1104 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1105 1106 if ((flags & FBCLOCK_UPTIME) == 0) { 1107 getboottimebin(&boottimebin); 1108 bintime_add(bt, &boottimebin); 1109 } 1110 break; 1111 #ifdef FFCLOCK 1112 case SYSCLOCK_FFWD: 1113 if (flags & FFCLOCK_LERP) { 1114 *bt = cs->ff_info.tick_time_lerp; 1115 period = cs->ff_info.period_lerp; 1116 } else { 1117 *bt = cs->ff_info.tick_time; 1118 period = cs->ff_info.period; 1119 } 1120 1121 /* If snapshot was created with !fast, delta will be >0. */ 1122 if (cs->delta > 0) { 1123 ffclock_convert_delta(cs->delta, period, &bt2); 1124 bintime_add(bt, &bt2); 1125 } 1126 1127 /* Leap second adjustment. */ 1128 if (flags & FFCLOCK_LEAPSEC) 1129 bt->sec -= cs->ff_info.leapsec_adjustment; 1130 1131 /* Boot time adjustment, for uptime/monotonic clocks. */ 1132 if (flags & FFCLOCK_UPTIME) 1133 bintime_sub(bt, &ffclock_boottime); 1134 break; 1135 #endif 1136 default: 1137 return (EINVAL); 1138 break; 1139 } 1140 1141 return (0); 1142 } 1143 1144 /* 1145 * Initialize a new timecounter and possibly use it. 1146 */ 1147 void 1148 tc_init(struct timecounter *tc) 1149 { 1150 u_int u; 1151 struct sysctl_oid *tc_root; 1152 1153 u = tc->tc_frequency / tc->tc_counter_mask; 1154 /* XXX: We need some margin here, 10% is a guess */ 1155 u *= 11; 1156 u /= 10; 1157 if (u > hz && tc->tc_quality >= 0) { 1158 tc->tc_quality = -2000; 1159 if (bootverbose) { 1160 printf("Timecounter \"%s\" frequency %ju Hz", 1161 tc->tc_name, (uintmax_t)tc->tc_frequency); 1162 printf(" -- Insufficient hz, needs at least %u\n", u); 1163 } 1164 } else if (tc->tc_quality >= 0 || bootverbose) { 1165 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1166 tc->tc_name, (uintmax_t)tc->tc_frequency, 1167 tc->tc_quality); 1168 } 1169 1170 tc->tc_next = timecounters; 1171 timecounters = tc; 1172 /* 1173 * Set up sysctl tree for this counter. 1174 */ 1175 tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL, 1176 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1177 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1178 "timecounter description", "timecounter"); 1179 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1180 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1181 "mask for implemented bits"); 1182 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1183 "counter", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, tc, 1184 sizeof(*tc), sysctl_kern_timecounter_get, "IU", 1185 "current timecounter value"); 1186 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1187 "frequency", CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, tc, 1188 sizeof(*tc), sysctl_kern_timecounter_freq, "QU", 1189 "timecounter frequency"); 1190 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1191 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1192 "goodness of time counter"); 1193 /* 1194 * Do not automatically switch if the current tc was specifically 1195 * chosen. Never automatically use a timecounter with negative quality. 1196 * Even though we run on the dummy counter, switching here may be 1197 * worse since this timecounter may not be monotonic. 1198 */ 1199 if (tc_chosen) 1200 return; 1201 if (tc->tc_quality < 0) 1202 return; 1203 if (tc->tc_quality < timecounter->tc_quality) 1204 return; 1205 if (tc->tc_quality == timecounter->tc_quality && 1206 tc->tc_frequency < timecounter->tc_frequency) 1207 return; 1208 (void)tc->tc_get_timecount(tc); 1209 (void)tc->tc_get_timecount(tc); 1210 timecounter = tc; 1211 } 1212 1213 /* Report the frequency of the current timecounter. */ 1214 uint64_t 1215 tc_getfrequency(void) 1216 { 1217 1218 return (timehands->th_counter->tc_frequency); 1219 } 1220 1221 static bool 1222 sleeping_on_old_rtc(struct thread *td) 1223 { 1224 1225 /* 1226 * td_rtcgen is modified by curthread when it is running, 1227 * and by other threads in this function. By finding the thread 1228 * on a sleepqueue and holding the lock on the sleepqueue 1229 * chain, we guarantee that the thread is not running and that 1230 * modifying td_rtcgen is safe. Setting td_rtcgen to zero informs 1231 * the thread that it was woken due to a real-time clock adjustment. 1232 * (The declaration of td_rtcgen refers to this comment.) 1233 */ 1234 if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) { 1235 td->td_rtcgen = 0; 1236 return (true); 1237 } 1238 return (false); 1239 } 1240 1241 static struct mtx tc_setclock_mtx; 1242 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN); 1243 1244 /* 1245 * Step our concept of UTC. This is done by modifying our estimate of 1246 * when we booted. 1247 */ 1248 void 1249 tc_setclock(struct timespec *ts) 1250 { 1251 struct timespec tbef, taft; 1252 struct bintime bt, bt2; 1253 1254 timespec2bintime(ts, &bt); 1255 nanotime(&tbef); 1256 mtx_lock_spin(&tc_setclock_mtx); 1257 cpu_tick_calibrate(1); 1258 binuptime(&bt2); 1259 bintime_sub(&bt, &bt2); 1260 1261 /* XXX fiddle all the little crinkly bits around the fiords... */ 1262 tc_windup(&bt); 1263 mtx_unlock_spin(&tc_setclock_mtx); 1264 1265 /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */ 1266 atomic_add_rel_int(&rtc_generation, 2); 1267 sleepq_chains_remove_matching(sleeping_on_old_rtc); 1268 if (timestepwarnings) { 1269 nanotime(&taft); 1270 log(LOG_INFO, 1271 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1272 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1273 (intmax_t)taft.tv_sec, taft.tv_nsec, 1274 (intmax_t)ts->tv_sec, ts->tv_nsec); 1275 } 1276 } 1277 1278 /* 1279 * Initialize the next struct timehands in the ring and make 1280 * it the active timehands. Along the way we might switch to a different 1281 * timecounter and/or do seconds processing in NTP. Slightly magic. 1282 */ 1283 static void 1284 tc_windup(struct bintime *new_boottimebin) 1285 { 1286 struct bintime bt; 1287 struct timehands *th, *tho; 1288 uint64_t scale; 1289 u_int delta, ncount, ogen; 1290 int i; 1291 time_t t; 1292 1293 /* 1294 * Make the next timehands a copy of the current one, but do 1295 * not overwrite the generation or next pointer. While we 1296 * update the contents, the generation must be zero. We need 1297 * to ensure that the zero generation is visible before the 1298 * data updates become visible, which requires release fence. 1299 * For similar reasons, re-reading of the generation after the 1300 * data is read should use acquire fence. 1301 */ 1302 tho = timehands; 1303 th = tho->th_next; 1304 ogen = th->th_generation; 1305 th->th_generation = 0; 1306 atomic_thread_fence_rel(); 1307 memcpy(th, tho, offsetof(struct timehands, th_generation)); 1308 if (new_boottimebin != NULL) 1309 th->th_boottime = *new_boottimebin; 1310 1311 /* 1312 * Capture a timecounter delta on the current timecounter and if 1313 * changing timecounters, a counter value from the new timecounter. 1314 * Update the offset fields accordingly. 1315 */ 1316 delta = tc_delta(th); 1317 if (th->th_counter != timecounter) 1318 ncount = timecounter->tc_get_timecount(timecounter); 1319 else 1320 ncount = 0; 1321 #ifdef FFCLOCK 1322 ffclock_windup(delta); 1323 #endif 1324 th->th_offset_count += delta; 1325 th->th_offset_count &= th->th_counter->tc_counter_mask; 1326 while (delta > th->th_counter->tc_frequency) { 1327 /* Eat complete unadjusted seconds. */ 1328 delta -= th->th_counter->tc_frequency; 1329 th->th_offset.sec++; 1330 } 1331 if ((delta > th->th_counter->tc_frequency / 2) && 1332 (th->th_scale * delta < ((uint64_t)1 << 63))) { 1333 /* The product th_scale * delta just barely overflows. */ 1334 th->th_offset.sec++; 1335 } 1336 bintime_addx(&th->th_offset, th->th_scale * delta); 1337 1338 /* 1339 * Hardware latching timecounters may not generate interrupts on 1340 * PPS events, so instead we poll them. There is a finite risk that 1341 * the hardware might capture a count which is later than the one we 1342 * got above, and therefore possibly in the next NTP second which might 1343 * have a different rate than the current NTP second. It doesn't 1344 * matter in practice. 1345 */ 1346 if (tho->th_counter->tc_poll_pps) 1347 tho->th_counter->tc_poll_pps(tho->th_counter); 1348 1349 /* 1350 * Deal with NTP second processing. The for loop normally 1351 * iterates at most once, but in extreme situations it might 1352 * keep NTP sane if timeouts are not run for several seconds. 1353 * At boot, the time step can be large when the TOD hardware 1354 * has been read, so on really large steps, we call 1355 * ntp_update_second only twice. We need to call it twice in 1356 * case we missed a leap second. 1357 */ 1358 bt = th->th_offset; 1359 bintime_add(&bt, &th->th_boottime); 1360 i = bt.sec - tho->th_microtime.tv_sec; 1361 if (i > LARGE_STEP) 1362 i = 2; 1363 for (; i > 0; i--) { 1364 t = bt.sec; 1365 ntp_update_second(&th->th_adjustment, &bt.sec); 1366 if (bt.sec != t) 1367 th->th_boottime.sec += bt.sec - t; 1368 } 1369 /* Update the UTC timestamps used by the get*() functions. */ 1370 th->th_bintime = bt; 1371 bintime2timeval(&bt, &th->th_microtime); 1372 bintime2timespec(&bt, &th->th_nanotime); 1373 1374 /* Now is a good time to change timecounters. */ 1375 if (th->th_counter != timecounter) { 1376 #ifndef __arm__ 1377 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0) 1378 cpu_disable_c2_sleep++; 1379 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 1380 cpu_disable_c2_sleep--; 1381 #endif 1382 th->th_counter = timecounter; 1383 th->th_offset_count = ncount; 1384 tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 1385 (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1386 #ifdef FFCLOCK 1387 ffclock_change_tc(th); 1388 #endif 1389 } 1390 1391 /*- 1392 * Recalculate the scaling factor. We want the number of 1/2^64 1393 * fractions of a second per period of the hardware counter, taking 1394 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1395 * processing provides us with. 1396 * 1397 * The th_adjustment is nanoseconds per second with 32 bit binary 1398 * fraction and we want 64 bit binary fraction of second: 1399 * 1400 * x = a * 2^32 / 10^9 = a * 4.294967296 1401 * 1402 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1403 * we can only multiply by about 850 without overflowing, that 1404 * leaves no suitably precise fractions for multiply before divide. 1405 * 1406 * Divide before multiply with a fraction of 2199/512 results in a 1407 * systematic undercompensation of 10PPM of th_adjustment. On a 1408 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1409 * 1410 * We happily sacrifice the lowest of the 64 bits of our result 1411 * to the goddess of code clarity. 1412 * 1413 */ 1414 scale = (uint64_t)1 << 63; 1415 scale += (th->th_adjustment / 1024) * 2199; 1416 scale /= th->th_counter->tc_frequency; 1417 th->th_scale = scale * 2; 1418 th->th_large_delta = MIN(((uint64_t)1 << 63) / scale, UINT_MAX); 1419 1420 /* 1421 * Now that the struct timehands is again consistent, set the new 1422 * generation number, making sure to not make it zero. 1423 */ 1424 if (++ogen == 0) 1425 ogen = 1; 1426 atomic_store_rel_int(&th->th_generation, ogen); 1427 1428 /* Go live with the new struct timehands. */ 1429 #ifdef FFCLOCK 1430 switch (sysclock_active) { 1431 case SYSCLOCK_FBCK: 1432 #endif 1433 time_second = th->th_microtime.tv_sec; 1434 time_uptime = th->th_offset.sec; 1435 #ifdef FFCLOCK 1436 break; 1437 case SYSCLOCK_FFWD: 1438 time_second = fftimehands->tick_time_lerp.sec; 1439 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1440 break; 1441 } 1442 #endif 1443 1444 timehands = th; 1445 timekeep_push_vdso(); 1446 } 1447 1448 /* Report or change the active timecounter hardware. */ 1449 static int 1450 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1451 { 1452 char newname[32]; 1453 struct timecounter *newtc, *tc; 1454 int error; 1455 1456 tc = timecounter; 1457 strlcpy(newname, tc->tc_name, sizeof(newname)); 1458 1459 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1460 if (error != 0 || req->newptr == NULL) 1461 return (error); 1462 /* Record that the tc in use now was specifically chosen. */ 1463 tc_chosen = 1; 1464 if (strcmp(newname, tc->tc_name) == 0) 1465 return (0); 1466 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1467 if (strcmp(newname, newtc->tc_name) != 0) 1468 continue; 1469 1470 /* Warm up new timecounter. */ 1471 (void)newtc->tc_get_timecount(newtc); 1472 (void)newtc->tc_get_timecount(newtc); 1473 1474 timecounter = newtc; 1475 1476 /* 1477 * The vdso timehands update is deferred until the next 1478 * 'tc_windup()'. 1479 * 1480 * This is prudent given that 'timekeep_push_vdso()' does not 1481 * use any locking and that it can be called in hard interrupt 1482 * context via 'tc_windup()'. 1483 */ 1484 return (0); 1485 } 1486 return (EINVAL); 1487 } 1488 1489 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, 1490 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, 1491 sysctl_kern_timecounter_hardware, "A", 1492 "Timecounter hardware selected"); 1493 1494 /* Report the available timecounter hardware. */ 1495 static int 1496 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1497 { 1498 struct sbuf sb; 1499 struct timecounter *tc; 1500 int error; 1501 1502 sbuf_new_for_sysctl(&sb, NULL, 0, req); 1503 for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 1504 if (tc != timecounters) 1505 sbuf_putc(&sb, ' '); 1506 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality); 1507 } 1508 error = sbuf_finish(&sb); 1509 sbuf_delete(&sb); 1510 return (error); 1511 } 1512 1513 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, 1514 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, 1515 sysctl_kern_timecounter_choice, "A", 1516 "Timecounter hardware detected"); 1517 1518 /* 1519 * RFC 2783 PPS-API implementation. 1520 */ 1521 1522 /* 1523 * Return true if the driver is aware of the abi version extensions in the 1524 * pps_state structure, and it supports at least the given abi version number. 1525 */ 1526 static inline int 1527 abi_aware(struct pps_state *pps, int vers) 1528 { 1529 1530 return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers); 1531 } 1532 1533 static int 1534 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1535 { 1536 int err, timo; 1537 pps_seq_t aseq, cseq; 1538 struct timeval tv; 1539 1540 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1541 return (EINVAL); 1542 1543 /* 1544 * If no timeout is requested, immediately return whatever values were 1545 * most recently captured. If timeout seconds is -1, that's a request 1546 * to block without a timeout. WITNESS won't let us sleep forever 1547 * without a lock (we really don't need a lock), so just repeatedly 1548 * sleep a long time. 1549 */ 1550 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1551 if (fapi->timeout.tv_sec == -1) 1552 timo = 0x7fffffff; 1553 else { 1554 tv.tv_sec = fapi->timeout.tv_sec; 1555 tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1556 timo = tvtohz(&tv); 1557 } 1558 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence); 1559 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence); 1560 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) && 1561 cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) { 1562 if (abi_aware(pps, 1) && pps->driver_mtx != NULL) { 1563 if (pps->flags & PPSFLAG_MTX_SPIN) { 1564 err = msleep_spin(pps, pps->driver_mtx, 1565 "ppsfch", timo); 1566 } else { 1567 err = msleep(pps, pps->driver_mtx, PCATCH, 1568 "ppsfch", timo); 1569 } 1570 } else { 1571 err = tsleep(pps, PCATCH, "ppsfch", timo); 1572 } 1573 if (err == EWOULDBLOCK) { 1574 if (fapi->timeout.tv_sec == -1) { 1575 continue; 1576 } else { 1577 return (ETIMEDOUT); 1578 } 1579 } else if (err != 0) { 1580 return (err); 1581 } 1582 } 1583 } 1584 1585 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1586 fapi->pps_info_buf = pps->ppsinfo; 1587 1588 return (0); 1589 } 1590 1591 int 1592 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1593 { 1594 pps_params_t *app; 1595 struct pps_fetch_args *fapi; 1596 #ifdef FFCLOCK 1597 struct pps_fetch_ffc_args *fapi_ffc; 1598 #endif 1599 #ifdef PPS_SYNC 1600 struct pps_kcbind_args *kapi; 1601 #endif 1602 1603 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1604 switch (cmd) { 1605 case PPS_IOC_CREATE: 1606 return (0); 1607 case PPS_IOC_DESTROY: 1608 return (0); 1609 case PPS_IOC_SETPARAMS: 1610 app = (pps_params_t *)data; 1611 if (app->mode & ~pps->ppscap) 1612 return (EINVAL); 1613 #ifdef FFCLOCK 1614 /* Ensure only a single clock is selected for ffc timestamp. */ 1615 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1616 return (EINVAL); 1617 #endif 1618 pps->ppsparam = *app; 1619 return (0); 1620 case PPS_IOC_GETPARAMS: 1621 app = (pps_params_t *)data; 1622 *app = pps->ppsparam; 1623 app->api_version = PPS_API_VERS_1; 1624 return (0); 1625 case PPS_IOC_GETCAP: 1626 *(int*)data = pps->ppscap; 1627 return (0); 1628 case PPS_IOC_FETCH: 1629 fapi = (struct pps_fetch_args *)data; 1630 return (pps_fetch(fapi, pps)); 1631 #ifdef FFCLOCK 1632 case PPS_IOC_FETCH_FFCOUNTER: 1633 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1634 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1635 PPS_TSFMT_TSPEC) 1636 return (EINVAL); 1637 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1638 return (EOPNOTSUPP); 1639 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1640 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1641 /* Overwrite timestamps if feedback clock selected. */ 1642 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1643 case PPS_TSCLK_FBCK: 1644 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1645 pps->ppsinfo.assert_timestamp; 1646 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1647 pps->ppsinfo.clear_timestamp; 1648 break; 1649 case PPS_TSCLK_FFWD: 1650 break; 1651 default: 1652 break; 1653 } 1654 return (0); 1655 #endif /* FFCLOCK */ 1656 case PPS_IOC_KCBIND: 1657 #ifdef PPS_SYNC 1658 kapi = (struct pps_kcbind_args *)data; 1659 /* XXX Only root should be able to do this */ 1660 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1661 return (EINVAL); 1662 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1663 return (EINVAL); 1664 if (kapi->edge & ~pps->ppscap) 1665 return (EINVAL); 1666 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) | 1667 (pps->kcmode & KCMODE_ABIFLAG); 1668 return (0); 1669 #else 1670 return (EOPNOTSUPP); 1671 #endif 1672 default: 1673 return (ENOIOCTL); 1674 } 1675 } 1676 1677 void 1678 pps_init(struct pps_state *pps) 1679 { 1680 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1681 if (pps->ppscap & PPS_CAPTUREASSERT) 1682 pps->ppscap |= PPS_OFFSETASSERT; 1683 if (pps->ppscap & PPS_CAPTURECLEAR) 1684 pps->ppscap |= PPS_OFFSETCLEAR; 1685 #ifdef FFCLOCK 1686 pps->ppscap |= PPS_TSCLK_MASK; 1687 #endif 1688 pps->kcmode &= ~KCMODE_ABIFLAG; 1689 } 1690 1691 void 1692 pps_init_abi(struct pps_state *pps) 1693 { 1694 1695 pps_init(pps); 1696 if (pps->driver_abi > 0) { 1697 pps->kcmode |= KCMODE_ABIFLAG; 1698 pps->kernel_abi = PPS_ABI_VERSION; 1699 } 1700 } 1701 1702 void 1703 pps_capture(struct pps_state *pps) 1704 { 1705 struct timehands *th; 1706 1707 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1708 th = timehands; 1709 pps->capgen = atomic_load_acq_int(&th->th_generation); 1710 pps->capth = th; 1711 #ifdef FFCLOCK 1712 pps->capffth = fftimehands; 1713 #endif 1714 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1715 atomic_thread_fence_acq(); 1716 if (pps->capgen != th->th_generation) 1717 pps->capgen = 0; 1718 } 1719 1720 void 1721 pps_event(struct pps_state *pps, int event) 1722 { 1723 struct bintime bt; 1724 struct timespec ts, *tsp, *osp; 1725 u_int tcount, *pcount; 1726 int foff; 1727 pps_seq_t *pseq; 1728 #ifdef FFCLOCK 1729 struct timespec *tsp_ffc; 1730 pps_seq_t *pseq_ffc; 1731 ffcounter *ffcount; 1732 #endif 1733 #ifdef PPS_SYNC 1734 int fhard; 1735 #endif 1736 1737 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1738 /* Nothing to do if not currently set to capture this event type. */ 1739 if ((event & pps->ppsparam.mode) == 0) 1740 return; 1741 /* If the timecounter was wound up underneath us, bail out. */ 1742 if (pps->capgen == 0 || pps->capgen != 1743 atomic_load_acq_int(&pps->capth->th_generation)) 1744 return; 1745 1746 /* Things would be easier with arrays. */ 1747 if (event == PPS_CAPTUREASSERT) { 1748 tsp = &pps->ppsinfo.assert_timestamp; 1749 osp = &pps->ppsparam.assert_offset; 1750 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1751 #ifdef PPS_SYNC 1752 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1753 #endif 1754 pcount = &pps->ppscount[0]; 1755 pseq = &pps->ppsinfo.assert_sequence; 1756 #ifdef FFCLOCK 1757 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1758 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1759 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1760 #endif 1761 } else { 1762 tsp = &pps->ppsinfo.clear_timestamp; 1763 osp = &pps->ppsparam.clear_offset; 1764 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1765 #ifdef PPS_SYNC 1766 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1767 #endif 1768 pcount = &pps->ppscount[1]; 1769 pseq = &pps->ppsinfo.clear_sequence; 1770 #ifdef FFCLOCK 1771 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1772 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1773 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1774 #endif 1775 } 1776 1777 /* 1778 * If the timecounter changed, we cannot compare the count values, so 1779 * we have to drop the rest of the PPS-stuff until the next event. 1780 */ 1781 if (pps->ppstc != pps->capth->th_counter) { 1782 pps->ppstc = pps->capth->th_counter; 1783 *pcount = pps->capcount; 1784 pps->ppscount[2] = pps->capcount; 1785 return; 1786 } 1787 1788 /* Convert the count to a timespec. */ 1789 tcount = pps->capcount - pps->capth->th_offset_count; 1790 tcount &= pps->capth->th_counter->tc_counter_mask; 1791 bt = pps->capth->th_bintime; 1792 bintime_addx(&bt, pps->capth->th_scale * tcount); 1793 bintime2timespec(&bt, &ts); 1794 1795 /* If the timecounter was wound up underneath us, bail out. */ 1796 atomic_thread_fence_acq(); 1797 if (pps->capgen != pps->capth->th_generation) 1798 return; 1799 1800 *pcount = pps->capcount; 1801 (*pseq)++; 1802 *tsp = ts; 1803 1804 if (foff) { 1805 timespecadd(tsp, osp, tsp); 1806 if (tsp->tv_nsec < 0) { 1807 tsp->tv_nsec += 1000000000; 1808 tsp->tv_sec -= 1; 1809 } 1810 } 1811 1812 #ifdef FFCLOCK 1813 *ffcount = pps->capffth->tick_ffcount + tcount; 1814 bt = pps->capffth->tick_time; 1815 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1816 bintime_add(&bt, &pps->capffth->tick_time); 1817 bintime2timespec(&bt, &ts); 1818 (*pseq_ffc)++; 1819 *tsp_ffc = ts; 1820 #endif 1821 1822 #ifdef PPS_SYNC 1823 if (fhard) { 1824 uint64_t scale; 1825 1826 /* 1827 * Feed the NTP PLL/FLL. 1828 * The FLL wants to know how many (hardware) nanoseconds 1829 * elapsed since the previous event. 1830 */ 1831 tcount = pps->capcount - pps->ppscount[2]; 1832 pps->ppscount[2] = pps->capcount; 1833 tcount &= pps->capth->th_counter->tc_counter_mask; 1834 scale = (uint64_t)1 << 63; 1835 scale /= pps->capth->th_counter->tc_frequency; 1836 scale *= 2; 1837 bt.sec = 0; 1838 bt.frac = 0; 1839 bintime_addx(&bt, scale * tcount); 1840 bintime2timespec(&bt, &ts); 1841 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1842 } 1843 #endif 1844 1845 /* Wakeup anyone sleeping in pps_fetch(). */ 1846 wakeup(pps); 1847 } 1848 1849 /* 1850 * Timecounters need to be updated every so often to prevent the hardware 1851 * counter from overflowing. Updating also recalculates the cached values 1852 * used by the get*() family of functions, so their precision depends on 1853 * the update frequency. 1854 */ 1855 1856 static int tc_tick; 1857 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1858 "Approximate number of hardclock ticks in a millisecond"); 1859 1860 void 1861 tc_ticktock(int cnt) 1862 { 1863 static int count; 1864 1865 if (mtx_trylock_spin(&tc_setclock_mtx)) { 1866 count += cnt; 1867 if (count >= tc_tick) { 1868 count = 0; 1869 tc_windup(NULL); 1870 } 1871 mtx_unlock_spin(&tc_setclock_mtx); 1872 } 1873 } 1874 1875 static void __inline 1876 tc_adjprecision(void) 1877 { 1878 int t; 1879 1880 if (tc_timepercentage > 0) { 1881 t = (99 + tc_timepercentage) / tc_timepercentage; 1882 tc_precexp = fls(t + (t >> 1)) - 1; 1883 FREQ2BT(hz / tc_tick, &bt_timethreshold); 1884 FREQ2BT(hz, &bt_tickthreshold); 1885 bintime_shift(&bt_timethreshold, tc_precexp); 1886 bintime_shift(&bt_tickthreshold, tc_precexp); 1887 } else { 1888 tc_precexp = 31; 1889 bt_timethreshold.sec = INT_MAX; 1890 bt_timethreshold.frac = ~(uint64_t)0; 1891 bt_tickthreshold = bt_timethreshold; 1892 } 1893 sbt_timethreshold = bttosbt(bt_timethreshold); 1894 sbt_tickthreshold = bttosbt(bt_tickthreshold); 1895 } 1896 1897 static int 1898 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 1899 { 1900 int error, val; 1901 1902 val = tc_timepercentage; 1903 error = sysctl_handle_int(oidp, &val, 0, req); 1904 if (error != 0 || req->newptr == NULL) 1905 return (error); 1906 tc_timepercentage = val; 1907 if (cold) 1908 goto done; 1909 tc_adjprecision(); 1910 done: 1911 return (0); 1912 } 1913 1914 /* Set up the requested number of timehands. */ 1915 static void 1916 inittimehands(void *dummy) 1917 { 1918 struct timehands *thp; 1919 int i; 1920 1921 TUNABLE_INT_FETCH("kern.timecounter.timehands_count", 1922 &timehands_count); 1923 if (timehands_count < 1) 1924 timehands_count = 1; 1925 if (timehands_count > nitems(ths)) 1926 timehands_count = nitems(ths); 1927 for (i = 1, thp = &ths[0]; i < timehands_count; thp = &ths[i++]) 1928 thp->th_next = &ths[i]; 1929 thp->th_next = &ths[0]; 1930 } 1931 SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL); 1932 1933 static void 1934 inittimecounter(void *dummy) 1935 { 1936 u_int p; 1937 int tick_rate; 1938 1939 /* 1940 * Set the initial timeout to 1941 * max(1, <approx. number of hardclock ticks in a millisecond>). 1942 * People should probably not use the sysctl to set the timeout 1943 * to smaller than its initial value, since that value is the 1944 * smallest reasonable one. If they want better timestamps they 1945 * should use the non-"get"* functions. 1946 */ 1947 if (hz > 1000) 1948 tc_tick = (hz + 500) / 1000; 1949 else 1950 tc_tick = 1; 1951 tc_adjprecision(); 1952 FREQ2BT(hz, &tick_bt); 1953 tick_sbt = bttosbt(tick_bt); 1954 tick_rate = hz / tc_tick; 1955 FREQ2BT(tick_rate, &tc_tick_bt); 1956 tc_tick_sbt = bttosbt(tc_tick_bt); 1957 p = (tc_tick * 1000000) / hz; 1958 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 1959 1960 #ifdef FFCLOCK 1961 ffclock_init(); 1962 #endif 1963 1964 /* warm up new timecounter (again) and get rolling. */ 1965 (void)timecounter->tc_get_timecount(timecounter); 1966 (void)timecounter->tc_get_timecount(timecounter); 1967 mtx_lock_spin(&tc_setclock_mtx); 1968 tc_windup(NULL); 1969 mtx_unlock_spin(&tc_setclock_mtx); 1970 } 1971 1972 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 1973 1974 /* Cpu tick handling -------------------------------------------------*/ 1975 1976 static int cpu_tick_variable; 1977 static uint64_t cpu_tick_frequency; 1978 1979 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base); 1980 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last); 1981 1982 static uint64_t 1983 tc_cpu_ticks(void) 1984 { 1985 struct timecounter *tc; 1986 uint64_t res, *base; 1987 unsigned u, *last; 1988 1989 critical_enter(); 1990 base = DPCPU_PTR(tc_cpu_ticks_base); 1991 last = DPCPU_PTR(tc_cpu_ticks_last); 1992 tc = timehands->th_counter; 1993 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 1994 if (u < *last) 1995 *base += (uint64_t)tc->tc_counter_mask + 1; 1996 *last = u; 1997 res = u + *base; 1998 critical_exit(); 1999 return (res); 2000 } 2001 2002 void 2003 cpu_tick_calibration(void) 2004 { 2005 static time_t last_calib; 2006 2007 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 2008 cpu_tick_calibrate(0); 2009 last_calib = time_uptime; 2010 } 2011 } 2012 2013 /* 2014 * This function gets called every 16 seconds on only one designated 2015 * CPU in the system from hardclock() via cpu_tick_calibration()(). 2016 * 2017 * Whenever the real time clock is stepped we get called with reset=1 2018 * to make sure we handle suspend/resume and similar events correctly. 2019 */ 2020 2021 static void 2022 cpu_tick_calibrate(int reset) 2023 { 2024 static uint64_t c_last; 2025 uint64_t c_this, c_delta; 2026 static struct bintime t_last; 2027 struct bintime t_this, t_delta; 2028 uint32_t divi; 2029 2030 if (reset) { 2031 /* The clock was stepped, abort & reset */ 2032 t_last.sec = 0; 2033 return; 2034 } 2035 2036 /* we don't calibrate fixed rate cputicks */ 2037 if (!cpu_tick_variable) 2038 return; 2039 2040 getbinuptime(&t_this); 2041 c_this = cpu_ticks(); 2042 if (t_last.sec != 0) { 2043 c_delta = c_this - c_last; 2044 t_delta = t_this; 2045 bintime_sub(&t_delta, &t_last); 2046 /* 2047 * Headroom: 2048 * 2^(64-20) / 16[s] = 2049 * 2^(44) / 16[s] = 2050 * 17.592.186.044.416 / 16 = 2051 * 1.099.511.627.776 [Hz] 2052 */ 2053 divi = t_delta.sec << 20; 2054 divi |= t_delta.frac >> (64 - 20); 2055 c_delta <<= 20; 2056 c_delta /= divi; 2057 if (c_delta > cpu_tick_frequency) { 2058 if (0 && bootverbose) 2059 printf("cpu_tick increased to %ju Hz\n", 2060 c_delta); 2061 cpu_tick_frequency = c_delta; 2062 } 2063 } 2064 c_last = c_this; 2065 t_last = t_this; 2066 } 2067 2068 void 2069 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 2070 { 2071 2072 if (func == NULL) { 2073 cpu_ticks = tc_cpu_ticks; 2074 } else { 2075 cpu_tick_frequency = freq; 2076 cpu_tick_variable = var; 2077 cpu_ticks = func; 2078 } 2079 } 2080 2081 uint64_t 2082 cpu_tickrate(void) 2083 { 2084 2085 if (cpu_ticks == tc_cpu_ticks) 2086 return (tc_getfrequency()); 2087 return (cpu_tick_frequency); 2088 } 2089 2090 /* 2091 * We need to be slightly careful converting cputicks to microseconds. 2092 * There is plenty of margin in 64 bits of microseconds (half a million 2093 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 2094 * before divide conversion (to retain precision) we find that the 2095 * margin shrinks to 1.5 hours (one millionth of 146y). 2096 * With a three prong approach we never lose significant bits, no 2097 * matter what the cputick rate and length of timeinterval is. 2098 */ 2099 2100 uint64_t 2101 cputick2usec(uint64_t tick) 2102 { 2103 2104 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 2105 return (tick / (cpu_tickrate() / 1000000LL)); 2106 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 2107 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 2108 else 2109 return ((tick * 1000000LL) / cpu_tickrate()); 2110 } 2111 2112 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 2113 2114 static int vdso_th_enable = 1; 2115 static int 2116 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 2117 { 2118 int old_vdso_th_enable, error; 2119 2120 old_vdso_th_enable = vdso_th_enable; 2121 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 2122 if (error != 0) 2123 return (error); 2124 vdso_th_enable = old_vdso_th_enable; 2125 return (0); 2126 } 2127 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 2128 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 2129 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 2130 2131 uint32_t 2132 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2133 { 2134 struct timehands *th; 2135 uint32_t enabled; 2136 2137 th = timehands; 2138 vdso_th->th_scale = th->th_scale; 2139 vdso_th->th_offset_count = th->th_offset_count; 2140 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2141 vdso_th->th_offset = th->th_offset; 2142 vdso_th->th_boottime = th->th_boottime; 2143 if (th->th_counter->tc_fill_vdso_timehands != NULL) { 2144 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th, 2145 th->th_counter); 2146 } else 2147 enabled = 0; 2148 if (!vdso_th_enable) 2149 enabled = 0; 2150 return (enabled); 2151 } 2152 2153 #ifdef COMPAT_FREEBSD32 2154 uint32_t 2155 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2156 { 2157 struct timehands *th; 2158 uint32_t enabled; 2159 2160 th = timehands; 2161 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2162 vdso_th32->th_offset_count = th->th_offset_count; 2163 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2164 vdso_th32->th_offset.sec = th->th_offset.sec; 2165 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 2166 vdso_th32->th_boottime.sec = th->th_boottime.sec; 2167 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac; 2168 if (th->th_counter->tc_fill_vdso_timehands32 != NULL) { 2169 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32, 2170 th->th_counter); 2171 } else 2172 enabled = 0; 2173 if (!vdso_th_enable) 2174 enabled = 0; 2175 return (enabled); 2176 } 2177 #endif 2178