xref: /freebsd/sys/kern/kern_tc.c (revision 604d0dd551fa7d275cdf69911c9df4595a42f49f)
1 /*-
2  * SPDX-License-Identifier: Beerware
3  *
4  * ----------------------------------------------------------------------------
5  * "THE BEER-WARE LICENSE" (Revision 42):
6  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
7  * can do whatever you want with this stuff. If we meet some day, and you think
8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
9  * ----------------------------------------------------------------------------
10  *
11  * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
12  * All rights reserved.
13  *
14  * Portions of this software were developed by Julien Ridoux at the University
15  * of Melbourne under sponsorship from the FreeBSD Foundation.
16  *
17  * Portions of this software were developed by Konstantin Belousov
18  * under sponsorship from the FreeBSD Foundation.
19  */
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 #include "opt_ntp.h"
25 #include "opt_ffclock.h"
26 
27 #include <sys/param.h>
28 #include <sys/kernel.h>
29 #include <sys/limits.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/proc.h>
33 #include <sys/sbuf.h>
34 #include <sys/sleepqueue.h>
35 #include <sys/sysctl.h>
36 #include <sys/syslog.h>
37 #include <sys/systm.h>
38 #include <sys/timeffc.h>
39 #include <sys/timepps.h>
40 #include <sys/timetc.h>
41 #include <sys/timex.h>
42 #include <sys/vdso.h>
43 
44 /*
45  * A large step happens on boot.  This constant detects such steps.
46  * It is relatively small so that ntp_update_second gets called enough
47  * in the typical 'missed a couple of seconds' case, but doesn't loop
48  * forever when the time step is large.
49  */
50 #define LARGE_STEP	200
51 
52 /*
53  * Implement a dummy timecounter which we can use until we get a real one
54  * in the air.  This allows the console and other early stuff to use
55  * time services.
56  */
57 
58 static u_int
59 dummy_get_timecount(struct timecounter *tc)
60 {
61 	static u_int now;
62 
63 	return (++now);
64 }
65 
66 static struct timecounter dummy_timecounter = {
67 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
68 };
69 
70 struct timehands {
71 	/* These fields must be initialized by the driver. */
72 	struct timecounter	*th_counter;
73 	int64_t			th_adjustment;
74 	uint64_t		th_scale;
75 	u_int			th_large_delta;
76 	u_int	 		th_offset_count;
77 	struct bintime		th_offset;
78 	struct bintime		th_bintime;
79 	struct timeval		th_microtime;
80 	struct timespec		th_nanotime;
81 	struct bintime		th_boottime;
82 	/* Fields not to be copied in tc_windup start with th_generation. */
83 	u_int			th_generation;
84 	struct timehands	*th_next;
85 };
86 
87 static struct timehands ths[16] = {
88     [0] =  {
89 	.th_counter = &dummy_timecounter,
90 	.th_scale = (uint64_t)-1 / 1000000,
91 	.th_large_delta = 1000000,
92 	.th_offset = { .sec = 1 },
93 	.th_generation = 1,
94     },
95 };
96 
97 static struct timehands *volatile timehands = &ths[0];
98 struct timecounter *timecounter = &dummy_timecounter;
99 static struct timecounter *timecounters = &dummy_timecounter;
100 
101 int tc_min_ticktock_freq = 1;
102 
103 volatile time_t time_second = 1;
104 volatile time_t time_uptime = 1;
105 
106 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
107 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
108     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
109 
110 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
111 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
112 
113 static int timestepwarnings;
114 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
115     &timestepwarnings, 0, "Log time steps");
116 
117 static int timehands_count = 2;
118 SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count,
119     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
120     &timehands_count, 0, "Count of timehands in rotation");
121 
122 struct bintime bt_timethreshold;
123 struct bintime bt_tickthreshold;
124 sbintime_t sbt_timethreshold;
125 sbintime_t sbt_tickthreshold;
126 struct bintime tc_tick_bt;
127 sbintime_t tc_tick_sbt;
128 int tc_precexp;
129 int tc_timepercentage = TC_DEFAULTPERC;
130 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
131 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
132     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
133     sysctl_kern_timecounter_adjprecision, "I",
134     "Allowed time interval deviation in percents");
135 
136 volatile int rtc_generation = 1;
137 
138 static int tc_chosen;	/* Non-zero if a specific tc was chosen via sysctl. */
139 
140 static void tc_windup(struct bintime *new_boottimebin);
141 static void cpu_tick_calibrate(int);
142 
143 void dtrace_getnanotime(struct timespec *tsp);
144 
145 static int
146 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
147 {
148 	struct timeval boottime;
149 
150 	getboottime(&boottime);
151 
152 /* i386 is the only arch which uses a 32bits time_t */
153 #ifdef __amd64__
154 #ifdef SCTL_MASK32
155 	int tv[2];
156 
157 	if (req->flags & SCTL_MASK32) {
158 		tv[0] = boottime.tv_sec;
159 		tv[1] = boottime.tv_usec;
160 		return (SYSCTL_OUT(req, tv, sizeof(tv)));
161 	}
162 #endif
163 #endif
164 	return (SYSCTL_OUT(req, &boottime, sizeof(boottime)));
165 }
166 
167 static int
168 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
169 {
170 	u_int ncount;
171 	struct timecounter *tc = arg1;
172 
173 	ncount = tc->tc_get_timecount(tc);
174 	return (sysctl_handle_int(oidp, &ncount, 0, req));
175 }
176 
177 static int
178 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
179 {
180 	uint64_t freq;
181 	struct timecounter *tc = arg1;
182 
183 	freq = tc->tc_frequency;
184 	return (sysctl_handle_64(oidp, &freq, 0, req));
185 }
186 
187 /*
188  * Return the difference between the timehands' counter value now and what
189  * was when we copied it to the timehands' offset_count.
190  */
191 static __inline u_int
192 tc_delta(struct timehands *th)
193 {
194 	struct timecounter *tc;
195 
196 	tc = th->th_counter;
197 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
198 	    tc->tc_counter_mask);
199 }
200 
201 /*
202  * Functions for reading the time.  We have to loop until we are sure that
203  * the timehands that we operated on was not updated under our feet.  See
204  * the comment in <sys/time.h> for a description of these 12 functions.
205  */
206 
207 static __inline void
208 bintime_off(struct bintime *bt, u_int off)
209 {
210 	struct timehands *th;
211 	struct bintime *btp;
212 	uint64_t scale, x;
213 	u_int delta, gen, large_delta;
214 
215 	do {
216 		th = timehands;
217 		gen = atomic_load_acq_int(&th->th_generation);
218 		btp = (struct bintime *)((vm_offset_t)th + off);
219 		*bt = *btp;
220 		scale = th->th_scale;
221 		delta = tc_delta(th);
222 		large_delta = th->th_large_delta;
223 		atomic_thread_fence_acq();
224 	} while (gen == 0 || gen != th->th_generation);
225 
226 	if (__predict_false(delta >= large_delta)) {
227 		/* Avoid overflow for scale * delta. */
228 		x = (scale >> 32) * delta;
229 		bt->sec += x >> 32;
230 		bintime_addx(bt, x << 32);
231 		bintime_addx(bt, (scale & 0xffffffff) * delta);
232 	} else {
233 		bintime_addx(bt, scale * delta);
234 	}
235 }
236 #define	GETTHBINTIME(dst, member)					\
237 do {									\
238 	_Static_assert(_Generic(((struct timehands *)NULL)->member,	\
239 	    struct bintime: 1, default: 0) == 1,			\
240 	    "struct timehands member is not of struct bintime type");	\
241 	bintime_off(dst, __offsetof(struct timehands, member));		\
242 } while (0)
243 
244 static __inline void
245 getthmember(void *out, size_t out_size, u_int off)
246 {
247 	struct timehands *th;
248 	u_int gen;
249 
250 	do {
251 		th = timehands;
252 		gen = atomic_load_acq_int(&th->th_generation);
253 		memcpy(out, (char *)th + off, out_size);
254 		atomic_thread_fence_acq();
255 	} while (gen == 0 || gen != th->th_generation);
256 }
257 #define	GETTHMEMBER(dst, member)					\
258 do {									\
259 	_Static_assert(_Generic(*dst,					\
260 	    __typeof(((struct timehands *)NULL)->member): 1,		\
261 	    default: 0) == 1,						\
262 	    "*dst and struct timehands member have different types");	\
263 	getthmember(dst, sizeof(*dst), __offsetof(struct timehands,	\
264 	    member));							\
265 } while (0)
266 
267 #ifdef FFCLOCK
268 void
269 fbclock_binuptime(struct bintime *bt)
270 {
271 
272 	GETTHBINTIME(bt, th_offset);
273 }
274 
275 void
276 fbclock_nanouptime(struct timespec *tsp)
277 {
278 	struct bintime bt;
279 
280 	fbclock_binuptime(&bt);
281 	bintime2timespec(&bt, tsp);
282 }
283 
284 void
285 fbclock_microuptime(struct timeval *tvp)
286 {
287 	struct bintime bt;
288 
289 	fbclock_binuptime(&bt);
290 	bintime2timeval(&bt, tvp);
291 }
292 
293 void
294 fbclock_bintime(struct bintime *bt)
295 {
296 
297 	GETTHBINTIME(bt, th_bintime);
298 }
299 
300 void
301 fbclock_nanotime(struct timespec *tsp)
302 {
303 	struct bintime bt;
304 
305 	fbclock_bintime(&bt);
306 	bintime2timespec(&bt, tsp);
307 }
308 
309 void
310 fbclock_microtime(struct timeval *tvp)
311 {
312 	struct bintime bt;
313 
314 	fbclock_bintime(&bt);
315 	bintime2timeval(&bt, tvp);
316 }
317 
318 void
319 fbclock_getbinuptime(struct bintime *bt)
320 {
321 
322 	GETTHMEMBER(bt, th_offset);
323 }
324 
325 void
326 fbclock_getnanouptime(struct timespec *tsp)
327 {
328 	struct bintime bt;
329 
330 	GETTHMEMBER(&bt, th_offset);
331 	bintime2timespec(&bt, tsp);
332 }
333 
334 void
335 fbclock_getmicrouptime(struct timeval *tvp)
336 {
337 	struct bintime bt;
338 
339 	GETTHMEMBER(&bt, th_offset);
340 	bintime2timeval(&bt, tvp);
341 }
342 
343 void
344 fbclock_getbintime(struct bintime *bt)
345 {
346 
347 	GETTHMEMBER(bt, th_bintime);
348 }
349 
350 void
351 fbclock_getnanotime(struct timespec *tsp)
352 {
353 
354 	GETTHMEMBER(tsp, th_nanotime);
355 }
356 
357 void
358 fbclock_getmicrotime(struct timeval *tvp)
359 {
360 
361 	GETTHMEMBER(tvp, th_microtime);
362 }
363 #else /* !FFCLOCK */
364 
365 void
366 binuptime(struct bintime *bt)
367 {
368 
369 	GETTHBINTIME(bt, th_offset);
370 }
371 
372 void
373 nanouptime(struct timespec *tsp)
374 {
375 	struct bintime bt;
376 
377 	binuptime(&bt);
378 	bintime2timespec(&bt, tsp);
379 }
380 
381 void
382 microuptime(struct timeval *tvp)
383 {
384 	struct bintime bt;
385 
386 	binuptime(&bt);
387 	bintime2timeval(&bt, tvp);
388 }
389 
390 void
391 bintime(struct bintime *bt)
392 {
393 
394 	GETTHBINTIME(bt, th_bintime);
395 }
396 
397 void
398 nanotime(struct timespec *tsp)
399 {
400 	struct bintime bt;
401 
402 	bintime(&bt);
403 	bintime2timespec(&bt, tsp);
404 }
405 
406 void
407 microtime(struct timeval *tvp)
408 {
409 	struct bintime bt;
410 
411 	bintime(&bt);
412 	bintime2timeval(&bt, tvp);
413 }
414 
415 void
416 getbinuptime(struct bintime *bt)
417 {
418 
419 	GETTHMEMBER(bt, th_offset);
420 }
421 
422 void
423 getnanouptime(struct timespec *tsp)
424 {
425 	struct bintime bt;
426 
427 	GETTHMEMBER(&bt, th_offset);
428 	bintime2timespec(&bt, tsp);
429 }
430 
431 void
432 getmicrouptime(struct timeval *tvp)
433 {
434 	struct bintime bt;
435 
436 	GETTHMEMBER(&bt, th_offset);
437 	bintime2timeval(&bt, tvp);
438 }
439 
440 void
441 getbintime(struct bintime *bt)
442 {
443 
444 	GETTHMEMBER(bt, th_bintime);
445 }
446 
447 void
448 getnanotime(struct timespec *tsp)
449 {
450 
451 	GETTHMEMBER(tsp, th_nanotime);
452 }
453 
454 void
455 getmicrotime(struct timeval *tvp)
456 {
457 
458 	GETTHMEMBER(tvp, th_microtime);
459 }
460 #endif /* FFCLOCK */
461 
462 void
463 getboottime(struct timeval *boottime)
464 {
465 	struct bintime boottimebin;
466 
467 	getboottimebin(&boottimebin);
468 	bintime2timeval(&boottimebin, boottime);
469 }
470 
471 void
472 getboottimebin(struct bintime *boottimebin)
473 {
474 
475 	GETTHMEMBER(boottimebin, th_boottime);
476 }
477 
478 #ifdef FFCLOCK
479 /*
480  * Support for feed-forward synchronization algorithms. This is heavily inspired
481  * by the timehands mechanism but kept independent from it. *_windup() functions
482  * have some connection to avoid accessing the timecounter hardware more than
483  * necessary.
484  */
485 
486 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
487 struct ffclock_estimate ffclock_estimate;
488 struct bintime ffclock_boottime;	/* Feed-forward boot time estimate. */
489 uint32_t ffclock_status;		/* Feed-forward clock status. */
490 int8_t ffclock_updated;			/* New estimates are available. */
491 struct mtx ffclock_mtx;			/* Mutex on ffclock_estimate. */
492 
493 struct fftimehands {
494 	struct ffclock_estimate	cest;
495 	struct bintime		tick_time;
496 	struct bintime		tick_time_lerp;
497 	ffcounter		tick_ffcount;
498 	uint64_t		period_lerp;
499 	volatile uint8_t	gen;
500 	struct fftimehands	*next;
501 };
502 
503 #define	NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
504 
505 static struct fftimehands ffth[10];
506 static struct fftimehands *volatile fftimehands = ffth;
507 
508 static void
509 ffclock_init(void)
510 {
511 	struct fftimehands *cur;
512 	struct fftimehands *last;
513 
514 	memset(ffth, 0, sizeof(ffth));
515 
516 	last = ffth + NUM_ELEMENTS(ffth) - 1;
517 	for (cur = ffth; cur < last; cur++)
518 		cur->next = cur + 1;
519 	last->next = ffth;
520 
521 	ffclock_updated = 0;
522 	ffclock_status = FFCLOCK_STA_UNSYNC;
523 	mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
524 }
525 
526 /*
527  * Reset the feed-forward clock estimates. Called from inittodr() to get things
528  * kick started and uses the timecounter nominal frequency as a first period
529  * estimate. Note: this function may be called several time just after boot.
530  * Note: this is the only function that sets the value of boot time for the
531  * monotonic (i.e. uptime) version of the feed-forward clock.
532  */
533 void
534 ffclock_reset_clock(struct timespec *ts)
535 {
536 	struct timecounter *tc;
537 	struct ffclock_estimate cest;
538 
539 	tc = timehands->th_counter;
540 	memset(&cest, 0, sizeof(struct ffclock_estimate));
541 
542 	timespec2bintime(ts, &ffclock_boottime);
543 	timespec2bintime(ts, &(cest.update_time));
544 	ffclock_read_counter(&cest.update_ffcount);
545 	cest.leapsec_next = 0;
546 	cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
547 	cest.errb_abs = 0;
548 	cest.errb_rate = 0;
549 	cest.status = FFCLOCK_STA_UNSYNC;
550 	cest.leapsec_total = 0;
551 	cest.leapsec = 0;
552 
553 	mtx_lock(&ffclock_mtx);
554 	bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
555 	ffclock_updated = INT8_MAX;
556 	mtx_unlock(&ffclock_mtx);
557 
558 	printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
559 	    (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
560 	    (unsigned long)ts->tv_nsec);
561 }
562 
563 /*
564  * Sub-routine to convert a time interval measured in RAW counter units to time
565  * in seconds stored in bintime format.
566  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
567  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
568  * extra cycles.
569  */
570 static void
571 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
572 {
573 	struct bintime bt2;
574 	ffcounter delta, delta_max;
575 
576 	delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
577 	bintime_clear(bt);
578 	do {
579 		if (ffdelta > delta_max)
580 			delta = delta_max;
581 		else
582 			delta = ffdelta;
583 		bt2.sec = 0;
584 		bt2.frac = period;
585 		bintime_mul(&bt2, (unsigned int)delta);
586 		bintime_add(bt, &bt2);
587 		ffdelta -= delta;
588 	} while (ffdelta > 0);
589 }
590 
591 /*
592  * Update the fftimehands.
593  * Push the tick ffcount and time(s) forward based on current clock estimate.
594  * The conversion from ffcounter to bintime relies on the difference clock
595  * principle, whose accuracy relies on computing small time intervals. If a new
596  * clock estimate has been passed by the synchronisation daemon, make it
597  * current, and compute the linear interpolation for monotonic time if needed.
598  */
599 static void
600 ffclock_windup(unsigned int delta)
601 {
602 	struct ffclock_estimate *cest;
603 	struct fftimehands *ffth;
604 	struct bintime bt, gap_lerp;
605 	ffcounter ffdelta;
606 	uint64_t frac;
607 	unsigned int polling;
608 	uint8_t forward_jump, ogen;
609 
610 	/*
611 	 * Pick the next timehand, copy current ffclock estimates and move tick
612 	 * times and counter forward.
613 	 */
614 	forward_jump = 0;
615 	ffth = fftimehands->next;
616 	ogen = ffth->gen;
617 	ffth->gen = 0;
618 	cest = &ffth->cest;
619 	bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
620 	ffdelta = (ffcounter)delta;
621 	ffth->period_lerp = fftimehands->period_lerp;
622 
623 	ffth->tick_time = fftimehands->tick_time;
624 	ffclock_convert_delta(ffdelta, cest->period, &bt);
625 	bintime_add(&ffth->tick_time, &bt);
626 
627 	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
628 	ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
629 	bintime_add(&ffth->tick_time_lerp, &bt);
630 
631 	ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
632 
633 	/*
634 	 * Assess the status of the clock, if the last update is too old, it is
635 	 * likely the synchronisation daemon is dead and the clock is free
636 	 * running.
637 	 */
638 	if (ffclock_updated == 0) {
639 		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
640 		ffclock_convert_delta(ffdelta, cest->period, &bt);
641 		if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
642 			ffclock_status |= FFCLOCK_STA_UNSYNC;
643 	}
644 
645 	/*
646 	 * If available, grab updated clock estimates and make them current.
647 	 * Recompute time at this tick using the updated estimates. The clock
648 	 * estimates passed the feed-forward synchronisation daemon may result
649 	 * in time conversion that is not monotonically increasing (just after
650 	 * the update). time_lerp is a particular linear interpolation over the
651 	 * synchronisation algo polling period that ensures monotonicity for the
652 	 * clock ids requesting it.
653 	 */
654 	if (ffclock_updated > 0) {
655 		bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
656 		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
657 		ffth->tick_time = cest->update_time;
658 		ffclock_convert_delta(ffdelta, cest->period, &bt);
659 		bintime_add(&ffth->tick_time, &bt);
660 
661 		/* ffclock_reset sets ffclock_updated to INT8_MAX */
662 		if (ffclock_updated == INT8_MAX)
663 			ffth->tick_time_lerp = ffth->tick_time;
664 
665 		if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
666 			forward_jump = 1;
667 		else
668 			forward_jump = 0;
669 
670 		bintime_clear(&gap_lerp);
671 		if (forward_jump) {
672 			gap_lerp = ffth->tick_time;
673 			bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
674 		} else {
675 			gap_lerp = ffth->tick_time_lerp;
676 			bintime_sub(&gap_lerp, &ffth->tick_time);
677 		}
678 
679 		/*
680 		 * The reset from the RTC clock may be far from accurate, and
681 		 * reducing the gap between real time and interpolated time
682 		 * could take a very long time if the interpolated clock insists
683 		 * on strict monotonicity. The clock is reset under very strict
684 		 * conditions (kernel time is known to be wrong and
685 		 * synchronization daemon has been restarted recently.
686 		 * ffclock_boottime absorbs the jump to ensure boot time is
687 		 * correct and uptime functions stay consistent.
688 		 */
689 		if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
690 		    ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
691 		    ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
692 			if (forward_jump)
693 				bintime_add(&ffclock_boottime, &gap_lerp);
694 			else
695 				bintime_sub(&ffclock_boottime, &gap_lerp);
696 			ffth->tick_time_lerp = ffth->tick_time;
697 			bintime_clear(&gap_lerp);
698 		}
699 
700 		ffclock_status = cest->status;
701 		ffth->period_lerp = cest->period;
702 
703 		/*
704 		 * Compute corrected period used for the linear interpolation of
705 		 * time. The rate of linear interpolation is capped to 5000PPM
706 		 * (5ms/s).
707 		 */
708 		if (bintime_isset(&gap_lerp)) {
709 			ffdelta = cest->update_ffcount;
710 			ffdelta -= fftimehands->cest.update_ffcount;
711 			ffclock_convert_delta(ffdelta, cest->period, &bt);
712 			polling = bt.sec;
713 			bt.sec = 0;
714 			bt.frac = 5000000 * (uint64_t)18446744073LL;
715 			bintime_mul(&bt, polling);
716 			if (bintime_cmp(&gap_lerp, &bt, >))
717 				gap_lerp = bt;
718 
719 			/* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
720 			frac = 0;
721 			if (gap_lerp.sec > 0) {
722 				frac -= 1;
723 				frac /= ffdelta / gap_lerp.sec;
724 			}
725 			frac += gap_lerp.frac / ffdelta;
726 
727 			if (forward_jump)
728 				ffth->period_lerp += frac;
729 			else
730 				ffth->period_lerp -= frac;
731 		}
732 
733 		ffclock_updated = 0;
734 	}
735 	if (++ogen == 0)
736 		ogen = 1;
737 	ffth->gen = ogen;
738 	fftimehands = ffth;
739 }
740 
741 /*
742  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
743  * the old and new hardware counter cannot be read simultaneously. tc_windup()
744  * does read the two counters 'back to back', but a few cycles are effectively
745  * lost, and not accumulated in tick_ffcount. This is a fairly radical
746  * operation for a feed-forward synchronization daemon, and it is its job to not
747  * pushing irrelevant data to the kernel. Because there is no locking here,
748  * simply force to ignore pending or next update to give daemon a chance to
749  * realize the counter has changed.
750  */
751 static void
752 ffclock_change_tc(struct timehands *th)
753 {
754 	struct fftimehands *ffth;
755 	struct ffclock_estimate *cest;
756 	struct timecounter *tc;
757 	uint8_t ogen;
758 
759 	tc = th->th_counter;
760 	ffth = fftimehands->next;
761 	ogen = ffth->gen;
762 	ffth->gen = 0;
763 
764 	cest = &ffth->cest;
765 	bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
766 	cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
767 	cest->errb_abs = 0;
768 	cest->errb_rate = 0;
769 	cest->status |= FFCLOCK_STA_UNSYNC;
770 
771 	ffth->tick_ffcount = fftimehands->tick_ffcount;
772 	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
773 	ffth->tick_time = fftimehands->tick_time;
774 	ffth->period_lerp = cest->period;
775 
776 	/* Do not lock but ignore next update from synchronization daemon. */
777 	ffclock_updated--;
778 
779 	if (++ogen == 0)
780 		ogen = 1;
781 	ffth->gen = ogen;
782 	fftimehands = ffth;
783 }
784 
785 /*
786  * Retrieve feed-forward counter and time of last kernel tick.
787  */
788 void
789 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
790 {
791 	struct fftimehands *ffth;
792 	uint8_t gen;
793 
794 	/*
795 	 * No locking but check generation has not changed. Also need to make
796 	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
797 	 */
798 	do {
799 		ffth = fftimehands;
800 		gen = ffth->gen;
801 		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
802 			*bt = ffth->tick_time_lerp;
803 		else
804 			*bt = ffth->tick_time;
805 		*ffcount = ffth->tick_ffcount;
806 	} while (gen == 0 || gen != ffth->gen);
807 }
808 
809 /*
810  * Absolute clock conversion. Low level function to convert ffcounter to
811  * bintime. The ffcounter is converted using the current ffclock period estimate
812  * or the "interpolated period" to ensure monotonicity.
813  * NOTE: this conversion may have been deferred, and the clock updated since the
814  * hardware counter has been read.
815  */
816 void
817 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
818 {
819 	struct fftimehands *ffth;
820 	struct bintime bt2;
821 	ffcounter ffdelta;
822 	uint8_t gen;
823 
824 	/*
825 	 * No locking but check generation has not changed. Also need to make
826 	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
827 	 */
828 	do {
829 		ffth = fftimehands;
830 		gen = ffth->gen;
831 		if (ffcount > ffth->tick_ffcount)
832 			ffdelta = ffcount - ffth->tick_ffcount;
833 		else
834 			ffdelta = ffth->tick_ffcount - ffcount;
835 
836 		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
837 			*bt = ffth->tick_time_lerp;
838 			ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
839 		} else {
840 			*bt = ffth->tick_time;
841 			ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
842 		}
843 
844 		if (ffcount > ffth->tick_ffcount)
845 			bintime_add(bt, &bt2);
846 		else
847 			bintime_sub(bt, &bt2);
848 	} while (gen == 0 || gen != ffth->gen);
849 }
850 
851 /*
852  * Difference clock conversion.
853  * Low level function to Convert a time interval measured in RAW counter units
854  * into bintime. The difference clock allows measuring small intervals much more
855  * reliably than the absolute clock.
856  */
857 void
858 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
859 {
860 	struct fftimehands *ffth;
861 	uint8_t gen;
862 
863 	/* No locking but check generation has not changed. */
864 	do {
865 		ffth = fftimehands;
866 		gen = ffth->gen;
867 		ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
868 	} while (gen == 0 || gen != ffth->gen);
869 }
870 
871 /*
872  * Access to current ffcounter value.
873  */
874 void
875 ffclock_read_counter(ffcounter *ffcount)
876 {
877 	struct timehands *th;
878 	struct fftimehands *ffth;
879 	unsigned int gen, delta;
880 
881 	/*
882 	 * ffclock_windup() called from tc_windup(), safe to rely on
883 	 * th->th_generation only, for correct delta and ffcounter.
884 	 */
885 	do {
886 		th = timehands;
887 		gen = atomic_load_acq_int(&th->th_generation);
888 		ffth = fftimehands;
889 		delta = tc_delta(th);
890 		*ffcount = ffth->tick_ffcount;
891 		atomic_thread_fence_acq();
892 	} while (gen == 0 || gen != th->th_generation);
893 
894 	*ffcount += delta;
895 }
896 
897 void
898 binuptime(struct bintime *bt)
899 {
900 
901 	binuptime_fromclock(bt, sysclock_active);
902 }
903 
904 void
905 nanouptime(struct timespec *tsp)
906 {
907 
908 	nanouptime_fromclock(tsp, sysclock_active);
909 }
910 
911 void
912 microuptime(struct timeval *tvp)
913 {
914 
915 	microuptime_fromclock(tvp, sysclock_active);
916 }
917 
918 void
919 bintime(struct bintime *bt)
920 {
921 
922 	bintime_fromclock(bt, sysclock_active);
923 }
924 
925 void
926 nanotime(struct timespec *tsp)
927 {
928 
929 	nanotime_fromclock(tsp, sysclock_active);
930 }
931 
932 void
933 microtime(struct timeval *tvp)
934 {
935 
936 	microtime_fromclock(tvp, sysclock_active);
937 }
938 
939 void
940 getbinuptime(struct bintime *bt)
941 {
942 
943 	getbinuptime_fromclock(bt, sysclock_active);
944 }
945 
946 void
947 getnanouptime(struct timespec *tsp)
948 {
949 
950 	getnanouptime_fromclock(tsp, sysclock_active);
951 }
952 
953 void
954 getmicrouptime(struct timeval *tvp)
955 {
956 
957 	getmicrouptime_fromclock(tvp, sysclock_active);
958 }
959 
960 void
961 getbintime(struct bintime *bt)
962 {
963 
964 	getbintime_fromclock(bt, sysclock_active);
965 }
966 
967 void
968 getnanotime(struct timespec *tsp)
969 {
970 
971 	getnanotime_fromclock(tsp, sysclock_active);
972 }
973 
974 void
975 getmicrotime(struct timeval *tvp)
976 {
977 
978 	getmicrouptime_fromclock(tvp, sysclock_active);
979 }
980 
981 #endif /* FFCLOCK */
982 
983 /*
984  * This is a clone of getnanotime and used for walltimestamps.
985  * The dtrace_ prefix prevents fbt from creating probes for
986  * it so walltimestamp can be safely used in all fbt probes.
987  */
988 void
989 dtrace_getnanotime(struct timespec *tsp)
990 {
991 
992 	GETTHMEMBER(tsp, th_nanotime);
993 }
994 
995 /*
996  * System clock currently providing time to the system. Modifiable via sysctl
997  * when the FFCLOCK option is defined.
998  */
999 int sysclock_active = SYSCLOCK_FBCK;
1000 
1001 /* Internal NTP status and error estimates. */
1002 extern int time_status;
1003 extern long time_esterror;
1004 
1005 /*
1006  * Take a snapshot of sysclock data which can be used to compare system clocks
1007  * and generate timestamps after the fact.
1008  */
1009 void
1010 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1011 {
1012 	struct fbclock_info *fbi;
1013 	struct timehands *th;
1014 	struct bintime bt;
1015 	unsigned int delta, gen;
1016 #ifdef FFCLOCK
1017 	ffcounter ffcount;
1018 	struct fftimehands *ffth;
1019 	struct ffclock_info *ffi;
1020 	struct ffclock_estimate cest;
1021 
1022 	ffi = &clock_snap->ff_info;
1023 #endif
1024 
1025 	fbi = &clock_snap->fb_info;
1026 	delta = 0;
1027 
1028 	do {
1029 		th = timehands;
1030 		gen = atomic_load_acq_int(&th->th_generation);
1031 		fbi->th_scale = th->th_scale;
1032 		fbi->tick_time = th->th_offset;
1033 #ifdef FFCLOCK
1034 		ffth = fftimehands;
1035 		ffi->tick_time = ffth->tick_time_lerp;
1036 		ffi->tick_time_lerp = ffth->tick_time_lerp;
1037 		ffi->period = ffth->cest.period;
1038 		ffi->period_lerp = ffth->period_lerp;
1039 		clock_snap->ffcount = ffth->tick_ffcount;
1040 		cest = ffth->cest;
1041 #endif
1042 		if (!fast)
1043 			delta = tc_delta(th);
1044 		atomic_thread_fence_acq();
1045 	} while (gen == 0 || gen != th->th_generation);
1046 
1047 	clock_snap->delta = delta;
1048 	clock_snap->sysclock_active = sysclock_active;
1049 
1050 	/* Record feedback clock status and error. */
1051 	clock_snap->fb_info.status = time_status;
1052 	/* XXX: Very crude estimate of feedback clock error. */
1053 	bt.sec = time_esterror / 1000000;
1054 	bt.frac = ((time_esterror - bt.sec) * 1000000) *
1055 	    (uint64_t)18446744073709ULL;
1056 	clock_snap->fb_info.error = bt;
1057 
1058 #ifdef FFCLOCK
1059 	if (!fast)
1060 		clock_snap->ffcount += delta;
1061 
1062 	/* Record feed-forward clock leap second adjustment. */
1063 	ffi->leapsec_adjustment = cest.leapsec_total;
1064 	if (clock_snap->ffcount > cest.leapsec_next)
1065 		ffi->leapsec_adjustment -= cest.leapsec;
1066 
1067 	/* Record feed-forward clock status and error. */
1068 	clock_snap->ff_info.status = cest.status;
1069 	ffcount = clock_snap->ffcount - cest.update_ffcount;
1070 	ffclock_convert_delta(ffcount, cest.period, &bt);
1071 	/* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1072 	bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1073 	/* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1074 	bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1075 	clock_snap->ff_info.error = bt;
1076 #endif
1077 }
1078 
1079 /*
1080  * Convert a sysclock snapshot into a struct bintime based on the specified
1081  * clock source and flags.
1082  */
1083 int
1084 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1085     int whichclock, uint32_t flags)
1086 {
1087 	struct bintime boottimebin;
1088 #ifdef FFCLOCK
1089 	struct bintime bt2;
1090 	uint64_t period;
1091 #endif
1092 
1093 	switch (whichclock) {
1094 	case SYSCLOCK_FBCK:
1095 		*bt = cs->fb_info.tick_time;
1096 
1097 		/* If snapshot was created with !fast, delta will be >0. */
1098 		if (cs->delta > 0)
1099 			bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1100 
1101 		if ((flags & FBCLOCK_UPTIME) == 0) {
1102 			getboottimebin(&boottimebin);
1103 			bintime_add(bt, &boottimebin);
1104 		}
1105 		break;
1106 #ifdef FFCLOCK
1107 	case SYSCLOCK_FFWD:
1108 		if (flags & FFCLOCK_LERP) {
1109 			*bt = cs->ff_info.tick_time_lerp;
1110 			period = cs->ff_info.period_lerp;
1111 		} else {
1112 			*bt = cs->ff_info.tick_time;
1113 			period = cs->ff_info.period;
1114 		}
1115 
1116 		/* If snapshot was created with !fast, delta will be >0. */
1117 		if (cs->delta > 0) {
1118 			ffclock_convert_delta(cs->delta, period, &bt2);
1119 			bintime_add(bt, &bt2);
1120 		}
1121 
1122 		/* Leap second adjustment. */
1123 		if (flags & FFCLOCK_LEAPSEC)
1124 			bt->sec -= cs->ff_info.leapsec_adjustment;
1125 
1126 		/* Boot time adjustment, for uptime/monotonic clocks. */
1127 		if (flags & FFCLOCK_UPTIME)
1128 			bintime_sub(bt, &ffclock_boottime);
1129 		break;
1130 #endif
1131 	default:
1132 		return (EINVAL);
1133 		break;
1134 	}
1135 
1136 	return (0);
1137 }
1138 
1139 /*
1140  * Initialize a new timecounter and possibly use it.
1141  */
1142 void
1143 tc_init(struct timecounter *tc)
1144 {
1145 	u_int u;
1146 	struct sysctl_oid *tc_root;
1147 
1148 	u = tc->tc_frequency / tc->tc_counter_mask;
1149 	/* XXX: We need some margin here, 10% is a guess */
1150 	u *= 11;
1151 	u /= 10;
1152 	if (u > hz && tc->tc_quality >= 0) {
1153 		tc->tc_quality = -2000;
1154 		if (bootverbose) {
1155 			printf("Timecounter \"%s\" frequency %ju Hz",
1156 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
1157 			printf(" -- Insufficient hz, needs at least %u\n", u);
1158 		}
1159 	} else if (tc->tc_quality >= 0 || bootverbose) {
1160 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1161 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
1162 		    tc->tc_quality);
1163 	}
1164 
1165 	tc->tc_next = timecounters;
1166 	timecounters = tc;
1167 	/*
1168 	 * Set up sysctl tree for this counter.
1169 	 */
1170 	tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL,
1171 	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1172 	    CTLFLAG_RW, 0, "timecounter description", "timecounter");
1173 	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1174 	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1175 	    "mask for implemented bits");
1176 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1177 	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1178 	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
1179 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1180 	    "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1181 	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1182 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1183 	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1184 	    "goodness of time counter");
1185 	/*
1186 	 * Do not automatically switch if the current tc was specifically
1187 	 * chosen.  Never automatically use a timecounter with negative quality.
1188 	 * Even though we run on the dummy counter, switching here may be
1189 	 * worse since this timecounter may not be monotonic.
1190 	 */
1191 	if (tc_chosen)
1192 		return;
1193 	if (tc->tc_quality < 0)
1194 		return;
1195 	if (tc->tc_quality < timecounter->tc_quality)
1196 		return;
1197 	if (tc->tc_quality == timecounter->tc_quality &&
1198 	    tc->tc_frequency < timecounter->tc_frequency)
1199 		return;
1200 	(void)tc->tc_get_timecount(tc);
1201 	(void)tc->tc_get_timecount(tc);
1202 	timecounter = tc;
1203 }
1204 
1205 /* Report the frequency of the current timecounter. */
1206 uint64_t
1207 tc_getfrequency(void)
1208 {
1209 
1210 	return (timehands->th_counter->tc_frequency);
1211 }
1212 
1213 static bool
1214 sleeping_on_old_rtc(struct thread *td)
1215 {
1216 
1217 	/*
1218 	 * td_rtcgen is modified by curthread when it is running,
1219 	 * and by other threads in this function.  By finding the thread
1220 	 * on a sleepqueue and holding the lock on the sleepqueue
1221 	 * chain, we guarantee that the thread is not running and that
1222 	 * modifying td_rtcgen is safe.  Setting td_rtcgen to zero informs
1223 	 * the thread that it was woken due to a real-time clock adjustment.
1224 	 * (The declaration of td_rtcgen refers to this comment.)
1225 	 */
1226 	if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) {
1227 		td->td_rtcgen = 0;
1228 		return (true);
1229 	}
1230 	return (false);
1231 }
1232 
1233 static struct mtx tc_setclock_mtx;
1234 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);
1235 
1236 /*
1237  * Step our concept of UTC.  This is done by modifying our estimate of
1238  * when we booted.
1239  */
1240 void
1241 tc_setclock(struct timespec *ts)
1242 {
1243 	struct timespec tbef, taft;
1244 	struct bintime bt, bt2;
1245 
1246 	timespec2bintime(ts, &bt);
1247 	nanotime(&tbef);
1248 	mtx_lock_spin(&tc_setclock_mtx);
1249 	cpu_tick_calibrate(1);
1250 	binuptime(&bt2);
1251 	bintime_sub(&bt, &bt2);
1252 
1253 	/* XXX fiddle all the little crinkly bits around the fiords... */
1254 	tc_windup(&bt);
1255 	mtx_unlock_spin(&tc_setclock_mtx);
1256 
1257 	/* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */
1258 	atomic_add_rel_int(&rtc_generation, 2);
1259 	sleepq_chains_remove_matching(sleeping_on_old_rtc);
1260 	if (timestepwarnings) {
1261 		nanotime(&taft);
1262 		log(LOG_INFO,
1263 		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1264 		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1265 		    (intmax_t)taft.tv_sec, taft.tv_nsec,
1266 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
1267 	}
1268 }
1269 
1270 /*
1271  * Initialize the next struct timehands in the ring and make
1272  * it the active timehands.  Along the way we might switch to a different
1273  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1274  */
1275 static void
1276 tc_windup(struct bintime *new_boottimebin)
1277 {
1278 	struct bintime bt;
1279 	struct timehands *th, *tho;
1280 	uint64_t scale;
1281 	u_int delta, ncount, ogen;
1282 	int i;
1283 	time_t t;
1284 
1285 	/*
1286 	 * Make the next timehands a copy of the current one, but do
1287 	 * not overwrite the generation or next pointer.  While we
1288 	 * update the contents, the generation must be zero.  We need
1289 	 * to ensure that the zero generation is visible before the
1290 	 * data updates become visible, which requires release fence.
1291 	 * For similar reasons, re-reading of the generation after the
1292 	 * data is read should use acquire fence.
1293 	 */
1294 	tho = timehands;
1295 	th = tho->th_next;
1296 	ogen = th->th_generation;
1297 	th->th_generation = 0;
1298 	atomic_thread_fence_rel();
1299 	memcpy(th, tho, offsetof(struct timehands, th_generation));
1300 	if (new_boottimebin != NULL)
1301 		th->th_boottime = *new_boottimebin;
1302 
1303 	/*
1304 	 * Capture a timecounter delta on the current timecounter and if
1305 	 * changing timecounters, a counter value from the new timecounter.
1306 	 * Update the offset fields accordingly.
1307 	 */
1308 	delta = tc_delta(th);
1309 	if (th->th_counter != timecounter)
1310 		ncount = timecounter->tc_get_timecount(timecounter);
1311 	else
1312 		ncount = 0;
1313 #ifdef FFCLOCK
1314 	ffclock_windup(delta);
1315 #endif
1316 	th->th_offset_count += delta;
1317 	th->th_offset_count &= th->th_counter->tc_counter_mask;
1318 	while (delta > th->th_counter->tc_frequency) {
1319 		/* Eat complete unadjusted seconds. */
1320 		delta -= th->th_counter->tc_frequency;
1321 		th->th_offset.sec++;
1322 	}
1323 	if ((delta > th->th_counter->tc_frequency / 2) &&
1324 	    (th->th_scale * delta < ((uint64_t)1 << 63))) {
1325 		/* The product th_scale * delta just barely overflows. */
1326 		th->th_offset.sec++;
1327 	}
1328 	bintime_addx(&th->th_offset, th->th_scale * delta);
1329 
1330 	/*
1331 	 * Hardware latching timecounters may not generate interrupts on
1332 	 * PPS events, so instead we poll them.  There is a finite risk that
1333 	 * the hardware might capture a count which is later than the one we
1334 	 * got above, and therefore possibly in the next NTP second which might
1335 	 * have a different rate than the current NTP second.  It doesn't
1336 	 * matter in practice.
1337 	 */
1338 	if (tho->th_counter->tc_poll_pps)
1339 		tho->th_counter->tc_poll_pps(tho->th_counter);
1340 
1341 	/*
1342 	 * Deal with NTP second processing.  The for loop normally
1343 	 * iterates at most once, but in extreme situations it might
1344 	 * keep NTP sane if timeouts are not run for several seconds.
1345 	 * At boot, the time step can be large when the TOD hardware
1346 	 * has been read, so on really large steps, we call
1347 	 * ntp_update_second only twice.  We need to call it twice in
1348 	 * case we missed a leap second.
1349 	 */
1350 	bt = th->th_offset;
1351 	bintime_add(&bt, &th->th_boottime);
1352 	i = bt.sec - tho->th_microtime.tv_sec;
1353 	if (i > LARGE_STEP)
1354 		i = 2;
1355 	for (; i > 0; i--) {
1356 		t = bt.sec;
1357 		ntp_update_second(&th->th_adjustment, &bt.sec);
1358 		if (bt.sec != t)
1359 			th->th_boottime.sec += bt.sec - t;
1360 	}
1361 	/* Update the UTC timestamps used by the get*() functions. */
1362 	th->th_bintime = bt;
1363 	bintime2timeval(&bt, &th->th_microtime);
1364 	bintime2timespec(&bt, &th->th_nanotime);
1365 
1366 	/* Now is a good time to change timecounters. */
1367 	if (th->th_counter != timecounter) {
1368 #ifndef __arm__
1369 		if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1370 			cpu_disable_c2_sleep++;
1371 		if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1372 			cpu_disable_c2_sleep--;
1373 #endif
1374 		th->th_counter = timecounter;
1375 		th->th_offset_count = ncount;
1376 		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1377 		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1378 #ifdef FFCLOCK
1379 		ffclock_change_tc(th);
1380 #endif
1381 	}
1382 
1383 	/*-
1384 	 * Recalculate the scaling factor.  We want the number of 1/2^64
1385 	 * fractions of a second per period of the hardware counter, taking
1386 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1387 	 * processing provides us with.
1388 	 *
1389 	 * The th_adjustment is nanoseconds per second with 32 bit binary
1390 	 * fraction and we want 64 bit binary fraction of second:
1391 	 *
1392 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
1393 	 *
1394 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1395 	 * we can only multiply by about 850 without overflowing, that
1396 	 * leaves no suitably precise fractions for multiply before divide.
1397 	 *
1398 	 * Divide before multiply with a fraction of 2199/512 results in a
1399 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
1400 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1401  	 *
1402 	 * We happily sacrifice the lowest of the 64 bits of our result
1403 	 * to the goddess of code clarity.
1404 	 *
1405 	 */
1406 	scale = (uint64_t)1 << 63;
1407 	scale += (th->th_adjustment / 1024) * 2199;
1408 	scale /= th->th_counter->tc_frequency;
1409 	th->th_scale = scale * 2;
1410 	th->th_large_delta = MIN(((uint64_t)1 << 63) / scale, UINT_MAX);
1411 
1412 	/*
1413 	 * Now that the struct timehands is again consistent, set the new
1414 	 * generation number, making sure to not make it zero.
1415 	 */
1416 	if (++ogen == 0)
1417 		ogen = 1;
1418 	atomic_store_rel_int(&th->th_generation, ogen);
1419 
1420 	/* Go live with the new struct timehands. */
1421 #ifdef FFCLOCK
1422 	switch (sysclock_active) {
1423 	case SYSCLOCK_FBCK:
1424 #endif
1425 		time_second = th->th_microtime.tv_sec;
1426 		time_uptime = th->th_offset.sec;
1427 #ifdef FFCLOCK
1428 		break;
1429 	case SYSCLOCK_FFWD:
1430 		time_second = fftimehands->tick_time_lerp.sec;
1431 		time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1432 		break;
1433 	}
1434 #endif
1435 
1436 	timehands = th;
1437 	timekeep_push_vdso();
1438 }
1439 
1440 /* Report or change the active timecounter hardware. */
1441 static int
1442 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1443 {
1444 	char newname[32];
1445 	struct timecounter *newtc, *tc;
1446 	int error;
1447 
1448 	tc = timecounter;
1449 	strlcpy(newname, tc->tc_name, sizeof(newname));
1450 
1451 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1452 	if (error != 0 || req->newptr == NULL)
1453 		return (error);
1454 	/* Record that the tc in use now was specifically chosen. */
1455 	tc_chosen = 1;
1456 	if (strcmp(newname, tc->tc_name) == 0)
1457 		return (0);
1458 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1459 		if (strcmp(newname, newtc->tc_name) != 0)
1460 			continue;
1461 
1462 		/* Warm up new timecounter. */
1463 		(void)newtc->tc_get_timecount(newtc);
1464 		(void)newtc->tc_get_timecount(newtc);
1465 
1466 		timecounter = newtc;
1467 
1468 		/*
1469 		 * The vdso timehands update is deferred until the next
1470 		 * 'tc_windup()'.
1471 		 *
1472 		 * This is prudent given that 'timekeep_push_vdso()' does not
1473 		 * use any locking and that it can be called in hard interrupt
1474 		 * context via 'tc_windup()'.
1475 		 */
1476 		return (0);
1477 	}
1478 	return (EINVAL);
1479 }
1480 
1481 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1482     0, 0, sysctl_kern_timecounter_hardware, "A",
1483     "Timecounter hardware selected");
1484 
1485 /* Report the available timecounter hardware. */
1486 static int
1487 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1488 {
1489 	struct sbuf sb;
1490 	struct timecounter *tc;
1491 	int error;
1492 
1493 	sbuf_new_for_sysctl(&sb, NULL, 0, req);
1494 	for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1495 		if (tc != timecounters)
1496 			sbuf_putc(&sb, ' ');
1497 		sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1498 	}
1499 	error = sbuf_finish(&sb);
1500 	sbuf_delete(&sb);
1501 	return (error);
1502 }
1503 
1504 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1505     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1506 
1507 /*
1508  * RFC 2783 PPS-API implementation.
1509  */
1510 
1511 /*
1512  *  Return true if the driver is aware of the abi version extensions in the
1513  *  pps_state structure, and it supports at least the given abi version number.
1514  */
1515 static inline int
1516 abi_aware(struct pps_state *pps, int vers)
1517 {
1518 
1519 	return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1520 }
1521 
1522 static int
1523 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1524 {
1525 	int err, timo;
1526 	pps_seq_t aseq, cseq;
1527 	struct timeval tv;
1528 
1529 	if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1530 		return (EINVAL);
1531 
1532 	/*
1533 	 * If no timeout is requested, immediately return whatever values were
1534 	 * most recently captured.  If timeout seconds is -1, that's a request
1535 	 * to block without a timeout.  WITNESS won't let us sleep forever
1536 	 * without a lock (we really don't need a lock), so just repeatedly
1537 	 * sleep a long time.
1538 	 */
1539 	if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1540 		if (fapi->timeout.tv_sec == -1)
1541 			timo = 0x7fffffff;
1542 		else {
1543 			tv.tv_sec = fapi->timeout.tv_sec;
1544 			tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1545 			timo = tvtohz(&tv);
1546 		}
1547 		aseq = atomic_load_int(&pps->ppsinfo.assert_sequence);
1548 		cseq = atomic_load_int(&pps->ppsinfo.clear_sequence);
1549 		while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) &&
1550 		    cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) {
1551 			if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1552 				if (pps->flags & PPSFLAG_MTX_SPIN) {
1553 					err = msleep_spin(pps, pps->driver_mtx,
1554 					    "ppsfch", timo);
1555 				} else {
1556 					err = msleep(pps, pps->driver_mtx, PCATCH,
1557 					    "ppsfch", timo);
1558 				}
1559 			} else {
1560 				err = tsleep(pps, PCATCH, "ppsfch", timo);
1561 			}
1562 			if (err == EWOULDBLOCK) {
1563 				if (fapi->timeout.tv_sec == -1) {
1564 					continue;
1565 				} else {
1566 					return (ETIMEDOUT);
1567 				}
1568 			} else if (err != 0) {
1569 				return (err);
1570 			}
1571 		}
1572 	}
1573 
1574 	pps->ppsinfo.current_mode = pps->ppsparam.mode;
1575 	fapi->pps_info_buf = pps->ppsinfo;
1576 
1577 	return (0);
1578 }
1579 
1580 int
1581 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1582 {
1583 	pps_params_t *app;
1584 	struct pps_fetch_args *fapi;
1585 #ifdef FFCLOCK
1586 	struct pps_fetch_ffc_args *fapi_ffc;
1587 #endif
1588 #ifdef PPS_SYNC
1589 	struct pps_kcbind_args *kapi;
1590 #endif
1591 
1592 	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1593 	switch (cmd) {
1594 	case PPS_IOC_CREATE:
1595 		return (0);
1596 	case PPS_IOC_DESTROY:
1597 		return (0);
1598 	case PPS_IOC_SETPARAMS:
1599 		app = (pps_params_t *)data;
1600 		if (app->mode & ~pps->ppscap)
1601 			return (EINVAL);
1602 #ifdef FFCLOCK
1603 		/* Ensure only a single clock is selected for ffc timestamp. */
1604 		if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1605 			return (EINVAL);
1606 #endif
1607 		pps->ppsparam = *app;
1608 		return (0);
1609 	case PPS_IOC_GETPARAMS:
1610 		app = (pps_params_t *)data;
1611 		*app = pps->ppsparam;
1612 		app->api_version = PPS_API_VERS_1;
1613 		return (0);
1614 	case PPS_IOC_GETCAP:
1615 		*(int*)data = pps->ppscap;
1616 		return (0);
1617 	case PPS_IOC_FETCH:
1618 		fapi = (struct pps_fetch_args *)data;
1619 		return (pps_fetch(fapi, pps));
1620 #ifdef FFCLOCK
1621 	case PPS_IOC_FETCH_FFCOUNTER:
1622 		fapi_ffc = (struct pps_fetch_ffc_args *)data;
1623 		if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1624 		    PPS_TSFMT_TSPEC)
1625 			return (EINVAL);
1626 		if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1627 			return (EOPNOTSUPP);
1628 		pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1629 		fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1630 		/* Overwrite timestamps if feedback clock selected. */
1631 		switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1632 		case PPS_TSCLK_FBCK:
1633 			fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1634 			    pps->ppsinfo.assert_timestamp;
1635 			fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1636 			    pps->ppsinfo.clear_timestamp;
1637 			break;
1638 		case PPS_TSCLK_FFWD:
1639 			break;
1640 		default:
1641 			break;
1642 		}
1643 		return (0);
1644 #endif /* FFCLOCK */
1645 	case PPS_IOC_KCBIND:
1646 #ifdef PPS_SYNC
1647 		kapi = (struct pps_kcbind_args *)data;
1648 		/* XXX Only root should be able to do this */
1649 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1650 			return (EINVAL);
1651 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1652 			return (EINVAL);
1653 		if (kapi->edge & ~pps->ppscap)
1654 			return (EINVAL);
1655 		pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1656 		    (pps->kcmode & KCMODE_ABIFLAG);
1657 		return (0);
1658 #else
1659 		return (EOPNOTSUPP);
1660 #endif
1661 	default:
1662 		return (ENOIOCTL);
1663 	}
1664 }
1665 
1666 void
1667 pps_init(struct pps_state *pps)
1668 {
1669 	pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1670 	if (pps->ppscap & PPS_CAPTUREASSERT)
1671 		pps->ppscap |= PPS_OFFSETASSERT;
1672 	if (pps->ppscap & PPS_CAPTURECLEAR)
1673 		pps->ppscap |= PPS_OFFSETCLEAR;
1674 #ifdef FFCLOCK
1675 	pps->ppscap |= PPS_TSCLK_MASK;
1676 #endif
1677 	pps->kcmode &= ~KCMODE_ABIFLAG;
1678 }
1679 
1680 void
1681 pps_init_abi(struct pps_state *pps)
1682 {
1683 
1684 	pps_init(pps);
1685 	if (pps->driver_abi > 0) {
1686 		pps->kcmode |= KCMODE_ABIFLAG;
1687 		pps->kernel_abi = PPS_ABI_VERSION;
1688 	}
1689 }
1690 
1691 void
1692 pps_capture(struct pps_state *pps)
1693 {
1694 	struct timehands *th;
1695 
1696 	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1697 	th = timehands;
1698 	pps->capgen = atomic_load_acq_int(&th->th_generation);
1699 	pps->capth = th;
1700 #ifdef FFCLOCK
1701 	pps->capffth = fftimehands;
1702 #endif
1703 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1704 	atomic_thread_fence_acq();
1705 	if (pps->capgen != th->th_generation)
1706 		pps->capgen = 0;
1707 }
1708 
1709 void
1710 pps_event(struct pps_state *pps, int event)
1711 {
1712 	struct bintime bt;
1713 	struct timespec ts, *tsp, *osp;
1714 	u_int tcount, *pcount;
1715 	int foff;
1716 	pps_seq_t *pseq;
1717 #ifdef FFCLOCK
1718 	struct timespec *tsp_ffc;
1719 	pps_seq_t *pseq_ffc;
1720 	ffcounter *ffcount;
1721 #endif
1722 #ifdef PPS_SYNC
1723 	int fhard;
1724 #endif
1725 
1726 	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1727 	/* Nothing to do if not currently set to capture this event type. */
1728 	if ((event & pps->ppsparam.mode) == 0)
1729 		return;
1730 	/* If the timecounter was wound up underneath us, bail out. */
1731 	if (pps->capgen == 0 || pps->capgen !=
1732 	    atomic_load_acq_int(&pps->capth->th_generation))
1733 		return;
1734 
1735 	/* Things would be easier with arrays. */
1736 	if (event == PPS_CAPTUREASSERT) {
1737 		tsp = &pps->ppsinfo.assert_timestamp;
1738 		osp = &pps->ppsparam.assert_offset;
1739 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1740 #ifdef PPS_SYNC
1741 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1742 #endif
1743 		pcount = &pps->ppscount[0];
1744 		pseq = &pps->ppsinfo.assert_sequence;
1745 #ifdef FFCLOCK
1746 		ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1747 		tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1748 		pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1749 #endif
1750 	} else {
1751 		tsp = &pps->ppsinfo.clear_timestamp;
1752 		osp = &pps->ppsparam.clear_offset;
1753 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1754 #ifdef PPS_SYNC
1755 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1756 #endif
1757 		pcount = &pps->ppscount[1];
1758 		pseq = &pps->ppsinfo.clear_sequence;
1759 #ifdef FFCLOCK
1760 		ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1761 		tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1762 		pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1763 #endif
1764 	}
1765 
1766 	/*
1767 	 * If the timecounter changed, we cannot compare the count values, so
1768 	 * we have to drop the rest of the PPS-stuff until the next event.
1769 	 */
1770 	if (pps->ppstc != pps->capth->th_counter) {
1771 		pps->ppstc = pps->capth->th_counter;
1772 		*pcount = pps->capcount;
1773 		pps->ppscount[2] = pps->capcount;
1774 		return;
1775 	}
1776 
1777 	/* Convert the count to a timespec. */
1778 	tcount = pps->capcount - pps->capth->th_offset_count;
1779 	tcount &= pps->capth->th_counter->tc_counter_mask;
1780 	bt = pps->capth->th_bintime;
1781 	bintime_addx(&bt, pps->capth->th_scale * tcount);
1782 	bintime2timespec(&bt, &ts);
1783 
1784 	/* If the timecounter was wound up underneath us, bail out. */
1785 	atomic_thread_fence_acq();
1786 	if (pps->capgen != pps->capth->th_generation)
1787 		return;
1788 
1789 	*pcount = pps->capcount;
1790 	(*pseq)++;
1791 	*tsp = ts;
1792 
1793 	if (foff) {
1794 		timespecadd(tsp, osp, tsp);
1795 		if (tsp->tv_nsec < 0) {
1796 			tsp->tv_nsec += 1000000000;
1797 			tsp->tv_sec -= 1;
1798 		}
1799 	}
1800 
1801 #ifdef FFCLOCK
1802 	*ffcount = pps->capffth->tick_ffcount + tcount;
1803 	bt = pps->capffth->tick_time;
1804 	ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1805 	bintime_add(&bt, &pps->capffth->tick_time);
1806 	bintime2timespec(&bt, &ts);
1807 	(*pseq_ffc)++;
1808 	*tsp_ffc = ts;
1809 #endif
1810 
1811 #ifdef PPS_SYNC
1812 	if (fhard) {
1813 		uint64_t scale;
1814 
1815 		/*
1816 		 * Feed the NTP PLL/FLL.
1817 		 * The FLL wants to know how many (hardware) nanoseconds
1818 		 * elapsed since the previous event.
1819 		 */
1820 		tcount = pps->capcount - pps->ppscount[2];
1821 		pps->ppscount[2] = pps->capcount;
1822 		tcount &= pps->capth->th_counter->tc_counter_mask;
1823 		scale = (uint64_t)1 << 63;
1824 		scale /= pps->capth->th_counter->tc_frequency;
1825 		scale *= 2;
1826 		bt.sec = 0;
1827 		bt.frac = 0;
1828 		bintime_addx(&bt, scale * tcount);
1829 		bintime2timespec(&bt, &ts);
1830 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1831 	}
1832 #endif
1833 
1834 	/* Wakeup anyone sleeping in pps_fetch().  */
1835 	wakeup(pps);
1836 }
1837 
1838 /*
1839  * Timecounters need to be updated every so often to prevent the hardware
1840  * counter from overflowing.  Updating also recalculates the cached values
1841  * used by the get*() family of functions, so their precision depends on
1842  * the update frequency.
1843  */
1844 
1845 static int tc_tick;
1846 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1847     "Approximate number of hardclock ticks in a millisecond");
1848 
1849 void
1850 tc_ticktock(int cnt)
1851 {
1852 	static int count;
1853 
1854 	if (mtx_trylock_spin(&tc_setclock_mtx)) {
1855 		count += cnt;
1856 		if (count >= tc_tick) {
1857 			count = 0;
1858 			tc_windup(NULL);
1859 		}
1860 		mtx_unlock_spin(&tc_setclock_mtx);
1861 	}
1862 }
1863 
1864 static void __inline
1865 tc_adjprecision(void)
1866 {
1867 	int t;
1868 
1869 	if (tc_timepercentage > 0) {
1870 		t = (99 + tc_timepercentage) / tc_timepercentage;
1871 		tc_precexp = fls(t + (t >> 1)) - 1;
1872 		FREQ2BT(hz / tc_tick, &bt_timethreshold);
1873 		FREQ2BT(hz, &bt_tickthreshold);
1874 		bintime_shift(&bt_timethreshold, tc_precexp);
1875 		bintime_shift(&bt_tickthreshold, tc_precexp);
1876 	} else {
1877 		tc_precexp = 31;
1878 		bt_timethreshold.sec = INT_MAX;
1879 		bt_timethreshold.frac = ~(uint64_t)0;
1880 		bt_tickthreshold = bt_timethreshold;
1881 	}
1882 	sbt_timethreshold = bttosbt(bt_timethreshold);
1883 	sbt_tickthreshold = bttosbt(bt_tickthreshold);
1884 }
1885 
1886 static int
1887 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1888 {
1889 	int error, val;
1890 
1891 	val = tc_timepercentage;
1892 	error = sysctl_handle_int(oidp, &val, 0, req);
1893 	if (error != 0 || req->newptr == NULL)
1894 		return (error);
1895 	tc_timepercentage = val;
1896 	if (cold)
1897 		goto done;
1898 	tc_adjprecision();
1899 done:
1900 	return (0);
1901 }
1902 
1903 /* Set up the requested number of timehands. */
1904 static void
1905 inittimehands(void *dummy)
1906 {
1907 	struct timehands *thp;
1908 	int i;
1909 
1910 	TUNABLE_INT_FETCH("kern.timecounter.timehands_count",
1911 	    &timehands_count);
1912 	if (timehands_count < 1)
1913 		timehands_count = 1;
1914 	if (timehands_count > nitems(ths))
1915 		timehands_count = nitems(ths);
1916 	for (i = 1, thp = &ths[0]; i < timehands_count;  thp = &ths[i++])
1917 		thp->th_next = &ths[i];
1918 	thp->th_next = &ths[0];
1919 }
1920 SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL);
1921 
1922 static void
1923 inittimecounter(void *dummy)
1924 {
1925 	u_int p;
1926 	int tick_rate;
1927 
1928 	/*
1929 	 * Set the initial timeout to
1930 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
1931 	 * People should probably not use the sysctl to set the timeout
1932 	 * to smaller than its initial value, since that value is the
1933 	 * smallest reasonable one.  If they want better timestamps they
1934 	 * should use the non-"get"* functions.
1935 	 */
1936 	if (hz > 1000)
1937 		tc_tick = (hz + 500) / 1000;
1938 	else
1939 		tc_tick = 1;
1940 	tc_adjprecision();
1941 	FREQ2BT(hz, &tick_bt);
1942 	tick_sbt = bttosbt(tick_bt);
1943 	tick_rate = hz / tc_tick;
1944 	FREQ2BT(tick_rate, &tc_tick_bt);
1945 	tc_tick_sbt = bttosbt(tc_tick_bt);
1946 	p = (tc_tick * 1000000) / hz;
1947 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1948 
1949 #ifdef FFCLOCK
1950 	ffclock_init();
1951 #endif
1952 
1953 	/* warm up new timecounter (again) and get rolling. */
1954 	(void)timecounter->tc_get_timecount(timecounter);
1955 	(void)timecounter->tc_get_timecount(timecounter);
1956 	mtx_lock_spin(&tc_setclock_mtx);
1957 	tc_windup(NULL);
1958 	mtx_unlock_spin(&tc_setclock_mtx);
1959 }
1960 
1961 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1962 
1963 /* Cpu tick handling -------------------------------------------------*/
1964 
1965 static int cpu_tick_variable;
1966 static uint64_t	cpu_tick_frequency;
1967 
1968 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base);
1969 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last);
1970 
1971 static uint64_t
1972 tc_cpu_ticks(void)
1973 {
1974 	struct timecounter *tc;
1975 	uint64_t res, *base;
1976 	unsigned u, *last;
1977 
1978 	critical_enter();
1979 	base = DPCPU_PTR(tc_cpu_ticks_base);
1980 	last = DPCPU_PTR(tc_cpu_ticks_last);
1981 	tc = timehands->th_counter;
1982 	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
1983 	if (u < *last)
1984 		*base += (uint64_t)tc->tc_counter_mask + 1;
1985 	*last = u;
1986 	res = u + *base;
1987 	critical_exit();
1988 	return (res);
1989 }
1990 
1991 void
1992 cpu_tick_calibration(void)
1993 {
1994 	static time_t last_calib;
1995 
1996 	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
1997 		cpu_tick_calibrate(0);
1998 		last_calib = time_uptime;
1999 	}
2000 }
2001 
2002 /*
2003  * This function gets called every 16 seconds on only one designated
2004  * CPU in the system from hardclock() via cpu_tick_calibration()().
2005  *
2006  * Whenever the real time clock is stepped we get called with reset=1
2007  * to make sure we handle suspend/resume and similar events correctly.
2008  */
2009 
2010 static void
2011 cpu_tick_calibrate(int reset)
2012 {
2013 	static uint64_t c_last;
2014 	uint64_t c_this, c_delta;
2015 	static struct bintime  t_last;
2016 	struct bintime t_this, t_delta;
2017 	uint32_t divi;
2018 
2019 	if (reset) {
2020 		/* The clock was stepped, abort & reset */
2021 		t_last.sec = 0;
2022 		return;
2023 	}
2024 
2025 	/* we don't calibrate fixed rate cputicks */
2026 	if (!cpu_tick_variable)
2027 		return;
2028 
2029 	getbinuptime(&t_this);
2030 	c_this = cpu_ticks();
2031 	if (t_last.sec != 0) {
2032 		c_delta = c_this - c_last;
2033 		t_delta = t_this;
2034 		bintime_sub(&t_delta, &t_last);
2035 		/*
2036 		 * Headroom:
2037 		 * 	2^(64-20) / 16[s] =
2038 		 * 	2^(44) / 16[s] =
2039 		 * 	17.592.186.044.416 / 16 =
2040 		 * 	1.099.511.627.776 [Hz]
2041 		 */
2042 		divi = t_delta.sec << 20;
2043 		divi |= t_delta.frac >> (64 - 20);
2044 		c_delta <<= 20;
2045 		c_delta /= divi;
2046 		if (c_delta > cpu_tick_frequency) {
2047 			if (0 && bootverbose)
2048 				printf("cpu_tick increased to %ju Hz\n",
2049 				    c_delta);
2050 			cpu_tick_frequency = c_delta;
2051 		}
2052 	}
2053 	c_last = c_this;
2054 	t_last = t_this;
2055 }
2056 
2057 void
2058 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
2059 {
2060 
2061 	if (func == NULL) {
2062 		cpu_ticks = tc_cpu_ticks;
2063 	} else {
2064 		cpu_tick_frequency = freq;
2065 		cpu_tick_variable = var;
2066 		cpu_ticks = func;
2067 	}
2068 }
2069 
2070 uint64_t
2071 cpu_tickrate(void)
2072 {
2073 
2074 	if (cpu_ticks == tc_cpu_ticks)
2075 		return (tc_getfrequency());
2076 	return (cpu_tick_frequency);
2077 }
2078 
2079 /*
2080  * We need to be slightly careful converting cputicks to microseconds.
2081  * There is plenty of margin in 64 bits of microseconds (half a million
2082  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2083  * before divide conversion (to retain precision) we find that the
2084  * margin shrinks to 1.5 hours (one millionth of 146y).
2085  * With a three prong approach we never lose significant bits, no
2086  * matter what the cputick rate and length of timeinterval is.
2087  */
2088 
2089 uint64_t
2090 cputick2usec(uint64_t tick)
2091 {
2092 
2093 	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
2094 		return (tick / (cpu_tickrate() / 1000000LL));
2095 	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
2096 		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2097 	else
2098 		return ((tick * 1000000LL) / cpu_tickrate());
2099 }
2100 
2101 cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
2102 
2103 static int vdso_th_enable = 1;
2104 static int
2105 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2106 {
2107 	int old_vdso_th_enable, error;
2108 
2109 	old_vdso_th_enable = vdso_th_enable;
2110 	error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2111 	if (error != 0)
2112 		return (error);
2113 	vdso_th_enable = old_vdso_th_enable;
2114 	return (0);
2115 }
2116 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2117     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2118     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2119 
2120 uint32_t
2121 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2122 {
2123 	struct timehands *th;
2124 	uint32_t enabled;
2125 
2126 	th = timehands;
2127 	vdso_th->th_scale = th->th_scale;
2128 	vdso_th->th_offset_count = th->th_offset_count;
2129 	vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2130 	vdso_th->th_offset = th->th_offset;
2131 	vdso_th->th_boottime = th->th_boottime;
2132 	if (th->th_counter->tc_fill_vdso_timehands != NULL) {
2133 		enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
2134 		    th->th_counter);
2135 	} else
2136 		enabled = 0;
2137 	if (!vdso_th_enable)
2138 		enabled = 0;
2139 	return (enabled);
2140 }
2141 
2142 #ifdef COMPAT_FREEBSD32
2143 uint32_t
2144 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2145 {
2146 	struct timehands *th;
2147 	uint32_t enabled;
2148 
2149 	th = timehands;
2150 	*(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2151 	vdso_th32->th_offset_count = th->th_offset_count;
2152 	vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2153 	vdso_th32->th_offset.sec = th->th_offset.sec;
2154 	*(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2155 	vdso_th32->th_boottime.sec = th->th_boottime.sec;
2156 	*(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
2157 	if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
2158 		enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
2159 		    th->th_counter);
2160 	} else
2161 		enabled = 0;
2162 	if (!vdso_th_enable)
2163 		enabled = 0;
2164 	return (enabled);
2165 }
2166 #endif
2167