1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 39 * $Id: kern_clock.c,v 1.11 1994/12/12 11:58:46 bde Exp $ 40 */ 41 42 /* Portions of this software are covered by the following: */ 43 /****************************************************************************** 44 * * 45 * Copyright (c) David L. Mills 1993, 1994 * 46 * * 47 * Permission to use, copy, modify, and distribute this software and its * 48 * documentation for any purpose and without fee is hereby granted, provided * 49 * that the above copyright notice appears in all copies and that both the * 50 * copyright notice and this permission notice appear in supporting * 51 * documentation, and that the name University of Delaware not be used in * 52 * advertising or publicity pertaining to distribution of the software * 53 * without specific, written prior permission. The University of Delaware * 54 * makes no representations about the suitability this software for any * 55 * purpose. It is provided "as is" without express or implied warranty. * 56 * * 57 *****************************************************************************/ 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/dkstat.h> 62 #include <sys/callout.h> 63 #include <sys/kernel.h> 64 #include <sys/proc.h> 65 #include <sys/resourcevar.h> 66 #include <sys/signalvar.h> 67 #include <sys/timex.h> 68 #include <vm/vm.h> 69 #include <sys/sysctl.h> 70 71 #include <machine/cpu.h> 72 #include <machine/clock.h> 73 74 #ifdef GPROF 75 #include <sys/gmon.h> 76 #endif 77 78 /* Does anybody else really care about these? */ 79 struct callout *callfree, *callout, calltodo; 80 int ncallout; 81 82 /* Some of these don't belong here, but it's easiest to concentrate them. */ 83 long cp_time[CPUSTATES]; 84 long dk_seek[DK_NDRIVE]; 85 long dk_time[DK_NDRIVE]; 86 long dk_wds[DK_NDRIVE]; 87 long dk_wpms[DK_NDRIVE]; 88 long dk_xfer[DK_NDRIVE]; 89 90 int dk_busy; 91 int dk_ndrive = 0; 92 char dk_names[DK_NDRIVE][DK_NAMELEN]; 93 94 long tk_cancc; 95 long tk_nin; 96 long tk_nout; 97 long tk_rawcc; 98 99 /* 100 * Clock handling routines. 101 * 102 * This code is written to operate with two timers that run independently of 103 * each other. The main clock, running hz times per second, is used to keep 104 * track of real time. The second timer handles kernel and user profiling, 105 * and does resource use estimation. If the second timer is programmable, 106 * it is randomized to avoid aliasing between the two clocks. For example, 107 * the randomization prevents an adversary from always giving up the cpu 108 * just before its quantum expires. Otherwise, it would never accumulate 109 * cpu ticks. The mean frequency of the second timer is stathz. 110 * 111 * If no second timer exists, stathz will be zero; in this case we drive 112 * profiling and statistics off the main clock. This WILL NOT be accurate; 113 * do not do it unless absolutely necessary. 114 * 115 * The statistics clock may (or may not) be run at a higher rate while 116 * profiling. This profile clock runs at profhz. We require that profhz 117 * be an integral multiple of stathz. 118 * 119 * If the statistics clock is running fast, it must be divided by the ratio 120 * profhz/stathz for statistics. (For profiling, every tick counts.) 121 */ 122 123 /* 124 * TODO: 125 * allocate more timeout table slots when table overflows. 126 */ 127 128 /* 129 * Bump a timeval by a small number of usec's. 130 */ 131 #define BUMPTIME(t, usec) { \ 132 register volatile struct timeval *tp = (t); \ 133 register long us; \ 134 \ 135 tp->tv_usec = us = tp->tv_usec + (usec); \ 136 if (us >= 1000000) { \ 137 tp->tv_usec = us - 1000000; \ 138 tp->tv_sec++; \ 139 } \ 140 } 141 142 int stathz; 143 int profhz; 144 int profprocs; 145 int ticks; 146 static int psdiv, pscnt; /* prof => stat divider */ 147 int psratio; /* ratio: prof / stat */ 148 149 volatile struct timeval time; 150 volatile struct timeval mono_time; 151 152 /* 153 * Phase-lock loop (PLL) definitions 154 * 155 * The following variables are read and set by the ntp_adjtime() system 156 * call. 157 * 158 * time_state shows the state of the system clock, with values defined 159 * in the timex.h header file. 160 * 161 * time_status shows the status of the system clock, with bits defined 162 * in the timex.h header file. 163 * 164 * time_offset is used by the PLL to adjust the system time in small 165 * increments. 166 * 167 * time_constant determines the bandwidth or "stiffness" of the PLL. 168 * 169 * time_tolerance determines maximum frequency error or tolerance of the 170 * CPU clock oscillator and is a property of the architecture; however, 171 * in principle it could change as result of the presence of external 172 * discipline signals, for instance. 173 * 174 * time_precision is usually equal to the kernel tick variable; however, 175 * in cases where a precision clock counter or external clock is 176 * available, the resolution can be much less than this and depend on 177 * whether the external clock is working or not. 178 * 179 * time_maxerror is initialized by a ntp_adjtime() call and increased by 180 * the kernel once each second to reflect the maximum error 181 * bound growth. 182 * 183 * time_esterror is set and read by the ntp_adjtime() call, but 184 * otherwise not used by the kernel. 185 */ 186 int time_status = STA_UNSYNC; /* clock status bits */ 187 int time_state = TIME_OK; /* clock state */ 188 long time_offset = 0; /* time offset (us) */ 189 long time_constant = 0; /* pll time constant */ 190 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 191 long time_precision = 1; /* clock precision (us) */ 192 long time_maxerror = MAXPHASE; /* maximum error (us) */ 193 long time_esterror = MAXPHASE; /* estimated error (us) */ 194 195 /* 196 * The following variables establish the state of the PLL and the 197 * residual time and frequency offset of the local clock. The scale 198 * factors are defined in the timex.h header file. 199 * 200 * time_phase and time_freq are the phase increment and the frequency 201 * increment, respectively, of the kernel time variable at each tick of 202 * the clock. 203 * 204 * time_freq is set via ntp_adjtime() from a value stored in a file when 205 * the synchronization daemon is first started. Its value is retrieved 206 * via ntp_adjtime() and written to the file about once per hour by the 207 * daemon. 208 * 209 * time_adj is the adjustment added to the value of tick at each timer 210 * interrupt and is recomputed at each timer interrupt. 211 * 212 * time_reftime is the second's portion of the system time on the last 213 * call to ntp_adjtime(). It is used to adjust the time_freq variable 214 * and to increase the time_maxerror as the time since last update 215 * increases. 216 */ 217 long time_phase = 0; /* phase offset (scaled us) */ 218 long time_freq = 0; /* frequency offset (scaled ppm) */ 219 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 220 long time_reftime = 0; /* time at last adjustment (s) */ 221 222 #ifdef PPS_SYNC 223 /* 224 * The following variables are used only if the if the kernel PPS 225 * discipline code is configured (PPS_SYNC). The scale factors are 226 * defined in the timex.h header file. 227 * 228 * pps_time contains the time at each calibration interval, as read by 229 * microtime(). 230 * 231 * pps_offset is the time offset produced by the time median filter 232 * pps_tf[], while pps_jitter is the dispersion measured by this 233 * filter. 234 * 235 * pps_freq is the frequency offset produced by the frequency median 236 * filter pps_ff[], while pps_stabil is the dispersion measured by 237 * this filter. 238 * 239 * pps_usec is latched from a high resolution counter or external clock 240 * at pps_time. Here we want the hardware counter contents only, not the 241 * contents plus the time_tv.usec as usual. 242 * 243 * pps_valid counts the number of seconds since the last PPS update. It 244 * is used as a watchdog timer to disable the PPS discipline should the 245 * PPS signal be lost. 246 * 247 * pps_glitch counts the number of seconds since the beginning of an 248 * offset burst more than tick/2 from current nominal offset. It is used 249 * mainly to suppress error bursts due to priority conflicts between the 250 * PPS interrupt and timer interrupt. 251 * 252 * pps_count counts the seconds of the calibration interval, the 253 * duration of which is pps_shift in powers of two. 254 * 255 * pps_intcnt counts the calibration intervals for use in the interval- 256 * adaptation algorithm. It's just too complicated for words. 257 */ 258 struct timeval pps_time; /* kernel time at last interval */ 259 long pps_offset = 0; /* pps time offset (us) */ 260 long pps_jitter = MAXTIME; /* pps time dispersion (jitter) (us) */ 261 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 262 long pps_freq = 0; /* frequency offset (scaled ppm) */ 263 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 264 long pps_ff[] = {0, 0, 0}; /* frequency offset median filter */ 265 long pps_usec = 0; /* microsec counter at last interval */ 266 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 267 int pps_glitch = 0; /* pps signal glitch counter */ 268 int pps_count = 0; /* calibration interval counter (s) */ 269 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 270 int pps_intcnt = 0; /* intervals at current duration */ 271 272 /* 273 * PPS signal quality monitors 274 * 275 * pps_jitcnt counts the seconds that have been discarded because the 276 * jitter measured by the time median filter exceeds the limit MAXTIME 277 * (100 us). 278 * 279 * pps_calcnt counts the frequency calibration intervals, which are 280 * variable from 4 s to 256 s. 281 * 282 * pps_errcnt counts the calibration intervals which have been discarded 283 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 284 * calibration interval jitter exceeds two ticks. 285 * 286 * pps_stbcnt counts the calibration intervals that have been discarded 287 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 288 */ 289 long pps_jitcnt = 0; /* jitter limit exceeded */ 290 long pps_calcnt = 0; /* calibration intervals */ 291 long pps_errcnt = 0; /* calibration errors */ 292 long pps_stbcnt = 0; /* stability limit exceeded */ 293 #endif /* PPS_SYNC */ 294 295 /* XXX none of this stuff works under FreeBSD */ 296 #ifdef EXT_CLOCK 297 /* 298 * External clock definitions 299 * 300 * The following definitions and declarations are used only if an 301 * external clock (HIGHBALL or TPRO) is configured on the system. 302 */ 303 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 304 305 /* 306 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 307 * interrupt and decremented once each second. 308 */ 309 int clock_count = 0; /* CPU clock counter */ 310 311 #ifdef HIGHBALL 312 /* 313 * The clock_offset and clock_cpu variables are used by the HIGHBALL 314 * interface. The clock_offset variable defines the offset between 315 * system time and the HIGBALL counters. The clock_cpu variable contains 316 * the offset between the system clock and the HIGHBALL clock for use in 317 * disciplining the kernel time variable. 318 */ 319 extern struct timeval clock_offset; /* Highball clock offset */ 320 long clock_cpu = 0; /* CPU clock adjust */ 321 #endif /* HIGHBALL */ 322 #endif /* EXT_CLOCK */ 323 324 /* 325 * hardupdate() - local clock update 326 * 327 * This routine is called by ntp_adjtime() to update the local clock 328 * phase and frequency. This is used to implement an adaptive-parameter, 329 * first-order, type-II phase-lock loop. The code computes new time and 330 * frequency offsets each time it is called. The hardclock() routine 331 * amortizes these offsets at each tick interrupt. If the kernel PPS 332 * discipline code is configured (PPS_SYNC), the PPS signal itself 333 * determines the new time offset, instead of the calling argument. 334 * Presumably, calls to ntp_adjtime() occur only when the caller 335 * believes the local clock is valid within some bound (+-128 ms with 336 * NTP). If the caller's time is far different than the PPS time, an 337 * argument will ensue, and it's not clear who will lose. 338 * 339 * For default SHIFT_UPDATE = 12, the offset is limited to +-512 ms, the 340 * maximum interval between updates is 4096 s and the maximum frequency 341 * offset is +-31.25 ms/s. 342 * 343 * Note: splclock() is in effect. 344 */ 345 void 346 hardupdate(offset) 347 long offset; 348 { 349 long ltemp, mtemp; 350 351 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 352 return; 353 ltemp = offset; 354 #ifdef PPS_SYNC 355 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 356 ltemp = pps_offset; 357 #endif /* PPS_SYNC */ 358 if (ltemp > MAXPHASE) 359 time_offset = MAXPHASE << SHIFT_UPDATE; 360 else if (ltemp < -MAXPHASE) 361 time_offset = -(MAXPHASE << SHIFT_UPDATE); 362 else 363 time_offset = ltemp << SHIFT_UPDATE; 364 mtemp = time.tv_sec - time_reftime; 365 time_reftime = time.tv_sec; 366 if (mtemp > MAXSEC) 367 mtemp = 0; 368 369 /* ugly multiply should be replaced */ 370 if (ltemp < 0) 371 time_freq -= (-ltemp * mtemp) >> (time_constant + 372 time_constant + SHIFT_KF - SHIFT_USEC); 373 else 374 time_freq += (ltemp * mtemp) >> (time_constant + 375 time_constant + SHIFT_KF - SHIFT_USEC); 376 if (time_freq > time_tolerance) 377 time_freq = time_tolerance; 378 else if (time_freq < -time_tolerance) 379 time_freq = -time_tolerance; 380 } 381 382 383 384 /* 385 * Initialize clock frequencies and start both clocks running. 386 */ 387 void 388 initclocks() 389 { 390 register int i; 391 392 /* 393 * Set divisors to 1 (normal case) and let the machine-specific 394 * code do its bit. 395 */ 396 psdiv = pscnt = 1; 397 cpu_initclocks(); 398 399 /* 400 * Compute profhz/stathz, and fix profhz if needed. 401 */ 402 i = stathz ? stathz : hz; 403 if (profhz == 0) 404 profhz = i; 405 psratio = profhz / i; 406 } 407 408 /* 409 * The real-time timer, interrupting hz times per second. 410 */ 411 void 412 hardclock(frame) 413 register struct clockframe *frame; 414 { 415 register struct callout *p1; 416 register struct proc *p; 417 register int needsoft; 418 419 /* 420 * Update real-time timeout queue. 421 * At front of queue are some number of events which are ``due''. 422 * The time to these is <= 0 and if negative represents the 423 * number of ticks which have passed since it was supposed to happen. 424 * The rest of the q elements (times > 0) are events yet to happen, 425 * where the time for each is given as a delta from the previous. 426 * Decrementing just the first of these serves to decrement the time 427 * to all events. 428 */ 429 needsoft = 0; 430 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) { 431 if (--p1->c_time > 0) 432 break; 433 needsoft = 1; 434 if (p1->c_time == 0) 435 break; 436 } 437 438 p = curproc; 439 if (p) { 440 register struct pstats *pstats; 441 442 /* 443 * Run current process's virtual and profile time, as needed. 444 */ 445 pstats = p->p_stats; 446 if (CLKF_USERMODE(frame) && 447 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 448 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 449 psignal(p, SIGVTALRM); 450 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 451 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 452 psignal(p, SIGPROF); 453 } 454 455 /* 456 * If no separate statistics clock is available, run it from here. 457 */ 458 if (stathz == 0) 459 statclock(frame); 460 461 /* 462 * Increment the time-of-day. 463 */ 464 ticks++; 465 { 466 int time_update; 467 struct timeval newtime = time; 468 long ltemp; 469 470 if (timedelta == 0) { 471 time_update = tick; 472 } else { 473 time_update = tick + tickdelta; 474 timedelta -= tickdelta; 475 } 476 BUMPTIME(&mono_time, time_update); 477 478 /* 479 * Compute the phase adjustment. If the low-order bits 480 * (time_phase) of the update overflow, bump the high-order bits 481 * (time_update). 482 */ 483 time_phase += time_adj; 484 if (time_phase <= -FINEUSEC) { 485 ltemp = -time_phase >> SHIFT_SCALE; 486 time_phase += ltemp << SHIFT_SCALE; 487 time_update -= ltemp; 488 } 489 else if (time_phase >= FINEUSEC) { 490 ltemp = time_phase >> SHIFT_SCALE; 491 time_phase -= ltemp << SHIFT_SCALE; 492 time_update += ltemp; 493 } 494 495 newtime.tv_usec += time_update; 496 /* 497 * On rollover of the second the phase adjustment to be used for 498 * the next second is calculated. Also, the maximum error is 499 * increased by the tolerance. If the PPS frequency discipline 500 * code is present, the phase is increased to compensate for the 501 * CPU clock oscillator frequency error. 502 * 503 * With SHIFT_SCALE = 23, the maximum frequency adjustment is 504 * +-256 us per tick, or 25.6 ms/s at a clock frequency of 100 505 * Hz. The time contribution is shifted right a minimum of two 506 * bits, while the frequency contribution is a right shift. 507 * Thus, overflow is prevented if the frequency contribution is 508 * limited to half the maximum or 15.625 ms/s. 509 */ 510 if (newtime.tv_usec >= 1000000) { 511 newtime.tv_usec -= 1000000; 512 newtime.tv_sec++; 513 time_maxerror += time_tolerance >> SHIFT_USEC; 514 if (time_offset < 0) { 515 ltemp = -time_offset >> 516 (SHIFT_KG + time_constant); 517 time_offset += ltemp; 518 time_adj = -ltemp << 519 (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); 520 } else { 521 ltemp = time_offset >> 522 (SHIFT_KG + time_constant); 523 time_offset -= ltemp; 524 time_adj = ltemp << 525 (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); 526 } 527 #ifdef PPS_SYNC 528 /* 529 * Gnaw on the watchdog counter and update the frequency 530 * computed by the pll and the PPS signal. 531 */ 532 pps_valid++; 533 if (pps_valid == PPS_VALID) { 534 pps_jitter = MAXTIME; 535 pps_stabil = MAXFREQ; 536 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 537 STA_PPSWANDER | STA_PPSERROR); 538 } 539 ltemp = time_freq + pps_freq; 540 #else 541 ltemp = time_freq; 542 #endif /* PPS_SYNC */ 543 if (ltemp < 0) 544 time_adj -= -ltemp >> 545 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 546 else 547 time_adj += ltemp >> 548 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 549 550 /* 551 * When the CPU clock oscillator frequency is not a 552 * power of two in Hz, the SHIFT_HZ is only an 553 * approximate scale factor. In the SunOS kernel, this 554 * results in a PLL gain factor of 1/1.28 = 0.78 what it 555 * should be. In the following code the overall gain is 556 * increased by a factor of 1.25, which results in a 557 * residual error less than 3 percent. 558 */ 559 /* Same thing applies for FreeBSD --GAW */ 560 if (hz == 100) { 561 if (time_adj < 0) 562 time_adj -= -time_adj >> 2; 563 else 564 time_adj += time_adj >> 2; 565 } 566 567 /* XXX - this is really bogus, but can't be fixed until 568 xntpd's idea of the system clock is fixed to know how 569 the user wants leap seconds handled; in the mean time, 570 we assume that users of NTP are running without proper 571 leap second support (this is now the default anyway) */ 572 /* 573 * Leap second processing. If in leap-insert state at 574 * the end of the day, the system clock is set back one 575 * second; if in leap-delete state, the system clock is 576 * set ahead one second. The microtime() routine or 577 * external clock driver will insure that reported time 578 * is always monotonic. The ugly divides should be 579 * replaced. 580 */ 581 switch (time_state) { 582 583 case TIME_OK: 584 if (time_status & STA_INS) 585 time_state = TIME_INS; 586 else if (time_status & STA_DEL) 587 time_state = TIME_DEL; 588 break; 589 590 case TIME_INS: 591 if (newtime.tv_sec % 86400 == 0) { 592 newtime.tv_sec--; 593 time_state = TIME_OOP; 594 } 595 break; 596 597 case TIME_DEL: 598 if ((newtime.tv_sec + 1) % 86400 == 0) { 599 newtime.tv_sec++; 600 time_state = TIME_WAIT; 601 } 602 break; 603 604 case TIME_OOP: 605 time_state = TIME_WAIT; 606 break; 607 608 case TIME_WAIT: 609 if (!(time_status & (STA_INS | STA_DEL))) 610 time_state = TIME_OK; 611 } 612 } 613 CPU_CLOCKUPDATE(&time, &newtime); 614 } 615 616 /* 617 * Process callouts at a very low cpu priority, so we don't keep the 618 * relatively high clock interrupt priority any longer than necessary. 619 */ 620 if (needsoft) { 621 if (CLKF_BASEPRI(frame)) { 622 /* 623 * Save the overhead of a software interrupt; 624 * it will happen as soon as we return, so do it now. 625 */ 626 (void)splsoftclock(); 627 softclock(); 628 } else 629 setsoftclock(); 630 } 631 } 632 633 /* 634 * Software (low priority) clock interrupt. 635 * Run periodic events from timeout queue. 636 */ 637 /*ARGSUSED*/ 638 void 639 softclock() 640 { 641 register struct callout *c; 642 register void *arg; 643 register void (*func) __P((void *)); 644 register int s; 645 646 s = splhigh(); 647 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) { 648 func = c->c_func; 649 arg = c->c_arg; 650 calltodo.c_next = c->c_next; 651 c->c_next = callfree; 652 callfree = c; 653 splx(s); 654 (*func)(arg); 655 (void) splhigh(); 656 } 657 splx(s); 658 } 659 660 /* 661 * timeout -- 662 * Execute a function after a specified length of time. 663 * 664 * untimeout -- 665 * Cancel previous timeout function call. 666 * 667 * See AT&T BCI Driver Reference Manual for specification. This 668 * implementation differs from that one in that no identification 669 * value is returned from timeout, rather, the original arguments 670 * to timeout are used to identify entries for untimeout. 671 */ 672 void 673 timeout(ftn, arg, ticks) 674 timeout_t ftn; 675 void *arg; 676 register int ticks; 677 { 678 register struct callout *new, *p, *t; 679 register int s; 680 681 if (ticks <= 0) 682 ticks = 1; 683 684 /* Lock out the clock. */ 685 s = splhigh(); 686 687 /* Fill in the next free callout structure. */ 688 if (callfree == NULL) 689 panic("timeout table full"); 690 new = callfree; 691 callfree = new->c_next; 692 new->c_arg = arg; 693 new->c_func = ftn; 694 695 /* 696 * The time for each event is stored as a difference from the time 697 * of the previous event on the queue. Walk the queue, correcting 698 * the ticks argument for queue entries passed. Correct the ticks 699 * value for the queue entry immediately after the insertion point 700 * as well. Watch out for negative c_time values; these represent 701 * overdue events. 702 */ 703 for (p = &calltodo; 704 (t = p->c_next) != NULL && ticks > t->c_time; p = t) 705 if (t->c_time > 0) 706 ticks -= t->c_time; 707 new->c_time = ticks; 708 if (t != NULL) 709 t->c_time -= ticks; 710 711 /* Insert the new entry into the queue. */ 712 p->c_next = new; 713 new->c_next = t; 714 splx(s); 715 } 716 717 void 718 untimeout(ftn, arg) 719 timeout_t ftn; 720 void *arg; 721 { 722 register struct callout *p, *t; 723 register int s; 724 725 s = splhigh(); 726 for (p = &calltodo; (t = p->c_next) != NULL; p = t) 727 if (t->c_func == ftn && t->c_arg == arg) { 728 /* Increment next entry's tick count. */ 729 if (t->c_next && t->c_time > 0) 730 t->c_next->c_time += t->c_time; 731 732 /* Move entry from callout queue to callfree queue. */ 733 p->c_next = t->c_next; 734 t->c_next = callfree; 735 callfree = t; 736 break; 737 } 738 splx(s); 739 } 740 741 /* 742 * Compute number of hz until specified time. Used to 743 * compute third argument to timeout() from an absolute time. 744 */ 745 int 746 hzto(tv) 747 struct timeval *tv; 748 { 749 register unsigned long ticks; 750 register long sec, usec; 751 int s; 752 753 /* 754 * If the number of usecs in the whole seconds part of the time 755 * difference fits in a long, then the total number of usecs will 756 * fit in an unsigned long. Compute the total and convert it to 757 * ticks, rounding up and adding 1 to allow for the current tick 758 * to expire. Rounding also depends on unsigned long arithmetic 759 * to avoid overflow. 760 * 761 * Otherwise, if the number of ticks in the whole seconds part of 762 * the time difference fits in a long, then convert the parts to 763 * ticks separately and add, using similar rounding methods and 764 * overflow avoidance. This method would work in the previous 765 * case but it is slightly slower and assumes that hz is integral. 766 * 767 * Otherwise, round the time difference down to the maximum 768 * representable value. 769 * 770 * If ints have 32 bits, then the maximum value for any timeout in 771 * 10ms ticks is 248 days. 772 */ 773 s = splclock(); 774 sec = tv->tv_sec - time.tv_sec; 775 usec = tv->tv_usec - time.tv_usec; 776 splx(s); 777 if (usec < 0) { 778 sec--; 779 usec += 1000000; 780 } 781 if (sec < 0) { 782 #ifdef DIAGNOSTIC 783 printf("hzto: negative time difference %ld sec %ld usec\n", 784 sec, usec); 785 #endif 786 ticks = 1; 787 } else if (sec <= LONG_MAX / 1000000) 788 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 789 / tick + 1; 790 else if (sec <= LONG_MAX / hz) 791 ticks = sec * hz 792 + ((unsigned long)usec + (tick - 1)) / tick + 1; 793 else 794 ticks = LONG_MAX; 795 if (ticks > INT_MAX) 796 ticks = INT_MAX; 797 return (ticks); 798 } 799 800 /* 801 * Start profiling on a process. 802 * 803 * Kernel profiling passes proc0 which never exits and hence 804 * keeps the profile clock running constantly. 805 */ 806 void 807 startprofclock(p) 808 register struct proc *p; 809 { 810 int s; 811 812 if ((p->p_flag & P_PROFIL) == 0) { 813 p->p_flag |= P_PROFIL; 814 if (++profprocs == 1 && stathz != 0) { 815 s = splstatclock(); 816 psdiv = pscnt = psratio; 817 setstatclockrate(profhz); 818 splx(s); 819 } 820 } 821 } 822 823 /* 824 * Stop profiling on a process. 825 */ 826 void 827 stopprofclock(p) 828 register struct proc *p; 829 { 830 int s; 831 832 if (p->p_flag & P_PROFIL) { 833 p->p_flag &= ~P_PROFIL; 834 if (--profprocs == 0 && stathz != 0) { 835 s = splstatclock(); 836 psdiv = pscnt = 1; 837 setstatclockrate(stathz); 838 splx(s); 839 } 840 } 841 } 842 843 /* 844 * Statistics clock. Grab profile sample, and if divider reaches 0, 845 * do process and kernel statistics. 846 */ 847 void 848 statclock(frame) 849 register struct clockframe *frame; 850 { 851 #ifdef GPROF 852 register struct gmonparam *g; 853 #endif 854 register struct proc *p = curproc; 855 register int i; 856 857 if (p) { 858 struct pstats *pstats; 859 struct rusage *ru; 860 struct vmspace *vm; 861 862 /* bump the resource usage of integral space use */ 863 if ((pstats = p->p_stats) && (ru = &pstats->p_ru) && (vm = p->p_vmspace)) { 864 ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024; 865 ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024; 866 ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024; 867 if ((vm->vm_pmap.pm_stats.resident_count * PAGE_SIZE / 1024) > 868 ru->ru_maxrss) { 869 ru->ru_maxrss = 870 vm->vm_pmap.pm_stats.resident_count * PAGE_SIZE / 1024; 871 } 872 } 873 } 874 875 if (CLKF_USERMODE(frame)) { 876 if (p->p_flag & P_PROFIL) 877 addupc_intr(p, CLKF_PC(frame), 1); 878 if (--pscnt > 0) 879 return; 880 /* 881 * Came from user mode; CPU was in user state. 882 * If this process is being profiled record the tick. 883 */ 884 p->p_uticks++; 885 if (p->p_nice > NZERO) 886 cp_time[CP_NICE]++; 887 else 888 cp_time[CP_USER]++; 889 } else { 890 #ifdef GPROF 891 /* 892 * Kernel statistics are just like addupc_intr, only easier. 893 */ 894 g = &_gmonparam; 895 if (g->state == GMON_PROF_ON) { 896 i = CLKF_PC(frame) - g->lowpc; 897 if (i < g->textsize) { 898 i /= HISTFRACTION * sizeof(*g->kcount); 899 g->kcount[i]++; 900 } 901 } 902 #endif 903 if (--pscnt > 0) 904 return; 905 /* 906 * Came from kernel mode, so we were: 907 * - handling an interrupt, 908 * - doing syscall or trap work on behalf of the current 909 * user process, or 910 * - spinning in the idle loop. 911 * Whichever it is, charge the time as appropriate. 912 * Note that we charge interrupts to the current process, 913 * regardless of whether they are ``for'' that process, 914 * so that we know how much of its real time was spent 915 * in ``non-process'' (i.e., interrupt) work. 916 */ 917 if (CLKF_INTR(frame)) { 918 if (p != NULL) 919 p->p_iticks++; 920 cp_time[CP_INTR]++; 921 } else if (p != NULL) { 922 p->p_sticks++; 923 cp_time[CP_SYS]++; 924 } else 925 cp_time[CP_IDLE]++; 926 } 927 pscnt = psdiv; 928 929 /* 930 * We maintain statistics shown by user-level statistics 931 * programs: the amount of time in each cpu state, and 932 * the amount of time each of DK_NDRIVE ``drives'' is busy. 933 * 934 * XXX should either run linked list of drives, or (better) 935 * grab timestamps in the start & done code. 936 */ 937 for (i = 0; i < DK_NDRIVE; i++) 938 if (dk_busy & (1 << i)) 939 dk_time[i]++; 940 941 /* 942 * We adjust the priority of the current process. The priority of 943 * a process gets worse as it accumulates CPU time. The cpu usage 944 * estimator (p_estcpu) is increased here. The formula for computing 945 * priorities (in kern_synch.c) will compute a different value each 946 * time p_estcpu increases by 4. The cpu usage estimator ramps up 947 * quite quickly when the process is running (linearly), and decays 948 * away exponentially, at a rate which is proportionally slower when 949 * the system is busy. The basic principal is that the system will 950 * 90% forget that the process used a lot of CPU time in 5 * loadav 951 * seconds. This causes the system to favor processes which haven't 952 * run much recently, and to round-robin among other processes. 953 */ 954 if (p != NULL) { 955 p->p_cpticks++; 956 if (++p->p_estcpu == 0) 957 p->p_estcpu--; 958 if ((p->p_estcpu & 3) == 0) { 959 resetpriority(p); 960 if (p->p_priority >= PUSER) 961 p->p_priority = p->p_usrpri; 962 } 963 } 964 } 965 966 /* 967 * Return information about system clocks. 968 */ 969 int 970 sysctl_clockrate(where, sizep) 971 register char *where; 972 size_t *sizep; 973 { 974 struct clockinfo clkinfo; 975 976 /* 977 * Construct clockinfo structure. 978 */ 979 clkinfo.hz = hz; 980 clkinfo.tick = tick; 981 clkinfo.profhz = profhz; 982 clkinfo.stathz = stathz ? stathz : hz; 983 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 984 } 985 986 /*#ifdef PPS_SYNC*/ 987 #if 0 988 /* This code is completely bogus; if anybody ever wants to use it, get 989 * the current version from Dave Mills. */ 990 991 /* 992 * hardpps() - discipline CPU clock oscillator to external pps signal 993 * 994 * This routine is called at each PPS interrupt in order to discipline 995 * the CPU clock oscillator to the PPS signal. It integrates successive 996 * phase differences between the two oscillators and calculates the 997 * frequency offset. This is used in hardclock() to discipline the CPU 998 * clock oscillator so that intrinsic frequency error is cancelled out. 999 * The code requires the caller to capture the time and hardware 1000 * counter value at the designated PPS signal transition. 1001 */ 1002 void 1003 hardpps(tvp, usec) 1004 struct timeval *tvp; /* time at PPS */ 1005 long usec; /* hardware counter at PPS */ 1006 { 1007 long u_usec, v_usec, bigtick; 1008 long cal_sec, cal_usec; 1009 1010 /* 1011 * During the calibration interval adjust the starting time when 1012 * the tick overflows. At the end of the interval compute the 1013 * duration of the interval and the difference of the hardware 1014 * counters at the beginning and end of the interval. This code 1015 * is deliciously complicated by the fact valid differences may 1016 * exceed the value of tick when using long calibration 1017 * intervals and small ticks. Note that the counter can be 1018 * greater than tick if caught at just the wrong instant, but 1019 * the values returned and used here are correct. 1020 */ 1021 bigtick = (long)tick << SHIFT_USEC; 1022 pps_usec -= ntp_pll.ybar; 1023 if (pps_usec >= bigtick) 1024 pps_usec -= bigtick; 1025 if (pps_usec < 0) 1026 pps_usec += bigtick; 1027 pps_time.tv_sec++; 1028 pps_count++; 1029 if (pps_count < (1 << pps_shift)) 1030 return; 1031 pps_count = 0; 1032 ntp_pll.calcnt++; 1033 u_usec = usec << SHIFT_USEC; 1034 v_usec = pps_usec - u_usec; 1035 if (v_usec >= bigtick >> 1) 1036 v_usec -= bigtick; 1037 if (v_usec < -(bigtick >> 1)) 1038 v_usec += bigtick; 1039 if (v_usec < 0) 1040 v_usec = -(-v_usec >> ntp_pll.shift); 1041 else 1042 v_usec = v_usec >> ntp_pll.shift; 1043 pps_usec = u_usec; 1044 cal_sec = tvp->tv_sec; 1045 cal_usec = tvp->tv_usec; 1046 cal_sec -= pps_time.tv_sec; 1047 cal_usec -= pps_time.tv_usec; 1048 if (cal_usec < 0) { 1049 cal_usec += 1000000; 1050 cal_sec--; 1051 } 1052 pps_time = *tvp; 1053 1054 /* 1055 * Check for lost interrupts, noise, excessive jitter and 1056 * excessive frequency error. The number of timer ticks during 1057 * the interval may vary +-1 tick. Add to this a margin of one 1058 * tick for the PPS signal jitter and maximum frequency 1059 * deviation. If the limits are exceeded, the calibration 1060 * interval is reset to the minimum and we start over. 1061 */ 1062 u_usec = (long)tick << 1; 1063 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1064 || (cal_sec == 0 && cal_usec < u_usec)) 1065 || v_usec > ntp_pll.tolerance || v_usec < -ntp_pll.tolerance) { 1066 ntp_pll.jitcnt++; 1067 ntp_pll.shift = NTP_PLL.SHIFT; 1068 pps_dispinc = PPS_DISPINC; 1069 ntp_pll.intcnt = 0; 1070 return; 1071 } 1072 1073 /* 1074 * A three-stage median filter is used to help deglitch the pps 1075 * signal. The median sample becomes the offset estimate; the 1076 * difference between the other two samples becomes the 1077 * dispersion estimate. 1078 */ 1079 pps_mf[2] = pps_mf[1]; 1080 pps_mf[1] = pps_mf[0]; 1081 pps_mf[0] = v_usec; 1082 if (pps_mf[0] > pps_mf[1]) { 1083 if (pps_mf[1] > pps_mf[2]) { 1084 u_usec = pps_mf[1]; /* 0 1 2 */ 1085 v_usec = pps_mf[0] - pps_mf[2]; 1086 } else if (pps_mf[2] > pps_mf[0]) { 1087 u_usec = pps_mf[0]; /* 2 0 1 */ 1088 v_usec = pps_mf[2] - pps_mf[1]; 1089 } else { 1090 u_usec = pps_mf[2]; /* 0 2 1 */ 1091 v_usec = pps_mf[0] - pps_mf[1]; 1092 } 1093 } else { 1094 if (pps_mf[1] < pps_mf[2]) { 1095 u_usec = pps_mf[1]; /* 2 1 0 */ 1096 v_usec = pps_mf[2] - pps_mf[0]; 1097 } else if (pps_mf[2] < pps_mf[0]) { 1098 u_usec = pps_mf[0]; /* 1 0 2 */ 1099 v_usec = pps_mf[1] - pps_mf[2]; 1100 } else { 1101 u_usec = pps_mf[2]; /* 1 2 0 */ 1102 v_usec = pps_mf[1] - pps_mf[0]; 1103 } 1104 } 1105 1106 /* 1107 * Here the dispersion average is updated. If it is less than 1108 * the threshold pps_dispmax, the frequency average is updated 1109 * as well, but clamped to the tolerance. 1110 */ 1111 v_usec = (v_usec >> 1) - ntp_pll.disp; 1112 if (v_usec < 0) 1113 ntp_pll.disp -= -v_usec >> PPS_AVG; 1114 else 1115 ntp_pll.disp += v_usec >> PPS_AVG; 1116 if (ntp_pll.disp > pps_dispmax) { 1117 ntp_pll.discnt++; 1118 return; 1119 } 1120 if (u_usec < 0) { 1121 ntp_pll.ybar -= -u_usec >> PPS_AVG; 1122 if (ntp_pll.ybar < -ntp_pll.tolerance) 1123 ntp_pll.ybar = -ntp_pll.tolerance; 1124 u_usec = -u_usec; 1125 } else { 1126 ntp_pll.ybar += u_usec >> PPS_AVG; 1127 if (ntp_pll.ybar > ntp_pll.tolerance) 1128 ntp_pll.ybar = ntp_pll.tolerance; 1129 } 1130 1131 /* 1132 * Here the calibration interval is adjusted. If the maximum 1133 * time difference is greater than tick/4, reduce the interval 1134 * by half. If this is not the case for four consecutive 1135 * intervals, double the interval. 1136 */ 1137 if (u_usec << ntp_pll.shift > bigtick >> 2) { 1138 ntp_pll.intcnt = 0; 1139 if (ntp_pll.shift > NTP_PLL.SHIFT) { 1140 ntp_pll.shift--; 1141 pps_dispinc <<= 1; 1142 } 1143 } else if (ntp_pll.intcnt >= 4) { 1144 ntp_pll.intcnt = 0; 1145 if (ntp_pll.shift < NTP_PLL.SHIFTMAX) { 1146 ntp_pll.shift++; 1147 pps_dispinc >>= 1; 1148 } 1149 } else 1150 ntp_pll.intcnt++; 1151 } 1152 #endif /* PPS_SYNC */ 1153