xref: /freebsd/sys/kern/kern_tc.c (revision 58a08f9e9910ea986e0f1103f47274a781b11874)
1 /*-
2  * SPDX-License-Identifier: Beerware
3  *
4  * ----------------------------------------------------------------------------
5  * "THE BEER-WARE LICENSE" (Revision 42):
6  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
7  * can do whatever you want with this stuff. If we meet some day, and you think
8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
9  * ----------------------------------------------------------------------------
10  *
11  * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
12  * All rights reserved.
13  *
14  * Portions of this software were developed by Julien Ridoux at the University
15  * of Melbourne under sponsorship from the FreeBSD Foundation.
16  *
17  * Portions of this software were developed by Konstantin Belousov
18  * under sponsorship from the FreeBSD Foundation.
19  */
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 #include "opt_ntp.h"
25 #include "opt_ffclock.h"
26 
27 #include <sys/param.h>
28 #include <sys/kernel.h>
29 #include <sys/limits.h>
30 #include <sys/lock.h>
31 #include <sys/mutex.h>
32 #include <sys/proc.h>
33 #include <sys/sbuf.h>
34 #include <sys/sleepqueue.h>
35 #include <sys/sysctl.h>
36 #include <sys/syslog.h>
37 #include <sys/systm.h>
38 #include <sys/timeffc.h>
39 #include <sys/timepps.h>
40 #include <sys/timetc.h>
41 #include <sys/timex.h>
42 #include <sys/vdso.h>
43 
44 /*
45  * A large step happens on boot.  This constant detects such steps.
46  * It is relatively small so that ntp_update_second gets called enough
47  * in the typical 'missed a couple of seconds' case, but doesn't loop
48  * forever when the time step is large.
49  */
50 #define LARGE_STEP	200
51 
52 /*
53  * Implement a dummy timecounter which we can use until we get a real one
54  * in the air.  This allows the console and other early stuff to use
55  * time services.
56  */
57 
58 static u_int
59 dummy_get_timecount(struct timecounter *tc)
60 {
61 	static u_int now;
62 
63 	return (++now);
64 }
65 
66 static struct timecounter dummy_timecounter = {
67 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
68 };
69 
70 struct timehands {
71 	/* These fields must be initialized by the driver. */
72 	struct timecounter	*th_counter;
73 	int64_t			th_adjustment;
74 	uint64_t		th_scale;
75 	u_int			th_large_delta;
76 	u_int	 		th_offset_count;
77 	struct bintime		th_offset;
78 	struct bintime		th_bintime;
79 	struct timeval		th_microtime;
80 	struct timespec		th_nanotime;
81 	struct bintime		th_boottime;
82 	/* Fields not to be copied in tc_windup start with th_generation. */
83 	u_int			th_generation;
84 	struct timehands	*th_next;
85 };
86 
87 static struct timehands ths[16] = {
88     [0] =  {
89 	.th_counter = &dummy_timecounter,
90 	.th_scale = (uint64_t)-1 / 1000000,
91 	.th_large_delta = 1000000,
92 	.th_offset = { .sec = 1 },
93 	.th_generation = 1,
94     },
95 };
96 
97 static struct timehands *volatile timehands = &ths[0];
98 struct timecounter *timecounter = &dummy_timecounter;
99 static struct timecounter *timecounters = &dummy_timecounter;
100 
101 int tc_min_ticktock_freq = 1;
102 
103 volatile time_t time_second = 1;
104 volatile time_t time_uptime = 1;
105 
106 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
107 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime,
108     CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
109     sysctl_kern_boottime, "S,timeval",
110     "System boottime");
111 
112 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
113     "");
114 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc,
115     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
116     "");
117 
118 static int timestepwarnings;
119 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
120     &timestepwarnings, 0, "Log time steps");
121 
122 static int timehands_count = 2;
123 SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count,
124     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
125     &timehands_count, 0, "Count of timehands in rotation");
126 
127 struct bintime bt_timethreshold;
128 struct bintime bt_tickthreshold;
129 sbintime_t sbt_timethreshold;
130 sbintime_t sbt_tickthreshold;
131 struct bintime tc_tick_bt;
132 sbintime_t tc_tick_sbt;
133 int tc_precexp;
134 int tc_timepercentage = TC_DEFAULTPERC;
135 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
136 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
137     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
138     sysctl_kern_timecounter_adjprecision, "I",
139     "Allowed time interval deviation in percents");
140 
141 volatile int rtc_generation = 1;
142 
143 static int tc_chosen;	/* Non-zero if a specific tc was chosen via sysctl. */
144 
145 static void tc_windup(struct bintime *new_boottimebin);
146 static void cpu_tick_calibrate(int);
147 
148 void dtrace_getnanotime(struct timespec *tsp);
149 void dtrace_getnanouptime(struct timespec *tsp);
150 
151 static int
152 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
153 {
154 	struct timeval boottime;
155 
156 	getboottime(&boottime);
157 
158 /* i386 is the only arch which uses a 32bits time_t */
159 #ifdef __amd64__
160 #ifdef SCTL_MASK32
161 	int tv[2];
162 
163 	if (req->flags & SCTL_MASK32) {
164 		tv[0] = boottime.tv_sec;
165 		tv[1] = boottime.tv_usec;
166 		return (SYSCTL_OUT(req, tv, sizeof(tv)));
167 	}
168 #endif
169 #endif
170 	return (SYSCTL_OUT(req, &boottime, sizeof(boottime)));
171 }
172 
173 static int
174 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
175 {
176 	u_int ncount;
177 	struct timecounter *tc = arg1;
178 
179 	ncount = tc->tc_get_timecount(tc);
180 	return (sysctl_handle_int(oidp, &ncount, 0, req));
181 }
182 
183 static int
184 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
185 {
186 	uint64_t freq;
187 	struct timecounter *tc = arg1;
188 
189 	freq = tc->tc_frequency;
190 	return (sysctl_handle_64(oidp, &freq, 0, req));
191 }
192 
193 /*
194  * Return the difference between the timehands' counter value now and what
195  * was when we copied it to the timehands' offset_count.
196  */
197 static __inline u_int
198 tc_delta(struct timehands *th)
199 {
200 	struct timecounter *tc;
201 
202 	tc = th->th_counter;
203 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
204 	    tc->tc_counter_mask);
205 }
206 
207 /*
208  * Functions for reading the time.  We have to loop until we are sure that
209  * the timehands that we operated on was not updated under our feet.  See
210  * the comment in <sys/time.h> for a description of these 12 functions.
211  */
212 
213 static __inline void
214 bintime_off(struct bintime *bt, u_int off)
215 {
216 	struct timehands *th;
217 	struct bintime *btp;
218 	uint64_t scale, x;
219 	u_int delta, gen, large_delta;
220 
221 	do {
222 		th = timehands;
223 		gen = atomic_load_acq_int(&th->th_generation);
224 		btp = (struct bintime *)((vm_offset_t)th + off);
225 		*bt = *btp;
226 		scale = th->th_scale;
227 		delta = tc_delta(th);
228 		large_delta = th->th_large_delta;
229 		atomic_thread_fence_acq();
230 	} while (gen == 0 || gen != th->th_generation);
231 
232 	if (__predict_false(delta >= large_delta)) {
233 		/* Avoid overflow for scale * delta. */
234 		x = (scale >> 32) * delta;
235 		bt->sec += x >> 32;
236 		bintime_addx(bt, x << 32);
237 		bintime_addx(bt, (scale & 0xffffffff) * delta);
238 	} else {
239 		bintime_addx(bt, scale * delta);
240 	}
241 }
242 #define	GETTHBINTIME(dst, member)					\
243 do {									\
244 	_Static_assert(_Generic(((struct timehands *)NULL)->member,	\
245 	    struct bintime: 1, default: 0) == 1,			\
246 	    "struct timehands member is not of struct bintime type");	\
247 	bintime_off(dst, __offsetof(struct timehands, member));		\
248 } while (0)
249 
250 static __inline void
251 getthmember(void *out, size_t out_size, u_int off)
252 {
253 	struct timehands *th;
254 	u_int gen;
255 
256 	do {
257 		th = timehands;
258 		gen = atomic_load_acq_int(&th->th_generation);
259 		memcpy(out, (char *)th + off, out_size);
260 		atomic_thread_fence_acq();
261 	} while (gen == 0 || gen != th->th_generation);
262 }
263 #define	GETTHMEMBER(dst, member)					\
264 do {									\
265 	_Static_assert(_Generic(*dst,					\
266 	    __typeof(((struct timehands *)NULL)->member): 1,		\
267 	    default: 0) == 1,						\
268 	    "*dst and struct timehands member have different types");	\
269 	getthmember(dst, sizeof(*dst), __offsetof(struct timehands,	\
270 	    member));							\
271 } while (0)
272 
273 #ifdef FFCLOCK
274 void
275 fbclock_binuptime(struct bintime *bt)
276 {
277 
278 	GETTHBINTIME(bt, th_offset);
279 }
280 
281 void
282 fbclock_nanouptime(struct timespec *tsp)
283 {
284 	struct bintime bt;
285 
286 	fbclock_binuptime(&bt);
287 	bintime2timespec(&bt, tsp);
288 }
289 
290 void
291 fbclock_microuptime(struct timeval *tvp)
292 {
293 	struct bintime bt;
294 
295 	fbclock_binuptime(&bt);
296 	bintime2timeval(&bt, tvp);
297 }
298 
299 void
300 fbclock_bintime(struct bintime *bt)
301 {
302 
303 	GETTHBINTIME(bt, th_bintime);
304 }
305 
306 void
307 fbclock_nanotime(struct timespec *tsp)
308 {
309 	struct bintime bt;
310 
311 	fbclock_bintime(&bt);
312 	bintime2timespec(&bt, tsp);
313 }
314 
315 void
316 fbclock_microtime(struct timeval *tvp)
317 {
318 	struct bintime bt;
319 
320 	fbclock_bintime(&bt);
321 	bintime2timeval(&bt, tvp);
322 }
323 
324 void
325 fbclock_getbinuptime(struct bintime *bt)
326 {
327 
328 	GETTHMEMBER(bt, th_offset);
329 }
330 
331 void
332 fbclock_getnanouptime(struct timespec *tsp)
333 {
334 	struct bintime bt;
335 
336 	GETTHMEMBER(&bt, th_offset);
337 	bintime2timespec(&bt, tsp);
338 }
339 
340 void
341 fbclock_getmicrouptime(struct timeval *tvp)
342 {
343 	struct bintime bt;
344 
345 	GETTHMEMBER(&bt, th_offset);
346 	bintime2timeval(&bt, tvp);
347 }
348 
349 void
350 fbclock_getbintime(struct bintime *bt)
351 {
352 
353 	GETTHMEMBER(bt, th_bintime);
354 }
355 
356 void
357 fbclock_getnanotime(struct timespec *tsp)
358 {
359 
360 	GETTHMEMBER(tsp, th_nanotime);
361 }
362 
363 void
364 fbclock_getmicrotime(struct timeval *tvp)
365 {
366 
367 	GETTHMEMBER(tvp, th_microtime);
368 }
369 #else /* !FFCLOCK */
370 
371 void
372 binuptime(struct bintime *bt)
373 {
374 
375 	GETTHBINTIME(bt, th_offset);
376 }
377 
378 void
379 nanouptime(struct timespec *tsp)
380 {
381 	struct bintime bt;
382 
383 	binuptime(&bt);
384 	bintime2timespec(&bt, tsp);
385 }
386 
387 void
388 microuptime(struct timeval *tvp)
389 {
390 	struct bintime bt;
391 
392 	binuptime(&bt);
393 	bintime2timeval(&bt, tvp);
394 }
395 
396 void
397 bintime(struct bintime *bt)
398 {
399 
400 	GETTHBINTIME(bt, th_bintime);
401 }
402 
403 void
404 nanotime(struct timespec *tsp)
405 {
406 	struct bintime bt;
407 
408 	bintime(&bt);
409 	bintime2timespec(&bt, tsp);
410 }
411 
412 void
413 microtime(struct timeval *tvp)
414 {
415 	struct bintime bt;
416 
417 	bintime(&bt);
418 	bintime2timeval(&bt, tvp);
419 }
420 
421 void
422 getbinuptime(struct bintime *bt)
423 {
424 
425 	GETTHMEMBER(bt, th_offset);
426 }
427 
428 void
429 getnanouptime(struct timespec *tsp)
430 {
431 	struct bintime bt;
432 
433 	GETTHMEMBER(&bt, th_offset);
434 	bintime2timespec(&bt, tsp);
435 }
436 
437 void
438 getmicrouptime(struct timeval *tvp)
439 {
440 	struct bintime bt;
441 
442 	GETTHMEMBER(&bt, th_offset);
443 	bintime2timeval(&bt, tvp);
444 }
445 
446 void
447 getbintime(struct bintime *bt)
448 {
449 
450 	GETTHMEMBER(bt, th_bintime);
451 }
452 
453 void
454 getnanotime(struct timespec *tsp)
455 {
456 
457 	GETTHMEMBER(tsp, th_nanotime);
458 }
459 
460 void
461 getmicrotime(struct timeval *tvp)
462 {
463 
464 	GETTHMEMBER(tvp, th_microtime);
465 }
466 #endif /* FFCLOCK */
467 
468 void
469 getboottime(struct timeval *boottime)
470 {
471 	struct bintime boottimebin;
472 
473 	getboottimebin(&boottimebin);
474 	bintime2timeval(&boottimebin, boottime);
475 }
476 
477 void
478 getboottimebin(struct bintime *boottimebin)
479 {
480 
481 	GETTHMEMBER(boottimebin, th_boottime);
482 }
483 
484 #ifdef FFCLOCK
485 /*
486  * Support for feed-forward synchronization algorithms. This is heavily inspired
487  * by the timehands mechanism but kept independent from it. *_windup() functions
488  * have some connection to avoid accessing the timecounter hardware more than
489  * necessary.
490  */
491 
492 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
493 struct ffclock_estimate ffclock_estimate;
494 struct bintime ffclock_boottime;	/* Feed-forward boot time estimate. */
495 uint32_t ffclock_status;		/* Feed-forward clock status. */
496 int8_t ffclock_updated;			/* New estimates are available. */
497 struct mtx ffclock_mtx;			/* Mutex on ffclock_estimate. */
498 
499 struct fftimehands {
500 	struct ffclock_estimate	cest;
501 	struct bintime		tick_time;
502 	struct bintime		tick_time_lerp;
503 	ffcounter		tick_ffcount;
504 	uint64_t		period_lerp;
505 	volatile uint8_t	gen;
506 	struct fftimehands	*next;
507 };
508 
509 #define	NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
510 
511 static struct fftimehands ffth[10];
512 static struct fftimehands *volatile fftimehands = ffth;
513 
514 static void
515 ffclock_init(void)
516 {
517 	struct fftimehands *cur;
518 	struct fftimehands *last;
519 
520 	memset(ffth, 0, sizeof(ffth));
521 
522 	last = ffth + NUM_ELEMENTS(ffth) - 1;
523 	for (cur = ffth; cur < last; cur++)
524 		cur->next = cur + 1;
525 	last->next = ffth;
526 
527 	ffclock_updated = 0;
528 	ffclock_status = FFCLOCK_STA_UNSYNC;
529 	mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
530 }
531 
532 /*
533  * Reset the feed-forward clock estimates. Called from inittodr() to get things
534  * kick started and uses the timecounter nominal frequency as a first period
535  * estimate. Note: this function may be called several time just after boot.
536  * Note: this is the only function that sets the value of boot time for the
537  * monotonic (i.e. uptime) version of the feed-forward clock.
538  */
539 void
540 ffclock_reset_clock(struct timespec *ts)
541 {
542 	struct timecounter *tc;
543 	struct ffclock_estimate cest;
544 
545 	tc = timehands->th_counter;
546 	memset(&cest, 0, sizeof(struct ffclock_estimate));
547 
548 	timespec2bintime(ts, &ffclock_boottime);
549 	timespec2bintime(ts, &(cest.update_time));
550 	ffclock_read_counter(&cest.update_ffcount);
551 	cest.leapsec_next = 0;
552 	cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
553 	cest.errb_abs = 0;
554 	cest.errb_rate = 0;
555 	cest.status = FFCLOCK_STA_UNSYNC;
556 	cest.leapsec_total = 0;
557 	cest.leapsec = 0;
558 
559 	mtx_lock(&ffclock_mtx);
560 	bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
561 	ffclock_updated = INT8_MAX;
562 	mtx_unlock(&ffclock_mtx);
563 
564 	printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
565 	    (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
566 	    (unsigned long)ts->tv_nsec);
567 }
568 
569 /*
570  * Sub-routine to convert a time interval measured in RAW counter units to time
571  * in seconds stored in bintime format.
572  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
573  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
574  * extra cycles.
575  */
576 static void
577 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
578 {
579 	struct bintime bt2;
580 	ffcounter delta, delta_max;
581 
582 	delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
583 	bintime_clear(bt);
584 	do {
585 		if (ffdelta > delta_max)
586 			delta = delta_max;
587 		else
588 			delta = ffdelta;
589 		bt2.sec = 0;
590 		bt2.frac = period;
591 		bintime_mul(&bt2, (unsigned int)delta);
592 		bintime_add(bt, &bt2);
593 		ffdelta -= delta;
594 	} while (ffdelta > 0);
595 }
596 
597 /*
598  * Update the fftimehands.
599  * Push the tick ffcount and time(s) forward based on current clock estimate.
600  * The conversion from ffcounter to bintime relies on the difference clock
601  * principle, whose accuracy relies on computing small time intervals. If a new
602  * clock estimate has been passed by the synchronisation daemon, make it
603  * current, and compute the linear interpolation for monotonic time if needed.
604  */
605 static void
606 ffclock_windup(unsigned int delta)
607 {
608 	struct ffclock_estimate *cest;
609 	struct fftimehands *ffth;
610 	struct bintime bt, gap_lerp;
611 	ffcounter ffdelta;
612 	uint64_t frac;
613 	unsigned int polling;
614 	uint8_t forward_jump, ogen;
615 
616 	/*
617 	 * Pick the next timehand, copy current ffclock estimates and move tick
618 	 * times and counter forward.
619 	 */
620 	forward_jump = 0;
621 	ffth = fftimehands->next;
622 	ogen = ffth->gen;
623 	ffth->gen = 0;
624 	cest = &ffth->cest;
625 	bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
626 	ffdelta = (ffcounter)delta;
627 	ffth->period_lerp = fftimehands->period_lerp;
628 
629 	ffth->tick_time = fftimehands->tick_time;
630 	ffclock_convert_delta(ffdelta, cest->period, &bt);
631 	bintime_add(&ffth->tick_time, &bt);
632 
633 	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
634 	ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
635 	bintime_add(&ffth->tick_time_lerp, &bt);
636 
637 	ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
638 
639 	/*
640 	 * Assess the status of the clock, if the last update is too old, it is
641 	 * likely the synchronisation daemon is dead and the clock is free
642 	 * running.
643 	 */
644 	if (ffclock_updated == 0) {
645 		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
646 		ffclock_convert_delta(ffdelta, cest->period, &bt);
647 		if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
648 			ffclock_status |= FFCLOCK_STA_UNSYNC;
649 	}
650 
651 	/*
652 	 * If available, grab updated clock estimates and make them current.
653 	 * Recompute time at this tick using the updated estimates. The clock
654 	 * estimates passed the feed-forward synchronisation daemon may result
655 	 * in time conversion that is not monotonically increasing (just after
656 	 * the update). time_lerp is a particular linear interpolation over the
657 	 * synchronisation algo polling period that ensures monotonicity for the
658 	 * clock ids requesting it.
659 	 */
660 	if (ffclock_updated > 0) {
661 		bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
662 		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
663 		ffth->tick_time = cest->update_time;
664 		ffclock_convert_delta(ffdelta, cest->period, &bt);
665 		bintime_add(&ffth->tick_time, &bt);
666 
667 		/* ffclock_reset sets ffclock_updated to INT8_MAX */
668 		if (ffclock_updated == INT8_MAX)
669 			ffth->tick_time_lerp = ffth->tick_time;
670 
671 		if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
672 			forward_jump = 1;
673 		else
674 			forward_jump = 0;
675 
676 		bintime_clear(&gap_lerp);
677 		if (forward_jump) {
678 			gap_lerp = ffth->tick_time;
679 			bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
680 		} else {
681 			gap_lerp = ffth->tick_time_lerp;
682 			bintime_sub(&gap_lerp, &ffth->tick_time);
683 		}
684 
685 		/*
686 		 * The reset from the RTC clock may be far from accurate, and
687 		 * reducing the gap between real time and interpolated time
688 		 * could take a very long time if the interpolated clock insists
689 		 * on strict monotonicity. The clock is reset under very strict
690 		 * conditions (kernel time is known to be wrong and
691 		 * synchronization daemon has been restarted recently.
692 		 * ffclock_boottime absorbs the jump to ensure boot time is
693 		 * correct and uptime functions stay consistent.
694 		 */
695 		if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
696 		    ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
697 		    ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
698 			if (forward_jump)
699 				bintime_add(&ffclock_boottime, &gap_lerp);
700 			else
701 				bintime_sub(&ffclock_boottime, &gap_lerp);
702 			ffth->tick_time_lerp = ffth->tick_time;
703 			bintime_clear(&gap_lerp);
704 		}
705 
706 		ffclock_status = cest->status;
707 		ffth->period_lerp = cest->period;
708 
709 		/*
710 		 * Compute corrected period used for the linear interpolation of
711 		 * time. The rate of linear interpolation is capped to 5000PPM
712 		 * (5ms/s).
713 		 */
714 		if (bintime_isset(&gap_lerp)) {
715 			ffdelta = cest->update_ffcount;
716 			ffdelta -= fftimehands->cest.update_ffcount;
717 			ffclock_convert_delta(ffdelta, cest->period, &bt);
718 			polling = bt.sec;
719 			bt.sec = 0;
720 			bt.frac = 5000000 * (uint64_t)18446744073LL;
721 			bintime_mul(&bt, polling);
722 			if (bintime_cmp(&gap_lerp, &bt, >))
723 				gap_lerp = bt;
724 
725 			/* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
726 			frac = 0;
727 			if (gap_lerp.sec > 0) {
728 				frac -= 1;
729 				frac /= ffdelta / gap_lerp.sec;
730 			}
731 			frac += gap_lerp.frac / ffdelta;
732 
733 			if (forward_jump)
734 				ffth->period_lerp += frac;
735 			else
736 				ffth->period_lerp -= frac;
737 		}
738 
739 		ffclock_updated = 0;
740 	}
741 	if (++ogen == 0)
742 		ogen = 1;
743 	ffth->gen = ogen;
744 	fftimehands = ffth;
745 }
746 
747 /*
748  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
749  * the old and new hardware counter cannot be read simultaneously. tc_windup()
750  * does read the two counters 'back to back', but a few cycles are effectively
751  * lost, and not accumulated in tick_ffcount. This is a fairly radical
752  * operation for a feed-forward synchronization daemon, and it is its job to not
753  * pushing irrelevant data to the kernel. Because there is no locking here,
754  * simply force to ignore pending or next update to give daemon a chance to
755  * realize the counter has changed.
756  */
757 static void
758 ffclock_change_tc(struct timehands *th)
759 {
760 	struct fftimehands *ffth;
761 	struct ffclock_estimate *cest;
762 	struct timecounter *tc;
763 	uint8_t ogen;
764 
765 	tc = th->th_counter;
766 	ffth = fftimehands->next;
767 	ogen = ffth->gen;
768 	ffth->gen = 0;
769 
770 	cest = &ffth->cest;
771 	bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
772 	cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
773 	cest->errb_abs = 0;
774 	cest->errb_rate = 0;
775 	cest->status |= FFCLOCK_STA_UNSYNC;
776 
777 	ffth->tick_ffcount = fftimehands->tick_ffcount;
778 	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
779 	ffth->tick_time = fftimehands->tick_time;
780 	ffth->period_lerp = cest->period;
781 
782 	/* Do not lock but ignore next update from synchronization daemon. */
783 	ffclock_updated--;
784 
785 	if (++ogen == 0)
786 		ogen = 1;
787 	ffth->gen = ogen;
788 	fftimehands = ffth;
789 }
790 
791 /*
792  * Retrieve feed-forward counter and time of last kernel tick.
793  */
794 void
795 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
796 {
797 	struct fftimehands *ffth;
798 	uint8_t gen;
799 
800 	/*
801 	 * No locking but check generation has not changed. Also need to make
802 	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
803 	 */
804 	do {
805 		ffth = fftimehands;
806 		gen = ffth->gen;
807 		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
808 			*bt = ffth->tick_time_lerp;
809 		else
810 			*bt = ffth->tick_time;
811 		*ffcount = ffth->tick_ffcount;
812 	} while (gen == 0 || gen != ffth->gen);
813 }
814 
815 /*
816  * Absolute clock conversion. Low level function to convert ffcounter to
817  * bintime. The ffcounter is converted using the current ffclock period estimate
818  * or the "interpolated period" to ensure monotonicity.
819  * NOTE: this conversion may have been deferred, and the clock updated since the
820  * hardware counter has been read.
821  */
822 void
823 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
824 {
825 	struct fftimehands *ffth;
826 	struct bintime bt2;
827 	ffcounter ffdelta;
828 	uint8_t gen;
829 
830 	/*
831 	 * No locking but check generation has not changed. Also need to make
832 	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
833 	 */
834 	do {
835 		ffth = fftimehands;
836 		gen = ffth->gen;
837 		if (ffcount > ffth->tick_ffcount)
838 			ffdelta = ffcount - ffth->tick_ffcount;
839 		else
840 			ffdelta = ffth->tick_ffcount - ffcount;
841 
842 		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
843 			*bt = ffth->tick_time_lerp;
844 			ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
845 		} else {
846 			*bt = ffth->tick_time;
847 			ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
848 		}
849 
850 		if (ffcount > ffth->tick_ffcount)
851 			bintime_add(bt, &bt2);
852 		else
853 			bintime_sub(bt, &bt2);
854 	} while (gen == 0 || gen != ffth->gen);
855 }
856 
857 /*
858  * Difference clock conversion.
859  * Low level function to Convert a time interval measured in RAW counter units
860  * into bintime. The difference clock allows measuring small intervals much more
861  * reliably than the absolute clock.
862  */
863 void
864 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
865 {
866 	struct fftimehands *ffth;
867 	uint8_t gen;
868 
869 	/* No locking but check generation has not changed. */
870 	do {
871 		ffth = fftimehands;
872 		gen = ffth->gen;
873 		ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
874 	} while (gen == 0 || gen != ffth->gen);
875 }
876 
877 /*
878  * Access to current ffcounter value.
879  */
880 void
881 ffclock_read_counter(ffcounter *ffcount)
882 {
883 	struct timehands *th;
884 	struct fftimehands *ffth;
885 	unsigned int gen, delta;
886 
887 	/*
888 	 * ffclock_windup() called from tc_windup(), safe to rely on
889 	 * th->th_generation only, for correct delta and ffcounter.
890 	 */
891 	do {
892 		th = timehands;
893 		gen = atomic_load_acq_int(&th->th_generation);
894 		ffth = fftimehands;
895 		delta = tc_delta(th);
896 		*ffcount = ffth->tick_ffcount;
897 		atomic_thread_fence_acq();
898 	} while (gen == 0 || gen != th->th_generation);
899 
900 	*ffcount += delta;
901 }
902 
903 void
904 binuptime(struct bintime *bt)
905 {
906 
907 	binuptime_fromclock(bt, sysclock_active);
908 }
909 
910 void
911 nanouptime(struct timespec *tsp)
912 {
913 
914 	nanouptime_fromclock(tsp, sysclock_active);
915 }
916 
917 void
918 microuptime(struct timeval *tvp)
919 {
920 
921 	microuptime_fromclock(tvp, sysclock_active);
922 }
923 
924 void
925 bintime(struct bintime *bt)
926 {
927 
928 	bintime_fromclock(bt, sysclock_active);
929 }
930 
931 void
932 nanotime(struct timespec *tsp)
933 {
934 
935 	nanotime_fromclock(tsp, sysclock_active);
936 }
937 
938 void
939 microtime(struct timeval *tvp)
940 {
941 
942 	microtime_fromclock(tvp, sysclock_active);
943 }
944 
945 void
946 getbinuptime(struct bintime *bt)
947 {
948 
949 	getbinuptime_fromclock(bt, sysclock_active);
950 }
951 
952 void
953 getnanouptime(struct timespec *tsp)
954 {
955 
956 	getnanouptime_fromclock(tsp, sysclock_active);
957 }
958 
959 void
960 getmicrouptime(struct timeval *tvp)
961 {
962 
963 	getmicrouptime_fromclock(tvp, sysclock_active);
964 }
965 
966 void
967 getbintime(struct bintime *bt)
968 {
969 
970 	getbintime_fromclock(bt, sysclock_active);
971 }
972 
973 void
974 getnanotime(struct timespec *tsp)
975 {
976 
977 	getnanotime_fromclock(tsp, sysclock_active);
978 }
979 
980 void
981 getmicrotime(struct timeval *tvp)
982 {
983 
984 	getmicrouptime_fromclock(tvp, sysclock_active);
985 }
986 
987 #endif /* FFCLOCK */
988 
989 /*
990  * This is a clone of getnanotime and used for walltimestamps.
991  * The dtrace_ prefix prevents fbt from creating probes for
992  * it so walltimestamp can be safely used in all fbt probes.
993  */
994 void
995 dtrace_getnanotime(struct timespec *tsp)
996 {
997 
998 	GETTHMEMBER(tsp, th_nanotime);
999 }
1000 
1001 /*
1002  * This is a clone of getnanouptime used for time since boot.
1003  * The dtrace_ prefix prevents fbt from creating probes for
1004  * it so an uptime that can be safely used in all fbt probes.
1005  */
1006 void
1007 dtrace_getnanouptime(struct timespec *tsp)
1008 {
1009 	struct bintime bt;
1010 
1011 	GETTHMEMBER(&bt, th_offset);
1012 	bintime2timespec(&bt, tsp);
1013 }
1014 
1015 /*
1016  * System clock currently providing time to the system. Modifiable via sysctl
1017  * when the FFCLOCK option is defined.
1018  */
1019 int sysclock_active = SYSCLOCK_FBCK;
1020 
1021 /* Internal NTP status and error estimates. */
1022 extern int time_status;
1023 extern long time_esterror;
1024 
1025 /*
1026  * Take a snapshot of sysclock data which can be used to compare system clocks
1027  * and generate timestamps after the fact.
1028  */
1029 void
1030 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1031 {
1032 	struct fbclock_info *fbi;
1033 	struct timehands *th;
1034 	struct bintime bt;
1035 	unsigned int delta, gen;
1036 #ifdef FFCLOCK
1037 	ffcounter ffcount;
1038 	struct fftimehands *ffth;
1039 	struct ffclock_info *ffi;
1040 	struct ffclock_estimate cest;
1041 
1042 	ffi = &clock_snap->ff_info;
1043 #endif
1044 
1045 	fbi = &clock_snap->fb_info;
1046 	delta = 0;
1047 
1048 	do {
1049 		th = timehands;
1050 		gen = atomic_load_acq_int(&th->th_generation);
1051 		fbi->th_scale = th->th_scale;
1052 		fbi->tick_time = th->th_offset;
1053 #ifdef FFCLOCK
1054 		ffth = fftimehands;
1055 		ffi->tick_time = ffth->tick_time_lerp;
1056 		ffi->tick_time_lerp = ffth->tick_time_lerp;
1057 		ffi->period = ffth->cest.period;
1058 		ffi->period_lerp = ffth->period_lerp;
1059 		clock_snap->ffcount = ffth->tick_ffcount;
1060 		cest = ffth->cest;
1061 #endif
1062 		if (!fast)
1063 			delta = tc_delta(th);
1064 		atomic_thread_fence_acq();
1065 	} while (gen == 0 || gen != th->th_generation);
1066 
1067 	clock_snap->delta = delta;
1068 	clock_snap->sysclock_active = sysclock_active;
1069 
1070 	/* Record feedback clock status and error. */
1071 	clock_snap->fb_info.status = time_status;
1072 	/* XXX: Very crude estimate of feedback clock error. */
1073 	bt.sec = time_esterror / 1000000;
1074 	bt.frac = ((time_esterror - bt.sec) * 1000000) *
1075 	    (uint64_t)18446744073709ULL;
1076 	clock_snap->fb_info.error = bt;
1077 
1078 #ifdef FFCLOCK
1079 	if (!fast)
1080 		clock_snap->ffcount += delta;
1081 
1082 	/* Record feed-forward clock leap second adjustment. */
1083 	ffi->leapsec_adjustment = cest.leapsec_total;
1084 	if (clock_snap->ffcount > cest.leapsec_next)
1085 		ffi->leapsec_adjustment -= cest.leapsec;
1086 
1087 	/* Record feed-forward clock status and error. */
1088 	clock_snap->ff_info.status = cest.status;
1089 	ffcount = clock_snap->ffcount - cest.update_ffcount;
1090 	ffclock_convert_delta(ffcount, cest.period, &bt);
1091 	/* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1092 	bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1093 	/* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1094 	bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1095 	clock_snap->ff_info.error = bt;
1096 #endif
1097 }
1098 
1099 /*
1100  * Convert a sysclock snapshot into a struct bintime based on the specified
1101  * clock source and flags.
1102  */
1103 int
1104 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1105     int whichclock, uint32_t flags)
1106 {
1107 	struct bintime boottimebin;
1108 #ifdef FFCLOCK
1109 	struct bintime bt2;
1110 	uint64_t period;
1111 #endif
1112 
1113 	switch (whichclock) {
1114 	case SYSCLOCK_FBCK:
1115 		*bt = cs->fb_info.tick_time;
1116 
1117 		/* If snapshot was created with !fast, delta will be >0. */
1118 		if (cs->delta > 0)
1119 			bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1120 
1121 		if ((flags & FBCLOCK_UPTIME) == 0) {
1122 			getboottimebin(&boottimebin);
1123 			bintime_add(bt, &boottimebin);
1124 		}
1125 		break;
1126 #ifdef FFCLOCK
1127 	case SYSCLOCK_FFWD:
1128 		if (flags & FFCLOCK_LERP) {
1129 			*bt = cs->ff_info.tick_time_lerp;
1130 			period = cs->ff_info.period_lerp;
1131 		} else {
1132 			*bt = cs->ff_info.tick_time;
1133 			period = cs->ff_info.period;
1134 		}
1135 
1136 		/* If snapshot was created with !fast, delta will be >0. */
1137 		if (cs->delta > 0) {
1138 			ffclock_convert_delta(cs->delta, period, &bt2);
1139 			bintime_add(bt, &bt2);
1140 		}
1141 
1142 		/* Leap second adjustment. */
1143 		if (flags & FFCLOCK_LEAPSEC)
1144 			bt->sec -= cs->ff_info.leapsec_adjustment;
1145 
1146 		/* Boot time adjustment, for uptime/monotonic clocks. */
1147 		if (flags & FFCLOCK_UPTIME)
1148 			bintime_sub(bt, &ffclock_boottime);
1149 		break;
1150 #endif
1151 	default:
1152 		return (EINVAL);
1153 		break;
1154 	}
1155 
1156 	return (0);
1157 }
1158 
1159 /*
1160  * Initialize a new timecounter and possibly use it.
1161  */
1162 void
1163 tc_init(struct timecounter *tc)
1164 {
1165 	u_int u;
1166 	struct sysctl_oid *tc_root;
1167 
1168 	u = tc->tc_frequency / tc->tc_counter_mask;
1169 	/* XXX: We need some margin here, 10% is a guess */
1170 	u *= 11;
1171 	u /= 10;
1172 	if (u > hz && tc->tc_quality >= 0) {
1173 		tc->tc_quality = -2000;
1174 		if (bootverbose) {
1175 			printf("Timecounter \"%s\" frequency %ju Hz",
1176 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
1177 			printf(" -- Insufficient hz, needs at least %u\n", u);
1178 		}
1179 	} else if (tc->tc_quality >= 0 || bootverbose) {
1180 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1181 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
1182 		    tc->tc_quality);
1183 	}
1184 
1185 	tc->tc_next = timecounters;
1186 	timecounters = tc;
1187 	/*
1188 	 * Set up sysctl tree for this counter.
1189 	 */
1190 	tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL,
1191 	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1192 	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1193 	    "timecounter description", "timecounter");
1194 	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1195 	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1196 	    "mask for implemented bits");
1197 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1198 	    "counter", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, tc,
1199 	    sizeof(*tc), sysctl_kern_timecounter_get, "IU",
1200 	    "current timecounter value");
1201 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1202 	    "frequency", CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, tc,
1203 	    sizeof(*tc), sysctl_kern_timecounter_freq, "QU",
1204 	    "timecounter frequency");
1205 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1206 	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1207 	    "goodness of time counter");
1208 	/*
1209 	 * Do not automatically switch if the current tc was specifically
1210 	 * chosen.  Never automatically use a timecounter with negative quality.
1211 	 * Even though we run on the dummy counter, switching here may be
1212 	 * worse since this timecounter may not be monotonic.
1213 	 */
1214 	if (tc_chosen)
1215 		return;
1216 	if (tc->tc_quality < 0)
1217 		return;
1218 	if (tc->tc_quality < timecounter->tc_quality)
1219 		return;
1220 	if (tc->tc_quality == timecounter->tc_quality &&
1221 	    tc->tc_frequency < timecounter->tc_frequency)
1222 		return;
1223 	(void)tc->tc_get_timecount(tc);
1224 	timecounter = tc;
1225 }
1226 
1227 /* Report the frequency of the current timecounter. */
1228 uint64_t
1229 tc_getfrequency(void)
1230 {
1231 
1232 	return (timehands->th_counter->tc_frequency);
1233 }
1234 
1235 static bool
1236 sleeping_on_old_rtc(struct thread *td)
1237 {
1238 
1239 	/*
1240 	 * td_rtcgen is modified by curthread when it is running,
1241 	 * and by other threads in this function.  By finding the thread
1242 	 * on a sleepqueue and holding the lock on the sleepqueue
1243 	 * chain, we guarantee that the thread is not running and that
1244 	 * modifying td_rtcgen is safe.  Setting td_rtcgen to zero informs
1245 	 * the thread that it was woken due to a real-time clock adjustment.
1246 	 * (The declaration of td_rtcgen refers to this comment.)
1247 	 */
1248 	if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) {
1249 		td->td_rtcgen = 0;
1250 		return (true);
1251 	}
1252 	return (false);
1253 }
1254 
1255 static struct mtx tc_setclock_mtx;
1256 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);
1257 
1258 /*
1259  * Step our concept of UTC.  This is done by modifying our estimate of
1260  * when we booted.
1261  */
1262 void
1263 tc_setclock(struct timespec *ts)
1264 {
1265 	struct timespec tbef, taft;
1266 	struct bintime bt, bt2;
1267 
1268 	timespec2bintime(ts, &bt);
1269 	nanotime(&tbef);
1270 	mtx_lock_spin(&tc_setclock_mtx);
1271 	cpu_tick_calibrate(1);
1272 	binuptime(&bt2);
1273 	bintime_sub(&bt, &bt2);
1274 
1275 	/* XXX fiddle all the little crinkly bits around the fiords... */
1276 	tc_windup(&bt);
1277 	mtx_unlock_spin(&tc_setclock_mtx);
1278 
1279 	/* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */
1280 	atomic_add_rel_int(&rtc_generation, 2);
1281 	sleepq_chains_remove_matching(sleeping_on_old_rtc);
1282 	if (timestepwarnings) {
1283 		nanotime(&taft);
1284 		log(LOG_INFO,
1285 		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1286 		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1287 		    (intmax_t)taft.tv_sec, taft.tv_nsec,
1288 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
1289 	}
1290 }
1291 
1292 /*
1293  * Initialize the next struct timehands in the ring and make
1294  * it the active timehands.  Along the way we might switch to a different
1295  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1296  */
1297 static void
1298 tc_windup(struct bintime *new_boottimebin)
1299 {
1300 	struct bintime bt;
1301 	struct timehands *th, *tho;
1302 	uint64_t scale;
1303 	u_int delta, ncount, ogen;
1304 	int i;
1305 	time_t t;
1306 
1307 	/*
1308 	 * Make the next timehands a copy of the current one, but do
1309 	 * not overwrite the generation or next pointer.  While we
1310 	 * update the contents, the generation must be zero.  We need
1311 	 * to ensure that the zero generation is visible before the
1312 	 * data updates become visible, which requires release fence.
1313 	 * For similar reasons, re-reading of the generation after the
1314 	 * data is read should use acquire fence.
1315 	 */
1316 	tho = timehands;
1317 	th = tho->th_next;
1318 	ogen = th->th_generation;
1319 	th->th_generation = 0;
1320 	atomic_thread_fence_rel();
1321 	memcpy(th, tho, offsetof(struct timehands, th_generation));
1322 	if (new_boottimebin != NULL)
1323 		th->th_boottime = *new_boottimebin;
1324 
1325 	/*
1326 	 * Capture a timecounter delta on the current timecounter and if
1327 	 * changing timecounters, a counter value from the new timecounter.
1328 	 * Update the offset fields accordingly.
1329 	 */
1330 	delta = tc_delta(th);
1331 	if (th->th_counter != timecounter)
1332 		ncount = timecounter->tc_get_timecount(timecounter);
1333 	else
1334 		ncount = 0;
1335 #ifdef FFCLOCK
1336 	ffclock_windup(delta);
1337 #endif
1338 	th->th_offset_count += delta;
1339 	th->th_offset_count &= th->th_counter->tc_counter_mask;
1340 	while (delta > th->th_counter->tc_frequency) {
1341 		/* Eat complete unadjusted seconds. */
1342 		delta -= th->th_counter->tc_frequency;
1343 		th->th_offset.sec++;
1344 	}
1345 	if ((delta > th->th_counter->tc_frequency / 2) &&
1346 	    (th->th_scale * delta < ((uint64_t)1 << 63))) {
1347 		/* The product th_scale * delta just barely overflows. */
1348 		th->th_offset.sec++;
1349 	}
1350 	bintime_addx(&th->th_offset, th->th_scale * delta);
1351 
1352 	/*
1353 	 * Hardware latching timecounters may not generate interrupts on
1354 	 * PPS events, so instead we poll them.  There is a finite risk that
1355 	 * the hardware might capture a count which is later than the one we
1356 	 * got above, and therefore possibly in the next NTP second which might
1357 	 * have a different rate than the current NTP second.  It doesn't
1358 	 * matter in practice.
1359 	 */
1360 	if (tho->th_counter->tc_poll_pps)
1361 		tho->th_counter->tc_poll_pps(tho->th_counter);
1362 
1363 	/*
1364 	 * Deal with NTP second processing.  The for loop normally
1365 	 * iterates at most once, but in extreme situations it might
1366 	 * keep NTP sane if timeouts are not run for several seconds.
1367 	 * At boot, the time step can be large when the TOD hardware
1368 	 * has been read, so on really large steps, we call
1369 	 * ntp_update_second only twice.  We need to call it twice in
1370 	 * case we missed a leap second.
1371 	 */
1372 	bt = th->th_offset;
1373 	bintime_add(&bt, &th->th_boottime);
1374 	i = bt.sec - tho->th_microtime.tv_sec;
1375 	if (i > LARGE_STEP)
1376 		i = 2;
1377 	for (; i > 0; i--) {
1378 		t = bt.sec;
1379 		ntp_update_second(&th->th_adjustment, &bt.sec);
1380 		if (bt.sec != t)
1381 			th->th_boottime.sec += bt.sec - t;
1382 	}
1383 	/* Update the UTC timestamps used by the get*() functions. */
1384 	th->th_bintime = bt;
1385 	bintime2timeval(&bt, &th->th_microtime);
1386 	bintime2timespec(&bt, &th->th_nanotime);
1387 
1388 	/* Now is a good time to change timecounters. */
1389 	if (th->th_counter != timecounter) {
1390 #ifndef __arm__
1391 		if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1392 			cpu_disable_c2_sleep++;
1393 		if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1394 			cpu_disable_c2_sleep--;
1395 #endif
1396 		th->th_counter = timecounter;
1397 		th->th_offset_count = ncount;
1398 		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1399 		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1400 #ifdef FFCLOCK
1401 		ffclock_change_tc(th);
1402 #endif
1403 	}
1404 
1405 	/*-
1406 	 * Recalculate the scaling factor.  We want the number of 1/2^64
1407 	 * fractions of a second per period of the hardware counter, taking
1408 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1409 	 * processing provides us with.
1410 	 *
1411 	 * The th_adjustment is nanoseconds per second with 32 bit binary
1412 	 * fraction and we want 64 bit binary fraction of second:
1413 	 *
1414 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
1415 	 *
1416 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1417 	 * we can only multiply by about 850 without overflowing, that
1418 	 * leaves no suitably precise fractions for multiply before divide.
1419 	 *
1420 	 * Divide before multiply with a fraction of 2199/512 results in a
1421 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
1422 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1423  	 *
1424 	 * We happily sacrifice the lowest of the 64 bits of our result
1425 	 * to the goddess of code clarity.
1426 	 *
1427 	 */
1428 	scale = (uint64_t)1 << 63;
1429 	scale += (th->th_adjustment / 1024) * 2199;
1430 	scale /= th->th_counter->tc_frequency;
1431 	th->th_scale = scale * 2;
1432 	th->th_large_delta = MIN(((uint64_t)1 << 63) / scale, UINT_MAX);
1433 
1434 	/*
1435 	 * Now that the struct timehands is again consistent, set the new
1436 	 * generation number, making sure to not make it zero.
1437 	 */
1438 	if (++ogen == 0)
1439 		ogen = 1;
1440 	atomic_store_rel_int(&th->th_generation, ogen);
1441 
1442 	/* Go live with the new struct timehands. */
1443 #ifdef FFCLOCK
1444 	switch (sysclock_active) {
1445 	case SYSCLOCK_FBCK:
1446 #endif
1447 		time_second = th->th_microtime.tv_sec;
1448 		time_uptime = th->th_offset.sec;
1449 #ifdef FFCLOCK
1450 		break;
1451 	case SYSCLOCK_FFWD:
1452 		time_second = fftimehands->tick_time_lerp.sec;
1453 		time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1454 		break;
1455 	}
1456 #endif
1457 
1458 	timehands = th;
1459 	timekeep_push_vdso();
1460 }
1461 
1462 /* Report or change the active timecounter hardware. */
1463 static int
1464 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1465 {
1466 	char newname[32];
1467 	struct timecounter *newtc, *tc;
1468 	int error;
1469 
1470 	tc = timecounter;
1471 	strlcpy(newname, tc->tc_name, sizeof(newname));
1472 
1473 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1474 	if (error != 0 || req->newptr == NULL)
1475 		return (error);
1476 	/* Record that the tc in use now was specifically chosen. */
1477 	tc_chosen = 1;
1478 	if (strcmp(newname, tc->tc_name) == 0)
1479 		return (0);
1480 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1481 		if (strcmp(newname, newtc->tc_name) != 0)
1482 			continue;
1483 
1484 		/* Warm up new timecounter. */
1485 		(void)newtc->tc_get_timecount(newtc);
1486 
1487 		timecounter = newtc;
1488 
1489 		/*
1490 		 * The vdso timehands update is deferred until the next
1491 		 * 'tc_windup()'.
1492 		 *
1493 		 * This is prudent given that 'timekeep_push_vdso()' does not
1494 		 * use any locking and that it can be called in hard interrupt
1495 		 * context via 'tc_windup()'.
1496 		 */
1497 		return (0);
1498 	}
1499 	return (EINVAL);
1500 }
1501 
1502 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware,
1503     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
1504     sysctl_kern_timecounter_hardware, "A",
1505     "Timecounter hardware selected");
1506 
1507 /* Report the available timecounter hardware. */
1508 static int
1509 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1510 {
1511 	struct sbuf sb;
1512 	struct timecounter *tc;
1513 	int error;
1514 
1515 	sbuf_new_for_sysctl(&sb, NULL, 0, req);
1516 	for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1517 		if (tc != timecounters)
1518 			sbuf_putc(&sb, ' ');
1519 		sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1520 	}
1521 	error = sbuf_finish(&sb);
1522 	sbuf_delete(&sb);
1523 	return (error);
1524 }
1525 
1526 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice,
1527     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
1528     sysctl_kern_timecounter_choice, "A",
1529     "Timecounter hardware detected");
1530 
1531 /*
1532  * RFC 2783 PPS-API implementation.
1533  */
1534 
1535 /*
1536  *  Return true if the driver is aware of the abi version extensions in the
1537  *  pps_state structure, and it supports at least the given abi version number.
1538  */
1539 static inline int
1540 abi_aware(struct pps_state *pps, int vers)
1541 {
1542 
1543 	return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1544 }
1545 
1546 static int
1547 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1548 {
1549 	int err, timo;
1550 	pps_seq_t aseq, cseq;
1551 	struct timeval tv;
1552 
1553 	if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1554 		return (EINVAL);
1555 
1556 	/*
1557 	 * If no timeout is requested, immediately return whatever values were
1558 	 * most recently captured.  If timeout seconds is -1, that's a request
1559 	 * to block without a timeout.  WITNESS won't let us sleep forever
1560 	 * without a lock (we really don't need a lock), so just repeatedly
1561 	 * sleep a long time.
1562 	 */
1563 	if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1564 		if (fapi->timeout.tv_sec == -1)
1565 			timo = 0x7fffffff;
1566 		else {
1567 			tv.tv_sec = fapi->timeout.tv_sec;
1568 			tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1569 			timo = tvtohz(&tv);
1570 		}
1571 		aseq = atomic_load_int(&pps->ppsinfo.assert_sequence);
1572 		cseq = atomic_load_int(&pps->ppsinfo.clear_sequence);
1573 		while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) &&
1574 		    cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) {
1575 			if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1576 				if (pps->flags & PPSFLAG_MTX_SPIN) {
1577 					err = msleep_spin(pps, pps->driver_mtx,
1578 					    "ppsfch", timo);
1579 				} else {
1580 					err = msleep(pps, pps->driver_mtx, PCATCH,
1581 					    "ppsfch", timo);
1582 				}
1583 			} else {
1584 				err = tsleep(pps, PCATCH, "ppsfch", timo);
1585 			}
1586 			if (err == EWOULDBLOCK) {
1587 				if (fapi->timeout.tv_sec == -1) {
1588 					continue;
1589 				} else {
1590 					return (ETIMEDOUT);
1591 				}
1592 			} else if (err != 0) {
1593 				return (err);
1594 			}
1595 		}
1596 	}
1597 
1598 	pps->ppsinfo.current_mode = pps->ppsparam.mode;
1599 	fapi->pps_info_buf = pps->ppsinfo;
1600 
1601 	return (0);
1602 }
1603 
1604 int
1605 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1606 {
1607 	pps_params_t *app;
1608 	struct pps_fetch_args *fapi;
1609 #ifdef FFCLOCK
1610 	struct pps_fetch_ffc_args *fapi_ffc;
1611 #endif
1612 #ifdef PPS_SYNC
1613 	struct pps_kcbind_args *kapi;
1614 #endif
1615 
1616 	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1617 	switch (cmd) {
1618 	case PPS_IOC_CREATE:
1619 		return (0);
1620 	case PPS_IOC_DESTROY:
1621 		return (0);
1622 	case PPS_IOC_SETPARAMS:
1623 		app = (pps_params_t *)data;
1624 		if (app->mode & ~pps->ppscap)
1625 			return (EINVAL);
1626 #ifdef FFCLOCK
1627 		/* Ensure only a single clock is selected for ffc timestamp. */
1628 		if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1629 			return (EINVAL);
1630 #endif
1631 		pps->ppsparam = *app;
1632 		return (0);
1633 	case PPS_IOC_GETPARAMS:
1634 		app = (pps_params_t *)data;
1635 		*app = pps->ppsparam;
1636 		app->api_version = PPS_API_VERS_1;
1637 		return (0);
1638 	case PPS_IOC_GETCAP:
1639 		*(int*)data = pps->ppscap;
1640 		return (0);
1641 	case PPS_IOC_FETCH:
1642 		fapi = (struct pps_fetch_args *)data;
1643 		return (pps_fetch(fapi, pps));
1644 #ifdef FFCLOCK
1645 	case PPS_IOC_FETCH_FFCOUNTER:
1646 		fapi_ffc = (struct pps_fetch_ffc_args *)data;
1647 		if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1648 		    PPS_TSFMT_TSPEC)
1649 			return (EINVAL);
1650 		if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1651 			return (EOPNOTSUPP);
1652 		pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1653 		fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1654 		/* Overwrite timestamps if feedback clock selected. */
1655 		switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1656 		case PPS_TSCLK_FBCK:
1657 			fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1658 			    pps->ppsinfo.assert_timestamp;
1659 			fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1660 			    pps->ppsinfo.clear_timestamp;
1661 			break;
1662 		case PPS_TSCLK_FFWD:
1663 			break;
1664 		default:
1665 			break;
1666 		}
1667 		return (0);
1668 #endif /* FFCLOCK */
1669 	case PPS_IOC_KCBIND:
1670 #ifdef PPS_SYNC
1671 		kapi = (struct pps_kcbind_args *)data;
1672 		/* XXX Only root should be able to do this */
1673 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1674 			return (EINVAL);
1675 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1676 			return (EINVAL);
1677 		if (kapi->edge & ~pps->ppscap)
1678 			return (EINVAL);
1679 		pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1680 		    (pps->kcmode & KCMODE_ABIFLAG);
1681 		return (0);
1682 #else
1683 		return (EOPNOTSUPP);
1684 #endif
1685 	default:
1686 		return (ENOIOCTL);
1687 	}
1688 }
1689 
1690 void
1691 pps_init(struct pps_state *pps)
1692 {
1693 	pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1694 	if (pps->ppscap & PPS_CAPTUREASSERT)
1695 		pps->ppscap |= PPS_OFFSETASSERT;
1696 	if (pps->ppscap & PPS_CAPTURECLEAR)
1697 		pps->ppscap |= PPS_OFFSETCLEAR;
1698 #ifdef FFCLOCK
1699 	pps->ppscap |= PPS_TSCLK_MASK;
1700 #endif
1701 	pps->kcmode &= ~KCMODE_ABIFLAG;
1702 }
1703 
1704 void
1705 pps_init_abi(struct pps_state *pps)
1706 {
1707 
1708 	pps_init(pps);
1709 	if (pps->driver_abi > 0) {
1710 		pps->kcmode |= KCMODE_ABIFLAG;
1711 		pps->kernel_abi = PPS_ABI_VERSION;
1712 	}
1713 }
1714 
1715 void
1716 pps_capture(struct pps_state *pps)
1717 {
1718 	struct timehands *th;
1719 
1720 	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1721 	th = timehands;
1722 	pps->capgen = atomic_load_acq_int(&th->th_generation);
1723 	pps->capth = th;
1724 #ifdef FFCLOCK
1725 	pps->capffth = fftimehands;
1726 #endif
1727 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1728 	atomic_thread_fence_acq();
1729 	if (pps->capgen != th->th_generation)
1730 		pps->capgen = 0;
1731 }
1732 
1733 void
1734 pps_event(struct pps_state *pps, int event)
1735 {
1736 	struct bintime bt;
1737 	struct timespec ts, *tsp, *osp;
1738 	u_int tcount, *pcount;
1739 	int foff;
1740 	pps_seq_t *pseq;
1741 #ifdef FFCLOCK
1742 	struct timespec *tsp_ffc;
1743 	pps_seq_t *pseq_ffc;
1744 	ffcounter *ffcount;
1745 #endif
1746 #ifdef PPS_SYNC
1747 	int fhard;
1748 #endif
1749 
1750 	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1751 	/* Nothing to do if not currently set to capture this event type. */
1752 	if ((event & pps->ppsparam.mode) == 0)
1753 		return;
1754 	/* If the timecounter was wound up underneath us, bail out. */
1755 	if (pps->capgen == 0 || pps->capgen !=
1756 	    atomic_load_acq_int(&pps->capth->th_generation))
1757 		return;
1758 
1759 	/* Things would be easier with arrays. */
1760 	if (event == PPS_CAPTUREASSERT) {
1761 		tsp = &pps->ppsinfo.assert_timestamp;
1762 		osp = &pps->ppsparam.assert_offset;
1763 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1764 #ifdef PPS_SYNC
1765 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1766 #endif
1767 		pcount = &pps->ppscount[0];
1768 		pseq = &pps->ppsinfo.assert_sequence;
1769 #ifdef FFCLOCK
1770 		ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1771 		tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1772 		pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1773 #endif
1774 	} else {
1775 		tsp = &pps->ppsinfo.clear_timestamp;
1776 		osp = &pps->ppsparam.clear_offset;
1777 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1778 #ifdef PPS_SYNC
1779 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1780 #endif
1781 		pcount = &pps->ppscount[1];
1782 		pseq = &pps->ppsinfo.clear_sequence;
1783 #ifdef FFCLOCK
1784 		ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1785 		tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1786 		pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1787 #endif
1788 	}
1789 
1790 	/*
1791 	 * If the timecounter changed, we cannot compare the count values, so
1792 	 * we have to drop the rest of the PPS-stuff until the next event.
1793 	 */
1794 	if (pps->ppstc != pps->capth->th_counter) {
1795 		pps->ppstc = pps->capth->th_counter;
1796 		*pcount = pps->capcount;
1797 		pps->ppscount[2] = pps->capcount;
1798 		return;
1799 	}
1800 
1801 	/* Convert the count to a timespec. */
1802 	tcount = pps->capcount - pps->capth->th_offset_count;
1803 	tcount &= pps->capth->th_counter->tc_counter_mask;
1804 	bt = pps->capth->th_bintime;
1805 	bintime_addx(&bt, pps->capth->th_scale * tcount);
1806 	bintime2timespec(&bt, &ts);
1807 
1808 	/* If the timecounter was wound up underneath us, bail out. */
1809 	atomic_thread_fence_acq();
1810 	if (pps->capgen != pps->capth->th_generation)
1811 		return;
1812 
1813 	*pcount = pps->capcount;
1814 	(*pseq)++;
1815 	*tsp = ts;
1816 
1817 	if (foff) {
1818 		timespecadd(tsp, osp, tsp);
1819 		if (tsp->tv_nsec < 0) {
1820 			tsp->tv_nsec += 1000000000;
1821 			tsp->tv_sec -= 1;
1822 		}
1823 	}
1824 
1825 #ifdef FFCLOCK
1826 	*ffcount = pps->capffth->tick_ffcount + tcount;
1827 	bt = pps->capffth->tick_time;
1828 	ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1829 	bintime_add(&bt, &pps->capffth->tick_time);
1830 	bintime2timespec(&bt, &ts);
1831 	(*pseq_ffc)++;
1832 	*tsp_ffc = ts;
1833 #endif
1834 
1835 #ifdef PPS_SYNC
1836 	if (fhard) {
1837 		uint64_t scale;
1838 
1839 		/*
1840 		 * Feed the NTP PLL/FLL.
1841 		 * The FLL wants to know how many (hardware) nanoseconds
1842 		 * elapsed since the previous event.
1843 		 */
1844 		tcount = pps->capcount - pps->ppscount[2];
1845 		pps->ppscount[2] = pps->capcount;
1846 		tcount &= pps->capth->th_counter->tc_counter_mask;
1847 		scale = (uint64_t)1 << 63;
1848 		scale /= pps->capth->th_counter->tc_frequency;
1849 		scale *= 2;
1850 		bt.sec = 0;
1851 		bt.frac = 0;
1852 		bintime_addx(&bt, scale * tcount);
1853 		bintime2timespec(&bt, &ts);
1854 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1855 	}
1856 #endif
1857 
1858 	/* Wakeup anyone sleeping in pps_fetch().  */
1859 	wakeup(pps);
1860 }
1861 
1862 /*
1863  * Timecounters need to be updated every so often to prevent the hardware
1864  * counter from overflowing.  Updating also recalculates the cached values
1865  * used by the get*() family of functions, so their precision depends on
1866  * the update frequency.
1867  */
1868 
1869 static int tc_tick;
1870 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1871     "Approximate number of hardclock ticks in a millisecond");
1872 
1873 void
1874 tc_ticktock(int cnt)
1875 {
1876 	static int count;
1877 
1878 	if (mtx_trylock_spin(&tc_setclock_mtx)) {
1879 		count += cnt;
1880 		if (count >= tc_tick) {
1881 			count = 0;
1882 			tc_windup(NULL);
1883 		}
1884 		mtx_unlock_spin(&tc_setclock_mtx);
1885 	}
1886 }
1887 
1888 static void __inline
1889 tc_adjprecision(void)
1890 {
1891 	int t;
1892 
1893 	if (tc_timepercentage > 0) {
1894 		t = (99 + tc_timepercentage) / tc_timepercentage;
1895 		tc_precexp = fls(t + (t >> 1)) - 1;
1896 		FREQ2BT(hz / tc_tick, &bt_timethreshold);
1897 		FREQ2BT(hz, &bt_tickthreshold);
1898 		bintime_shift(&bt_timethreshold, tc_precexp);
1899 		bintime_shift(&bt_tickthreshold, tc_precexp);
1900 	} else {
1901 		tc_precexp = 31;
1902 		bt_timethreshold.sec = INT_MAX;
1903 		bt_timethreshold.frac = ~(uint64_t)0;
1904 		bt_tickthreshold = bt_timethreshold;
1905 	}
1906 	sbt_timethreshold = bttosbt(bt_timethreshold);
1907 	sbt_tickthreshold = bttosbt(bt_tickthreshold);
1908 }
1909 
1910 static int
1911 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1912 {
1913 	int error, val;
1914 
1915 	val = tc_timepercentage;
1916 	error = sysctl_handle_int(oidp, &val, 0, req);
1917 	if (error != 0 || req->newptr == NULL)
1918 		return (error);
1919 	tc_timepercentage = val;
1920 	if (cold)
1921 		goto done;
1922 	tc_adjprecision();
1923 done:
1924 	return (0);
1925 }
1926 
1927 /* Set up the requested number of timehands. */
1928 static void
1929 inittimehands(void *dummy)
1930 {
1931 	struct timehands *thp;
1932 	int i;
1933 
1934 	TUNABLE_INT_FETCH("kern.timecounter.timehands_count",
1935 	    &timehands_count);
1936 	if (timehands_count < 1)
1937 		timehands_count = 1;
1938 	if (timehands_count > nitems(ths))
1939 		timehands_count = nitems(ths);
1940 	for (i = 1, thp = &ths[0]; i < timehands_count;  thp = &ths[i++])
1941 		thp->th_next = &ths[i];
1942 	thp->th_next = &ths[0];
1943 }
1944 SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL);
1945 
1946 static void
1947 inittimecounter(void *dummy)
1948 {
1949 	u_int p;
1950 	int tick_rate;
1951 
1952 	/*
1953 	 * Set the initial timeout to
1954 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
1955 	 * People should probably not use the sysctl to set the timeout
1956 	 * to smaller than its initial value, since that value is the
1957 	 * smallest reasonable one.  If they want better timestamps they
1958 	 * should use the non-"get"* functions.
1959 	 */
1960 	if (hz > 1000)
1961 		tc_tick = (hz + 500) / 1000;
1962 	else
1963 		tc_tick = 1;
1964 	tc_adjprecision();
1965 	FREQ2BT(hz, &tick_bt);
1966 	tick_sbt = bttosbt(tick_bt);
1967 	tick_rate = hz / tc_tick;
1968 	FREQ2BT(tick_rate, &tc_tick_bt);
1969 	tc_tick_sbt = bttosbt(tc_tick_bt);
1970 	p = (tc_tick * 1000000) / hz;
1971 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1972 
1973 #ifdef FFCLOCK
1974 	ffclock_init();
1975 #endif
1976 
1977 	/* warm up new timecounter (again) and get rolling. */
1978 	(void)timecounter->tc_get_timecount(timecounter);
1979 	mtx_lock_spin(&tc_setclock_mtx);
1980 	tc_windup(NULL);
1981 	mtx_unlock_spin(&tc_setclock_mtx);
1982 }
1983 
1984 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1985 
1986 /* Cpu tick handling -------------------------------------------------*/
1987 
1988 static int cpu_tick_variable;
1989 static uint64_t	cpu_tick_frequency;
1990 
1991 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base);
1992 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last);
1993 
1994 static uint64_t
1995 tc_cpu_ticks(void)
1996 {
1997 	struct timecounter *tc;
1998 	uint64_t res, *base;
1999 	unsigned u, *last;
2000 
2001 	critical_enter();
2002 	base = DPCPU_PTR(tc_cpu_ticks_base);
2003 	last = DPCPU_PTR(tc_cpu_ticks_last);
2004 	tc = timehands->th_counter;
2005 	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
2006 	if (u < *last)
2007 		*base += (uint64_t)tc->tc_counter_mask + 1;
2008 	*last = u;
2009 	res = u + *base;
2010 	critical_exit();
2011 	return (res);
2012 }
2013 
2014 void
2015 cpu_tick_calibration(void)
2016 {
2017 	static time_t last_calib;
2018 
2019 	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
2020 		cpu_tick_calibrate(0);
2021 		last_calib = time_uptime;
2022 	}
2023 }
2024 
2025 /*
2026  * This function gets called every 16 seconds on only one designated
2027  * CPU in the system from hardclock() via cpu_tick_calibration()().
2028  *
2029  * Whenever the real time clock is stepped we get called with reset=1
2030  * to make sure we handle suspend/resume and similar events correctly.
2031  */
2032 
2033 static void
2034 cpu_tick_calibrate(int reset)
2035 {
2036 	static uint64_t c_last;
2037 	uint64_t c_this, c_delta;
2038 	static struct bintime  t_last;
2039 	struct bintime t_this, t_delta;
2040 	uint32_t divi;
2041 
2042 	if (reset) {
2043 		/* The clock was stepped, abort & reset */
2044 		t_last.sec = 0;
2045 		return;
2046 	}
2047 
2048 	/* we don't calibrate fixed rate cputicks */
2049 	if (!cpu_tick_variable)
2050 		return;
2051 
2052 	getbinuptime(&t_this);
2053 	c_this = cpu_ticks();
2054 	if (t_last.sec != 0) {
2055 		c_delta = c_this - c_last;
2056 		t_delta = t_this;
2057 		bintime_sub(&t_delta, &t_last);
2058 		/*
2059 		 * Headroom:
2060 		 * 	2^(64-20) / 16[s] =
2061 		 * 	2^(44) / 16[s] =
2062 		 * 	17.592.186.044.416 / 16 =
2063 		 * 	1.099.511.627.776 [Hz]
2064 		 */
2065 		divi = t_delta.sec << 20;
2066 		divi |= t_delta.frac >> (64 - 20);
2067 		c_delta <<= 20;
2068 		c_delta /= divi;
2069 		if (c_delta > cpu_tick_frequency) {
2070 			if (0 && bootverbose)
2071 				printf("cpu_tick increased to %ju Hz\n",
2072 				    c_delta);
2073 			cpu_tick_frequency = c_delta;
2074 		}
2075 	}
2076 	c_last = c_this;
2077 	t_last = t_this;
2078 }
2079 
2080 void
2081 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
2082 {
2083 
2084 	if (func == NULL) {
2085 		cpu_ticks = tc_cpu_ticks;
2086 	} else {
2087 		cpu_tick_frequency = freq;
2088 		cpu_tick_variable = var;
2089 		cpu_ticks = func;
2090 	}
2091 }
2092 
2093 uint64_t
2094 cpu_tickrate(void)
2095 {
2096 
2097 	if (cpu_ticks == tc_cpu_ticks)
2098 		return (tc_getfrequency());
2099 	return (cpu_tick_frequency);
2100 }
2101 
2102 /*
2103  * We need to be slightly careful converting cputicks to microseconds.
2104  * There is plenty of margin in 64 bits of microseconds (half a million
2105  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2106  * before divide conversion (to retain precision) we find that the
2107  * margin shrinks to 1.5 hours (one millionth of 146y).
2108  * With a three prong approach we never lose significant bits, no
2109  * matter what the cputick rate and length of timeinterval is.
2110  */
2111 
2112 uint64_t
2113 cputick2usec(uint64_t tick)
2114 {
2115 
2116 	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
2117 		return (tick / (cpu_tickrate() / 1000000LL));
2118 	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
2119 		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2120 	else
2121 		return ((tick * 1000000LL) / cpu_tickrate());
2122 }
2123 
2124 cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
2125 
2126 static int vdso_th_enable = 1;
2127 static int
2128 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2129 {
2130 	int old_vdso_th_enable, error;
2131 
2132 	old_vdso_th_enable = vdso_th_enable;
2133 	error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2134 	if (error != 0)
2135 		return (error);
2136 	vdso_th_enable = old_vdso_th_enable;
2137 	return (0);
2138 }
2139 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2140     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2141     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2142 
2143 uint32_t
2144 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2145 {
2146 	struct timehands *th;
2147 	uint32_t enabled;
2148 
2149 	th = timehands;
2150 	vdso_th->th_scale = th->th_scale;
2151 	vdso_th->th_offset_count = th->th_offset_count;
2152 	vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2153 	vdso_th->th_offset = th->th_offset;
2154 	vdso_th->th_boottime = th->th_boottime;
2155 	if (th->th_counter->tc_fill_vdso_timehands != NULL) {
2156 		enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
2157 		    th->th_counter);
2158 	} else
2159 		enabled = 0;
2160 	if (!vdso_th_enable)
2161 		enabled = 0;
2162 	return (enabled);
2163 }
2164 
2165 #ifdef COMPAT_FREEBSD32
2166 uint32_t
2167 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2168 {
2169 	struct timehands *th;
2170 	uint32_t enabled;
2171 
2172 	th = timehands;
2173 	*(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2174 	vdso_th32->th_offset_count = th->th_offset_count;
2175 	vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2176 	vdso_th32->th_offset.sec = th->th_offset.sec;
2177 	*(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2178 	vdso_th32->th_boottime.sec = th->th_boottime.sec;
2179 	*(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
2180 	if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
2181 		enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
2182 		    th->th_counter);
2183 	} else
2184 		enabled = 0;
2185 	if (!vdso_th_enable)
2186 		enabled = 0;
2187 	return (enabled);
2188 }
2189 #endif
2190