1 /*- 2 * ---------------------------------------------------------------------------- 3 * "THE BEER-WARE LICENSE" (Revision 42): 4 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 5 * can do whatever you want with this stuff. If we meet some day, and you think 6 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 7 * ---------------------------------------------------------------------------- 8 * 9 * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation 10 * All rights reserved. 11 * 12 * Portions of this software were developed by Julien Ridoux at the University 13 * of Melbourne under sponsorship from the FreeBSD Foundation. 14 * 15 * Portions of this software were developed by Konstantin Belousov 16 * under sponsorship from the FreeBSD Foundation. 17 */ 18 19 #include <sys/cdefs.h> 20 __FBSDID("$FreeBSD$"); 21 22 #include "opt_compat.h" 23 #include "opt_ntp.h" 24 #include "opt_ffclock.h" 25 26 #include <sys/param.h> 27 #include <sys/kernel.h> 28 #include <sys/limits.h> 29 #include <sys/lock.h> 30 #include <sys/mutex.h> 31 #include <sys/sbuf.h> 32 #include <sys/sysctl.h> 33 #include <sys/syslog.h> 34 #include <sys/systm.h> 35 #include <sys/timeffc.h> 36 #include <sys/timepps.h> 37 #include <sys/timetc.h> 38 #include <sys/timex.h> 39 #include <sys/vdso.h> 40 41 /* 42 * A large step happens on boot. This constant detects such steps. 43 * It is relatively small so that ntp_update_second gets called enough 44 * in the typical 'missed a couple of seconds' case, but doesn't loop 45 * forever when the time step is large. 46 */ 47 #define LARGE_STEP 200 48 49 /* 50 * Implement a dummy timecounter which we can use until we get a real one 51 * in the air. This allows the console and other early stuff to use 52 * time services. 53 */ 54 55 static u_int 56 dummy_get_timecount(struct timecounter *tc) 57 { 58 static u_int now; 59 60 return (++now); 61 } 62 63 static struct timecounter dummy_timecounter = { 64 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 65 }; 66 67 struct timehands { 68 /* These fields must be initialized by the driver. */ 69 struct timecounter *th_counter; 70 int64_t th_adjustment; 71 uint64_t th_scale; 72 u_int th_offset_count; 73 struct bintime th_offset; 74 struct bintime th_bintime; 75 struct timeval th_microtime; 76 struct timespec th_nanotime; 77 struct bintime th_boottime; 78 /* Fields not to be copied in tc_windup start with th_generation. */ 79 u_int th_generation; 80 struct timehands *th_next; 81 }; 82 83 static struct timehands th0; 84 static struct timehands th1 = { 85 .th_next = &th0 86 }; 87 static struct timehands th0 = { 88 .th_counter = &dummy_timecounter, 89 .th_scale = (uint64_t)-1 / 1000000, 90 .th_offset = { .sec = 1 }, 91 .th_generation = 1, 92 .th_next = &th1 93 }; 94 95 static struct timehands *volatile timehands = &th0; 96 struct timecounter *timecounter = &dummy_timecounter; 97 static struct timecounter *timecounters = &dummy_timecounter; 98 99 int tc_min_ticktock_freq = 1; 100 101 volatile time_t time_second = 1; 102 volatile time_t time_uptime = 1; 103 104 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 105 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD, 106 NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime"); 107 108 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, ""); 109 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, ""); 110 111 static int timestepwarnings; 112 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW, 113 ×tepwarnings, 0, "Log time steps"); 114 115 struct bintime bt_timethreshold; 116 struct bintime bt_tickthreshold; 117 sbintime_t sbt_timethreshold; 118 sbintime_t sbt_tickthreshold; 119 struct bintime tc_tick_bt; 120 sbintime_t tc_tick_sbt; 121 int tc_precexp; 122 int tc_timepercentage = TC_DEFAULTPERC; 123 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 124 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 125 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 126 sysctl_kern_timecounter_adjprecision, "I", 127 "Allowed time interval deviation in percents"); 128 129 static int tc_chosen; /* Non-zero if a specific tc was chosen via sysctl. */ 130 131 static void tc_windup(struct bintime *new_boottimebin); 132 static void cpu_tick_calibrate(int); 133 134 void dtrace_getnanotime(struct timespec *tsp); 135 136 static int 137 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 138 { 139 struct timeval boottime; 140 141 getboottime(&boottime); 142 143 #ifndef __mips__ 144 #ifdef SCTL_MASK32 145 int tv[2]; 146 147 if (req->flags & SCTL_MASK32) { 148 tv[0] = boottime.tv_sec; 149 tv[1] = boottime.tv_usec; 150 return (SYSCTL_OUT(req, tv, sizeof(tv))); 151 } 152 #endif 153 #endif 154 return (SYSCTL_OUT(req, &boottime, sizeof(boottime))); 155 } 156 157 static int 158 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 159 { 160 u_int ncount; 161 struct timecounter *tc = arg1; 162 163 ncount = tc->tc_get_timecount(tc); 164 return (sysctl_handle_int(oidp, &ncount, 0, req)); 165 } 166 167 static int 168 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 169 { 170 uint64_t freq; 171 struct timecounter *tc = arg1; 172 173 freq = tc->tc_frequency; 174 return (sysctl_handle_64(oidp, &freq, 0, req)); 175 } 176 177 /* 178 * Return the difference between the timehands' counter value now and what 179 * was when we copied it to the timehands' offset_count. 180 */ 181 static __inline u_int 182 tc_delta(struct timehands *th) 183 { 184 struct timecounter *tc; 185 186 tc = th->th_counter; 187 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 188 tc->tc_counter_mask); 189 } 190 191 /* 192 * Functions for reading the time. We have to loop until we are sure that 193 * the timehands that we operated on was not updated under our feet. See 194 * the comment in <sys/time.h> for a description of these 12 functions. 195 */ 196 197 #ifdef FFCLOCK 198 void 199 fbclock_binuptime(struct bintime *bt) 200 { 201 struct timehands *th; 202 unsigned int gen; 203 204 do { 205 th = timehands; 206 gen = atomic_load_acq_int(&th->th_generation); 207 *bt = th->th_offset; 208 bintime_addx(bt, th->th_scale * tc_delta(th)); 209 atomic_thread_fence_acq(); 210 } while (gen == 0 || gen != th->th_generation); 211 } 212 213 void 214 fbclock_nanouptime(struct timespec *tsp) 215 { 216 struct bintime bt; 217 218 fbclock_binuptime(&bt); 219 bintime2timespec(&bt, tsp); 220 } 221 222 void 223 fbclock_microuptime(struct timeval *tvp) 224 { 225 struct bintime bt; 226 227 fbclock_binuptime(&bt); 228 bintime2timeval(&bt, tvp); 229 } 230 231 void 232 fbclock_bintime(struct bintime *bt) 233 { 234 struct timehands *th; 235 unsigned int gen; 236 237 do { 238 th = timehands; 239 gen = atomic_load_acq_int(&th->th_generation); 240 *bt = th->th_bintime; 241 bintime_addx(bt, th->th_scale * tc_delta(th)); 242 atomic_thread_fence_acq(); 243 } while (gen == 0 || gen != th->th_generation); 244 } 245 246 void 247 fbclock_nanotime(struct timespec *tsp) 248 { 249 struct bintime bt; 250 251 fbclock_bintime(&bt); 252 bintime2timespec(&bt, tsp); 253 } 254 255 void 256 fbclock_microtime(struct timeval *tvp) 257 { 258 struct bintime bt; 259 260 fbclock_bintime(&bt); 261 bintime2timeval(&bt, tvp); 262 } 263 264 void 265 fbclock_getbinuptime(struct bintime *bt) 266 { 267 struct timehands *th; 268 unsigned int gen; 269 270 do { 271 th = timehands; 272 gen = atomic_load_acq_int(&th->th_generation); 273 *bt = th->th_offset; 274 atomic_thread_fence_acq(); 275 } while (gen == 0 || gen != th->th_generation); 276 } 277 278 void 279 fbclock_getnanouptime(struct timespec *tsp) 280 { 281 struct timehands *th; 282 unsigned int gen; 283 284 do { 285 th = timehands; 286 gen = atomic_load_acq_int(&th->th_generation); 287 bintime2timespec(&th->th_offset, tsp); 288 atomic_thread_fence_acq(); 289 } while (gen == 0 || gen != th->th_generation); 290 } 291 292 void 293 fbclock_getmicrouptime(struct timeval *tvp) 294 { 295 struct timehands *th; 296 unsigned int gen; 297 298 do { 299 th = timehands; 300 gen = atomic_load_acq_int(&th->th_generation); 301 bintime2timeval(&th->th_offset, tvp); 302 atomic_thread_fence_acq(); 303 } while (gen == 0 || gen != th->th_generation); 304 } 305 306 void 307 fbclock_getbintime(struct bintime *bt) 308 { 309 struct timehands *th; 310 unsigned int gen; 311 312 do { 313 th = timehands; 314 gen = atomic_load_acq_int(&th->th_generation); 315 *bt = th->th_bintime; 316 atomic_thread_fence_acq(); 317 } while (gen == 0 || gen != th->th_generation); 318 } 319 320 void 321 fbclock_getnanotime(struct timespec *tsp) 322 { 323 struct timehands *th; 324 unsigned int gen; 325 326 do { 327 th = timehands; 328 gen = atomic_load_acq_int(&th->th_generation); 329 *tsp = th->th_nanotime; 330 atomic_thread_fence_acq(); 331 } while (gen == 0 || gen != th->th_generation); 332 } 333 334 void 335 fbclock_getmicrotime(struct timeval *tvp) 336 { 337 struct timehands *th; 338 unsigned int gen; 339 340 do { 341 th = timehands; 342 gen = atomic_load_acq_int(&th->th_generation); 343 *tvp = th->th_microtime; 344 atomic_thread_fence_acq(); 345 } while (gen == 0 || gen != th->th_generation); 346 } 347 #else /* !FFCLOCK */ 348 void 349 binuptime(struct bintime *bt) 350 { 351 struct timehands *th; 352 u_int gen; 353 354 do { 355 th = timehands; 356 gen = atomic_load_acq_int(&th->th_generation); 357 *bt = th->th_offset; 358 bintime_addx(bt, th->th_scale * tc_delta(th)); 359 atomic_thread_fence_acq(); 360 } while (gen == 0 || gen != th->th_generation); 361 } 362 363 void 364 nanouptime(struct timespec *tsp) 365 { 366 struct bintime bt; 367 368 binuptime(&bt); 369 bintime2timespec(&bt, tsp); 370 } 371 372 void 373 microuptime(struct timeval *tvp) 374 { 375 struct bintime bt; 376 377 binuptime(&bt); 378 bintime2timeval(&bt, tvp); 379 } 380 381 void 382 bintime(struct bintime *bt) 383 { 384 struct timehands *th; 385 u_int gen; 386 387 do { 388 th = timehands; 389 gen = atomic_load_acq_int(&th->th_generation); 390 *bt = th->th_bintime; 391 bintime_addx(bt, th->th_scale * tc_delta(th)); 392 atomic_thread_fence_acq(); 393 } while (gen == 0 || gen != th->th_generation); 394 } 395 396 void 397 nanotime(struct timespec *tsp) 398 { 399 struct bintime bt; 400 401 bintime(&bt); 402 bintime2timespec(&bt, tsp); 403 } 404 405 void 406 microtime(struct timeval *tvp) 407 { 408 struct bintime bt; 409 410 bintime(&bt); 411 bintime2timeval(&bt, tvp); 412 } 413 414 void 415 getbinuptime(struct bintime *bt) 416 { 417 struct timehands *th; 418 u_int gen; 419 420 do { 421 th = timehands; 422 gen = atomic_load_acq_int(&th->th_generation); 423 *bt = th->th_offset; 424 atomic_thread_fence_acq(); 425 } while (gen == 0 || gen != th->th_generation); 426 } 427 428 void 429 getnanouptime(struct timespec *tsp) 430 { 431 struct timehands *th; 432 u_int gen; 433 434 do { 435 th = timehands; 436 gen = atomic_load_acq_int(&th->th_generation); 437 bintime2timespec(&th->th_offset, tsp); 438 atomic_thread_fence_acq(); 439 } while (gen == 0 || gen != th->th_generation); 440 } 441 442 void 443 getmicrouptime(struct timeval *tvp) 444 { 445 struct timehands *th; 446 u_int gen; 447 448 do { 449 th = timehands; 450 gen = atomic_load_acq_int(&th->th_generation); 451 bintime2timeval(&th->th_offset, tvp); 452 atomic_thread_fence_acq(); 453 } while (gen == 0 || gen != th->th_generation); 454 } 455 456 void 457 getbintime(struct bintime *bt) 458 { 459 struct timehands *th; 460 u_int gen; 461 462 do { 463 th = timehands; 464 gen = atomic_load_acq_int(&th->th_generation); 465 *bt = th->th_bintime; 466 atomic_thread_fence_acq(); 467 } while (gen == 0 || gen != th->th_generation); 468 } 469 470 void 471 getnanotime(struct timespec *tsp) 472 { 473 struct timehands *th; 474 u_int gen; 475 476 do { 477 th = timehands; 478 gen = atomic_load_acq_int(&th->th_generation); 479 *tsp = th->th_nanotime; 480 atomic_thread_fence_acq(); 481 } while (gen == 0 || gen != th->th_generation); 482 } 483 484 void 485 getmicrotime(struct timeval *tvp) 486 { 487 struct timehands *th; 488 u_int gen; 489 490 do { 491 th = timehands; 492 gen = atomic_load_acq_int(&th->th_generation); 493 *tvp = th->th_microtime; 494 atomic_thread_fence_acq(); 495 } while (gen == 0 || gen != th->th_generation); 496 } 497 #endif /* FFCLOCK */ 498 499 void 500 getboottime(struct timeval *boottime) 501 { 502 struct bintime boottimebin; 503 504 getboottimebin(&boottimebin); 505 bintime2timeval(&boottimebin, boottime); 506 } 507 508 void 509 getboottimebin(struct bintime *boottimebin) 510 { 511 struct timehands *th; 512 u_int gen; 513 514 do { 515 th = timehands; 516 gen = atomic_load_acq_int(&th->th_generation); 517 *boottimebin = th->th_boottime; 518 atomic_thread_fence_acq(); 519 } while (gen == 0 || gen != th->th_generation); 520 } 521 522 #ifdef FFCLOCK 523 /* 524 * Support for feed-forward synchronization algorithms. This is heavily inspired 525 * by the timehands mechanism but kept independent from it. *_windup() functions 526 * have some connection to avoid accessing the timecounter hardware more than 527 * necessary. 528 */ 529 530 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 531 struct ffclock_estimate ffclock_estimate; 532 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 533 uint32_t ffclock_status; /* Feed-forward clock status. */ 534 int8_t ffclock_updated; /* New estimates are available. */ 535 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 536 537 struct fftimehands { 538 struct ffclock_estimate cest; 539 struct bintime tick_time; 540 struct bintime tick_time_lerp; 541 ffcounter tick_ffcount; 542 uint64_t period_lerp; 543 volatile uint8_t gen; 544 struct fftimehands *next; 545 }; 546 547 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 548 549 static struct fftimehands ffth[10]; 550 static struct fftimehands *volatile fftimehands = ffth; 551 552 static void 553 ffclock_init(void) 554 { 555 struct fftimehands *cur; 556 struct fftimehands *last; 557 558 memset(ffth, 0, sizeof(ffth)); 559 560 last = ffth + NUM_ELEMENTS(ffth) - 1; 561 for (cur = ffth; cur < last; cur++) 562 cur->next = cur + 1; 563 last->next = ffth; 564 565 ffclock_updated = 0; 566 ffclock_status = FFCLOCK_STA_UNSYNC; 567 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 568 } 569 570 /* 571 * Reset the feed-forward clock estimates. Called from inittodr() to get things 572 * kick started and uses the timecounter nominal frequency as a first period 573 * estimate. Note: this function may be called several time just after boot. 574 * Note: this is the only function that sets the value of boot time for the 575 * monotonic (i.e. uptime) version of the feed-forward clock. 576 */ 577 void 578 ffclock_reset_clock(struct timespec *ts) 579 { 580 struct timecounter *tc; 581 struct ffclock_estimate cest; 582 583 tc = timehands->th_counter; 584 memset(&cest, 0, sizeof(struct ffclock_estimate)); 585 586 timespec2bintime(ts, &ffclock_boottime); 587 timespec2bintime(ts, &(cest.update_time)); 588 ffclock_read_counter(&cest.update_ffcount); 589 cest.leapsec_next = 0; 590 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 591 cest.errb_abs = 0; 592 cest.errb_rate = 0; 593 cest.status = FFCLOCK_STA_UNSYNC; 594 cest.leapsec_total = 0; 595 cest.leapsec = 0; 596 597 mtx_lock(&ffclock_mtx); 598 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 599 ffclock_updated = INT8_MAX; 600 mtx_unlock(&ffclock_mtx); 601 602 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 603 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 604 (unsigned long)ts->tv_nsec); 605 } 606 607 /* 608 * Sub-routine to convert a time interval measured in RAW counter units to time 609 * in seconds stored in bintime format. 610 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 611 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 612 * extra cycles. 613 */ 614 static void 615 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 616 { 617 struct bintime bt2; 618 ffcounter delta, delta_max; 619 620 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 621 bintime_clear(bt); 622 do { 623 if (ffdelta > delta_max) 624 delta = delta_max; 625 else 626 delta = ffdelta; 627 bt2.sec = 0; 628 bt2.frac = period; 629 bintime_mul(&bt2, (unsigned int)delta); 630 bintime_add(bt, &bt2); 631 ffdelta -= delta; 632 } while (ffdelta > 0); 633 } 634 635 /* 636 * Update the fftimehands. 637 * Push the tick ffcount and time(s) forward based on current clock estimate. 638 * The conversion from ffcounter to bintime relies on the difference clock 639 * principle, whose accuracy relies on computing small time intervals. If a new 640 * clock estimate has been passed by the synchronisation daemon, make it 641 * current, and compute the linear interpolation for monotonic time if needed. 642 */ 643 static void 644 ffclock_windup(unsigned int delta) 645 { 646 struct ffclock_estimate *cest; 647 struct fftimehands *ffth; 648 struct bintime bt, gap_lerp; 649 ffcounter ffdelta; 650 uint64_t frac; 651 unsigned int polling; 652 uint8_t forward_jump, ogen; 653 654 /* 655 * Pick the next timehand, copy current ffclock estimates and move tick 656 * times and counter forward. 657 */ 658 forward_jump = 0; 659 ffth = fftimehands->next; 660 ogen = ffth->gen; 661 ffth->gen = 0; 662 cest = &ffth->cest; 663 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 664 ffdelta = (ffcounter)delta; 665 ffth->period_lerp = fftimehands->period_lerp; 666 667 ffth->tick_time = fftimehands->tick_time; 668 ffclock_convert_delta(ffdelta, cest->period, &bt); 669 bintime_add(&ffth->tick_time, &bt); 670 671 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 672 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 673 bintime_add(&ffth->tick_time_lerp, &bt); 674 675 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 676 677 /* 678 * Assess the status of the clock, if the last update is too old, it is 679 * likely the synchronisation daemon is dead and the clock is free 680 * running. 681 */ 682 if (ffclock_updated == 0) { 683 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 684 ffclock_convert_delta(ffdelta, cest->period, &bt); 685 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 686 ffclock_status |= FFCLOCK_STA_UNSYNC; 687 } 688 689 /* 690 * If available, grab updated clock estimates and make them current. 691 * Recompute time at this tick using the updated estimates. The clock 692 * estimates passed the feed-forward synchronisation daemon may result 693 * in time conversion that is not monotonically increasing (just after 694 * the update). time_lerp is a particular linear interpolation over the 695 * synchronisation algo polling period that ensures monotonicity for the 696 * clock ids requesting it. 697 */ 698 if (ffclock_updated > 0) { 699 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 700 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 701 ffth->tick_time = cest->update_time; 702 ffclock_convert_delta(ffdelta, cest->period, &bt); 703 bintime_add(&ffth->tick_time, &bt); 704 705 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 706 if (ffclock_updated == INT8_MAX) 707 ffth->tick_time_lerp = ffth->tick_time; 708 709 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 710 forward_jump = 1; 711 else 712 forward_jump = 0; 713 714 bintime_clear(&gap_lerp); 715 if (forward_jump) { 716 gap_lerp = ffth->tick_time; 717 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 718 } else { 719 gap_lerp = ffth->tick_time_lerp; 720 bintime_sub(&gap_lerp, &ffth->tick_time); 721 } 722 723 /* 724 * The reset from the RTC clock may be far from accurate, and 725 * reducing the gap between real time and interpolated time 726 * could take a very long time if the interpolated clock insists 727 * on strict monotonicity. The clock is reset under very strict 728 * conditions (kernel time is known to be wrong and 729 * synchronization daemon has been restarted recently. 730 * ffclock_boottime absorbs the jump to ensure boot time is 731 * correct and uptime functions stay consistent. 732 */ 733 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 734 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 735 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 736 if (forward_jump) 737 bintime_add(&ffclock_boottime, &gap_lerp); 738 else 739 bintime_sub(&ffclock_boottime, &gap_lerp); 740 ffth->tick_time_lerp = ffth->tick_time; 741 bintime_clear(&gap_lerp); 742 } 743 744 ffclock_status = cest->status; 745 ffth->period_lerp = cest->period; 746 747 /* 748 * Compute corrected period used for the linear interpolation of 749 * time. The rate of linear interpolation is capped to 5000PPM 750 * (5ms/s). 751 */ 752 if (bintime_isset(&gap_lerp)) { 753 ffdelta = cest->update_ffcount; 754 ffdelta -= fftimehands->cest.update_ffcount; 755 ffclock_convert_delta(ffdelta, cest->period, &bt); 756 polling = bt.sec; 757 bt.sec = 0; 758 bt.frac = 5000000 * (uint64_t)18446744073LL; 759 bintime_mul(&bt, polling); 760 if (bintime_cmp(&gap_lerp, &bt, >)) 761 gap_lerp = bt; 762 763 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 764 frac = 0; 765 if (gap_lerp.sec > 0) { 766 frac -= 1; 767 frac /= ffdelta / gap_lerp.sec; 768 } 769 frac += gap_lerp.frac / ffdelta; 770 771 if (forward_jump) 772 ffth->period_lerp += frac; 773 else 774 ffth->period_lerp -= frac; 775 } 776 777 ffclock_updated = 0; 778 } 779 if (++ogen == 0) 780 ogen = 1; 781 ffth->gen = ogen; 782 fftimehands = ffth; 783 } 784 785 /* 786 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 787 * the old and new hardware counter cannot be read simultaneously. tc_windup() 788 * does read the two counters 'back to back', but a few cycles are effectively 789 * lost, and not accumulated in tick_ffcount. This is a fairly radical 790 * operation for a feed-forward synchronization daemon, and it is its job to not 791 * pushing irrelevant data to the kernel. Because there is no locking here, 792 * simply force to ignore pending or next update to give daemon a chance to 793 * realize the counter has changed. 794 */ 795 static void 796 ffclock_change_tc(struct timehands *th) 797 { 798 struct fftimehands *ffth; 799 struct ffclock_estimate *cest; 800 struct timecounter *tc; 801 uint8_t ogen; 802 803 tc = th->th_counter; 804 ffth = fftimehands->next; 805 ogen = ffth->gen; 806 ffth->gen = 0; 807 808 cest = &ffth->cest; 809 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 810 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 811 cest->errb_abs = 0; 812 cest->errb_rate = 0; 813 cest->status |= FFCLOCK_STA_UNSYNC; 814 815 ffth->tick_ffcount = fftimehands->tick_ffcount; 816 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 817 ffth->tick_time = fftimehands->tick_time; 818 ffth->period_lerp = cest->period; 819 820 /* Do not lock but ignore next update from synchronization daemon. */ 821 ffclock_updated--; 822 823 if (++ogen == 0) 824 ogen = 1; 825 ffth->gen = ogen; 826 fftimehands = ffth; 827 } 828 829 /* 830 * Retrieve feed-forward counter and time of last kernel tick. 831 */ 832 void 833 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 834 { 835 struct fftimehands *ffth; 836 uint8_t gen; 837 838 /* 839 * No locking but check generation has not changed. Also need to make 840 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 841 */ 842 do { 843 ffth = fftimehands; 844 gen = ffth->gen; 845 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 846 *bt = ffth->tick_time_lerp; 847 else 848 *bt = ffth->tick_time; 849 *ffcount = ffth->tick_ffcount; 850 } while (gen == 0 || gen != ffth->gen); 851 } 852 853 /* 854 * Absolute clock conversion. Low level function to convert ffcounter to 855 * bintime. The ffcounter is converted using the current ffclock period estimate 856 * or the "interpolated period" to ensure monotonicity. 857 * NOTE: this conversion may have been deferred, and the clock updated since the 858 * hardware counter has been read. 859 */ 860 void 861 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 862 { 863 struct fftimehands *ffth; 864 struct bintime bt2; 865 ffcounter ffdelta; 866 uint8_t gen; 867 868 /* 869 * No locking but check generation has not changed. Also need to make 870 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 871 */ 872 do { 873 ffth = fftimehands; 874 gen = ffth->gen; 875 if (ffcount > ffth->tick_ffcount) 876 ffdelta = ffcount - ffth->tick_ffcount; 877 else 878 ffdelta = ffth->tick_ffcount - ffcount; 879 880 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 881 *bt = ffth->tick_time_lerp; 882 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 883 } else { 884 *bt = ffth->tick_time; 885 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 886 } 887 888 if (ffcount > ffth->tick_ffcount) 889 bintime_add(bt, &bt2); 890 else 891 bintime_sub(bt, &bt2); 892 } while (gen == 0 || gen != ffth->gen); 893 } 894 895 /* 896 * Difference clock conversion. 897 * Low level function to Convert a time interval measured in RAW counter units 898 * into bintime. The difference clock allows measuring small intervals much more 899 * reliably than the absolute clock. 900 */ 901 void 902 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 903 { 904 struct fftimehands *ffth; 905 uint8_t gen; 906 907 /* No locking but check generation has not changed. */ 908 do { 909 ffth = fftimehands; 910 gen = ffth->gen; 911 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 912 } while (gen == 0 || gen != ffth->gen); 913 } 914 915 /* 916 * Access to current ffcounter value. 917 */ 918 void 919 ffclock_read_counter(ffcounter *ffcount) 920 { 921 struct timehands *th; 922 struct fftimehands *ffth; 923 unsigned int gen, delta; 924 925 /* 926 * ffclock_windup() called from tc_windup(), safe to rely on 927 * th->th_generation only, for correct delta and ffcounter. 928 */ 929 do { 930 th = timehands; 931 gen = atomic_load_acq_int(&th->th_generation); 932 ffth = fftimehands; 933 delta = tc_delta(th); 934 *ffcount = ffth->tick_ffcount; 935 atomic_thread_fence_acq(); 936 } while (gen == 0 || gen != th->th_generation); 937 938 *ffcount += delta; 939 } 940 941 void 942 binuptime(struct bintime *bt) 943 { 944 945 binuptime_fromclock(bt, sysclock_active); 946 } 947 948 void 949 nanouptime(struct timespec *tsp) 950 { 951 952 nanouptime_fromclock(tsp, sysclock_active); 953 } 954 955 void 956 microuptime(struct timeval *tvp) 957 { 958 959 microuptime_fromclock(tvp, sysclock_active); 960 } 961 962 void 963 bintime(struct bintime *bt) 964 { 965 966 bintime_fromclock(bt, sysclock_active); 967 } 968 969 void 970 nanotime(struct timespec *tsp) 971 { 972 973 nanotime_fromclock(tsp, sysclock_active); 974 } 975 976 void 977 microtime(struct timeval *tvp) 978 { 979 980 microtime_fromclock(tvp, sysclock_active); 981 } 982 983 void 984 getbinuptime(struct bintime *bt) 985 { 986 987 getbinuptime_fromclock(bt, sysclock_active); 988 } 989 990 void 991 getnanouptime(struct timespec *tsp) 992 { 993 994 getnanouptime_fromclock(tsp, sysclock_active); 995 } 996 997 void 998 getmicrouptime(struct timeval *tvp) 999 { 1000 1001 getmicrouptime_fromclock(tvp, sysclock_active); 1002 } 1003 1004 void 1005 getbintime(struct bintime *bt) 1006 { 1007 1008 getbintime_fromclock(bt, sysclock_active); 1009 } 1010 1011 void 1012 getnanotime(struct timespec *tsp) 1013 { 1014 1015 getnanotime_fromclock(tsp, sysclock_active); 1016 } 1017 1018 void 1019 getmicrotime(struct timeval *tvp) 1020 { 1021 1022 getmicrouptime_fromclock(tvp, sysclock_active); 1023 } 1024 1025 #endif /* FFCLOCK */ 1026 1027 /* 1028 * This is a clone of getnanotime and used for walltimestamps. 1029 * The dtrace_ prefix prevents fbt from creating probes for 1030 * it so walltimestamp can be safely used in all fbt probes. 1031 */ 1032 void 1033 dtrace_getnanotime(struct timespec *tsp) 1034 { 1035 struct timehands *th; 1036 u_int gen; 1037 1038 do { 1039 th = timehands; 1040 gen = atomic_load_acq_int(&th->th_generation); 1041 *tsp = th->th_nanotime; 1042 atomic_thread_fence_acq(); 1043 } while (gen == 0 || gen != th->th_generation); 1044 } 1045 1046 /* 1047 * System clock currently providing time to the system. Modifiable via sysctl 1048 * when the FFCLOCK option is defined. 1049 */ 1050 int sysclock_active = SYSCLOCK_FBCK; 1051 1052 /* Internal NTP status and error estimates. */ 1053 extern int time_status; 1054 extern long time_esterror; 1055 1056 /* 1057 * Take a snapshot of sysclock data which can be used to compare system clocks 1058 * and generate timestamps after the fact. 1059 */ 1060 void 1061 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 1062 { 1063 struct fbclock_info *fbi; 1064 struct timehands *th; 1065 struct bintime bt; 1066 unsigned int delta, gen; 1067 #ifdef FFCLOCK 1068 ffcounter ffcount; 1069 struct fftimehands *ffth; 1070 struct ffclock_info *ffi; 1071 struct ffclock_estimate cest; 1072 1073 ffi = &clock_snap->ff_info; 1074 #endif 1075 1076 fbi = &clock_snap->fb_info; 1077 delta = 0; 1078 1079 do { 1080 th = timehands; 1081 gen = atomic_load_acq_int(&th->th_generation); 1082 fbi->th_scale = th->th_scale; 1083 fbi->tick_time = th->th_offset; 1084 #ifdef FFCLOCK 1085 ffth = fftimehands; 1086 ffi->tick_time = ffth->tick_time_lerp; 1087 ffi->tick_time_lerp = ffth->tick_time_lerp; 1088 ffi->period = ffth->cest.period; 1089 ffi->period_lerp = ffth->period_lerp; 1090 clock_snap->ffcount = ffth->tick_ffcount; 1091 cest = ffth->cest; 1092 #endif 1093 if (!fast) 1094 delta = tc_delta(th); 1095 atomic_thread_fence_acq(); 1096 } while (gen == 0 || gen != th->th_generation); 1097 1098 clock_snap->delta = delta; 1099 clock_snap->sysclock_active = sysclock_active; 1100 1101 /* Record feedback clock status and error. */ 1102 clock_snap->fb_info.status = time_status; 1103 /* XXX: Very crude estimate of feedback clock error. */ 1104 bt.sec = time_esterror / 1000000; 1105 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1106 (uint64_t)18446744073709ULL; 1107 clock_snap->fb_info.error = bt; 1108 1109 #ifdef FFCLOCK 1110 if (!fast) 1111 clock_snap->ffcount += delta; 1112 1113 /* Record feed-forward clock leap second adjustment. */ 1114 ffi->leapsec_adjustment = cest.leapsec_total; 1115 if (clock_snap->ffcount > cest.leapsec_next) 1116 ffi->leapsec_adjustment -= cest.leapsec; 1117 1118 /* Record feed-forward clock status and error. */ 1119 clock_snap->ff_info.status = cest.status; 1120 ffcount = clock_snap->ffcount - cest.update_ffcount; 1121 ffclock_convert_delta(ffcount, cest.period, &bt); 1122 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1123 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1124 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1125 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1126 clock_snap->ff_info.error = bt; 1127 #endif 1128 } 1129 1130 /* 1131 * Convert a sysclock snapshot into a struct bintime based on the specified 1132 * clock source and flags. 1133 */ 1134 int 1135 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1136 int whichclock, uint32_t flags) 1137 { 1138 struct bintime boottimebin; 1139 #ifdef FFCLOCK 1140 struct bintime bt2; 1141 uint64_t period; 1142 #endif 1143 1144 switch (whichclock) { 1145 case SYSCLOCK_FBCK: 1146 *bt = cs->fb_info.tick_time; 1147 1148 /* If snapshot was created with !fast, delta will be >0. */ 1149 if (cs->delta > 0) 1150 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1151 1152 if ((flags & FBCLOCK_UPTIME) == 0) { 1153 getboottimebin(&boottimebin); 1154 bintime_add(bt, &boottimebin); 1155 } 1156 break; 1157 #ifdef FFCLOCK 1158 case SYSCLOCK_FFWD: 1159 if (flags & FFCLOCK_LERP) { 1160 *bt = cs->ff_info.tick_time_lerp; 1161 period = cs->ff_info.period_lerp; 1162 } else { 1163 *bt = cs->ff_info.tick_time; 1164 period = cs->ff_info.period; 1165 } 1166 1167 /* If snapshot was created with !fast, delta will be >0. */ 1168 if (cs->delta > 0) { 1169 ffclock_convert_delta(cs->delta, period, &bt2); 1170 bintime_add(bt, &bt2); 1171 } 1172 1173 /* Leap second adjustment. */ 1174 if (flags & FFCLOCK_LEAPSEC) 1175 bt->sec -= cs->ff_info.leapsec_adjustment; 1176 1177 /* Boot time adjustment, for uptime/monotonic clocks. */ 1178 if (flags & FFCLOCK_UPTIME) 1179 bintime_sub(bt, &ffclock_boottime); 1180 break; 1181 #endif 1182 default: 1183 return (EINVAL); 1184 break; 1185 } 1186 1187 return (0); 1188 } 1189 1190 /* 1191 * Initialize a new timecounter and possibly use it. 1192 */ 1193 void 1194 tc_init(struct timecounter *tc) 1195 { 1196 u_int u; 1197 struct sysctl_oid *tc_root; 1198 1199 u = tc->tc_frequency / tc->tc_counter_mask; 1200 /* XXX: We need some margin here, 10% is a guess */ 1201 u *= 11; 1202 u /= 10; 1203 if (u > hz && tc->tc_quality >= 0) { 1204 tc->tc_quality = -2000; 1205 if (bootverbose) { 1206 printf("Timecounter \"%s\" frequency %ju Hz", 1207 tc->tc_name, (uintmax_t)tc->tc_frequency); 1208 printf(" -- Insufficient hz, needs at least %u\n", u); 1209 } 1210 } else if (tc->tc_quality >= 0 || bootverbose) { 1211 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1212 tc->tc_name, (uintmax_t)tc->tc_frequency, 1213 tc->tc_quality); 1214 } 1215 1216 tc->tc_next = timecounters; 1217 timecounters = tc; 1218 /* 1219 * Set up sysctl tree for this counter. 1220 */ 1221 tc_root = SYSCTL_ADD_NODE(NULL, 1222 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1223 CTLFLAG_RW, 0, "timecounter description"); 1224 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1225 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1226 "mask for implemented bits"); 1227 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1228 "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc), 1229 sysctl_kern_timecounter_get, "IU", "current timecounter value"); 1230 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1231 "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc), 1232 sysctl_kern_timecounter_freq, "QU", "timecounter frequency"); 1233 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1234 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1235 "goodness of time counter"); 1236 /* 1237 * Do not automatically switch if the current tc was specifically 1238 * chosen. Never automatically use a timecounter with negative quality. 1239 * Even though we run on the dummy counter, switching here may be 1240 * worse since this timecounter may not be monotonic. 1241 */ 1242 if (tc_chosen) 1243 return; 1244 if (tc->tc_quality < 0) 1245 return; 1246 if (tc->tc_quality < timecounter->tc_quality) 1247 return; 1248 if (tc->tc_quality == timecounter->tc_quality && 1249 tc->tc_frequency < timecounter->tc_frequency) 1250 return; 1251 (void)tc->tc_get_timecount(tc); 1252 (void)tc->tc_get_timecount(tc); 1253 timecounter = tc; 1254 } 1255 1256 /* Report the frequency of the current timecounter. */ 1257 uint64_t 1258 tc_getfrequency(void) 1259 { 1260 1261 return (timehands->th_counter->tc_frequency); 1262 } 1263 1264 static struct mtx tc_setclock_mtx; 1265 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN); 1266 1267 /* 1268 * Step our concept of UTC. This is done by modifying our estimate of 1269 * when we booted. 1270 */ 1271 void 1272 tc_setclock(struct timespec *ts) 1273 { 1274 struct timespec tbef, taft; 1275 struct bintime bt, bt2; 1276 1277 timespec2bintime(ts, &bt); 1278 nanotime(&tbef); 1279 mtx_lock_spin(&tc_setclock_mtx); 1280 cpu_tick_calibrate(1); 1281 binuptime(&bt2); 1282 bintime_sub(&bt, &bt2); 1283 1284 /* XXX fiddle all the little crinkly bits around the fiords... */ 1285 tc_windup(&bt); 1286 mtx_unlock_spin(&tc_setclock_mtx); 1287 if (timestepwarnings) { 1288 nanotime(&taft); 1289 log(LOG_INFO, 1290 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1291 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1292 (intmax_t)taft.tv_sec, taft.tv_nsec, 1293 (intmax_t)ts->tv_sec, ts->tv_nsec); 1294 } 1295 } 1296 1297 /* 1298 * Initialize the next struct timehands in the ring and make 1299 * it the active timehands. Along the way we might switch to a different 1300 * timecounter and/or do seconds processing in NTP. Slightly magic. 1301 */ 1302 static void 1303 tc_windup(struct bintime *new_boottimebin) 1304 { 1305 struct bintime bt; 1306 struct timehands *th, *tho; 1307 uint64_t scale; 1308 u_int delta, ncount, ogen; 1309 int i; 1310 time_t t; 1311 1312 /* 1313 * Make the next timehands a copy of the current one, but do 1314 * not overwrite the generation or next pointer. While we 1315 * update the contents, the generation must be zero. We need 1316 * to ensure that the zero generation is visible before the 1317 * data updates become visible, which requires release fence. 1318 * For similar reasons, re-reading of the generation after the 1319 * data is read should use acquire fence. 1320 */ 1321 tho = timehands; 1322 th = tho->th_next; 1323 ogen = th->th_generation; 1324 th->th_generation = 0; 1325 atomic_thread_fence_rel(); 1326 bcopy(tho, th, offsetof(struct timehands, th_generation)); 1327 if (new_boottimebin != NULL) 1328 th->th_boottime = *new_boottimebin; 1329 1330 /* 1331 * Capture a timecounter delta on the current timecounter and if 1332 * changing timecounters, a counter value from the new timecounter. 1333 * Update the offset fields accordingly. 1334 */ 1335 delta = tc_delta(th); 1336 if (th->th_counter != timecounter) 1337 ncount = timecounter->tc_get_timecount(timecounter); 1338 else 1339 ncount = 0; 1340 #ifdef FFCLOCK 1341 ffclock_windup(delta); 1342 #endif 1343 th->th_offset_count += delta; 1344 th->th_offset_count &= th->th_counter->tc_counter_mask; 1345 while (delta > th->th_counter->tc_frequency) { 1346 /* Eat complete unadjusted seconds. */ 1347 delta -= th->th_counter->tc_frequency; 1348 th->th_offset.sec++; 1349 } 1350 if ((delta > th->th_counter->tc_frequency / 2) && 1351 (th->th_scale * delta < ((uint64_t)1 << 63))) { 1352 /* The product th_scale * delta just barely overflows. */ 1353 th->th_offset.sec++; 1354 } 1355 bintime_addx(&th->th_offset, th->th_scale * delta); 1356 1357 /* 1358 * Hardware latching timecounters may not generate interrupts on 1359 * PPS events, so instead we poll them. There is a finite risk that 1360 * the hardware might capture a count which is later than the one we 1361 * got above, and therefore possibly in the next NTP second which might 1362 * have a different rate than the current NTP second. It doesn't 1363 * matter in practice. 1364 */ 1365 if (tho->th_counter->tc_poll_pps) 1366 tho->th_counter->tc_poll_pps(tho->th_counter); 1367 1368 /* 1369 * Deal with NTP second processing. The for loop normally 1370 * iterates at most once, but in extreme situations it might 1371 * keep NTP sane if timeouts are not run for several seconds. 1372 * At boot, the time step can be large when the TOD hardware 1373 * has been read, so on really large steps, we call 1374 * ntp_update_second only twice. We need to call it twice in 1375 * case we missed a leap second. 1376 */ 1377 bt = th->th_offset; 1378 bintime_add(&bt, &th->th_boottime); 1379 i = bt.sec - tho->th_microtime.tv_sec; 1380 if (i > LARGE_STEP) 1381 i = 2; 1382 for (; i > 0; i--) { 1383 t = bt.sec; 1384 ntp_update_second(&th->th_adjustment, &bt.sec); 1385 if (bt.sec != t) 1386 th->th_boottime.sec += bt.sec - t; 1387 } 1388 th->th_bintime = th->th_offset; 1389 bintime_add(&th->th_bintime, &th->th_boottime); 1390 /* Update the UTC timestamps used by the get*() functions. */ 1391 /* XXX shouldn't do this here. Should force non-`get' versions. */ 1392 bintime2timeval(&bt, &th->th_microtime); 1393 bintime2timespec(&bt, &th->th_nanotime); 1394 1395 /* Now is a good time to change timecounters. */ 1396 if (th->th_counter != timecounter) { 1397 #ifndef __arm__ 1398 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0) 1399 cpu_disable_c2_sleep++; 1400 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 1401 cpu_disable_c2_sleep--; 1402 #endif 1403 th->th_counter = timecounter; 1404 th->th_offset_count = ncount; 1405 tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 1406 (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1407 #ifdef FFCLOCK 1408 ffclock_change_tc(th); 1409 #endif 1410 } 1411 1412 /*- 1413 * Recalculate the scaling factor. We want the number of 1/2^64 1414 * fractions of a second per period of the hardware counter, taking 1415 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1416 * processing provides us with. 1417 * 1418 * The th_adjustment is nanoseconds per second with 32 bit binary 1419 * fraction and we want 64 bit binary fraction of second: 1420 * 1421 * x = a * 2^32 / 10^9 = a * 4.294967296 1422 * 1423 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1424 * we can only multiply by about 850 without overflowing, that 1425 * leaves no suitably precise fractions for multiply before divide. 1426 * 1427 * Divide before multiply with a fraction of 2199/512 results in a 1428 * systematic undercompensation of 10PPM of th_adjustment. On a 1429 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1430 * 1431 * We happily sacrifice the lowest of the 64 bits of our result 1432 * to the goddess of code clarity. 1433 * 1434 */ 1435 scale = (uint64_t)1 << 63; 1436 scale += (th->th_adjustment / 1024) * 2199; 1437 scale /= th->th_counter->tc_frequency; 1438 th->th_scale = scale * 2; 1439 1440 /* 1441 * Now that the struct timehands is again consistent, set the new 1442 * generation number, making sure to not make it zero. 1443 */ 1444 if (++ogen == 0) 1445 ogen = 1; 1446 atomic_store_rel_int(&th->th_generation, ogen); 1447 1448 /* Go live with the new struct timehands. */ 1449 #ifdef FFCLOCK 1450 switch (sysclock_active) { 1451 case SYSCLOCK_FBCK: 1452 #endif 1453 time_second = th->th_microtime.tv_sec; 1454 time_uptime = th->th_offset.sec; 1455 #ifdef FFCLOCK 1456 break; 1457 case SYSCLOCK_FFWD: 1458 time_second = fftimehands->tick_time_lerp.sec; 1459 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1460 break; 1461 } 1462 #endif 1463 1464 timehands = th; 1465 timekeep_push_vdso(); 1466 } 1467 1468 /* Report or change the active timecounter hardware. */ 1469 static int 1470 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1471 { 1472 char newname[32]; 1473 struct timecounter *newtc, *tc; 1474 int error; 1475 1476 tc = timecounter; 1477 strlcpy(newname, tc->tc_name, sizeof(newname)); 1478 1479 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1480 if (error != 0 || req->newptr == NULL) 1481 return (error); 1482 /* Record that the tc in use now was specifically chosen. */ 1483 tc_chosen = 1; 1484 if (strcmp(newname, tc->tc_name) == 0) 1485 return (0); 1486 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1487 if (strcmp(newname, newtc->tc_name) != 0) 1488 continue; 1489 1490 /* Warm up new timecounter. */ 1491 (void)newtc->tc_get_timecount(newtc); 1492 (void)newtc->tc_get_timecount(newtc); 1493 1494 timecounter = newtc; 1495 1496 /* 1497 * The vdso timehands update is deferred until the next 1498 * 'tc_windup()'. 1499 * 1500 * This is prudent given that 'timekeep_push_vdso()' does not 1501 * use any locking and that it can be called in hard interrupt 1502 * context via 'tc_windup()'. 1503 */ 1504 return (0); 1505 } 1506 return (EINVAL); 1507 } 1508 1509 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW, 1510 0, 0, sysctl_kern_timecounter_hardware, "A", 1511 "Timecounter hardware selected"); 1512 1513 1514 /* Report the available timecounter hardware. */ 1515 static int 1516 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1517 { 1518 struct sbuf sb; 1519 struct timecounter *tc; 1520 int error; 1521 1522 sbuf_new_for_sysctl(&sb, NULL, 0, req); 1523 for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 1524 if (tc != timecounters) 1525 sbuf_putc(&sb, ' '); 1526 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality); 1527 } 1528 error = sbuf_finish(&sb); 1529 sbuf_delete(&sb); 1530 return (error); 1531 } 1532 1533 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD, 1534 0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected"); 1535 1536 /* 1537 * RFC 2783 PPS-API implementation. 1538 */ 1539 1540 /* 1541 * Return true if the driver is aware of the abi version extensions in the 1542 * pps_state structure, and it supports at least the given abi version number. 1543 */ 1544 static inline int 1545 abi_aware(struct pps_state *pps, int vers) 1546 { 1547 1548 return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers); 1549 } 1550 1551 static int 1552 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1553 { 1554 int err, timo; 1555 pps_seq_t aseq, cseq; 1556 struct timeval tv; 1557 1558 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1559 return (EINVAL); 1560 1561 /* 1562 * If no timeout is requested, immediately return whatever values were 1563 * most recently captured. If timeout seconds is -1, that's a request 1564 * to block without a timeout. WITNESS won't let us sleep forever 1565 * without a lock (we really don't need a lock), so just repeatedly 1566 * sleep a long time. 1567 */ 1568 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1569 if (fapi->timeout.tv_sec == -1) 1570 timo = 0x7fffffff; 1571 else { 1572 tv.tv_sec = fapi->timeout.tv_sec; 1573 tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1574 timo = tvtohz(&tv); 1575 } 1576 aseq = pps->ppsinfo.assert_sequence; 1577 cseq = pps->ppsinfo.clear_sequence; 1578 while (aseq == pps->ppsinfo.assert_sequence && 1579 cseq == pps->ppsinfo.clear_sequence) { 1580 if (abi_aware(pps, 1) && pps->driver_mtx != NULL) { 1581 if (pps->flags & PPSFLAG_MTX_SPIN) { 1582 err = msleep_spin(pps, pps->driver_mtx, 1583 "ppsfch", timo); 1584 } else { 1585 err = msleep(pps, pps->driver_mtx, PCATCH, 1586 "ppsfch", timo); 1587 } 1588 } else { 1589 err = tsleep(pps, PCATCH, "ppsfch", timo); 1590 } 1591 if (err == EWOULDBLOCK) { 1592 if (fapi->timeout.tv_sec == -1) { 1593 continue; 1594 } else { 1595 return (ETIMEDOUT); 1596 } 1597 } else if (err != 0) { 1598 return (err); 1599 } 1600 } 1601 } 1602 1603 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1604 fapi->pps_info_buf = pps->ppsinfo; 1605 1606 return (0); 1607 } 1608 1609 int 1610 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1611 { 1612 pps_params_t *app; 1613 struct pps_fetch_args *fapi; 1614 #ifdef FFCLOCK 1615 struct pps_fetch_ffc_args *fapi_ffc; 1616 #endif 1617 #ifdef PPS_SYNC 1618 struct pps_kcbind_args *kapi; 1619 #endif 1620 1621 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1622 switch (cmd) { 1623 case PPS_IOC_CREATE: 1624 return (0); 1625 case PPS_IOC_DESTROY: 1626 return (0); 1627 case PPS_IOC_SETPARAMS: 1628 app = (pps_params_t *)data; 1629 if (app->mode & ~pps->ppscap) 1630 return (EINVAL); 1631 #ifdef FFCLOCK 1632 /* Ensure only a single clock is selected for ffc timestamp. */ 1633 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1634 return (EINVAL); 1635 #endif 1636 pps->ppsparam = *app; 1637 return (0); 1638 case PPS_IOC_GETPARAMS: 1639 app = (pps_params_t *)data; 1640 *app = pps->ppsparam; 1641 app->api_version = PPS_API_VERS_1; 1642 return (0); 1643 case PPS_IOC_GETCAP: 1644 *(int*)data = pps->ppscap; 1645 return (0); 1646 case PPS_IOC_FETCH: 1647 fapi = (struct pps_fetch_args *)data; 1648 return (pps_fetch(fapi, pps)); 1649 #ifdef FFCLOCK 1650 case PPS_IOC_FETCH_FFCOUNTER: 1651 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1652 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1653 PPS_TSFMT_TSPEC) 1654 return (EINVAL); 1655 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1656 return (EOPNOTSUPP); 1657 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1658 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1659 /* Overwrite timestamps if feedback clock selected. */ 1660 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1661 case PPS_TSCLK_FBCK: 1662 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1663 pps->ppsinfo.assert_timestamp; 1664 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1665 pps->ppsinfo.clear_timestamp; 1666 break; 1667 case PPS_TSCLK_FFWD: 1668 break; 1669 default: 1670 break; 1671 } 1672 return (0); 1673 #endif /* FFCLOCK */ 1674 case PPS_IOC_KCBIND: 1675 #ifdef PPS_SYNC 1676 kapi = (struct pps_kcbind_args *)data; 1677 /* XXX Only root should be able to do this */ 1678 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1679 return (EINVAL); 1680 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1681 return (EINVAL); 1682 if (kapi->edge & ~pps->ppscap) 1683 return (EINVAL); 1684 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) | 1685 (pps->kcmode & KCMODE_ABIFLAG); 1686 return (0); 1687 #else 1688 return (EOPNOTSUPP); 1689 #endif 1690 default: 1691 return (ENOIOCTL); 1692 } 1693 } 1694 1695 void 1696 pps_init(struct pps_state *pps) 1697 { 1698 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1699 if (pps->ppscap & PPS_CAPTUREASSERT) 1700 pps->ppscap |= PPS_OFFSETASSERT; 1701 if (pps->ppscap & PPS_CAPTURECLEAR) 1702 pps->ppscap |= PPS_OFFSETCLEAR; 1703 #ifdef FFCLOCK 1704 pps->ppscap |= PPS_TSCLK_MASK; 1705 #endif 1706 pps->kcmode &= ~KCMODE_ABIFLAG; 1707 } 1708 1709 void 1710 pps_init_abi(struct pps_state *pps) 1711 { 1712 1713 pps_init(pps); 1714 if (pps->driver_abi > 0) { 1715 pps->kcmode |= KCMODE_ABIFLAG; 1716 pps->kernel_abi = PPS_ABI_VERSION; 1717 } 1718 } 1719 1720 void 1721 pps_capture(struct pps_state *pps) 1722 { 1723 struct timehands *th; 1724 1725 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1726 th = timehands; 1727 pps->capgen = atomic_load_acq_int(&th->th_generation); 1728 pps->capth = th; 1729 #ifdef FFCLOCK 1730 pps->capffth = fftimehands; 1731 #endif 1732 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1733 atomic_thread_fence_acq(); 1734 if (pps->capgen != th->th_generation) 1735 pps->capgen = 0; 1736 } 1737 1738 void 1739 pps_event(struct pps_state *pps, int event) 1740 { 1741 struct bintime bt; 1742 struct timespec ts, *tsp, *osp; 1743 u_int tcount, *pcount; 1744 int foff; 1745 pps_seq_t *pseq; 1746 #ifdef FFCLOCK 1747 struct timespec *tsp_ffc; 1748 pps_seq_t *pseq_ffc; 1749 ffcounter *ffcount; 1750 #endif 1751 #ifdef PPS_SYNC 1752 int fhard; 1753 #endif 1754 1755 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1756 /* Nothing to do if not currently set to capture this event type. */ 1757 if ((event & pps->ppsparam.mode) == 0) 1758 return; 1759 /* If the timecounter was wound up underneath us, bail out. */ 1760 if (pps->capgen == 0 || pps->capgen != 1761 atomic_load_acq_int(&pps->capth->th_generation)) 1762 return; 1763 1764 /* Things would be easier with arrays. */ 1765 if (event == PPS_CAPTUREASSERT) { 1766 tsp = &pps->ppsinfo.assert_timestamp; 1767 osp = &pps->ppsparam.assert_offset; 1768 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1769 #ifdef PPS_SYNC 1770 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1771 #endif 1772 pcount = &pps->ppscount[0]; 1773 pseq = &pps->ppsinfo.assert_sequence; 1774 #ifdef FFCLOCK 1775 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1776 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1777 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1778 #endif 1779 } else { 1780 tsp = &pps->ppsinfo.clear_timestamp; 1781 osp = &pps->ppsparam.clear_offset; 1782 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1783 #ifdef PPS_SYNC 1784 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1785 #endif 1786 pcount = &pps->ppscount[1]; 1787 pseq = &pps->ppsinfo.clear_sequence; 1788 #ifdef FFCLOCK 1789 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1790 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1791 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1792 #endif 1793 } 1794 1795 /* 1796 * If the timecounter changed, we cannot compare the count values, so 1797 * we have to drop the rest of the PPS-stuff until the next event. 1798 */ 1799 if (pps->ppstc != pps->capth->th_counter) { 1800 pps->ppstc = pps->capth->th_counter; 1801 *pcount = pps->capcount; 1802 pps->ppscount[2] = pps->capcount; 1803 return; 1804 } 1805 1806 /* Convert the count to a timespec. */ 1807 tcount = pps->capcount - pps->capth->th_offset_count; 1808 tcount &= pps->capth->th_counter->tc_counter_mask; 1809 bt = pps->capth->th_bintime; 1810 bintime_addx(&bt, pps->capth->th_scale * tcount); 1811 bintime2timespec(&bt, &ts); 1812 1813 /* If the timecounter was wound up underneath us, bail out. */ 1814 atomic_thread_fence_acq(); 1815 if (pps->capgen != pps->capth->th_generation) 1816 return; 1817 1818 *pcount = pps->capcount; 1819 (*pseq)++; 1820 *tsp = ts; 1821 1822 if (foff) { 1823 timespecadd(tsp, osp); 1824 if (tsp->tv_nsec < 0) { 1825 tsp->tv_nsec += 1000000000; 1826 tsp->tv_sec -= 1; 1827 } 1828 } 1829 1830 #ifdef FFCLOCK 1831 *ffcount = pps->capffth->tick_ffcount + tcount; 1832 bt = pps->capffth->tick_time; 1833 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1834 bintime_add(&bt, &pps->capffth->tick_time); 1835 bintime2timespec(&bt, &ts); 1836 (*pseq_ffc)++; 1837 *tsp_ffc = ts; 1838 #endif 1839 1840 #ifdef PPS_SYNC 1841 if (fhard) { 1842 uint64_t scale; 1843 1844 /* 1845 * Feed the NTP PLL/FLL. 1846 * The FLL wants to know how many (hardware) nanoseconds 1847 * elapsed since the previous event. 1848 */ 1849 tcount = pps->capcount - pps->ppscount[2]; 1850 pps->ppscount[2] = pps->capcount; 1851 tcount &= pps->capth->th_counter->tc_counter_mask; 1852 scale = (uint64_t)1 << 63; 1853 scale /= pps->capth->th_counter->tc_frequency; 1854 scale *= 2; 1855 bt.sec = 0; 1856 bt.frac = 0; 1857 bintime_addx(&bt, scale * tcount); 1858 bintime2timespec(&bt, &ts); 1859 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1860 } 1861 #endif 1862 1863 /* Wakeup anyone sleeping in pps_fetch(). */ 1864 wakeup(pps); 1865 } 1866 1867 /* 1868 * Timecounters need to be updated every so often to prevent the hardware 1869 * counter from overflowing. Updating also recalculates the cached values 1870 * used by the get*() family of functions, so their precision depends on 1871 * the update frequency. 1872 */ 1873 1874 static int tc_tick; 1875 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1876 "Approximate number of hardclock ticks in a millisecond"); 1877 1878 void 1879 tc_ticktock(int cnt) 1880 { 1881 static int count; 1882 1883 if (mtx_trylock_spin(&tc_setclock_mtx)) { 1884 count += cnt; 1885 if (count >= tc_tick) { 1886 count = 0; 1887 tc_windup(NULL); 1888 } 1889 mtx_unlock_spin(&tc_setclock_mtx); 1890 } 1891 } 1892 1893 static void __inline 1894 tc_adjprecision(void) 1895 { 1896 int t; 1897 1898 if (tc_timepercentage > 0) { 1899 t = (99 + tc_timepercentage) / tc_timepercentage; 1900 tc_precexp = fls(t + (t >> 1)) - 1; 1901 FREQ2BT(hz / tc_tick, &bt_timethreshold); 1902 FREQ2BT(hz, &bt_tickthreshold); 1903 bintime_shift(&bt_timethreshold, tc_precexp); 1904 bintime_shift(&bt_tickthreshold, tc_precexp); 1905 } else { 1906 tc_precexp = 31; 1907 bt_timethreshold.sec = INT_MAX; 1908 bt_timethreshold.frac = ~(uint64_t)0; 1909 bt_tickthreshold = bt_timethreshold; 1910 } 1911 sbt_timethreshold = bttosbt(bt_timethreshold); 1912 sbt_tickthreshold = bttosbt(bt_tickthreshold); 1913 } 1914 1915 static int 1916 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 1917 { 1918 int error, val; 1919 1920 val = tc_timepercentage; 1921 error = sysctl_handle_int(oidp, &val, 0, req); 1922 if (error != 0 || req->newptr == NULL) 1923 return (error); 1924 tc_timepercentage = val; 1925 if (cold) 1926 goto done; 1927 tc_adjprecision(); 1928 done: 1929 return (0); 1930 } 1931 1932 static void 1933 inittimecounter(void *dummy) 1934 { 1935 u_int p; 1936 int tick_rate; 1937 1938 /* 1939 * Set the initial timeout to 1940 * max(1, <approx. number of hardclock ticks in a millisecond>). 1941 * People should probably not use the sysctl to set the timeout 1942 * to smaller than its initial value, since that value is the 1943 * smallest reasonable one. If they want better timestamps they 1944 * should use the non-"get"* functions. 1945 */ 1946 if (hz > 1000) 1947 tc_tick = (hz + 500) / 1000; 1948 else 1949 tc_tick = 1; 1950 tc_adjprecision(); 1951 FREQ2BT(hz, &tick_bt); 1952 tick_sbt = bttosbt(tick_bt); 1953 tick_rate = hz / tc_tick; 1954 FREQ2BT(tick_rate, &tc_tick_bt); 1955 tc_tick_sbt = bttosbt(tc_tick_bt); 1956 p = (tc_tick * 1000000) / hz; 1957 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 1958 1959 #ifdef FFCLOCK 1960 ffclock_init(); 1961 #endif 1962 /* warm up new timecounter (again) and get rolling. */ 1963 (void)timecounter->tc_get_timecount(timecounter); 1964 (void)timecounter->tc_get_timecount(timecounter); 1965 mtx_lock_spin(&tc_setclock_mtx); 1966 tc_windup(NULL); 1967 mtx_unlock_spin(&tc_setclock_mtx); 1968 } 1969 1970 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 1971 1972 /* Cpu tick handling -------------------------------------------------*/ 1973 1974 static int cpu_tick_variable; 1975 static uint64_t cpu_tick_frequency; 1976 1977 static DPCPU_DEFINE(uint64_t, tc_cpu_ticks_base); 1978 static DPCPU_DEFINE(unsigned, tc_cpu_ticks_last); 1979 1980 static uint64_t 1981 tc_cpu_ticks(void) 1982 { 1983 struct timecounter *tc; 1984 uint64_t res, *base; 1985 unsigned u, *last; 1986 1987 critical_enter(); 1988 base = DPCPU_PTR(tc_cpu_ticks_base); 1989 last = DPCPU_PTR(tc_cpu_ticks_last); 1990 tc = timehands->th_counter; 1991 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 1992 if (u < *last) 1993 *base += (uint64_t)tc->tc_counter_mask + 1; 1994 *last = u; 1995 res = u + *base; 1996 critical_exit(); 1997 return (res); 1998 } 1999 2000 void 2001 cpu_tick_calibration(void) 2002 { 2003 static time_t last_calib; 2004 2005 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 2006 cpu_tick_calibrate(0); 2007 last_calib = time_uptime; 2008 } 2009 } 2010 2011 /* 2012 * This function gets called every 16 seconds on only one designated 2013 * CPU in the system from hardclock() via cpu_tick_calibration()(). 2014 * 2015 * Whenever the real time clock is stepped we get called with reset=1 2016 * to make sure we handle suspend/resume and similar events correctly. 2017 */ 2018 2019 static void 2020 cpu_tick_calibrate(int reset) 2021 { 2022 static uint64_t c_last; 2023 uint64_t c_this, c_delta; 2024 static struct bintime t_last; 2025 struct bintime t_this, t_delta; 2026 uint32_t divi; 2027 2028 if (reset) { 2029 /* The clock was stepped, abort & reset */ 2030 t_last.sec = 0; 2031 return; 2032 } 2033 2034 /* we don't calibrate fixed rate cputicks */ 2035 if (!cpu_tick_variable) 2036 return; 2037 2038 getbinuptime(&t_this); 2039 c_this = cpu_ticks(); 2040 if (t_last.sec != 0) { 2041 c_delta = c_this - c_last; 2042 t_delta = t_this; 2043 bintime_sub(&t_delta, &t_last); 2044 /* 2045 * Headroom: 2046 * 2^(64-20) / 16[s] = 2047 * 2^(44) / 16[s] = 2048 * 17.592.186.044.416 / 16 = 2049 * 1.099.511.627.776 [Hz] 2050 */ 2051 divi = t_delta.sec << 20; 2052 divi |= t_delta.frac >> (64 - 20); 2053 c_delta <<= 20; 2054 c_delta /= divi; 2055 if (c_delta > cpu_tick_frequency) { 2056 if (0 && bootverbose) 2057 printf("cpu_tick increased to %ju Hz\n", 2058 c_delta); 2059 cpu_tick_frequency = c_delta; 2060 } 2061 } 2062 c_last = c_this; 2063 t_last = t_this; 2064 } 2065 2066 void 2067 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 2068 { 2069 2070 if (func == NULL) { 2071 cpu_ticks = tc_cpu_ticks; 2072 } else { 2073 cpu_tick_frequency = freq; 2074 cpu_tick_variable = var; 2075 cpu_ticks = func; 2076 } 2077 } 2078 2079 uint64_t 2080 cpu_tickrate(void) 2081 { 2082 2083 if (cpu_ticks == tc_cpu_ticks) 2084 return (tc_getfrequency()); 2085 return (cpu_tick_frequency); 2086 } 2087 2088 /* 2089 * We need to be slightly careful converting cputicks to microseconds. 2090 * There is plenty of margin in 64 bits of microseconds (half a million 2091 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 2092 * before divide conversion (to retain precision) we find that the 2093 * margin shrinks to 1.5 hours (one millionth of 146y). 2094 * With a three prong approach we never lose significant bits, no 2095 * matter what the cputick rate and length of timeinterval is. 2096 */ 2097 2098 uint64_t 2099 cputick2usec(uint64_t tick) 2100 { 2101 2102 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 2103 return (tick / (cpu_tickrate() / 1000000LL)); 2104 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 2105 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 2106 else 2107 return ((tick * 1000000LL) / cpu_tickrate()); 2108 } 2109 2110 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 2111 2112 static int vdso_th_enable = 1; 2113 static int 2114 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 2115 { 2116 int old_vdso_th_enable, error; 2117 2118 old_vdso_th_enable = vdso_th_enable; 2119 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 2120 if (error != 0) 2121 return (error); 2122 vdso_th_enable = old_vdso_th_enable; 2123 return (0); 2124 } 2125 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 2126 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 2127 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 2128 2129 uint32_t 2130 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2131 { 2132 struct timehands *th; 2133 uint32_t enabled; 2134 2135 th = timehands; 2136 vdso_th->th_scale = th->th_scale; 2137 vdso_th->th_offset_count = th->th_offset_count; 2138 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2139 vdso_th->th_offset = th->th_offset; 2140 vdso_th->th_boottime = th->th_boottime; 2141 if (th->th_counter->tc_fill_vdso_timehands != NULL) { 2142 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th, 2143 th->th_counter); 2144 } else 2145 enabled = 0; 2146 if (!vdso_th_enable) 2147 enabled = 0; 2148 return (enabled); 2149 } 2150 2151 #ifdef COMPAT_FREEBSD32 2152 uint32_t 2153 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2154 { 2155 struct timehands *th; 2156 uint32_t enabled; 2157 2158 th = timehands; 2159 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2160 vdso_th32->th_offset_count = th->th_offset_count; 2161 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2162 vdso_th32->th_offset.sec = th->th_offset.sec; 2163 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 2164 vdso_th32->th_boottime.sec = th->th_boottime.sec; 2165 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac; 2166 if (th->th_counter->tc_fill_vdso_timehands32 != NULL) { 2167 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32, 2168 th->th_counter); 2169 } else 2170 enabled = 0; 2171 if (!vdso_th_enable) 2172 enabled = 0; 2173 return (enabled); 2174 } 2175 #endif 2176