xref: /freebsd/sys/kern/kern_tc.c (revision 3e0f6b97b257a96f7275e4442204263e44b16686)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
39  * $FreeBSD$
40  */
41 
42 /* Portions of this software are covered by the following: */
43 /******************************************************************************
44  *                                                                            *
45  * Copyright (c) David L. Mills 1993, 1994                                    *
46  *                                                                            *
47  * Permission to use, copy, modify, and distribute this software and its      *
48  * documentation for any purpose and without fee is hereby granted, provided  *
49  * that the above copyright notice appears in all copies and that both the    *
50  * copyright notice and this permission notice appear in supporting           *
51  * documentation, and that the name University of Delaware not be used in     *
52  * advertising or publicity pertaining to distribution of the software        *
53  * without specific, written prior permission.  The University of Delaware    *
54  * makes no representations about the suitability this software for any       *
55  * purpose.  It is provided "as is" without express or implied warranty.      *
56  *                                                                            *
57  *****************************************************************************/
58 
59 #include "opt_cpu.h"		/* XXX */
60 
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/dkstat.h>
64 #include <sys/callout.h>
65 #include <sys/kernel.h>
66 #include <sys/proc.h>
67 #include <sys/resourcevar.h>
68 #include <sys/signalvar.h>
69 #include <sys/timex.h>
70 #include <vm/vm.h>
71 #include <vm/vm_param.h>
72 #include <vm/vm_prot.h>
73 #include <sys/lock.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_map.h>
76 #include <sys/sysctl.h>
77 
78 #include <machine/cpu.h>
79 #define CLOCK_HAIR		/* XXX */
80 #include <machine/clock.h>
81 
82 #ifdef GPROF
83 #include <sys/gmon.h>
84 #endif
85 
86 static void initclocks __P((void *dummy));
87 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
88 
89 /* Exported to machdep.c. */
90 struct callout *callfree, *callout;
91 
92 static struct callout calltodo;
93 
94 /* Some of these don't belong here, but it's easiest to concentrate them. */
95 static long cp_time[CPUSTATES];
96 long dk_seek[DK_NDRIVE];
97 static long dk_time[DK_NDRIVE];
98 long dk_wds[DK_NDRIVE];
99 long dk_wpms[DK_NDRIVE];
100 long dk_xfer[DK_NDRIVE];
101 
102 int dk_busy;
103 int dk_ndrive = 0;
104 char dk_names[DK_NDRIVE][DK_NAMELEN];
105 
106 long tk_cancc;
107 long tk_nin;
108 long tk_nout;
109 long tk_rawcc;
110 
111 /*
112  * Clock handling routines.
113  *
114  * This code is written to operate with two timers that run independently of
115  * each other.  The main clock, running hz times per second, is used to keep
116  * track of real time.  The second timer handles kernel and user profiling,
117  * and does resource use estimation.  If the second timer is programmable,
118  * it is randomized to avoid aliasing between the two clocks.  For example,
119  * the randomization prevents an adversary from always giving up the cpu
120  * just before its quantum expires.  Otherwise, it would never accumulate
121  * cpu ticks.  The mean frequency of the second timer is stathz.
122  *
123  * If no second timer exists, stathz will be zero; in this case we drive
124  * profiling and statistics off the main clock.  This WILL NOT be accurate;
125  * do not do it unless absolutely necessary.
126  *
127  * The statistics clock may (or may not) be run at a higher rate while
128  * profiling.  This profile clock runs at profhz.  We require that profhz
129  * be an integral multiple of stathz.
130  *
131  * If the statistics clock is running fast, it must be divided by the ratio
132  * profhz/stathz for statistics.  (For profiling, every tick counts.)
133  */
134 
135 /*
136  * TODO:
137  *	allocate more timeout table slots when table overflows.
138  */
139 
140 /*
141  * Bump a timeval by a small number of usec's.
142  */
143 #define BUMPTIME(t, usec) { \
144 	register volatile struct timeval *tp = (t); \
145 	register long us; \
146  \
147 	tp->tv_usec = us = tp->tv_usec + (usec); \
148 	if (us >= 1000000) { \
149 		tp->tv_usec = us - 1000000; \
150 		tp->tv_sec++; \
151 	} \
152 }
153 
154 int	stathz;
155 int	profhz;
156 static int profprocs;
157 int	ticks;
158 static int psdiv, pscnt;	/* prof => stat divider */
159 int psratio;			/* ratio: prof / stat */
160 
161 volatile struct	timeval time;
162 volatile struct	timeval mono_time;
163 
164 /*
165  * Phase/frequency-lock loop (PLL/FLL) definitions
166  *
167  * The following variables are read and set by the ntp_adjtime() system
168  * call.
169  *
170  * time_state shows the state of the system clock, with values defined
171  * in the timex.h header file.
172  *
173  * time_status shows the status of the system clock, with bits defined
174  * in the timex.h header file.
175  *
176  * time_offset is used by the PLL/FLL to adjust the system time in small
177  * increments.
178  *
179  * time_constant determines the bandwidth or "stiffness" of the PLL.
180  *
181  * time_tolerance determines maximum frequency error or tolerance of the
182  * CPU clock oscillator and is a property of the architecture; however,
183  * in principle it could change as result of the presence of external
184  * discipline signals, for instance.
185  *
186  * time_precision is usually equal to the kernel tick variable; however,
187  * in cases where a precision clock counter or external clock is
188  * available, the resolution can be much less than this and depend on
189  * whether the external clock is working or not.
190  *
191  * time_maxerror is initialized by a ntp_adjtime() call and increased by
192  * the kernel once each second to reflect the maximum error
193  * bound growth.
194  *
195  * time_esterror is set and read by the ntp_adjtime() call, but
196  * otherwise not used by the kernel.
197  */
198 int time_status = STA_UNSYNC;	/* clock status bits */
199 int time_state = TIME_OK;	/* clock state */
200 long time_offset = 0;		/* time offset (us) */
201 long time_constant = 0;		/* pll time constant */
202 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
203 long time_precision = 1;	/* clock precision (us) */
204 long time_maxerror = MAXPHASE;	/* maximum error (us) */
205 long time_esterror = MAXPHASE;	/* estimated error (us) */
206 
207 /*
208  * The following variables establish the state of the PLL/FLL and the
209  * residual time and frequency offset of the local clock. The scale
210  * factors are defined in the timex.h header file.
211  *
212  * time_phase and time_freq are the phase increment and the frequency
213  * increment, respectively, of the kernel time variable at each tick of
214  * the clock.
215  *
216  * time_freq is set via ntp_adjtime() from a value stored in a file when
217  * the synchronization daemon is first started. Its value is retrieved
218  * via ntp_adjtime() and written to the file about once per hour by the
219  * daemon.
220  *
221  * time_adj is the adjustment added to the value of tick at each timer
222  * interrupt and is recomputed from time_phase and time_freq at each
223  * seconds rollover.
224  *
225  * time_reftime is the second's portion of the system time on the last
226  * call to ntp_adjtime(). It is used to adjust the time_freq variable
227  * and to increase the time_maxerror as the time since last update
228  * increases.
229  */
230 static long time_phase = 0;		/* phase offset (scaled us) */
231 long time_freq = 0;			/* frequency offset (scaled ppm) */
232 static long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
233 static long time_reftime = 0;		/* time at last adjustment (s) */
234 
235 #ifdef PPS_SYNC
236 /*
237  * The following variables are used only if the kernel PPS discipline
238  * code is configured (PPS_SYNC). The scale factors are defined in the
239  * timex.h header file.
240  *
241  * pps_time contains the time at each calibration interval, as read by
242  * microtime(). pps_count counts the seconds of the calibration
243  * interval, the duration of which is nominally pps_shift in powers of
244  * two.
245  *
246  * pps_offset is the time offset produced by the time median filter
247  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
248  * this filter.
249  *
250  * pps_freq is the frequency offset produced by the frequency median
251  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
252  * by this filter.
253  *
254  * pps_usec is latched from a high resolution counter or external clock
255  * at pps_time. Here we want the hardware counter contents only, not the
256  * contents plus the time_tv.usec as usual.
257  *
258  * pps_valid counts the number of seconds since the last PPS update. It
259  * is used as a watchdog timer to disable the PPS discipline should the
260  * PPS signal be lost.
261  *
262  * pps_glitch counts the number of seconds since the beginning of an
263  * offset burst more than tick/2 from current nominal offset. It is used
264  * mainly to suppress error bursts due to priority conflicts between the
265  * PPS interrupt and timer interrupt.
266  *
267  * pps_intcnt counts the calibration intervals for use in the interval-
268  * adaptation algorithm. It's just too complicated for words.
269  */
270 struct timeval pps_time;	/* kernel time at last interval */
271 long pps_offset = 0;		/* pps time offset (us) */
272 long pps_jitter = MAXTIME;	/* pps time dispersion (jitter) (us) */
273 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
274 long pps_freq = 0;		/* frequency offset (scaled ppm) */
275 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
276 long pps_ff[] = {0, 0, 0};	/* frequency offset median filter */
277 long pps_usec = 0;		/* microsec counter at last interval */
278 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
279 int pps_glitch = 0;		/* pps signal glitch counter */
280 int pps_count = 0;		/* calibration interval counter (s) */
281 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
282 int pps_intcnt = 0;		/* intervals at current duration */
283 
284 /*
285  * PPS signal quality monitors
286  *
287  * pps_jitcnt counts the seconds that have been discarded because the
288  * jitter measured by the time median filter exceeds the limit MAXTIME
289  * (100 us).
290  *
291  * pps_calcnt counts the frequency calibration intervals, which are
292  * variable from 4 s to 256 s.
293  *
294  * pps_errcnt counts the calibration intervals which have been discarded
295  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
296  * calibration interval jitter exceeds two ticks.
297  *
298  * pps_stbcnt counts the calibration intervals that have been discarded
299  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
300  */
301 long pps_jitcnt = 0;		/* jitter limit exceeded */
302 long pps_calcnt = 0;		/* calibration intervals */
303 long pps_errcnt = 0;		/* calibration errors */
304 long pps_stbcnt = 0;		/* stability limit exceeded */
305 #endif /* PPS_SYNC */
306 
307 /* XXX none of this stuff works under FreeBSD */
308 #ifdef EXT_CLOCK
309 /*
310  * External clock definitions
311  *
312  * The following definitions and declarations are used only if an
313  * external clock (HIGHBALL or TPRO) is configured on the system.
314  */
315 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
316 
317 /*
318  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
319  * interrupt and decremented once each second.
320  */
321 int clock_count = 0;		/* CPU clock counter */
322 
323 #ifdef HIGHBALL
324 /*
325  * The clock_offset and clock_cpu variables are used by the HIGHBALL
326  * interface. The clock_offset variable defines the offset between
327  * system time and the HIGBALL counters. The clock_cpu variable contains
328  * the offset between the system clock and the HIGHBALL clock for use in
329  * disciplining the kernel time variable.
330  */
331 extern struct timeval clock_offset; /* Highball clock offset */
332 long clock_cpu = 0;		/* CPU clock adjust */
333 #endif /* HIGHBALL */
334 #endif /* EXT_CLOCK */
335 
336 /*
337  * hardupdate() - local clock update
338  *
339  * This routine is called by ntp_adjtime() to update the local clock
340  * phase and frequency. The implementation is of an adaptive-parameter,
341  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
342  * time and frequency offset estimates for each call. If the kernel PPS
343  * discipline code is configured (PPS_SYNC), the PPS signal itself
344  * determines the new time offset, instead of the calling argument.
345  * Presumably, calls to ntp_adjtime() occur only when the caller
346  * believes the local clock is valid within some bound (+-128 ms with
347  * NTP). If the caller's time is far different than the PPS time, an
348  * argument will ensue, and it's not clear who will lose.
349  *
350  * For uncompensated quartz crystal oscillatores and nominal update
351  * intervals less than 1024 s, operation should be in phase-lock mode
352  * (STA_FLL = 0), where the loop is disciplined to phase. For update
353  * intervals greater than thiss, operation should be in frequency-lock
354  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
355  *
356  * Note: splclock() is in effect.
357  */
358 void
359 hardupdate(offset)
360 	long offset;
361 {
362 	long ltemp, mtemp;
363 
364 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
365 		return;
366 	ltemp = offset;
367 #ifdef PPS_SYNC
368 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
369 		ltemp = pps_offset;
370 #endif /* PPS_SYNC */
371 
372 	/*
373 	 * Scale the phase adjustment and clamp to the operating range.
374 	 */
375 	if (ltemp > MAXPHASE)
376 		time_offset = MAXPHASE << SHIFT_UPDATE;
377 	else if (ltemp < -MAXPHASE)
378 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
379 	else
380 		time_offset = ltemp << SHIFT_UPDATE;
381 
382 	/*
383 	 * Select whether the frequency is to be controlled and in which
384 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
385 	 * multiply/divide should be replaced someday.
386 	 */
387 	if (time_status & STA_FREQHOLD || time_reftime == 0)
388 		time_reftime = time.tv_sec;
389 	mtemp = time.tv_sec - time_reftime;
390 	time_reftime = time.tv_sec;
391 	if (time_status & STA_FLL) {
392 		if (mtemp >= MINSEC) {
393 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
394 			    SHIFT_UPDATE));
395 			if (ltemp < 0)
396 				time_freq -= -ltemp >> SHIFT_KH;
397 			else
398 				time_freq += ltemp >> SHIFT_KH;
399 		}
400 	} else {
401 		if (mtemp < MAXSEC) {
402 			ltemp *= mtemp;
403 			if (ltemp < 0)
404 				time_freq -= -ltemp >> (time_constant +
405 				    time_constant + SHIFT_KF -
406 				    SHIFT_USEC);
407 			else
408 				time_freq += ltemp >> (time_constant +
409 				    time_constant + SHIFT_KF -
410 				    SHIFT_USEC);
411 		}
412 	}
413 	if (time_freq > time_tolerance)
414 		time_freq = time_tolerance;
415 	else if (time_freq < -time_tolerance)
416 		time_freq = -time_tolerance;
417 }
418 
419 
420 
421 /*
422  * Initialize clock frequencies and start both clocks running.
423  */
424 /* ARGSUSED*/
425 static void
426 initclocks(dummy)
427 	void *dummy;
428 {
429 	register int i;
430 
431 	/*
432 	 * Set divisors to 1 (normal case) and let the machine-specific
433 	 * code do its bit.
434 	 */
435 	psdiv = pscnt = 1;
436 	cpu_initclocks();
437 
438 	/*
439 	 * Compute profhz/stathz, and fix profhz if needed.
440 	 */
441 	i = stathz ? stathz : hz;
442 	if (profhz == 0)
443 		profhz = i;
444 	psratio = profhz / i;
445 }
446 
447 /*
448  * The real-time timer, interrupting hz times per second.
449  */
450 void
451 hardclock(frame)
452 	register struct clockframe *frame;
453 {
454 	register struct callout *p1;
455 	register struct proc *p;
456 	register int needsoft;
457 
458 	/*
459 	 * Update real-time timeout queue.
460 	 * At front of queue are some number of events which are ``due''.
461 	 * The time to these is <= 0 and if negative represents the
462 	 * number of ticks which have passed since it was supposed to happen.
463 	 * The rest of the q elements (times > 0) are events yet to happen,
464 	 * where the time for each is given as a delta from the previous.
465 	 * Decrementing just the first of these serves to decrement the time
466 	 * to all events.
467 	 */
468 	needsoft = 0;
469 	for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
470 		if (--p1->c_time > 0)
471 			break;
472 		needsoft = 1;
473 		if (p1->c_time == 0)
474 			break;
475 	}
476 
477 	p = curproc;
478 	if (p) {
479 		register struct pstats *pstats;
480 
481 		/*
482 		 * Run current process's virtual and profile time, as needed.
483 		 */
484 		pstats = p->p_stats;
485 		if (CLKF_USERMODE(frame) &&
486 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
487 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
488 			psignal(p, SIGVTALRM);
489 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
490 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
491 			psignal(p, SIGPROF);
492 	}
493 
494 	/*
495 	 * If no separate statistics clock is available, run it from here.
496 	 */
497 	if (stathz == 0)
498 		statclock(frame);
499 
500 	/*
501 	 * Increment the time-of-day.
502 	 */
503 	ticks++;
504 	{
505 		int time_update;
506 		struct timeval newtime = time;
507 		long ltemp;
508 
509 		if (timedelta == 0) {
510 			time_update = CPU_THISTICKLEN(tick);
511 		} else {
512 			time_update = CPU_THISTICKLEN(tick) + tickdelta;
513 			timedelta -= tickdelta;
514 		}
515 		BUMPTIME(&mono_time, time_update);
516 
517 		/*
518 		 * Compute the phase adjustment. If the low-order bits
519 		 * (time_phase) of the update overflow, bump the high-order bits
520 		 * (time_update).
521 		 */
522 		time_phase += time_adj;
523 		if (time_phase <= -FINEUSEC) {
524 		  ltemp = -time_phase >> SHIFT_SCALE;
525 		  time_phase += ltemp << SHIFT_SCALE;
526 		  time_update -= ltemp;
527 		}
528 		else if (time_phase >= FINEUSEC) {
529 		  ltemp = time_phase >> SHIFT_SCALE;
530 		  time_phase -= ltemp << SHIFT_SCALE;
531 		  time_update += ltemp;
532 		}
533 
534 		newtime.tv_usec += time_update;
535 		/*
536 		 * On rollover of the second the phase adjustment to be used for
537 		 * the next second is calculated. Also, the maximum error is
538 		 * increased by the tolerance. If the PPS frequency discipline
539 		 * code is present, the phase is increased to compensate for the
540 		 * CPU clock oscillator frequency error.
541 		 *
542 		 * On a 32-bit machine and given parameters in the timex.h
543 		 * header file, the maximum phase adjustment is +-512 ms and
544 		 * maximum frequency offset is a tad less than) +-512 ppm. On a
545 		 * 64-bit machine, you shouldn't need to ask.
546 		 */
547 		if (newtime.tv_usec >= 1000000) {
548 		  newtime.tv_usec -= 1000000;
549 		  newtime.tv_sec++;
550 		  time_maxerror += time_tolerance >> SHIFT_USEC;
551 
552 		  /*
553 		   * Compute the phase adjustment for the next second. In
554 		   * PLL mode, the offset is reduced by a fixed factor
555 		   * times the time constant. In FLL mode the offset is
556 		   * used directly. In either mode, the maximum phase
557 		   * adjustment for each second is clamped so as to spread
558 		   * the adjustment over not more than the number of
559 		   * seconds between updates.
560 		   */
561 		  if (time_offset < 0) {
562 		    ltemp = -time_offset;
563 		    if (!(time_status & STA_FLL))
564 			ltemp >>= SHIFT_KG + time_constant;
565 		    if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
566 			ltemp = (MAXPHASE / MINSEC) <<
567 			    SHIFT_UPDATE;
568 		    time_offset += ltemp;
569 		    time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ -
570 			SHIFT_UPDATE);
571 		    } else {
572 		        ltemp = time_offset;
573 			if (!(time_status & STA_FLL))
574 				ltemp >>= SHIFT_KG + time_constant;
575 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
576 				ltemp = (MAXPHASE / MINSEC) <<
577 				    SHIFT_UPDATE;
578 			time_offset -= ltemp;
579 			time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ -
580 			    SHIFT_UPDATE);
581 		    }
582 
583 		  /*
584 		   * Compute the frequency estimate and additional phase
585 		   * adjustment due to frequency error for the next
586 		   * second. When the PPS signal is engaged, gnaw on the
587 		   * watchdog counter and update the frequency computed by
588 		   * the pll and the PPS signal.
589 		   */
590 #ifdef PPS_SYNC
591 		  pps_valid++;
592 		  if (pps_valid == PPS_VALID) {
593 		    pps_jitter = MAXTIME;
594 		    pps_stabil = MAXFREQ;
595 		    time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
596 				     STA_PPSWANDER | STA_PPSERROR);
597 		  }
598 		  ltemp = time_freq + pps_freq;
599 #else
600 		  ltemp = time_freq;
601 #endif /* PPS_SYNC */
602 		  if (ltemp < 0)
603 		    time_adj -= -ltemp >>
604 		      (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
605 		  else
606 		    time_adj += ltemp >>
607 		      (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
608 
609 #if SHIFT_HZ == 7
610 		  /*
611 		   * When the CPU clock oscillator frequency is not a
612 		   * power of two in Hz, the SHIFT_HZ is only an
613 		   * approximate scale factor. In the SunOS kernel, this
614 		   * results in a PLL gain factor of 1/1.28 = 0.78 what it
615 		   * should be. In the following code the overall gain is
616 		   * increased by a factor of 1.25, which results in a
617 		   * residual error less than 3 percent.
618 		   */
619 		  /* Same thing applies for FreeBSD --GAW */
620 		  if (hz == 100) {
621 		    if (time_adj < 0)
622 		      time_adj -= -time_adj >> 2;
623 		    else
624 		      time_adj += time_adj >> 2;
625 		  }
626 #endif /* SHIFT_HZ */
627 
628 		  /* XXX - this is really bogus, but can't be fixed until
629 		     xntpd's idea of the system clock is fixed to know how
630 		     the user wants leap seconds handled; in the mean time,
631 		     we assume that users of NTP are running without proper
632 		     leap second support (this is now the default anyway) */
633 		  /*
634 		   * Leap second processing. If in leap-insert state at
635 		   * the end of the day, the system clock is set back one
636 		   * second; if in leap-delete state, the system clock is
637 		   * set ahead one second. The microtime() routine or
638 		   * external clock driver will insure that reported time
639 		   * is always monotonic. The ugly divides should be
640 		   * replaced.
641 		   */
642 		  switch (time_state) {
643 
644 		  case TIME_OK:
645 		    if (time_status & STA_INS)
646 		      time_state = TIME_INS;
647 		    else if (time_status & STA_DEL)
648 		      time_state = TIME_DEL;
649 		    break;
650 
651 		  case TIME_INS:
652 		    if (newtime.tv_sec % 86400 == 0) {
653 		      newtime.tv_sec--;
654 		      time_state = TIME_OOP;
655 		    }
656 		    break;
657 
658 		  case TIME_DEL:
659 		    if ((newtime.tv_sec + 1) % 86400 == 0) {
660 		      newtime.tv_sec++;
661 		      time_state = TIME_WAIT;
662 		    }
663 		    break;
664 
665 		  case TIME_OOP:
666 		    time_state = TIME_WAIT;
667 		    break;
668 
669 		  case TIME_WAIT:
670 		    if (!(time_status & (STA_INS | STA_DEL)))
671 		      time_state = TIME_OK;
672 		  }
673 		}
674 		CPU_CLOCKUPDATE(&time, &newtime);
675 	}
676 
677 	/*
678 	 * Process callouts at a very low cpu priority, so we don't keep the
679 	 * relatively high clock interrupt priority any longer than necessary.
680 	 */
681 	if (needsoft) {
682 		if (CLKF_BASEPRI(frame)) {
683 			/*
684 			 * Save the overhead of a software interrupt;
685 			 * it will happen as soon as we return, so do it now.
686 			 */
687 			(void)splsoftclock();
688 			softclock();
689 		} else
690 			setsoftclock();
691 	}
692 }
693 
694 /*
695  * Software (low priority) clock interrupt.
696  * Run periodic events from timeout queue.
697  */
698 /*ARGSUSED*/
699 void
700 softclock()
701 {
702 	register struct callout *c;
703 	register void *arg;
704 	register void (*func) __P((void *));
705 	register int s;
706 
707 	s = splhigh();
708 	while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
709 		func = c->c_func;
710 		arg = c->c_arg;
711 		calltodo.c_next = c->c_next;
712 		c->c_next = callfree;
713 		callfree = c;
714 		splx(s);
715 		(*func)(arg);
716 		(void) splhigh();
717 	}
718 	splx(s);
719 }
720 
721 /*
722  * timeout --
723  *	Execute a function after a specified length of time.
724  *
725  * untimeout --
726  *	Cancel previous timeout function call.
727  *
728  *	See AT&T BCI Driver Reference Manual for specification.  This
729  *	implementation differs from that one in that no identification
730  *	value is returned from timeout, rather, the original arguments
731  *	to timeout are used to identify entries for untimeout.
732  */
733 void
734 timeout(ftn, arg, ticks)
735 	timeout_t ftn;
736 	void *arg;
737 	register int ticks;
738 {
739 	register struct callout *new, *p, *t;
740 	register int s;
741 
742 	if (ticks <= 0)
743 		ticks = 1;
744 
745 	/* Lock out the clock. */
746 	s = splhigh();
747 
748 	/* Fill in the next free callout structure. */
749 	if (callfree == NULL)
750 		panic("timeout table full");
751 	new = callfree;
752 	callfree = new->c_next;
753 	new->c_arg = arg;
754 	new->c_func = ftn;
755 
756 	/*
757 	 * The time for each event is stored as a difference from the time
758 	 * of the previous event on the queue.  Walk the queue, correcting
759 	 * the ticks argument for queue entries passed.  Correct the ticks
760 	 * value for the queue entry immediately after the insertion point
761 	 * as well.  Watch out for negative c_time values; these represent
762 	 * overdue events.
763 	 */
764 	for (p = &calltodo;
765 	    (t = p->c_next) != NULL && ticks > t->c_time; p = t)
766 		if (t->c_time > 0)
767 			ticks -= t->c_time;
768 	new->c_time = ticks;
769 	if (t != NULL)
770 		t->c_time -= ticks;
771 
772 	/* Insert the new entry into the queue. */
773 	p->c_next = new;
774 	new->c_next = t;
775 	splx(s);
776 }
777 
778 void
779 untimeout(ftn, arg)
780 	timeout_t ftn;
781 	void *arg;
782 {
783 	register struct callout *p, *t;
784 	register int s;
785 
786 	s = splhigh();
787 	for (p = &calltodo; (t = p->c_next) != NULL; p = t)
788 		if (t->c_func == ftn && t->c_arg == arg) {
789 			/* Increment next entry's tick count. */
790 			if (t->c_next && t->c_time > 0)
791 				t->c_next->c_time += t->c_time;
792 
793 			/* Move entry from callout queue to callfree queue. */
794 			p->c_next = t->c_next;
795 			t->c_next = callfree;
796 			callfree = t;
797 			break;
798 		}
799 	splx(s);
800 }
801 
802 /*
803  * Compute number of hz until specified time.  Used to
804  * compute third argument to timeout() from an absolute time.
805  */
806 int
807 hzto(tv)
808 	struct timeval *tv;
809 {
810 	register unsigned long ticks;
811 	register long sec, usec;
812 	int s;
813 
814 	/*
815 	 * If the number of usecs in the whole seconds part of the time
816 	 * difference fits in a long, then the total number of usecs will
817 	 * fit in an unsigned long.  Compute the total and convert it to
818 	 * ticks, rounding up and adding 1 to allow for the current tick
819 	 * to expire.  Rounding also depends on unsigned long arithmetic
820 	 * to avoid overflow.
821 	 *
822 	 * Otherwise, if the number of ticks in the whole seconds part of
823 	 * the time difference fits in a long, then convert the parts to
824 	 * ticks separately and add, using similar rounding methods and
825 	 * overflow avoidance.  This method would work in the previous
826 	 * case but it is slightly slower and assumes that hz is integral.
827 	 *
828 	 * Otherwise, round the time difference down to the maximum
829 	 * representable value.
830 	 *
831 	 * If ints have 32 bits, then the maximum value for any timeout in
832 	 * 10ms ticks is 248 days.
833 	 */
834 	s = splclock();
835 	sec = tv->tv_sec - time.tv_sec;
836 	usec = tv->tv_usec - time.tv_usec;
837 	splx(s);
838 	if (usec < 0) {
839 		sec--;
840 		usec += 1000000;
841 	}
842 	if (sec < 0) {
843 #ifdef DIAGNOSTIC
844 		printf("hzto: negative time difference %ld sec %ld usec\n",
845 		       sec, usec);
846 #endif
847 		ticks = 1;
848 	} else if (sec <= LONG_MAX / 1000000)
849 		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
850 			/ tick + 1;
851 	else if (sec <= LONG_MAX / hz)
852 		ticks = sec * hz
853 			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
854 	else
855 		ticks = LONG_MAX;
856 	if (ticks > INT_MAX)
857 		ticks = INT_MAX;
858 	return (ticks);
859 }
860 
861 /*
862  * Start profiling on a process.
863  *
864  * Kernel profiling passes proc0 which never exits and hence
865  * keeps the profile clock running constantly.
866  */
867 void
868 startprofclock(p)
869 	register struct proc *p;
870 {
871 	int s;
872 
873 	if ((p->p_flag & P_PROFIL) == 0) {
874 		p->p_flag |= P_PROFIL;
875 		if (++profprocs == 1 && stathz != 0) {
876 			s = splstatclock();
877 			psdiv = pscnt = psratio;
878 			setstatclockrate(profhz);
879 			splx(s);
880 		}
881 	}
882 }
883 
884 /*
885  * Stop profiling on a process.
886  */
887 void
888 stopprofclock(p)
889 	register struct proc *p;
890 {
891 	int s;
892 
893 	if (p->p_flag & P_PROFIL) {
894 		p->p_flag &= ~P_PROFIL;
895 		if (--profprocs == 0 && stathz != 0) {
896 			s = splstatclock();
897 			psdiv = pscnt = 1;
898 			setstatclockrate(stathz);
899 			splx(s);
900 		}
901 	}
902 }
903 
904 /*
905  * Statistics clock.  Grab profile sample, and if divider reaches 0,
906  * do process and kernel statistics.
907  */
908 void
909 statclock(frame)
910 	register struct clockframe *frame;
911 {
912 #ifdef GPROF
913 	register struct gmonparam *g;
914 #endif
915 	register struct proc *p;
916 	register int i;
917 	struct pstats *pstats;
918 	long rss;
919 	struct rusage *ru;
920 	struct vmspace *vm;
921 
922 	if (CLKF_USERMODE(frame)) {
923 		p = curproc;
924 		if (p->p_flag & P_PROFIL)
925 			addupc_intr(p, CLKF_PC(frame), 1);
926 		if (--pscnt > 0)
927 			return;
928 		/*
929 		 * Came from user mode; CPU was in user state.
930 		 * If this process is being profiled record the tick.
931 		 */
932 		p->p_uticks++;
933 		if (p->p_nice > NZERO)
934 			cp_time[CP_NICE]++;
935 		else
936 			cp_time[CP_USER]++;
937 	} else {
938 #ifdef GPROF
939 		/*
940 		 * Kernel statistics are just like addupc_intr, only easier.
941 		 */
942 		g = &_gmonparam;
943 		if (g->state == GMON_PROF_ON) {
944 			i = CLKF_PC(frame) - g->lowpc;
945 			if (i < g->textsize) {
946 				i /= HISTFRACTION * sizeof(*g->kcount);
947 				g->kcount[i]++;
948 			}
949 		}
950 #endif
951 		if (--pscnt > 0)
952 			return;
953 		/*
954 		 * Came from kernel mode, so we were:
955 		 * - handling an interrupt,
956 		 * - doing syscall or trap work on behalf of the current
957 		 *   user process, or
958 		 * - spinning in the idle loop.
959 		 * Whichever it is, charge the time as appropriate.
960 		 * Note that we charge interrupts to the current process,
961 		 * regardless of whether they are ``for'' that process,
962 		 * so that we know how much of its real time was spent
963 		 * in ``non-process'' (i.e., interrupt) work.
964 		 */
965 		p = curproc;
966 		if (CLKF_INTR(frame)) {
967 			if (p != NULL)
968 				p->p_iticks++;
969 			cp_time[CP_INTR]++;
970 		} else if (p != NULL) {
971 			p->p_sticks++;
972 			cp_time[CP_SYS]++;
973 		} else
974 			cp_time[CP_IDLE]++;
975 	}
976 	pscnt = psdiv;
977 
978 	/*
979 	 * We maintain statistics shown by user-level statistics
980 	 * programs:  the amount of time in each cpu state, and
981 	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
982 	 *
983 	 * XXX	should either run linked list of drives, or (better)
984 	 *	grab timestamps in the start & done code.
985 	 */
986 	for (i = 0; i < DK_NDRIVE; i++)
987 		if (dk_busy & (1 << i))
988 			dk_time[i]++;
989 
990 	/*
991 	 * We adjust the priority of the current process.  The priority of
992 	 * a process gets worse as it accumulates CPU time.  The cpu usage
993 	 * estimator (p_estcpu) is increased here.  The formula for computing
994 	 * priorities (in kern_synch.c) will compute a different value each
995 	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
996 	 * quite quickly when the process is running (linearly), and decays
997 	 * away exponentially, at a rate which is proportionally slower when
998 	 * the system is busy.  The basic principal is that the system will
999 	 * 90% forget that the process used a lot of CPU time in 5 * loadav
1000 	 * seconds.  This causes the system to favor processes which haven't
1001 	 * run much recently, and to round-robin among other processes.
1002 	 */
1003 	if (p != NULL) {
1004 		p->p_cpticks++;
1005 		if (++p->p_estcpu == 0)
1006 			p->p_estcpu--;
1007 		if ((p->p_estcpu & 3) == 0) {
1008 			resetpriority(p);
1009 			if (p->p_priority >= PUSER)
1010 				p->p_priority = p->p_usrpri;
1011 		}
1012 
1013 		/* Update resource usage integrals and maximums. */
1014 		if ((pstats = p->p_stats) != NULL &&
1015 		    (ru = &pstats->p_ru) != NULL &&
1016 		    (vm = p->p_vmspace) != NULL) {
1017 			ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
1018 			ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
1019 			ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
1020 			rss = vm->vm_pmap.pm_stats.resident_count *
1021 			      PAGE_SIZE / 1024;
1022 			if (ru->ru_maxrss < rss)
1023 				ru->ru_maxrss = rss;
1024         	}
1025 	}
1026 }
1027 
1028 /*
1029  * Return information about system clocks.
1030  */
1031 static int
1032 sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
1033 {
1034 	struct clockinfo clkinfo;
1035 	/*
1036 	 * Construct clockinfo structure.
1037 	 */
1038 	clkinfo.hz = hz;
1039 	clkinfo.tick = tick;
1040 	clkinfo.profhz = profhz;
1041 	clkinfo.stathz = stathz ? stathz : hz;
1042 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
1043 }
1044 
1045 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
1046 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
1047 
1048 #ifdef PPS_SYNC
1049 /*
1050  * hardpps() - discipline CPU clock oscillator to external PPS signal
1051  *
1052  * This routine is called at each PPS interrupt in order to discipline
1053  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1054  * and leaves it in a handy spot for the hardclock() routine. It
1055  * integrates successive PPS phase differences and calculates the
1056  * frequency offset. This is used in hardclock() to discipline the CPU
1057  * clock oscillator so that intrinsic frequency error is cancelled out.
1058  * The code requires the caller to capture the time and hardware counter
1059  * value at the on-time PPS signal transition.
1060  *
1061  * Note that, on some Unix systems, this routine runs at an interrupt
1062  * priority level higher than the timer interrupt routine hardclock().
1063  * Therefore, the variables used are distinct from the hardclock()
1064  * variables, except for certain exceptions: The PPS frequency pps_freq
1065  * and phase pps_offset variables are determined by this routine and
1066  * updated atomically. The time_tolerance variable can be considered a
1067  * constant, since it is infrequently changed, and then only when the
1068  * PPS signal is disabled. The watchdog counter pps_valid is updated
1069  * once per second by hardclock() and is atomically cleared in this
1070  * routine.
1071  */
1072 void
1073 hardpps(tvp, usec)
1074 	struct timeval *tvp;		/* time at PPS */
1075 	long usec;			/* hardware counter at PPS */
1076 {
1077 	long u_usec, v_usec, bigtick;
1078 	long cal_sec, cal_usec;
1079 
1080 	/*
1081 	 * An occasional glitch can be produced when the PPS interrupt
1082 	 * occurs in the hardclock() routine before the time variable is
1083 	 * updated. Here the offset is discarded when the difference
1084 	 * between it and the last one is greater than tick/2, but not
1085 	 * if the interval since the first discard exceeds 30 s.
1086 	 */
1087 	time_status |= STA_PPSSIGNAL;
1088 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1089 	pps_valid = 0;
1090 	u_usec = -tvp->tv_usec;
1091 	if (u_usec < -500000)
1092 		u_usec += 1000000;
1093 	v_usec = pps_offset - u_usec;
1094 	if (v_usec < 0)
1095 		v_usec = -v_usec;
1096 	if (v_usec > (tick >> 1)) {
1097 		if (pps_glitch > MAXGLITCH) {
1098 			pps_glitch = 0;
1099 			pps_tf[2] = u_usec;
1100 			pps_tf[1] = u_usec;
1101 		} else {
1102 			pps_glitch++;
1103 			u_usec = pps_offset;
1104 		}
1105 	} else
1106 		pps_glitch = 0;
1107 
1108 	/*
1109 	 * A three-stage median filter is used to help deglitch the pps
1110 	 * time. The median sample becomes the time offset estimate; the
1111 	 * difference between the other two samples becomes the time
1112 	 * dispersion (jitter) estimate.
1113 	 */
1114 	pps_tf[2] = pps_tf[1];
1115 	pps_tf[1] = pps_tf[0];
1116 	pps_tf[0] = u_usec;
1117 	if (pps_tf[0] > pps_tf[1]) {
1118 		if (pps_tf[1] > pps_tf[2]) {
1119 			pps_offset = pps_tf[1];		/* 0 1 2 */
1120 			v_usec = pps_tf[0] - pps_tf[2];
1121 		} else if (pps_tf[2] > pps_tf[0]) {
1122 			pps_offset = pps_tf[0];		/* 2 0 1 */
1123 			v_usec = pps_tf[2] - pps_tf[1];
1124 		} else {
1125 			pps_offset = pps_tf[2];		/* 0 2 1 */
1126 			v_usec = pps_tf[0] - pps_tf[1];
1127 		}
1128 	} else {
1129 		if (pps_tf[1] < pps_tf[2]) {
1130 			pps_offset = pps_tf[1];		/* 2 1 0 */
1131 			v_usec = pps_tf[2] - pps_tf[0];
1132 		} else  if (pps_tf[2] < pps_tf[0]) {
1133 			pps_offset = pps_tf[0];		/* 1 0 2 */
1134 			v_usec = pps_tf[1] - pps_tf[2];
1135 		} else {
1136 			pps_offset = pps_tf[2];		/* 1 2 0 */
1137 			v_usec = pps_tf[1] - pps_tf[0];
1138 		}
1139 	}
1140 	if (v_usec > MAXTIME)
1141 		pps_jitcnt++;
1142 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1143 	if (v_usec < 0)
1144 		pps_jitter -= -v_usec >> PPS_AVG;
1145 	else
1146 		pps_jitter += v_usec >> PPS_AVG;
1147 	if (pps_jitter > (MAXTIME >> 1))
1148 		time_status |= STA_PPSJITTER;
1149 
1150 	/*
1151 	 * During the calibration interval adjust the starting time when
1152 	 * the tick overflows. At the end of the interval compute the
1153 	 * duration of the interval and the difference of the hardware
1154 	 * counters at the beginning and end of the interval. This code
1155 	 * is deliciously complicated by the fact valid differences may
1156 	 * exceed the value of tick when using long calibration
1157 	 * intervals and small ticks. Note that the counter can be
1158 	 * greater than tick if caught at just the wrong instant, but
1159 	 * the values returned and used here are correct.
1160 	 */
1161 	bigtick = (long)tick << SHIFT_USEC;
1162 	pps_usec -= pps_freq;
1163 	if (pps_usec >= bigtick)
1164 		pps_usec -= bigtick;
1165 	if (pps_usec < 0)
1166 		pps_usec += bigtick;
1167 	pps_time.tv_sec++;
1168 	pps_count++;
1169 	if (pps_count < (1 << pps_shift))
1170 		return;
1171 	pps_count = 0;
1172 	pps_calcnt++;
1173 	u_usec = usec << SHIFT_USEC;
1174 	v_usec = pps_usec - u_usec;
1175 	if (v_usec >= bigtick >> 1)
1176 		v_usec -= bigtick;
1177 	if (v_usec < -(bigtick >> 1))
1178 		v_usec += bigtick;
1179 	if (v_usec < 0)
1180 		v_usec = -(-v_usec >> pps_shift);
1181 	else
1182 		v_usec = v_usec >> pps_shift;
1183 	pps_usec = u_usec;
1184 	cal_sec = tvp->tv_sec;
1185 	cal_usec = tvp->tv_usec;
1186 	cal_sec -= pps_time.tv_sec;
1187 	cal_usec -= pps_time.tv_usec;
1188 	if (cal_usec < 0) {
1189 		cal_usec += 1000000;
1190 		cal_sec--;
1191 	}
1192 	pps_time = *tvp;
1193 
1194 	/*
1195 	 * Check for lost interrupts, noise, excessive jitter and
1196 	 * excessive frequency error. The number of timer ticks during
1197 	 * the interval may vary +-1 tick. Add to this a margin of one
1198 	 * tick for the PPS signal jitter and maximum frequency
1199 	 * deviation. If the limits are exceeded, the calibration
1200 	 * interval is reset to the minimum and we start over.
1201 	 */
1202 	u_usec = (long)tick << 1;
1203 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1204 	    || (cal_sec == 0 && cal_usec < u_usec))
1205 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
1206 		pps_errcnt++;
1207 		pps_shift = PPS_SHIFT;
1208 		pps_intcnt = 0;
1209 		time_status |= STA_PPSERROR;
1210 		return;
1211 	}
1212 
1213 	/*
1214 	 * A three-stage median filter is used to help deglitch the pps
1215 	 * frequency. The median sample becomes the frequency offset
1216 	 * estimate; the difference between the other two samples
1217 	 * becomes the frequency dispersion (stability) estimate.
1218 	 */
1219 	pps_ff[2] = pps_ff[1];
1220 	pps_ff[1] = pps_ff[0];
1221 	pps_ff[0] = v_usec;
1222 	if (pps_ff[0] > pps_ff[1]) {
1223 		if (pps_ff[1] > pps_ff[2]) {
1224 			u_usec = pps_ff[1];		/* 0 1 2 */
1225 			v_usec = pps_ff[0] - pps_ff[2];
1226 		} else if (pps_ff[2] > pps_ff[0]) {
1227 			u_usec = pps_ff[0];		/* 2 0 1 */
1228 			v_usec = pps_ff[2] - pps_ff[1];
1229 		} else {
1230 			u_usec = pps_ff[2];		/* 0 2 1 */
1231 			v_usec = pps_ff[0] - pps_ff[1];
1232 		}
1233 	} else {
1234 		if (pps_ff[1] < pps_ff[2]) {
1235 			u_usec = pps_ff[1];		/* 2 1 0 */
1236 			v_usec = pps_ff[2] - pps_ff[0];
1237 		} else  if (pps_ff[2] < pps_ff[0]) {
1238 			u_usec = pps_ff[0];		/* 1 0 2 */
1239 			v_usec = pps_ff[1] - pps_ff[2];
1240 		} else {
1241 			u_usec = pps_ff[2];		/* 1 2 0 */
1242 			v_usec = pps_ff[1] - pps_ff[0];
1243 		}
1244 	}
1245 
1246 	/*
1247 	 * Here the frequency dispersion (stability) is updated. If it
1248 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1249 	 * offset is updated as well, but clamped to the tolerance. It
1250 	 * will be processed later by the hardclock() routine.
1251 	 */
1252 	v_usec = (v_usec >> 1) - pps_stabil;
1253 	if (v_usec < 0)
1254 		pps_stabil -= -v_usec >> PPS_AVG;
1255 	else
1256 		pps_stabil += v_usec >> PPS_AVG;
1257 	if (pps_stabil > MAXFREQ >> 2) {
1258 		pps_stbcnt++;
1259 		time_status |= STA_PPSWANDER;
1260 		return;
1261 	}
1262 	if (time_status & STA_PPSFREQ) {
1263 		if (u_usec < 0) {
1264 			pps_freq -= -u_usec >> PPS_AVG;
1265 			if (pps_freq < -time_tolerance)
1266 				pps_freq = -time_tolerance;
1267 			u_usec = -u_usec;
1268 		} else {
1269 			pps_freq += u_usec >> PPS_AVG;
1270 			if (pps_freq > time_tolerance)
1271 				pps_freq = time_tolerance;
1272 		}
1273 	}
1274 
1275 	/*
1276 	 * Here the calibration interval is adjusted. If the maximum
1277 	 * time difference is greater than tick / 4, reduce the interval
1278 	 * by half. If this is not the case for four consecutive
1279 	 * intervals, double the interval.
1280 	 */
1281 	if (u_usec << pps_shift > bigtick >> 2) {
1282 		pps_intcnt = 0;
1283 		if (pps_shift > PPS_SHIFT)
1284 			pps_shift--;
1285 	} else if (pps_intcnt >= 4) {
1286 		pps_intcnt = 0;
1287 		if (pps_shift < PPS_SHIFTMAX)
1288 			pps_shift++;
1289 	} else
1290 		pps_intcnt++;
1291 }
1292 #endif /* PPS_SYNC */
1293