xref: /freebsd/sys/kern/kern_tc.c (revision 3c87aa1d3dc1d8dad3efad322852a8e1e76dee55)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * Copyright (c) 2011 The FreeBSD Foundation
10  * All rights reserved.
11  *
12  * Portions of this software were developed by Julien Ridoux at the University
13  * of Melbourne under sponsorship from the FreeBSD Foundation.
14  */
15 
16 #include <sys/cdefs.h>
17 __FBSDID("$FreeBSD$");
18 
19 #include "opt_ntp.h"
20 #include "opt_ffclock.h"
21 
22 #include <sys/param.h>
23 #include <sys/kernel.h>
24 #ifdef FFCLOCK
25 #include <sys/lock.h>
26 #include <sys/mutex.h>
27 #endif
28 #include <sys/sysctl.h>
29 #include <sys/syslog.h>
30 #include <sys/systm.h>
31 #ifdef FFCLOCK
32 #include <sys/timeffc.h>
33 #endif
34 #include <sys/timepps.h>
35 #include <sys/timetc.h>
36 #include <sys/timex.h>
37 
38 /*
39  * A large step happens on boot.  This constant detects such steps.
40  * It is relatively small so that ntp_update_second gets called enough
41  * in the typical 'missed a couple of seconds' case, but doesn't loop
42  * forever when the time step is large.
43  */
44 #define LARGE_STEP	200
45 
46 /*
47  * Implement a dummy timecounter which we can use until we get a real one
48  * in the air.  This allows the console and other early stuff to use
49  * time services.
50  */
51 
52 static u_int
53 dummy_get_timecount(struct timecounter *tc)
54 {
55 	static u_int now;
56 
57 	return (++now);
58 }
59 
60 static struct timecounter dummy_timecounter = {
61 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
62 };
63 
64 struct timehands {
65 	/* These fields must be initialized by the driver. */
66 	struct timecounter	*th_counter;
67 	int64_t			th_adjustment;
68 	uint64_t		th_scale;
69 	u_int	 		th_offset_count;
70 	struct bintime		th_offset;
71 	struct timeval		th_microtime;
72 	struct timespec		th_nanotime;
73 	/* Fields not to be copied in tc_windup start with th_generation. */
74 	volatile u_int		th_generation;
75 	struct timehands	*th_next;
76 };
77 
78 static struct timehands th0;
79 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
80 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
81 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
82 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
83 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
84 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
85 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
86 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
87 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
88 static struct timehands th0 = {
89 	&dummy_timecounter,
90 	0,
91 	(uint64_t)-1 / 1000000,
92 	0,
93 	{1, 0},
94 	{0, 0},
95 	{0, 0},
96 	1,
97 	&th1
98 };
99 
100 static struct timehands *volatile timehands = &th0;
101 struct timecounter *timecounter = &dummy_timecounter;
102 static struct timecounter *timecounters = &dummy_timecounter;
103 
104 int tc_min_ticktock_freq = 1;
105 
106 time_t time_second = 1;
107 time_t time_uptime = 1;
108 
109 struct bintime boottimebin;
110 struct timeval boottime;
111 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
112 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
113     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
114 
115 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
116 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
117 
118 static int timestepwarnings;
119 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
120     &timestepwarnings, 0, "Log time steps");
121 
122 static void tc_windup(void);
123 static void cpu_tick_calibrate(int);
124 
125 static int
126 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
127 {
128 #ifdef SCTL_MASK32
129 	int tv[2];
130 
131 	if (req->flags & SCTL_MASK32) {
132 		tv[0] = boottime.tv_sec;
133 		tv[1] = boottime.tv_usec;
134 		return SYSCTL_OUT(req, tv, sizeof(tv));
135 	} else
136 #endif
137 		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
138 }
139 
140 static int
141 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
142 {
143 	u_int ncount;
144 	struct timecounter *tc = arg1;
145 
146 	ncount = tc->tc_get_timecount(tc);
147 	return sysctl_handle_int(oidp, &ncount, 0, req);
148 }
149 
150 static int
151 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
152 {
153 	uint64_t freq;
154 	struct timecounter *tc = arg1;
155 
156 	freq = tc->tc_frequency;
157 	return sysctl_handle_64(oidp, &freq, 0, req);
158 }
159 
160 /*
161  * Return the difference between the timehands' counter value now and what
162  * was when we copied it to the timehands' offset_count.
163  */
164 static __inline u_int
165 tc_delta(struct timehands *th)
166 {
167 	struct timecounter *tc;
168 
169 	tc = th->th_counter;
170 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
171 	    tc->tc_counter_mask);
172 }
173 
174 /*
175  * Functions for reading the time.  We have to loop until we are sure that
176  * the timehands that we operated on was not updated under our feet.  See
177  * the comment in <sys/time.h> for a description of these 12 functions.
178  */
179 
180 #ifdef FFCLOCK
181 static void
182 fbclock_binuptime(struct bintime *bt)
183 {
184 	struct timehands *th;
185 	unsigned int gen;
186 
187 	do {
188 		th = timehands;
189 		gen = th->th_generation;
190 		*bt = th->th_offset;
191 		bintime_addx(bt, th->th_scale * tc_delta(th));
192 	} while (gen == 0 || gen != th->th_generation);
193 }
194 
195 static void
196 fbclock_nanouptime(struct timespec *tsp)
197 {
198 	struct bintime bt;
199 
200 	binuptime(&bt);
201 	bintime2timespec(&bt, tsp);
202 }
203 
204 static void
205 fbclock_microuptime(struct timeval *tvp)
206 {
207 	struct bintime bt;
208 
209 	binuptime(&bt);
210 	bintime2timeval(&bt, tvp);
211 }
212 
213 static void
214 fbclock_bintime(struct bintime *bt)
215 {
216 
217 	binuptime(bt);
218 	bintime_add(bt, &boottimebin);
219 }
220 
221 static void
222 fbclock_nanotime(struct timespec *tsp)
223 {
224 	struct bintime bt;
225 
226 	bintime(&bt);
227 	bintime2timespec(&bt, tsp);
228 }
229 
230 static void
231 fbclock_microtime(struct timeval *tvp)
232 {
233 	struct bintime bt;
234 
235 	bintime(&bt);
236 	bintime2timeval(&bt, tvp);
237 }
238 
239 static void
240 fbclock_getbinuptime(struct bintime *bt)
241 {
242 	struct timehands *th;
243 	unsigned int gen;
244 
245 	do {
246 		th = timehands;
247 		gen = th->th_generation;
248 		*bt = th->th_offset;
249 	} while (gen == 0 || gen != th->th_generation);
250 }
251 
252 static void
253 fbclock_getnanouptime(struct timespec *tsp)
254 {
255 	struct timehands *th;
256 	unsigned int gen;
257 
258 	do {
259 		th = timehands;
260 		gen = th->th_generation;
261 		bintime2timespec(&th->th_offset, tsp);
262 	} while (gen == 0 || gen != th->th_generation);
263 }
264 
265 static void
266 fbclock_getmicrouptime(struct timeval *tvp)
267 {
268 	struct timehands *th;
269 	unsigned int gen;
270 
271 	do {
272 		th = timehands;
273 		gen = th->th_generation;
274 		bintime2timeval(&th->th_offset, tvp);
275 	} while (gen == 0 || gen != th->th_generation);
276 }
277 
278 static void
279 fbclock_getbintime(struct bintime *bt)
280 {
281 	struct timehands *th;
282 	unsigned int gen;
283 
284 	do {
285 		th = timehands;
286 		gen = th->th_generation;
287 		*bt = th->th_offset;
288 	} while (gen == 0 || gen != th->th_generation);
289 	bintime_add(bt, &boottimebin);
290 }
291 
292 static void
293 fbclock_getnanotime(struct timespec *tsp)
294 {
295 	struct timehands *th;
296 	unsigned int gen;
297 
298 	do {
299 		th = timehands;
300 		gen = th->th_generation;
301 		*tsp = th->th_nanotime;
302 	} while (gen == 0 || gen != th->th_generation);
303 }
304 
305 static void
306 fbclock_getmicrotime(struct timeval *tvp)
307 {
308 	struct timehands *th;
309 	unsigned int gen;
310 
311 	do {
312 		th = timehands;
313 		gen = th->th_generation;
314 		*tvp = th->th_microtime;
315 	} while (gen == 0 || gen != th->th_generation);
316 }
317 #else /* !FFCLOCK */
318 void
319 binuptime(struct bintime *bt)
320 {
321 	struct timehands *th;
322 	u_int gen;
323 
324 	do {
325 		th = timehands;
326 		gen = th->th_generation;
327 		*bt = th->th_offset;
328 		bintime_addx(bt, th->th_scale * tc_delta(th));
329 	} while (gen == 0 || gen != th->th_generation);
330 }
331 
332 void
333 nanouptime(struct timespec *tsp)
334 {
335 	struct bintime bt;
336 
337 	binuptime(&bt);
338 	bintime2timespec(&bt, tsp);
339 }
340 
341 void
342 microuptime(struct timeval *tvp)
343 {
344 	struct bintime bt;
345 
346 	binuptime(&bt);
347 	bintime2timeval(&bt, tvp);
348 }
349 
350 void
351 bintime(struct bintime *bt)
352 {
353 
354 	binuptime(bt);
355 	bintime_add(bt, &boottimebin);
356 }
357 
358 void
359 nanotime(struct timespec *tsp)
360 {
361 	struct bintime bt;
362 
363 	bintime(&bt);
364 	bintime2timespec(&bt, tsp);
365 }
366 
367 void
368 microtime(struct timeval *tvp)
369 {
370 	struct bintime bt;
371 
372 	bintime(&bt);
373 	bintime2timeval(&bt, tvp);
374 }
375 
376 void
377 getbinuptime(struct bintime *bt)
378 {
379 	struct timehands *th;
380 	u_int gen;
381 
382 	do {
383 		th = timehands;
384 		gen = th->th_generation;
385 		*bt = th->th_offset;
386 	} while (gen == 0 || gen != th->th_generation);
387 }
388 
389 void
390 getnanouptime(struct timespec *tsp)
391 {
392 	struct timehands *th;
393 	u_int gen;
394 
395 	do {
396 		th = timehands;
397 		gen = th->th_generation;
398 		bintime2timespec(&th->th_offset, tsp);
399 	} while (gen == 0 || gen != th->th_generation);
400 }
401 
402 void
403 getmicrouptime(struct timeval *tvp)
404 {
405 	struct timehands *th;
406 	u_int gen;
407 
408 	do {
409 		th = timehands;
410 		gen = th->th_generation;
411 		bintime2timeval(&th->th_offset, tvp);
412 	} while (gen == 0 || gen != th->th_generation);
413 }
414 
415 void
416 getbintime(struct bintime *bt)
417 {
418 	struct timehands *th;
419 	u_int gen;
420 
421 	do {
422 		th = timehands;
423 		gen = th->th_generation;
424 		*bt = th->th_offset;
425 	} while (gen == 0 || gen != th->th_generation);
426 	bintime_add(bt, &boottimebin);
427 }
428 
429 void
430 getnanotime(struct timespec *tsp)
431 {
432 	struct timehands *th;
433 	u_int gen;
434 
435 	do {
436 		th = timehands;
437 		gen = th->th_generation;
438 		*tsp = th->th_nanotime;
439 	} while (gen == 0 || gen != th->th_generation);
440 }
441 
442 void
443 getmicrotime(struct timeval *tvp)
444 {
445 	struct timehands *th;
446 	u_int gen;
447 
448 	do {
449 		th = timehands;
450 		gen = th->th_generation;
451 		*tvp = th->th_microtime;
452 	} while (gen == 0 || gen != th->th_generation);
453 }
454 #endif /* FFCLOCK */
455 
456 #ifdef FFCLOCK
457 /*
458  * Support for feed-forward synchronization algorithms. This is heavily inspired
459  * by the timehands mechanism but kept independent from it. *_windup() functions
460  * have some connection to avoid accessing the timecounter hardware more than
461  * necessary.
462  */
463 
464 int sysclock_active = SYSCLOCK_FBCK;
465 
466 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
467 struct ffclock_estimate ffclock_estimate;
468 struct bintime ffclock_boottime;	/* Feed-forward boot time estimate. */
469 uint32_t ffclock_status;		/* Feed-forward clock status. */
470 int8_t ffclock_updated;			/* New estimates are available. */
471 struct mtx ffclock_mtx;			/* Mutex on ffclock_estimate. */
472 
473 struct sysclock_ops {
474 	int active;
475 	void (*binuptime) (struct bintime *bt);
476 	void (*nanouptime) (struct timespec *tsp);
477 	void (*microuptime) (struct timeval *tvp);
478 	void (*bintime) (struct bintime *bt);
479 	void (*nanotime) (struct timespec *tsp);
480 	void (*microtime) (struct timeval *tvp);
481 	void (*getbinuptime) (struct bintime *bt);
482 	void (*getnanouptime) (struct timespec *tsp);
483 	void (*getmicrouptime) (struct timeval *tvp);
484 	void (*getbintime) (struct bintime *bt);
485 	void (*getnanotime) (struct timespec *tsp);
486 	void (*getmicrotime) (struct timeval *tvp);
487 };
488 
489 static struct sysclock_ops sysclock = {
490 	.active = SYSCLOCK_FBCK,
491 	.binuptime = fbclock_binuptime,
492 	.nanouptime = fbclock_nanouptime,
493 	.microuptime = fbclock_microuptime,
494 	.bintime = fbclock_bintime,
495 	.nanotime = fbclock_nanotime,
496 	.microtime = fbclock_microtime,
497 	.getbinuptime = fbclock_getbinuptime,
498 	.getnanouptime = fbclock_getnanouptime,
499 	.getmicrouptime = fbclock_getmicrouptime,
500 	.getbintime = fbclock_getbintime,
501 	.getnanotime = fbclock_getnanotime,
502 	.getmicrotime = fbclock_getmicrotime
503 };
504 
505 struct fftimehands {
506 	struct ffclock_estimate	cest;
507 	struct bintime		tick_time;
508 	struct bintime		tick_time_lerp;
509 	ffcounter		tick_ffcount;
510 	uint64_t		period_lerp;
511 	volatile uint8_t	gen;
512 	struct fftimehands	*next;
513 };
514 
515 #define	NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
516 
517 static struct fftimehands ffth[10];
518 static struct fftimehands *volatile fftimehands = ffth;
519 
520 static void
521 ffclock_init(void)
522 {
523 	struct fftimehands *cur;
524 	struct fftimehands *last;
525 
526 	memset(ffth, 0, sizeof(ffth));
527 
528 	last = ffth + NUM_ELEMENTS(ffth) - 1;
529 	for (cur = ffth; cur < last; cur++)
530 		cur->next = cur + 1;
531 	last->next = ffth;
532 
533 	ffclock_updated = 0;
534 	ffclock_status = FFCLOCK_STA_UNSYNC;
535 	mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
536 }
537 
538 /*
539  * Reset the feed-forward clock estimates. Called from inittodr() to get things
540  * kick started and uses the timecounter nominal frequency as a first period
541  * estimate. Note: this function may be called several time just after boot.
542  * Note: this is the only function that sets the value of boot time for the
543  * monotonic (i.e. uptime) version of the feed-forward clock.
544  */
545 void
546 ffclock_reset_clock(struct timespec *ts)
547 {
548 	struct timecounter *tc;
549 	struct ffclock_estimate cest;
550 
551 	tc = timehands->th_counter;
552 	memset(&cest, 0, sizeof(struct ffclock_estimate));
553 
554 	timespec2bintime(ts, &ffclock_boottime);
555 	timespec2bintime(ts, &(cest.update_time));
556 	ffclock_read_counter(&cest.update_ffcount);
557 	cest.leapsec_next = 0;
558 	cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
559 	cest.errb_abs = 0;
560 	cest.errb_rate = 0;
561 	cest.status = FFCLOCK_STA_UNSYNC;
562 	cest.leapsec_total = 0;
563 	cest.leapsec = 0;
564 
565 	mtx_lock(&ffclock_mtx);
566 	bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
567 	ffclock_updated = INT8_MAX;
568 	mtx_unlock(&ffclock_mtx);
569 
570 	printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
571 	    (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
572 	    (unsigned long)ts->tv_nsec);
573 }
574 
575 /*
576  * Sub-routine to convert a time interval measured in RAW counter units to time
577  * in seconds stored in bintime format.
578  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
579  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
580  * extra cycles.
581  */
582 static void
583 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
584 {
585 	struct bintime bt2;
586 	ffcounter delta, delta_max;
587 
588 	delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
589 	bintime_clear(bt);
590 	do {
591 		if (ffdelta > delta_max)
592 			delta = delta_max;
593 		else
594 			delta = ffdelta;
595 		bt2.sec = 0;
596 		bt2.frac = period;
597 		bintime_mul(&bt2, (unsigned int)delta);
598 		bintime_add(bt, &bt2);
599 		ffdelta -= delta;
600 	} while (ffdelta > 0);
601 }
602 
603 /*
604  * Update the fftimehands.
605  * Push the tick ffcount and time(s) forward based on current clock estimate.
606  * The conversion from ffcounter to bintime relies on the difference clock
607  * principle, whose accuracy relies on computing small time intervals. If a new
608  * clock estimate has been passed by the synchronisation daemon, make it
609  * current, and compute the linear interpolation for monotonic time if needed.
610  */
611 static void
612 ffclock_windup(unsigned int delta)
613 {
614 	struct ffclock_estimate *cest;
615 	struct fftimehands *ffth;
616 	struct bintime bt, gap_lerp;
617 	ffcounter ffdelta;
618 	uint64_t frac;
619 	unsigned int polling;
620 	uint8_t forward_jump, ogen;
621 
622 	/*
623 	 * Pick the next timehand, copy current ffclock estimates and move tick
624 	 * times and counter forward.
625 	 */
626 	forward_jump = 0;
627 	ffth = fftimehands->next;
628 	ogen = ffth->gen;
629 	ffth->gen = 0;
630 	cest = &ffth->cest;
631 	bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
632 	ffdelta = (ffcounter)delta;
633 	ffth->period_lerp = fftimehands->period_lerp;
634 
635 	ffth->tick_time = fftimehands->tick_time;
636 	ffclock_convert_delta(ffdelta, cest->period, &bt);
637 	bintime_add(&ffth->tick_time, &bt);
638 
639 	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
640 	ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
641 	bintime_add(&ffth->tick_time_lerp, &bt);
642 
643 	ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
644 
645 	/*
646 	 * Assess the status of the clock, if the last update is too old, it is
647 	 * likely the synchronisation daemon is dead and the clock is free
648 	 * running.
649 	 */
650 	if (ffclock_updated == 0) {
651 		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
652 		ffclock_convert_delta(ffdelta, cest->period, &bt);
653 		if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
654 			ffclock_status |= FFCLOCK_STA_UNSYNC;
655 	}
656 
657 	/*
658 	 * If available, grab updated clock estimates and make them current.
659 	 * Recompute time at this tick using the updated estimates. The clock
660 	 * estimates passed the feed-forward synchronisation daemon may result
661 	 * in time conversion that is not monotonically increasing (just after
662 	 * the update). time_lerp is a particular linear interpolation over the
663 	 * synchronisation algo polling period that ensures monotonicity for the
664 	 * clock ids requesting it.
665 	 */
666 	if (ffclock_updated > 0) {
667 		bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
668 		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
669 		ffth->tick_time = cest->update_time;
670 		ffclock_convert_delta(ffdelta, cest->period, &bt);
671 		bintime_add(&ffth->tick_time, &bt);
672 
673 		/* ffclock_reset sets ffclock_updated to INT8_MAX */
674 		if (ffclock_updated == INT8_MAX)
675 			ffth->tick_time_lerp = ffth->tick_time;
676 
677 		if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
678 			forward_jump = 1;
679 		else
680 			forward_jump = 0;
681 
682 		bintime_clear(&gap_lerp);
683 		if (forward_jump) {
684 			gap_lerp = ffth->tick_time;
685 			bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
686 		} else {
687 			gap_lerp = ffth->tick_time_lerp;
688 			bintime_sub(&gap_lerp, &ffth->tick_time);
689 		}
690 
691 		/*
692 		 * The reset from the RTC clock may be far from accurate, and
693 		 * reducing the gap between real time and interpolated time
694 		 * could take a very long time if the interpolated clock insists
695 		 * on strict monotonicity. The clock is reset under very strict
696 		 * conditions (kernel time is known to be wrong and
697 		 * synchronization daemon has been restarted recently.
698 		 * ffclock_boottime absorbs the jump to ensure boot time is
699 		 * correct and uptime functions stay consistent.
700 		 */
701 		if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
702 		    ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
703 		    ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
704 			if (forward_jump)
705 				bintime_add(&ffclock_boottime, &gap_lerp);
706 			else
707 				bintime_sub(&ffclock_boottime, &gap_lerp);
708 			ffth->tick_time_lerp = ffth->tick_time;
709 			bintime_clear(&gap_lerp);
710 		}
711 
712 		ffclock_status = cest->status;
713 		ffth->period_lerp = cest->period;
714 
715 		/*
716 		 * Compute corrected period used for the linear interpolation of
717 		 * time. The rate of linear interpolation is capped to 5000PPM
718 		 * (5ms/s).
719 		 */
720 		if (bintime_isset(&gap_lerp)) {
721 			ffdelta = cest->update_ffcount;
722 			ffdelta -= fftimehands->cest.update_ffcount;
723 			ffclock_convert_delta(ffdelta, cest->period, &bt);
724 			polling = bt.sec;
725 			bt.sec = 0;
726 			bt.frac = 5000000 * (uint64_t)18446744073LL;
727 			bintime_mul(&bt, polling);
728 			if (bintime_cmp(&gap_lerp, &bt, >))
729 				gap_lerp = bt;
730 
731 			/* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
732 			frac = 0;
733 			if (gap_lerp.sec > 0) {
734 				frac -= 1;
735 				frac /= ffdelta / gap_lerp.sec;
736 			}
737 			frac += gap_lerp.frac / ffdelta;
738 
739 			if (forward_jump)
740 				ffth->period_lerp += frac;
741 			else
742 				ffth->period_lerp -= frac;
743 		}
744 
745 		ffclock_updated = 0;
746 	}
747 	if (++ogen == 0)
748 		ogen = 1;
749 	ffth->gen = ogen;
750 	fftimehands = ffth;
751 }
752 
753 /*
754  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
755  * the old and new hardware counter cannot be read simultaneously. tc_windup()
756  * does read the two counters 'back to back', but a few cycles are effectively
757  * lost, and not accumulated in tick_ffcount. This is a fairly radical
758  * operation for a feed-forward synchronization daemon, and it is its job to not
759  * pushing irrelevant data to the kernel. Because there is no locking here,
760  * simply force to ignore pending or next update to give daemon a chance to
761  * realize the counter has changed.
762  */
763 static void
764 ffclock_change_tc(struct timehands *th)
765 {
766 	struct fftimehands *ffth;
767 	struct ffclock_estimate *cest;
768 	struct timecounter *tc;
769 	uint8_t ogen;
770 
771 	tc = th->th_counter;
772 	ffth = fftimehands->next;
773 	ogen = ffth->gen;
774 	ffth->gen = 0;
775 
776 	cest = &ffth->cest;
777 	bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
778 	cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
779 	cest->errb_abs = 0;
780 	cest->errb_rate = 0;
781 	cest->status |= FFCLOCK_STA_UNSYNC;
782 
783 	ffth->tick_ffcount = fftimehands->tick_ffcount;
784 	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
785 	ffth->tick_time = fftimehands->tick_time;
786 	ffth->period_lerp = cest->period;
787 
788 	/* Do not lock but ignore next update from synchronization daemon. */
789 	ffclock_updated--;
790 
791 	if (++ogen == 0)
792 		ogen = 1;
793 	ffth->gen = ogen;
794 	fftimehands = ffth;
795 }
796 
797 static void
798 change_sysclock(int new_sysclock)
799 {
800 
801 	sysclock.active = new_sysclock;
802 
803 	switch (sysclock.active) {
804 	case SYSCLOCK_FBCK:
805 		sysclock.binuptime = fbclock_binuptime;
806 		sysclock.nanouptime = fbclock_nanouptime;
807 		sysclock.microuptime = fbclock_microuptime;
808 		sysclock.bintime = fbclock_bintime;
809 		sysclock.nanotime = fbclock_nanotime;
810 		sysclock.microtime = fbclock_microtime;
811 		sysclock.getbinuptime = fbclock_getbinuptime;
812 		sysclock.getnanouptime = fbclock_getnanouptime;
813 		sysclock.getmicrouptime = fbclock_getmicrouptime;
814 		sysclock.getbintime = fbclock_getbintime;
815 		sysclock.getnanotime = fbclock_getnanotime;
816 		sysclock.getmicrotime = fbclock_getmicrotime;
817 		break;
818 	case SYSCLOCK_FFWD:
819 		sysclock.binuptime = ffclock_binuptime;
820 		sysclock.nanouptime = ffclock_nanouptime;
821 		sysclock.microuptime = ffclock_microuptime;
822 		sysclock.bintime = ffclock_bintime;
823 		sysclock.nanotime = ffclock_nanotime;
824 		sysclock.microtime = ffclock_microtime;
825 		sysclock.getbinuptime = ffclock_getbinuptime;
826 		sysclock.getnanouptime = ffclock_getnanouptime;
827 		sysclock.getmicrouptime = ffclock_getmicrouptime;
828 		sysclock.getbintime = ffclock_getbintime;
829 		sysclock.getnanotime = ffclock_getnanotime;
830 		sysclock.getmicrotime = ffclock_getmicrotime;
831 		break;
832 	default:
833 		break;
834 	}
835 }
836 
837 /*
838  * Retrieve feed-forward counter and time of last kernel tick.
839  */
840 void
841 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
842 {
843 	struct fftimehands *ffth;
844 	uint8_t gen;
845 
846 	/*
847 	 * No locking but check generation has not changed. Also need to make
848 	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
849 	 */
850 	do {
851 		ffth = fftimehands;
852 		gen = ffth->gen;
853 		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
854 			*bt = ffth->tick_time_lerp;
855 		else
856 			*bt = ffth->tick_time;
857 		*ffcount = ffth->tick_ffcount;
858 	} while (gen == 0 || gen != ffth->gen);
859 }
860 
861 /*
862  * Absolute clock conversion. Low level function to convert ffcounter to
863  * bintime. The ffcounter is converted using the current ffclock period estimate
864  * or the "interpolated period" to ensure monotonicity.
865  * NOTE: this conversion may have been deferred, and the clock updated since the
866  * hardware counter has been read.
867  */
868 void
869 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
870 {
871 	struct fftimehands *ffth;
872 	struct bintime bt2;
873 	ffcounter ffdelta;
874 	uint8_t gen;
875 
876 	/*
877 	 * No locking but check generation has not changed. Also need to make
878 	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
879 	 */
880 	do {
881 		ffth = fftimehands;
882 		gen = ffth->gen;
883 		if (ffcount > ffth->tick_ffcount)
884 			ffdelta = ffcount - ffth->tick_ffcount;
885 		else
886 			ffdelta = ffth->tick_ffcount - ffcount;
887 
888 		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
889 			*bt = ffth->tick_time_lerp;
890 			ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
891 		} else {
892 			*bt = ffth->tick_time;
893 			ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
894 		}
895 
896 		if (ffcount > ffth->tick_ffcount)
897 			bintime_add(bt, &bt2);
898 		else
899 			bintime_sub(bt, &bt2);
900 	} while (gen == 0 || gen != ffth->gen);
901 }
902 
903 /*
904  * Difference clock conversion.
905  * Low level function to Convert a time interval measured in RAW counter units
906  * into bintime. The difference clock allows measuring small intervals much more
907  * reliably than the absolute clock.
908  */
909 void
910 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
911 {
912 	struct fftimehands *ffth;
913 	uint8_t gen;
914 
915 	/* No locking but check generation has not changed. */
916 	do {
917 		ffth = fftimehands;
918 		gen = ffth->gen;
919 		ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
920 	} while (gen == 0 || gen != ffth->gen);
921 }
922 
923 /*
924  * Access to current ffcounter value.
925  */
926 void
927 ffclock_read_counter(ffcounter *ffcount)
928 {
929 	struct timehands *th;
930 	struct fftimehands *ffth;
931 	unsigned int gen, delta;
932 
933 	/*
934 	 * ffclock_windup() called from tc_windup(), safe to rely on
935 	 * th->th_generation only, for correct delta and ffcounter.
936 	 */
937 	do {
938 		th = timehands;
939 		gen = th->th_generation;
940 		ffth = fftimehands;
941 		delta = tc_delta(th);
942 		*ffcount = ffth->tick_ffcount;
943 	} while (gen == 0 || gen != th->th_generation);
944 
945 	*ffcount += delta;
946 }
947 
948 void
949 binuptime(struct bintime *bt)
950 {
951 
952 	sysclock.binuptime(bt);
953 }
954 
955 void
956 nanouptime(struct timespec *tsp)
957 {
958 
959 	sysclock.nanouptime(tsp);
960 }
961 
962 void
963 microuptime(struct timeval *tvp)
964 {
965 
966 	sysclock.microuptime(tvp);
967 }
968 
969 void
970 bintime(struct bintime *bt)
971 {
972 
973 	sysclock.bintime(bt);
974 }
975 
976 void
977 nanotime(struct timespec *tsp)
978 {
979 
980 	sysclock.nanotime(tsp);
981 }
982 
983 void
984 microtime(struct timeval *tvp)
985 {
986 
987 	sysclock.microtime(tvp);
988 }
989 
990 void
991 getbinuptime(struct bintime *bt)
992 {
993 
994 	sysclock.getbinuptime(bt);
995 }
996 
997 void
998 getnanouptime(struct timespec *tsp)
999 {
1000 
1001 	sysclock.getnanouptime(tsp);
1002 }
1003 
1004 void
1005 getmicrouptime(struct timeval *tvp)
1006 {
1007 
1008 	sysclock.getmicrouptime(tvp);
1009 }
1010 
1011 void
1012 getbintime(struct bintime *bt)
1013 {
1014 
1015 	sysclock.getbintime(bt);
1016 }
1017 
1018 void
1019 getnanotime(struct timespec *tsp)
1020 {
1021 
1022 	sysclock.getnanotime(tsp);
1023 }
1024 
1025 void
1026 getmicrotime(struct timeval *tvp)
1027 {
1028 
1029 	sysclock.getmicrouptime(tvp);
1030 }
1031 #endif /* FFCLOCK */
1032 
1033 /*
1034  * Initialize a new timecounter and possibly use it.
1035  */
1036 void
1037 tc_init(struct timecounter *tc)
1038 {
1039 	u_int u;
1040 	struct sysctl_oid *tc_root;
1041 
1042 	u = tc->tc_frequency / tc->tc_counter_mask;
1043 	/* XXX: We need some margin here, 10% is a guess */
1044 	u *= 11;
1045 	u /= 10;
1046 	if (u > hz && tc->tc_quality >= 0) {
1047 		tc->tc_quality = -2000;
1048 		if (bootverbose) {
1049 			printf("Timecounter \"%s\" frequency %ju Hz",
1050 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
1051 			printf(" -- Insufficient hz, needs at least %u\n", u);
1052 		}
1053 	} else if (tc->tc_quality >= 0 || bootverbose) {
1054 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1055 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
1056 		    tc->tc_quality);
1057 	}
1058 
1059 	tc->tc_next = timecounters;
1060 	timecounters = tc;
1061 	/*
1062 	 * Set up sysctl tree for this counter.
1063 	 */
1064 	tc_root = SYSCTL_ADD_NODE(NULL,
1065 	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1066 	    CTLFLAG_RW, 0, "timecounter description");
1067 	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1068 	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1069 	    "mask for implemented bits");
1070 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1071 	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1072 	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
1073 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1074 	    "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1075 	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1076 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1077 	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1078 	    "goodness of time counter");
1079 	/*
1080 	 * Never automatically use a timecounter with negative quality.
1081 	 * Even though we run on the dummy counter, switching here may be
1082 	 * worse since this timecounter may not be monotonous.
1083 	 */
1084 	if (tc->tc_quality < 0)
1085 		return;
1086 	if (tc->tc_quality < timecounter->tc_quality)
1087 		return;
1088 	if (tc->tc_quality == timecounter->tc_quality &&
1089 	    tc->tc_frequency < timecounter->tc_frequency)
1090 		return;
1091 	(void)tc->tc_get_timecount(tc);
1092 	(void)tc->tc_get_timecount(tc);
1093 	timecounter = tc;
1094 }
1095 
1096 /* Report the frequency of the current timecounter. */
1097 uint64_t
1098 tc_getfrequency(void)
1099 {
1100 
1101 	return (timehands->th_counter->tc_frequency);
1102 }
1103 
1104 /*
1105  * Step our concept of UTC.  This is done by modifying our estimate of
1106  * when we booted.
1107  * XXX: not locked.
1108  */
1109 void
1110 tc_setclock(struct timespec *ts)
1111 {
1112 	struct timespec tbef, taft;
1113 	struct bintime bt, bt2;
1114 
1115 	cpu_tick_calibrate(1);
1116 	nanotime(&tbef);
1117 	timespec2bintime(ts, &bt);
1118 	binuptime(&bt2);
1119 	bintime_sub(&bt, &bt2);
1120 	bintime_add(&bt2, &boottimebin);
1121 	boottimebin = bt;
1122 	bintime2timeval(&bt, &boottime);
1123 
1124 	/* XXX fiddle all the little crinkly bits around the fiords... */
1125 	tc_windup();
1126 	nanotime(&taft);
1127 	if (timestepwarnings) {
1128 		log(LOG_INFO,
1129 		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1130 		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1131 		    (intmax_t)taft.tv_sec, taft.tv_nsec,
1132 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
1133 	}
1134 	cpu_tick_calibrate(1);
1135 }
1136 
1137 /*
1138  * Initialize the next struct timehands in the ring and make
1139  * it the active timehands.  Along the way we might switch to a different
1140  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1141  */
1142 static void
1143 tc_windup(void)
1144 {
1145 	struct bintime bt;
1146 	struct timehands *th, *tho;
1147 	uint64_t scale;
1148 	u_int delta, ncount, ogen;
1149 	int i;
1150 	time_t t;
1151 
1152 	/*
1153 	 * Make the next timehands a copy of the current one, but do not
1154 	 * overwrite the generation or next pointer.  While we update
1155 	 * the contents, the generation must be zero.
1156 	 */
1157 	tho = timehands;
1158 	th = tho->th_next;
1159 	ogen = th->th_generation;
1160 	th->th_generation = 0;
1161 	bcopy(tho, th, offsetof(struct timehands, th_generation));
1162 
1163 	/*
1164 	 * Capture a timecounter delta on the current timecounter and if
1165 	 * changing timecounters, a counter value from the new timecounter.
1166 	 * Update the offset fields accordingly.
1167 	 */
1168 	delta = tc_delta(th);
1169 	if (th->th_counter != timecounter)
1170 		ncount = timecounter->tc_get_timecount(timecounter);
1171 	else
1172 		ncount = 0;
1173 #ifdef FFCLOCK
1174 	ffclock_windup(delta);
1175 #endif
1176 	th->th_offset_count += delta;
1177 	th->th_offset_count &= th->th_counter->tc_counter_mask;
1178 	while (delta > th->th_counter->tc_frequency) {
1179 		/* Eat complete unadjusted seconds. */
1180 		delta -= th->th_counter->tc_frequency;
1181 		th->th_offset.sec++;
1182 	}
1183 	if ((delta > th->th_counter->tc_frequency / 2) &&
1184 	    (th->th_scale * delta < ((uint64_t)1 << 63))) {
1185 		/* The product th_scale * delta just barely overflows. */
1186 		th->th_offset.sec++;
1187 	}
1188 	bintime_addx(&th->th_offset, th->th_scale * delta);
1189 
1190 	/*
1191 	 * Hardware latching timecounters may not generate interrupts on
1192 	 * PPS events, so instead we poll them.  There is a finite risk that
1193 	 * the hardware might capture a count which is later than the one we
1194 	 * got above, and therefore possibly in the next NTP second which might
1195 	 * have a different rate than the current NTP second.  It doesn't
1196 	 * matter in practice.
1197 	 */
1198 	if (tho->th_counter->tc_poll_pps)
1199 		tho->th_counter->tc_poll_pps(tho->th_counter);
1200 
1201 	/*
1202 	 * Deal with NTP second processing.  The for loop normally
1203 	 * iterates at most once, but in extreme situations it might
1204 	 * keep NTP sane if timeouts are not run for several seconds.
1205 	 * At boot, the time step can be large when the TOD hardware
1206 	 * has been read, so on really large steps, we call
1207 	 * ntp_update_second only twice.  We need to call it twice in
1208 	 * case we missed a leap second.
1209 	 */
1210 	bt = th->th_offset;
1211 	bintime_add(&bt, &boottimebin);
1212 	i = bt.sec - tho->th_microtime.tv_sec;
1213 	if (i > LARGE_STEP)
1214 		i = 2;
1215 	for (; i > 0; i--) {
1216 		t = bt.sec;
1217 		ntp_update_second(&th->th_adjustment, &bt.sec);
1218 		if (bt.sec != t)
1219 			boottimebin.sec += bt.sec - t;
1220 	}
1221 	/* Update the UTC timestamps used by the get*() functions. */
1222 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
1223 	bintime2timeval(&bt, &th->th_microtime);
1224 	bintime2timespec(&bt, &th->th_nanotime);
1225 
1226 	/* Now is a good time to change timecounters. */
1227 	if (th->th_counter != timecounter) {
1228 #ifndef __arm__
1229 		if ((timecounter->tc_flags & TC_FLAGS_C3STOP) != 0)
1230 			cpu_disable_deep_sleep++;
1231 		if ((th->th_counter->tc_flags & TC_FLAGS_C3STOP) != 0)
1232 			cpu_disable_deep_sleep--;
1233 #endif
1234 		th->th_counter = timecounter;
1235 		th->th_offset_count = ncount;
1236 		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1237 		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1238 #ifdef FFCLOCK
1239 		ffclock_change_tc(th);
1240 #endif
1241 	}
1242 
1243 	/*-
1244 	 * Recalculate the scaling factor.  We want the number of 1/2^64
1245 	 * fractions of a second per period of the hardware counter, taking
1246 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1247 	 * processing provides us with.
1248 	 *
1249 	 * The th_adjustment is nanoseconds per second with 32 bit binary
1250 	 * fraction and we want 64 bit binary fraction of second:
1251 	 *
1252 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
1253 	 *
1254 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1255 	 * we can only multiply by about 850 without overflowing, that
1256 	 * leaves no suitably precise fractions for multiply before divide.
1257 	 *
1258 	 * Divide before multiply with a fraction of 2199/512 results in a
1259 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
1260 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1261  	 *
1262 	 * We happily sacrifice the lowest of the 64 bits of our result
1263 	 * to the goddess of code clarity.
1264 	 *
1265 	 */
1266 	scale = (uint64_t)1 << 63;
1267 	scale += (th->th_adjustment / 1024) * 2199;
1268 	scale /= th->th_counter->tc_frequency;
1269 	th->th_scale = scale * 2;
1270 
1271 #ifdef FFCLOCK
1272 	if (sysclock_active != sysclock.active)
1273 		change_sysclock(sysclock_active);
1274 #endif
1275 
1276 	/*
1277 	 * Now that the struct timehands is again consistent, set the new
1278 	 * generation number, making sure to not make it zero.
1279 	 */
1280 	if (++ogen == 0)
1281 		ogen = 1;
1282 	th->th_generation = ogen;
1283 
1284 	/* Go live with the new struct timehands. */
1285 #ifdef FFCLOCK
1286 	switch (sysclock_active) {
1287 	case SYSCLOCK_FBCK:
1288 #endif
1289 		time_second = th->th_microtime.tv_sec;
1290 		time_uptime = th->th_offset.sec;
1291 #ifdef FFCLOCK
1292 		break;
1293 	case SYSCLOCK_FFWD:
1294 		time_second = fftimehands->tick_time_lerp.sec;
1295 		time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1296 		break;
1297 	}
1298 #endif
1299 
1300 	timehands = th;
1301 }
1302 
1303 /* Report or change the active timecounter hardware. */
1304 static int
1305 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1306 {
1307 	char newname[32];
1308 	struct timecounter *newtc, *tc;
1309 	int error;
1310 
1311 	tc = timecounter;
1312 	strlcpy(newname, tc->tc_name, sizeof(newname));
1313 
1314 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1315 	if (error != 0 || req->newptr == NULL ||
1316 	    strcmp(newname, tc->tc_name) == 0)
1317 		return (error);
1318 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1319 		if (strcmp(newname, newtc->tc_name) != 0)
1320 			continue;
1321 
1322 		/* Warm up new timecounter. */
1323 		(void)newtc->tc_get_timecount(newtc);
1324 		(void)newtc->tc_get_timecount(newtc);
1325 
1326 		timecounter = newtc;
1327 		return (0);
1328 	}
1329 	return (EINVAL);
1330 }
1331 
1332 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1333     0, 0, sysctl_kern_timecounter_hardware, "A",
1334     "Timecounter hardware selected");
1335 
1336 
1337 /* Report or change the active timecounter hardware. */
1338 static int
1339 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1340 {
1341 	char buf[32], *spc;
1342 	struct timecounter *tc;
1343 	int error;
1344 
1345 	spc = "";
1346 	error = 0;
1347 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
1348 		sprintf(buf, "%s%s(%d)",
1349 		    spc, tc->tc_name, tc->tc_quality);
1350 		error = SYSCTL_OUT(req, buf, strlen(buf));
1351 		spc = " ";
1352 	}
1353 	return (error);
1354 }
1355 
1356 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1357     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1358 
1359 /*
1360  * RFC 2783 PPS-API implementation.
1361  */
1362 
1363 int
1364 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1365 {
1366 	pps_params_t *app;
1367 	struct pps_fetch_args *fapi;
1368 #ifdef PPS_SYNC
1369 	struct pps_kcbind_args *kapi;
1370 #endif
1371 
1372 	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1373 	switch (cmd) {
1374 	case PPS_IOC_CREATE:
1375 		return (0);
1376 	case PPS_IOC_DESTROY:
1377 		return (0);
1378 	case PPS_IOC_SETPARAMS:
1379 		app = (pps_params_t *)data;
1380 		if (app->mode & ~pps->ppscap)
1381 			return (EINVAL);
1382 		pps->ppsparam = *app;
1383 		return (0);
1384 	case PPS_IOC_GETPARAMS:
1385 		app = (pps_params_t *)data;
1386 		*app = pps->ppsparam;
1387 		app->api_version = PPS_API_VERS_1;
1388 		return (0);
1389 	case PPS_IOC_GETCAP:
1390 		*(int*)data = pps->ppscap;
1391 		return (0);
1392 	case PPS_IOC_FETCH:
1393 		fapi = (struct pps_fetch_args *)data;
1394 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1395 			return (EINVAL);
1396 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1397 			return (EOPNOTSUPP);
1398 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
1399 		fapi->pps_info_buf = pps->ppsinfo;
1400 		return (0);
1401 	case PPS_IOC_KCBIND:
1402 #ifdef PPS_SYNC
1403 		kapi = (struct pps_kcbind_args *)data;
1404 		/* XXX Only root should be able to do this */
1405 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1406 			return (EINVAL);
1407 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1408 			return (EINVAL);
1409 		if (kapi->edge & ~pps->ppscap)
1410 			return (EINVAL);
1411 		pps->kcmode = kapi->edge;
1412 		return (0);
1413 #else
1414 		return (EOPNOTSUPP);
1415 #endif
1416 	default:
1417 		return (ENOIOCTL);
1418 	}
1419 }
1420 
1421 void
1422 pps_init(struct pps_state *pps)
1423 {
1424 	pps->ppscap |= PPS_TSFMT_TSPEC;
1425 	if (pps->ppscap & PPS_CAPTUREASSERT)
1426 		pps->ppscap |= PPS_OFFSETASSERT;
1427 	if (pps->ppscap & PPS_CAPTURECLEAR)
1428 		pps->ppscap |= PPS_OFFSETCLEAR;
1429 }
1430 
1431 void
1432 pps_capture(struct pps_state *pps)
1433 {
1434 	struct timehands *th;
1435 
1436 	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1437 	th = timehands;
1438 	pps->capgen = th->th_generation;
1439 	pps->capth = th;
1440 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1441 	if (pps->capgen != th->th_generation)
1442 		pps->capgen = 0;
1443 }
1444 
1445 void
1446 pps_event(struct pps_state *pps, int event)
1447 {
1448 	struct bintime bt;
1449 	struct timespec ts, *tsp, *osp;
1450 	u_int tcount, *pcount;
1451 	int foff, fhard;
1452 	pps_seq_t *pseq;
1453 
1454 	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1455 	/* If the timecounter was wound up underneath us, bail out. */
1456 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
1457 		return;
1458 
1459 	/* Things would be easier with arrays. */
1460 	if (event == PPS_CAPTUREASSERT) {
1461 		tsp = &pps->ppsinfo.assert_timestamp;
1462 		osp = &pps->ppsparam.assert_offset;
1463 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1464 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1465 		pcount = &pps->ppscount[0];
1466 		pseq = &pps->ppsinfo.assert_sequence;
1467 	} else {
1468 		tsp = &pps->ppsinfo.clear_timestamp;
1469 		osp = &pps->ppsparam.clear_offset;
1470 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1471 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1472 		pcount = &pps->ppscount[1];
1473 		pseq = &pps->ppsinfo.clear_sequence;
1474 	}
1475 
1476 	/*
1477 	 * If the timecounter changed, we cannot compare the count values, so
1478 	 * we have to drop the rest of the PPS-stuff until the next event.
1479 	 */
1480 	if (pps->ppstc != pps->capth->th_counter) {
1481 		pps->ppstc = pps->capth->th_counter;
1482 		*pcount = pps->capcount;
1483 		pps->ppscount[2] = pps->capcount;
1484 		return;
1485 	}
1486 
1487 	/* Convert the count to a timespec. */
1488 	tcount = pps->capcount - pps->capth->th_offset_count;
1489 	tcount &= pps->capth->th_counter->tc_counter_mask;
1490 	bt = pps->capth->th_offset;
1491 	bintime_addx(&bt, pps->capth->th_scale * tcount);
1492 	bintime_add(&bt, &boottimebin);
1493 	bintime2timespec(&bt, &ts);
1494 
1495 	/* If the timecounter was wound up underneath us, bail out. */
1496 	if (pps->capgen != pps->capth->th_generation)
1497 		return;
1498 
1499 	*pcount = pps->capcount;
1500 	(*pseq)++;
1501 	*tsp = ts;
1502 
1503 	if (foff) {
1504 		timespecadd(tsp, osp);
1505 		if (tsp->tv_nsec < 0) {
1506 			tsp->tv_nsec += 1000000000;
1507 			tsp->tv_sec -= 1;
1508 		}
1509 	}
1510 #ifdef PPS_SYNC
1511 	if (fhard) {
1512 		uint64_t scale;
1513 
1514 		/*
1515 		 * Feed the NTP PLL/FLL.
1516 		 * The FLL wants to know how many (hardware) nanoseconds
1517 		 * elapsed since the previous event.
1518 		 */
1519 		tcount = pps->capcount - pps->ppscount[2];
1520 		pps->ppscount[2] = pps->capcount;
1521 		tcount &= pps->capth->th_counter->tc_counter_mask;
1522 		scale = (uint64_t)1 << 63;
1523 		scale /= pps->capth->th_counter->tc_frequency;
1524 		scale *= 2;
1525 		bt.sec = 0;
1526 		bt.frac = 0;
1527 		bintime_addx(&bt, scale * tcount);
1528 		bintime2timespec(&bt, &ts);
1529 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1530 	}
1531 #endif
1532 }
1533 
1534 /*
1535  * Timecounters need to be updated every so often to prevent the hardware
1536  * counter from overflowing.  Updating also recalculates the cached values
1537  * used by the get*() family of functions, so their precision depends on
1538  * the update frequency.
1539  */
1540 
1541 static int tc_tick;
1542 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1543     "Approximate number of hardclock ticks in a millisecond");
1544 
1545 void
1546 tc_ticktock(int cnt)
1547 {
1548 	static int count;
1549 
1550 	count += cnt;
1551 	if (count < tc_tick)
1552 		return;
1553 	count = 0;
1554 	tc_windup();
1555 }
1556 
1557 static void
1558 inittimecounter(void *dummy)
1559 {
1560 	u_int p;
1561 
1562 	/*
1563 	 * Set the initial timeout to
1564 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
1565 	 * People should probably not use the sysctl to set the timeout
1566 	 * to smaller than its inital value, since that value is the
1567 	 * smallest reasonable one.  If they want better timestamps they
1568 	 * should use the non-"get"* functions.
1569 	 */
1570 	if (hz > 1000)
1571 		tc_tick = (hz + 500) / 1000;
1572 	else
1573 		tc_tick = 1;
1574 	p = (tc_tick * 1000000) / hz;
1575 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1576 
1577 #ifdef FFCLOCK
1578 	ffclock_init();
1579 	change_sysclock(sysclock_active);
1580 #endif
1581 	/* warm up new timecounter (again) and get rolling. */
1582 	(void)timecounter->tc_get_timecount(timecounter);
1583 	(void)timecounter->tc_get_timecount(timecounter);
1584 	tc_windup();
1585 }
1586 
1587 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1588 
1589 /* Cpu tick handling -------------------------------------------------*/
1590 
1591 static int cpu_tick_variable;
1592 static uint64_t	cpu_tick_frequency;
1593 
1594 static uint64_t
1595 tc_cpu_ticks(void)
1596 {
1597 	static uint64_t base;
1598 	static unsigned last;
1599 	unsigned u;
1600 	struct timecounter *tc;
1601 
1602 	tc = timehands->th_counter;
1603 	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
1604 	if (u < last)
1605 		base += (uint64_t)tc->tc_counter_mask + 1;
1606 	last = u;
1607 	return (u + base);
1608 }
1609 
1610 void
1611 cpu_tick_calibration(void)
1612 {
1613 	static time_t last_calib;
1614 
1615 	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
1616 		cpu_tick_calibrate(0);
1617 		last_calib = time_uptime;
1618 	}
1619 }
1620 
1621 /*
1622  * This function gets called every 16 seconds on only one designated
1623  * CPU in the system from hardclock() via cpu_tick_calibration()().
1624  *
1625  * Whenever the real time clock is stepped we get called with reset=1
1626  * to make sure we handle suspend/resume and similar events correctly.
1627  */
1628 
1629 static void
1630 cpu_tick_calibrate(int reset)
1631 {
1632 	static uint64_t c_last;
1633 	uint64_t c_this, c_delta;
1634 	static struct bintime  t_last;
1635 	struct bintime t_this, t_delta;
1636 	uint32_t divi;
1637 
1638 	if (reset) {
1639 		/* The clock was stepped, abort & reset */
1640 		t_last.sec = 0;
1641 		return;
1642 	}
1643 
1644 	/* we don't calibrate fixed rate cputicks */
1645 	if (!cpu_tick_variable)
1646 		return;
1647 
1648 	getbinuptime(&t_this);
1649 	c_this = cpu_ticks();
1650 	if (t_last.sec != 0) {
1651 		c_delta = c_this - c_last;
1652 		t_delta = t_this;
1653 		bintime_sub(&t_delta, &t_last);
1654 		/*
1655 		 * Headroom:
1656 		 * 	2^(64-20) / 16[s] =
1657 		 * 	2^(44) / 16[s] =
1658 		 * 	17.592.186.044.416 / 16 =
1659 		 * 	1.099.511.627.776 [Hz]
1660 		 */
1661 		divi = t_delta.sec << 20;
1662 		divi |= t_delta.frac >> (64 - 20);
1663 		c_delta <<= 20;
1664 		c_delta /= divi;
1665 		if (c_delta > cpu_tick_frequency) {
1666 			if (0 && bootverbose)
1667 				printf("cpu_tick increased to %ju Hz\n",
1668 				    c_delta);
1669 			cpu_tick_frequency = c_delta;
1670 		}
1671 	}
1672 	c_last = c_this;
1673 	t_last = t_this;
1674 }
1675 
1676 void
1677 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
1678 {
1679 
1680 	if (func == NULL) {
1681 		cpu_ticks = tc_cpu_ticks;
1682 	} else {
1683 		cpu_tick_frequency = freq;
1684 		cpu_tick_variable = var;
1685 		cpu_ticks = func;
1686 	}
1687 }
1688 
1689 uint64_t
1690 cpu_tickrate(void)
1691 {
1692 
1693 	if (cpu_ticks == tc_cpu_ticks)
1694 		return (tc_getfrequency());
1695 	return (cpu_tick_frequency);
1696 }
1697 
1698 /*
1699  * We need to be slightly careful converting cputicks to microseconds.
1700  * There is plenty of margin in 64 bits of microseconds (half a million
1701  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
1702  * before divide conversion (to retain precision) we find that the
1703  * margin shrinks to 1.5 hours (one millionth of 146y).
1704  * With a three prong approach we never lose significant bits, no
1705  * matter what the cputick rate and length of timeinterval is.
1706  */
1707 
1708 uint64_t
1709 cputick2usec(uint64_t tick)
1710 {
1711 
1712 	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
1713 		return (tick / (cpu_tickrate() / 1000000LL));
1714 	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
1715 		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
1716 	else
1717 		return ((tick * 1000000LL) / cpu_tickrate());
1718 }
1719 
1720 cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
1721