xref: /freebsd/sys/kern/kern_tc.c (revision 38f0b757fd84d17d0fc24739a7cda160c4516d81)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * Copyright (c) 2011 The FreeBSD Foundation
10  * All rights reserved.
11  *
12  * Portions of this software were developed by Julien Ridoux at the University
13  * of Melbourne under sponsorship from the FreeBSD Foundation.
14  */
15 
16 #include <sys/cdefs.h>
17 __FBSDID("$FreeBSD$");
18 
19 #include "opt_compat.h"
20 #include "opt_ntp.h"
21 #include "opt_ffclock.h"
22 
23 #include <sys/param.h>
24 #include <sys/kernel.h>
25 #include <sys/limits.h>
26 #ifdef FFCLOCK
27 #include <sys/lock.h>
28 #include <sys/mutex.h>
29 #endif
30 #include <sys/sysctl.h>
31 #include <sys/syslog.h>
32 #include <sys/systm.h>
33 #include <sys/timeffc.h>
34 #include <sys/timepps.h>
35 #include <sys/timetc.h>
36 #include <sys/timex.h>
37 #include <sys/vdso.h>
38 
39 /*
40  * A large step happens on boot.  This constant detects such steps.
41  * It is relatively small so that ntp_update_second gets called enough
42  * in the typical 'missed a couple of seconds' case, but doesn't loop
43  * forever when the time step is large.
44  */
45 #define LARGE_STEP	200
46 
47 /*
48  * Implement a dummy timecounter which we can use until we get a real one
49  * in the air.  This allows the console and other early stuff to use
50  * time services.
51  */
52 
53 static u_int
54 dummy_get_timecount(struct timecounter *tc)
55 {
56 	static u_int now;
57 
58 	return (++now);
59 }
60 
61 static struct timecounter dummy_timecounter = {
62 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
63 };
64 
65 struct timehands {
66 	/* These fields must be initialized by the driver. */
67 	struct timecounter	*th_counter;
68 	int64_t			th_adjustment;
69 	uint64_t		th_scale;
70 	u_int	 		th_offset_count;
71 	struct bintime		th_offset;
72 	struct timeval		th_microtime;
73 	struct timespec		th_nanotime;
74 	/* Fields not to be copied in tc_windup start with th_generation. */
75 	volatile u_int		th_generation;
76 	struct timehands	*th_next;
77 };
78 
79 static struct timehands th0;
80 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
81 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
82 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
83 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
84 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
85 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
86 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
87 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
88 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
89 static struct timehands th0 = {
90 	&dummy_timecounter,
91 	0,
92 	(uint64_t)-1 / 1000000,
93 	0,
94 	{1, 0},
95 	{0, 0},
96 	{0, 0},
97 	1,
98 	&th1
99 };
100 
101 static struct timehands *volatile timehands = &th0;
102 struct timecounter *timecounter = &dummy_timecounter;
103 static struct timecounter *timecounters = &dummy_timecounter;
104 
105 int tc_min_ticktock_freq = 1;
106 
107 volatile time_t time_second = 1;
108 volatile time_t time_uptime = 1;
109 
110 struct bintime boottimebin;
111 struct timeval boottime;
112 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
113 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
114     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
115 
116 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
117 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
118 
119 static int timestepwarnings;
120 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
121     &timestepwarnings, 0, "Log time steps");
122 
123 struct bintime bt_timethreshold;
124 struct bintime bt_tickthreshold;
125 sbintime_t sbt_timethreshold;
126 sbintime_t sbt_tickthreshold;
127 struct bintime tc_tick_bt;
128 sbintime_t tc_tick_sbt;
129 int tc_precexp;
130 int tc_timepercentage = TC_DEFAULTPERC;
131 TUNABLE_INT("kern.timecounter.alloweddeviation", &tc_timepercentage);
132 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
133 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
134     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
135     sysctl_kern_timecounter_adjprecision, "I",
136     "Allowed time interval deviation in percents");
137 
138 static void tc_windup(void);
139 static void cpu_tick_calibrate(int);
140 
141 void dtrace_getnanotime(struct timespec *tsp);
142 
143 static int
144 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
145 {
146 #ifndef __mips__
147 #ifdef SCTL_MASK32
148 	int tv[2];
149 
150 	if (req->flags & SCTL_MASK32) {
151 		tv[0] = boottime.tv_sec;
152 		tv[1] = boottime.tv_usec;
153 		return SYSCTL_OUT(req, tv, sizeof(tv));
154 	} else
155 #endif
156 #endif
157 		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
158 }
159 
160 static int
161 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
162 {
163 	u_int ncount;
164 	struct timecounter *tc = arg1;
165 
166 	ncount = tc->tc_get_timecount(tc);
167 	return sysctl_handle_int(oidp, &ncount, 0, req);
168 }
169 
170 static int
171 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
172 {
173 	uint64_t freq;
174 	struct timecounter *tc = arg1;
175 
176 	freq = tc->tc_frequency;
177 	return sysctl_handle_64(oidp, &freq, 0, req);
178 }
179 
180 /*
181  * Return the difference between the timehands' counter value now and what
182  * was when we copied it to the timehands' offset_count.
183  */
184 static __inline u_int
185 tc_delta(struct timehands *th)
186 {
187 	struct timecounter *tc;
188 
189 	tc = th->th_counter;
190 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
191 	    tc->tc_counter_mask);
192 }
193 
194 /*
195  * Functions for reading the time.  We have to loop until we are sure that
196  * the timehands that we operated on was not updated under our feet.  See
197  * the comment in <sys/time.h> for a description of these 12 functions.
198  */
199 
200 #ifdef FFCLOCK
201 void
202 fbclock_binuptime(struct bintime *bt)
203 {
204 	struct timehands *th;
205 	unsigned int gen;
206 
207 	do {
208 		th = timehands;
209 		gen = th->th_generation;
210 		*bt = th->th_offset;
211 		bintime_addx(bt, th->th_scale * tc_delta(th));
212 	} while (gen == 0 || gen != th->th_generation);
213 }
214 
215 void
216 fbclock_nanouptime(struct timespec *tsp)
217 {
218 	struct bintime bt;
219 
220 	fbclock_binuptime(&bt);
221 	bintime2timespec(&bt, tsp);
222 }
223 
224 void
225 fbclock_microuptime(struct timeval *tvp)
226 {
227 	struct bintime bt;
228 
229 	fbclock_binuptime(&bt);
230 	bintime2timeval(&bt, tvp);
231 }
232 
233 void
234 fbclock_bintime(struct bintime *bt)
235 {
236 
237 	fbclock_binuptime(bt);
238 	bintime_add(bt, &boottimebin);
239 }
240 
241 void
242 fbclock_nanotime(struct timespec *tsp)
243 {
244 	struct bintime bt;
245 
246 	fbclock_bintime(&bt);
247 	bintime2timespec(&bt, tsp);
248 }
249 
250 void
251 fbclock_microtime(struct timeval *tvp)
252 {
253 	struct bintime bt;
254 
255 	fbclock_bintime(&bt);
256 	bintime2timeval(&bt, tvp);
257 }
258 
259 void
260 fbclock_getbinuptime(struct bintime *bt)
261 {
262 	struct timehands *th;
263 	unsigned int gen;
264 
265 	do {
266 		th = timehands;
267 		gen = th->th_generation;
268 		*bt = th->th_offset;
269 	} while (gen == 0 || gen != th->th_generation);
270 }
271 
272 void
273 fbclock_getnanouptime(struct timespec *tsp)
274 {
275 	struct timehands *th;
276 	unsigned int gen;
277 
278 	do {
279 		th = timehands;
280 		gen = th->th_generation;
281 		bintime2timespec(&th->th_offset, tsp);
282 	} while (gen == 0 || gen != th->th_generation);
283 }
284 
285 void
286 fbclock_getmicrouptime(struct timeval *tvp)
287 {
288 	struct timehands *th;
289 	unsigned int gen;
290 
291 	do {
292 		th = timehands;
293 		gen = th->th_generation;
294 		bintime2timeval(&th->th_offset, tvp);
295 	} while (gen == 0 || gen != th->th_generation);
296 }
297 
298 void
299 fbclock_getbintime(struct bintime *bt)
300 {
301 	struct timehands *th;
302 	unsigned int gen;
303 
304 	do {
305 		th = timehands;
306 		gen = th->th_generation;
307 		*bt = th->th_offset;
308 	} while (gen == 0 || gen != th->th_generation);
309 	bintime_add(bt, &boottimebin);
310 }
311 
312 void
313 fbclock_getnanotime(struct timespec *tsp)
314 {
315 	struct timehands *th;
316 	unsigned int gen;
317 
318 	do {
319 		th = timehands;
320 		gen = th->th_generation;
321 		*tsp = th->th_nanotime;
322 	} while (gen == 0 || gen != th->th_generation);
323 }
324 
325 void
326 fbclock_getmicrotime(struct timeval *tvp)
327 {
328 	struct timehands *th;
329 	unsigned int gen;
330 
331 	do {
332 		th = timehands;
333 		gen = th->th_generation;
334 		*tvp = th->th_microtime;
335 	} while (gen == 0 || gen != th->th_generation);
336 }
337 #else /* !FFCLOCK */
338 void
339 binuptime(struct bintime *bt)
340 {
341 	struct timehands *th;
342 	u_int gen;
343 
344 	do {
345 		th = timehands;
346 		gen = th->th_generation;
347 		*bt = th->th_offset;
348 		bintime_addx(bt, th->th_scale * tc_delta(th));
349 	} while (gen == 0 || gen != th->th_generation);
350 }
351 
352 void
353 nanouptime(struct timespec *tsp)
354 {
355 	struct bintime bt;
356 
357 	binuptime(&bt);
358 	bintime2timespec(&bt, tsp);
359 }
360 
361 void
362 microuptime(struct timeval *tvp)
363 {
364 	struct bintime bt;
365 
366 	binuptime(&bt);
367 	bintime2timeval(&bt, tvp);
368 }
369 
370 void
371 bintime(struct bintime *bt)
372 {
373 
374 	binuptime(bt);
375 	bintime_add(bt, &boottimebin);
376 }
377 
378 void
379 nanotime(struct timespec *tsp)
380 {
381 	struct bintime bt;
382 
383 	bintime(&bt);
384 	bintime2timespec(&bt, tsp);
385 }
386 
387 void
388 microtime(struct timeval *tvp)
389 {
390 	struct bintime bt;
391 
392 	bintime(&bt);
393 	bintime2timeval(&bt, tvp);
394 }
395 
396 void
397 getbinuptime(struct bintime *bt)
398 {
399 	struct timehands *th;
400 	u_int gen;
401 
402 	do {
403 		th = timehands;
404 		gen = th->th_generation;
405 		*bt = th->th_offset;
406 	} while (gen == 0 || gen != th->th_generation);
407 }
408 
409 void
410 getnanouptime(struct timespec *tsp)
411 {
412 	struct timehands *th;
413 	u_int gen;
414 
415 	do {
416 		th = timehands;
417 		gen = th->th_generation;
418 		bintime2timespec(&th->th_offset, tsp);
419 	} while (gen == 0 || gen != th->th_generation);
420 }
421 
422 void
423 getmicrouptime(struct timeval *tvp)
424 {
425 	struct timehands *th;
426 	u_int gen;
427 
428 	do {
429 		th = timehands;
430 		gen = th->th_generation;
431 		bintime2timeval(&th->th_offset, tvp);
432 	} while (gen == 0 || gen != th->th_generation);
433 }
434 
435 void
436 getbintime(struct bintime *bt)
437 {
438 	struct timehands *th;
439 	u_int gen;
440 
441 	do {
442 		th = timehands;
443 		gen = th->th_generation;
444 		*bt = th->th_offset;
445 	} while (gen == 0 || gen != th->th_generation);
446 	bintime_add(bt, &boottimebin);
447 }
448 
449 void
450 getnanotime(struct timespec *tsp)
451 {
452 	struct timehands *th;
453 	u_int gen;
454 
455 	do {
456 		th = timehands;
457 		gen = th->th_generation;
458 		*tsp = th->th_nanotime;
459 	} while (gen == 0 || gen != th->th_generation);
460 }
461 
462 void
463 getmicrotime(struct timeval *tvp)
464 {
465 	struct timehands *th;
466 	u_int gen;
467 
468 	do {
469 		th = timehands;
470 		gen = th->th_generation;
471 		*tvp = th->th_microtime;
472 	} while (gen == 0 || gen != th->th_generation);
473 }
474 #endif /* FFCLOCK */
475 
476 #ifdef FFCLOCK
477 /*
478  * Support for feed-forward synchronization algorithms. This is heavily inspired
479  * by the timehands mechanism but kept independent from it. *_windup() functions
480  * have some connection to avoid accessing the timecounter hardware more than
481  * necessary.
482  */
483 
484 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
485 struct ffclock_estimate ffclock_estimate;
486 struct bintime ffclock_boottime;	/* Feed-forward boot time estimate. */
487 uint32_t ffclock_status;		/* Feed-forward clock status. */
488 int8_t ffclock_updated;			/* New estimates are available. */
489 struct mtx ffclock_mtx;			/* Mutex on ffclock_estimate. */
490 
491 struct fftimehands {
492 	struct ffclock_estimate	cest;
493 	struct bintime		tick_time;
494 	struct bintime		tick_time_lerp;
495 	ffcounter		tick_ffcount;
496 	uint64_t		period_lerp;
497 	volatile uint8_t	gen;
498 	struct fftimehands	*next;
499 };
500 
501 #define	NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
502 
503 static struct fftimehands ffth[10];
504 static struct fftimehands *volatile fftimehands = ffth;
505 
506 static void
507 ffclock_init(void)
508 {
509 	struct fftimehands *cur;
510 	struct fftimehands *last;
511 
512 	memset(ffth, 0, sizeof(ffth));
513 
514 	last = ffth + NUM_ELEMENTS(ffth) - 1;
515 	for (cur = ffth; cur < last; cur++)
516 		cur->next = cur + 1;
517 	last->next = ffth;
518 
519 	ffclock_updated = 0;
520 	ffclock_status = FFCLOCK_STA_UNSYNC;
521 	mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
522 }
523 
524 /*
525  * Reset the feed-forward clock estimates. Called from inittodr() to get things
526  * kick started and uses the timecounter nominal frequency as a first period
527  * estimate. Note: this function may be called several time just after boot.
528  * Note: this is the only function that sets the value of boot time for the
529  * monotonic (i.e. uptime) version of the feed-forward clock.
530  */
531 void
532 ffclock_reset_clock(struct timespec *ts)
533 {
534 	struct timecounter *tc;
535 	struct ffclock_estimate cest;
536 
537 	tc = timehands->th_counter;
538 	memset(&cest, 0, sizeof(struct ffclock_estimate));
539 
540 	timespec2bintime(ts, &ffclock_boottime);
541 	timespec2bintime(ts, &(cest.update_time));
542 	ffclock_read_counter(&cest.update_ffcount);
543 	cest.leapsec_next = 0;
544 	cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
545 	cest.errb_abs = 0;
546 	cest.errb_rate = 0;
547 	cest.status = FFCLOCK_STA_UNSYNC;
548 	cest.leapsec_total = 0;
549 	cest.leapsec = 0;
550 
551 	mtx_lock(&ffclock_mtx);
552 	bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
553 	ffclock_updated = INT8_MAX;
554 	mtx_unlock(&ffclock_mtx);
555 
556 	printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
557 	    (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
558 	    (unsigned long)ts->tv_nsec);
559 }
560 
561 /*
562  * Sub-routine to convert a time interval measured in RAW counter units to time
563  * in seconds stored in bintime format.
564  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
565  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
566  * extra cycles.
567  */
568 static void
569 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
570 {
571 	struct bintime bt2;
572 	ffcounter delta, delta_max;
573 
574 	delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
575 	bintime_clear(bt);
576 	do {
577 		if (ffdelta > delta_max)
578 			delta = delta_max;
579 		else
580 			delta = ffdelta;
581 		bt2.sec = 0;
582 		bt2.frac = period;
583 		bintime_mul(&bt2, (unsigned int)delta);
584 		bintime_add(bt, &bt2);
585 		ffdelta -= delta;
586 	} while (ffdelta > 0);
587 }
588 
589 /*
590  * Update the fftimehands.
591  * Push the tick ffcount and time(s) forward based on current clock estimate.
592  * The conversion from ffcounter to bintime relies on the difference clock
593  * principle, whose accuracy relies on computing small time intervals. If a new
594  * clock estimate has been passed by the synchronisation daemon, make it
595  * current, and compute the linear interpolation for monotonic time if needed.
596  */
597 static void
598 ffclock_windup(unsigned int delta)
599 {
600 	struct ffclock_estimate *cest;
601 	struct fftimehands *ffth;
602 	struct bintime bt, gap_lerp;
603 	ffcounter ffdelta;
604 	uint64_t frac;
605 	unsigned int polling;
606 	uint8_t forward_jump, ogen;
607 
608 	/*
609 	 * Pick the next timehand, copy current ffclock estimates and move tick
610 	 * times and counter forward.
611 	 */
612 	forward_jump = 0;
613 	ffth = fftimehands->next;
614 	ogen = ffth->gen;
615 	ffth->gen = 0;
616 	cest = &ffth->cest;
617 	bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
618 	ffdelta = (ffcounter)delta;
619 	ffth->period_lerp = fftimehands->period_lerp;
620 
621 	ffth->tick_time = fftimehands->tick_time;
622 	ffclock_convert_delta(ffdelta, cest->period, &bt);
623 	bintime_add(&ffth->tick_time, &bt);
624 
625 	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
626 	ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
627 	bintime_add(&ffth->tick_time_lerp, &bt);
628 
629 	ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
630 
631 	/*
632 	 * Assess the status of the clock, if the last update is too old, it is
633 	 * likely the synchronisation daemon is dead and the clock is free
634 	 * running.
635 	 */
636 	if (ffclock_updated == 0) {
637 		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
638 		ffclock_convert_delta(ffdelta, cest->period, &bt);
639 		if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
640 			ffclock_status |= FFCLOCK_STA_UNSYNC;
641 	}
642 
643 	/*
644 	 * If available, grab updated clock estimates and make them current.
645 	 * Recompute time at this tick using the updated estimates. The clock
646 	 * estimates passed the feed-forward synchronisation daemon may result
647 	 * in time conversion that is not monotonically increasing (just after
648 	 * the update). time_lerp is a particular linear interpolation over the
649 	 * synchronisation algo polling period that ensures monotonicity for the
650 	 * clock ids requesting it.
651 	 */
652 	if (ffclock_updated > 0) {
653 		bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
654 		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
655 		ffth->tick_time = cest->update_time;
656 		ffclock_convert_delta(ffdelta, cest->period, &bt);
657 		bintime_add(&ffth->tick_time, &bt);
658 
659 		/* ffclock_reset sets ffclock_updated to INT8_MAX */
660 		if (ffclock_updated == INT8_MAX)
661 			ffth->tick_time_lerp = ffth->tick_time;
662 
663 		if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
664 			forward_jump = 1;
665 		else
666 			forward_jump = 0;
667 
668 		bintime_clear(&gap_lerp);
669 		if (forward_jump) {
670 			gap_lerp = ffth->tick_time;
671 			bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
672 		} else {
673 			gap_lerp = ffth->tick_time_lerp;
674 			bintime_sub(&gap_lerp, &ffth->tick_time);
675 		}
676 
677 		/*
678 		 * The reset from the RTC clock may be far from accurate, and
679 		 * reducing the gap between real time and interpolated time
680 		 * could take a very long time if the interpolated clock insists
681 		 * on strict monotonicity. The clock is reset under very strict
682 		 * conditions (kernel time is known to be wrong and
683 		 * synchronization daemon has been restarted recently.
684 		 * ffclock_boottime absorbs the jump to ensure boot time is
685 		 * correct and uptime functions stay consistent.
686 		 */
687 		if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
688 		    ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
689 		    ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
690 			if (forward_jump)
691 				bintime_add(&ffclock_boottime, &gap_lerp);
692 			else
693 				bintime_sub(&ffclock_boottime, &gap_lerp);
694 			ffth->tick_time_lerp = ffth->tick_time;
695 			bintime_clear(&gap_lerp);
696 		}
697 
698 		ffclock_status = cest->status;
699 		ffth->period_lerp = cest->period;
700 
701 		/*
702 		 * Compute corrected period used for the linear interpolation of
703 		 * time. The rate of linear interpolation is capped to 5000PPM
704 		 * (5ms/s).
705 		 */
706 		if (bintime_isset(&gap_lerp)) {
707 			ffdelta = cest->update_ffcount;
708 			ffdelta -= fftimehands->cest.update_ffcount;
709 			ffclock_convert_delta(ffdelta, cest->period, &bt);
710 			polling = bt.sec;
711 			bt.sec = 0;
712 			bt.frac = 5000000 * (uint64_t)18446744073LL;
713 			bintime_mul(&bt, polling);
714 			if (bintime_cmp(&gap_lerp, &bt, >))
715 				gap_lerp = bt;
716 
717 			/* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
718 			frac = 0;
719 			if (gap_lerp.sec > 0) {
720 				frac -= 1;
721 				frac /= ffdelta / gap_lerp.sec;
722 			}
723 			frac += gap_lerp.frac / ffdelta;
724 
725 			if (forward_jump)
726 				ffth->period_lerp += frac;
727 			else
728 				ffth->period_lerp -= frac;
729 		}
730 
731 		ffclock_updated = 0;
732 	}
733 	if (++ogen == 0)
734 		ogen = 1;
735 	ffth->gen = ogen;
736 	fftimehands = ffth;
737 }
738 
739 /*
740  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
741  * the old and new hardware counter cannot be read simultaneously. tc_windup()
742  * does read the two counters 'back to back', but a few cycles are effectively
743  * lost, and not accumulated in tick_ffcount. This is a fairly radical
744  * operation for a feed-forward synchronization daemon, and it is its job to not
745  * pushing irrelevant data to the kernel. Because there is no locking here,
746  * simply force to ignore pending or next update to give daemon a chance to
747  * realize the counter has changed.
748  */
749 static void
750 ffclock_change_tc(struct timehands *th)
751 {
752 	struct fftimehands *ffth;
753 	struct ffclock_estimate *cest;
754 	struct timecounter *tc;
755 	uint8_t ogen;
756 
757 	tc = th->th_counter;
758 	ffth = fftimehands->next;
759 	ogen = ffth->gen;
760 	ffth->gen = 0;
761 
762 	cest = &ffth->cest;
763 	bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
764 	cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
765 	cest->errb_abs = 0;
766 	cest->errb_rate = 0;
767 	cest->status |= FFCLOCK_STA_UNSYNC;
768 
769 	ffth->tick_ffcount = fftimehands->tick_ffcount;
770 	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
771 	ffth->tick_time = fftimehands->tick_time;
772 	ffth->period_lerp = cest->period;
773 
774 	/* Do not lock but ignore next update from synchronization daemon. */
775 	ffclock_updated--;
776 
777 	if (++ogen == 0)
778 		ogen = 1;
779 	ffth->gen = ogen;
780 	fftimehands = ffth;
781 }
782 
783 /*
784  * Retrieve feed-forward counter and time of last kernel tick.
785  */
786 void
787 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
788 {
789 	struct fftimehands *ffth;
790 	uint8_t gen;
791 
792 	/*
793 	 * No locking but check generation has not changed. Also need to make
794 	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
795 	 */
796 	do {
797 		ffth = fftimehands;
798 		gen = ffth->gen;
799 		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
800 			*bt = ffth->tick_time_lerp;
801 		else
802 			*bt = ffth->tick_time;
803 		*ffcount = ffth->tick_ffcount;
804 	} while (gen == 0 || gen != ffth->gen);
805 }
806 
807 /*
808  * Absolute clock conversion. Low level function to convert ffcounter to
809  * bintime. The ffcounter is converted using the current ffclock period estimate
810  * or the "interpolated period" to ensure monotonicity.
811  * NOTE: this conversion may have been deferred, and the clock updated since the
812  * hardware counter has been read.
813  */
814 void
815 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
816 {
817 	struct fftimehands *ffth;
818 	struct bintime bt2;
819 	ffcounter ffdelta;
820 	uint8_t gen;
821 
822 	/*
823 	 * No locking but check generation has not changed. Also need to make
824 	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
825 	 */
826 	do {
827 		ffth = fftimehands;
828 		gen = ffth->gen;
829 		if (ffcount > ffth->tick_ffcount)
830 			ffdelta = ffcount - ffth->tick_ffcount;
831 		else
832 			ffdelta = ffth->tick_ffcount - ffcount;
833 
834 		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
835 			*bt = ffth->tick_time_lerp;
836 			ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
837 		} else {
838 			*bt = ffth->tick_time;
839 			ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
840 		}
841 
842 		if (ffcount > ffth->tick_ffcount)
843 			bintime_add(bt, &bt2);
844 		else
845 			bintime_sub(bt, &bt2);
846 	} while (gen == 0 || gen != ffth->gen);
847 }
848 
849 /*
850  * Difference clock conversion.
851  * Low level function to Convert a time interval measured in RAW counter units
852  * into bintime. The difference clock allows measuring small intervals much more
853  * reliably than the absolute clock.
854  */
855 void
856 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
857 {
858 	struct fftimehands *ffth;
859 	uint8_t gen;
860 
861 	/* No locking but check generation has not changed. */
862 	do {
863 		ffth = fftimehands;
864 		gen = ffth->gen;
865 		ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
866 	} while (gen == 0 || gen != ffth->gen);
867 }
868 
869 /*
870  * Access to current ffcounter value.
871  */
872 void
873 ffclock_read_counter(ffcounter *ffcount)
874 {
875 	struct timehands *th;
876 	struct fftimehands *ffth;
877 	unsigned int gen, delta;
878 
879 	/*
880 	 * ffclock_windup() called from tc_windup(), safe to rely on
881 	 * th->th_generation only, for correct delta and ffcounter.
882 	 */
883 	do {
884 		th = timehands;
885 		gen = th->th_generation;
886 		ffth = fftimehands;
887 		delta = tc_delta(th);
888 		*ffcount = ffth->tick_ffcount;
889 	} while (gen == 0 || gen != th->th_generation);
890 
891 	*ffcount += delta;
892 }
893 
894 void
895 binuptime(struct bintime *bt)
896 {
897 
898 	binuptime_fromclock(bt, sysclock_active);
899 }
900 
901 void
902 nanouptime(struct timespec *tsp)
903 {
904 
905 	nanouptime_fromclock(tsp, sysclock_active);
906 }
907 
908 void
909 microuptime(struct timeval *tvp)
910 {
911 
912 	microuptime_fromclock(tvp, sysclock_active);
913 }
914 
915 void
916 bintime(struct bintime *bt)
917 {
918 
919 	bintime_fromclock(bt, sysclock_active);
920 }
921 
922 void
923 nanotime(struct timespec *tsp)
924 {
925 
926 	nanotime_fromclock(tsp, sysclock_active);
927 }
928 
929 void
930 microtime(struct timeval *tvp)
931 {
932 
933 	microtime_fromclock(tvp, sysclock_active);
934 }
935 
936 void
937 getbinuptime(struct bintime *bt)
938 {
939 
940 	getbinuptime_fromclock(bt, sysclock_active);
941 }
942 
943 void
944 getnanouptime(struct timespec *tsp)
945 {
946 
947 	getnanouptime_fromclock(tsp, sysclock_active);
948 }
949 
950 void
951 getmicrouptime(struct timeval *tvp)
952 {
953 
954 	getmicrouptime_fromclock(tvp, sysclock_active);
955 }
956 
957 void
958 getbintime(struct bintime *bt)
959 {
960 
961 	getbintime_fromclock(bt, sysclock_active);
962 }
963 
964 void
965 getnanotime(struct timespec *tsp)
966 {
967 
968 	getnanotime_fromclock(tsp, sysclock_active);
969 }
970 
971 void
972 getmicrotime(struct timeval *tvp)
973 {
974 
975 	getmicrouptime_fromclock(tvp, sysclock_active);
976 }
977 
978 #endif /* FFCLOCK */
979 
980 /*
981  * This is a clone of getnanotime and used for walltimestamps.
982  * The dtrace_ prefix prevents fbt from creating probes for
983  * it so walltimestamp can be safely used in all fbt probes.
984  */
985 void
986 dtrace_getnanotime(struct timespec *tsp)
987 {
988 	struct timehands *th;
989 	u_int gen;
990 
991 	do {
992 		th = timehands;
993 		gen = th->th_generation;
994 		*tsp = th->th_nanotime;
995 	} while (gen == 0 || gen != th->th_generation);
996 }
997 
998 /*
999  * System clock currently providing time to the system. Modifiable via sysctl
1000  * when the FFCLOCK option is defined.
1001  */
1002 int sysclock_active = SYSCLOCK_FBCK;
1003 
1004 /* Internal NTP status and error estimates. */
1005 extern int time_status;
1006 extern long time_esterror;
1007 
1008 /*
1009  * Take a snapshot of sysclock data which can be used to compare system clocks
1010  * and generate timestamps after the fact.
1011  */
1012 void
1013 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1014 {
1015 	struct fbclock_info *fbi;
1016 	struct timehands *th;
1017 	struct bintime bt;
1018 	unsigned int delta, gen;
1019 #ifdef FFCLOCK
1020 	ffcounter ffcount;
1021 	struct fftimehands *ffth;
1022 	struct ffclock_info *ffi;
1023 	struct ffclock_estimate cest;
1024 
1025 	ffi = &clock_snap->ff_info;
1026 #endif
1027 
1028 	fbi = &clock_snap->fb_info;
1029 	delta = 0;
1030 
1031 	do {
1032 		th = timehands;
1033 		gen = th->th_generation;
1034 		fbi->th_scale = th->th_scale;
1035 		fbi->tick_time = th->th_offset;
1036 #ifdef FFCLOCK
1037 		ffth = fftimehands;
1038 		ffi->tick_time = ffth->tick_time_lerp;
1039 		ffi->tick_time_lerp = ffth->tick_time_lerp;
1040 		ffi->period = ffth->cest.period;
1041 		ffi->period_lerp = ffth->period_lerp;
1042 		clock_snap->ffcount = ffth->tick_ffcount;
1043 		cest = ffth->cest;
1044 #endif
1045 		if (!fast)
1046 			delta = tc_delta(th);
1047 	} while (gen == 0 || gen != th->th_generation);
1048 
1049 	clock_snap->delta = delta;
1050 	clock_snap->sysclock_active = sysclock_active;
1051 
1052 	/* Record feedback clock status and error. */
1053 	clock_snap->fb_info.status = time_status;
1054 	/* XXX: Very crude estimate of feedback clock error. */
1055 	bt.sec = time_esterror / 1000000;
1056 	bt.frac = ((time_esterror - bt.sec) * 1000000) *
1057 	    (uint64_t)18446744073709ULL;
1058 	clock_snap->fb_info.error = bt;
1059 
1060 #ifdef FFCLOCK
1061 	if (!fast)
1062 		clock_snap->ffcount += delta;
1063 
1064 	/* Record feed-forward clock leap second adjustment. */
1065 	ffi->leapsec_adjustment = cest.leapsec_total;
1066 	if (clock_snap->ffcount > cest.leapsec_next)
1067 		ffi->leapsec_adjustment -= cest.leapsec;
1068 
1069 	/* Record feed-forward clock status and error. */
1070 	clock_snap->ff_info.status = cest.status;
1071 	ffcount = clock_snap->ffcount - cest.update_ffcount;
1072 	ffclock_convert_delta(ffcount, cest.period, &bt);
1073 	/* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1074 	bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1075 	/* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1076 	bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1077 	clock_snap->ff_info.error = bt;
1078 #endif
1079 }
1080 
1081 /*
1082  * Convert a sysclock snapshot into a struct bintime based on the specified
1083  * clock source and flags.
1084  */
1085 int
1086 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1087     int whichclock, uint32_t flags)
1088 {
1089 #ifdef FFCLOCK
1090 	struct bintime bt2;
1091 	uint64_t period;
1092 #endif
1093 
1094 	switch (whichclock) {
1095 	case SYSCLOCK_FBCK:
1096 		*bt = cs->fb_info.tick_time;
1097 
1098 		/* If snapshot was created with !fast, delta will be >0. */
1099 		if (cs->delta > 0)
1100 			bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1101 
1102 		if ((flags & FBCLOCK_UPTIME) == 0)
1103 			bintime_add(bt, &boottimebin);
1104 		break;
1105 #ifdef FFCLOCK
1106 	case SYSCLOCK_FFWD:
1107 		if (flags & FFCLOCK_LERP) {
1108 			*bt = cs->ff_info.tick_time_lerp;
1109 			period = cs->ff_info.period_lerp;
1110 		} else {
1111 			*bt = cs->ff_info.tick_time;
1112 			period = cs->ff_info.period;
1113 		}
1114 
1115 		/* If snapshot was created with !fast, delta will be >0. */
1116 		if (cs->delta > 0) {
1117 			ffclock_convert_delta(cs->delta, period, &bt2);
1118 			bintime_add(bt, &bt2);
1119 		}
1120 
1121 		/* Leap second adjustment. */
1122 		if (flags & FFCLOCK_LEAPSEC)
1123 			bt->sec -= cs->ff_info.leapsec_adjustment;
1124 
1125 		/* Boot time adjustment, for uptime/monotonic clocks. */
1126 		if (flags & FFCLOCK_UPTIME)
1127 			bintime_sub(bt, &ffclock_boottime);
1128 		break;
1129 #endif
1130 	default:
1131 		return (EINVAL);
1132 		break;
1133 	}
1134 
1135 	return (0);
1136 }
1137 
1138 /*
1139  * Initialize a new timecounter and possibly use it.
1140  */
1141 void
1142 tc_init(struct timecounter *tc)
1143 {
1144 	u_int u;
1145 	struct sysctl_oid *tc_root;
1146 
1147 	u = tc->tc_frequency / tc->tc_counter_mask;
1148 	/* XXX: We need some margin here, 10% is a guess */
1149 	u *= 11;
1150 	u /= 10;
1151 	if (u > hz && tc->tc_quality >= 0) {
1152 		tc->tc_quality = -2000;
1153 		if (bootverbose) {
1154 			printf("Timecounter \"%s\" frequency %ju Hz",
1155 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
1156 			printf(" -- Insufficient hz, needs at least %u\n", u);
1157 		}
1158 	} else if (tc->tc_quality >= 0 || bootverbose) {
1159 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1160 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
1161 		    tc->tc_quality);
1162 	}
1163 
1164 	tc->tc_next = timecounters;
1165 	timecounters = tc;
1166 	/*
1167 	 * Set up sysctl tree for this counter.
1168 	 */
1169 	tc_root = SYSCTL_ADD_NODE(NULL,
1170 	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1171 	    CTLFLAG_RW, 0, "timecounter description");
1172 	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1173 	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1174 	    "mask for implemented bits");
1175 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1176 	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1177 	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
1178 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1179 	    "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1180 	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1181 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1182 	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1183 	    "goodness of time counter");
1184 	/*
1185 	 * Never automatically use a timecounter with negative quality.
1186 	 * Even though we run on the dummy counter, switching here may be
1187 	 * worse since this timecounter may not be monotonous.
1188 	 */
1189 	if (tc->tc_quality < 0)
1190 		return;
1191 	if (tc->tc_quality < timecounter->tc_quality)
1192 		return;
1193 	if (tc->tc_quality == timecounter->tc_quality &&
1194 	    tc->tc_frequency < timecounter->tc_frequency)
1195 		return;
1196 	(void)tc->tc_get_timecount(tc);
1197 	(void)tc->tc_get_timecount(tc);
1198 	timecounter = tc;
1199 }
1200 
1201 /* Report the frequency of the current timecounter. */
1202 uint64_t
1203 tc_getfrequency(void)
1204 {
1205 
1206 	return (timehands->th_counter->tc_frequency);
1207 }
1208 
1209 /*
1210  * Step our concept of UTC.  This is done by modifying our estimate of
1211  * when we booted.
1212  * XXX: not locked.
1213  */
1214 void
1215 tc_setclock(struct timespec *ts)
1216 {
1217 	struct timespec tbef, taft;
1218 	struct bintime bt, bt2;
1219 
1220 	cpu_tick_calibrate(1);
1221 	nanotime(&tbef);
1222 	timespec2bintime(ts, &bt);
1223 	binuptime(&bt2);
1224 	bintime_sub(&bt, &bt2);
1225 	bintime_add(&bt2, &boottimebin);
1226 	boottimebin = bt;
1227 	bintime2timeval(&bt, &boottime);
1228 
1229 	/* XXX fiddle all the little crinkly bits around the fiords... */
1230 	tc_windup();
1231 	nanotime(&taft);
1232 	if (timestepwarnings) {
1233 		log(LOG_INFO,
1234 		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1235 		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1236 		    (intmax_t)taft.tv_sec, taft.tv_nsec,
1237 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
1238 	}
1239 	cpu_tick_calibrate(1);
1240 }
1241 
1242 /*
1243  * Initialize the next struct timehands in the ring and make
1244  * it the active timehands.  Along the way we might switch to a different
1245  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1246  */
1247 static void
1248 tc_windup(void)
1249 {
1250 	struct bintime bt;
1251 	struct timehands *th, *tho;
1252 	uint64_t scale;
1253 	u_int delta, ncount, ogen;
1254 	int i;
1255 	time_t t;
1256 
1257 	/*
1258 	 * Make the next timehands a copy of the current one, but do not
1259 	 * overwrite the generation or next pointer.  While we update
1260 	 * the contents, the generation must be zero.
1261 	 */
1262 	tho = timehands;
1263 	th = tho->th_next;
1264 	ogen = th->th_generation;
1265 	th->th_generation = 0;
1266 	bcopy(tho, th, offsetof(struct timehands, th_generation));
1267 
1268 	/*
1269 	 * Capture a timecounter delta on the current timecounter and if
1270 	 * changing timecounters, a counter value from the new timecounter.
1271 	 * Update the offset fields accordingly.
1272 	 */
1273 	delta = tc_delta(th);
1274 	if (th->th_counter != timecounter)
1275 		ncount = timecounter->tc_get_timecount(timecounter);
1276 	else
1277 		ncount = 0;
1278 #ifdef FFCLOCK
1279 	ffclock_windup(delta);
1280 #endif
1281 	th->th_offset_count += delta;
1282 	th->th_offset_count &= th->th_counter->tc_counter_mask;
1283 	while (delta > th->th_counter->tc_frequency) {
1284 		/* Eat complete unadjusted seconds. */
1285 		delta -= th->th_counter->tc_frequency;
1286 		th->th_offset.sec++;
1287 	}
1288 	if ((delta > th->th_counter->tc_frequency / 2) &&
1289 	    (th->th_scale * delta < ((uint64_t)1 << 63))) {
1290 		/* The product th_scale * delta just barely overflows. */
1291 		th->th_offset.sec++;
1292 	}
1293 	bintime_addx(&th->th_offset, th->th_scale * delta);
1294 
1295 	/*
1296 	 * Hardware latching timecounters may not generate interrupts on
1297 	 * PPS events, so instead we poll them.  There is a finite risk that
1298 	 * the hardware might capture a count which is later than the one we
1299 	 * got above, and therefore possibly in the next NTP second which might
1300 	 * have a different rate than the current NTP second.  It doesn't
1301 	 * matter in practice.
1302 	 */
1303 	if (tho->th_counter->tc_poll_pps)
1304 		tho->th_counter->tc_poll_pps(tho->th_counter);
1305 
1306 	/*
1307 	 * Deal with NTP second processing.  The for loop normally
1308 	 * iterates at most once, but in extreme situations it might
1309 	 * keep NTP sane if timeouts are not run for several seconds.
1310 	 * At boot, the time step can be large when the TOD hardware
1311 	 * has been read, so on really large steps, we call
1312 	 * ntp_update_second only twice.  We need to call it twice in
1313 	 * case we missed a leap second.
1314 	 */
1315 	bt = th->th_offset;
1316 	bintime_add(&bt, &boottimebin);
1317 	i = bt.sec - tho->th_microtime.tv_sec;
1318 	if (i > LARGE_STEP)
1319 		i = 2;
1320 	for (; i > 0; i--) {
1321 		t = bt.sec;
1322 		ntp_update_second(&th->th_adjustment, &bt.sec);
1323 		if (bt.sec != t)
1324 			boottimebin.sec += bt.sec - t;
1325 	}
1326 	/* Update the UTC timestamps used by the get*() functions. */
1327 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
1328 	bintime2timeval(&bt, &th->th_microtime);
1329 	bintime2timespec(&bt, &th->th_nanotime);
1330 
1331 	/* Now is a good time to change timecounters. */
1332 	if (th->th_counter != timecounter) {
1333 #ifndef __arm__
1334 		if ((timecounter->tc_flags & TC_FLAGS_C3STOP) != 0)
1335 			cpu_disable_deep_sleep++;
1336 		if ((th->th_counter->tc_flags & TC_FLAGS_C3STOP) != 0)
1337 			cpu_disable_deep_sleep--;
1338 #endif
1339 		th->th_counter = timecounter;
1340 		th->th_offset_count = ncount;
1341 		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1342 		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1343 #ifdef FFCLOCK
1344 		ffclock_change_tc(th);
1345 #endif
1346 	}
1347 
1348 	/*-
1349 	 * Recalculate the scaling factor.  We want the number of 1/2^64
1350 	 * fractions of a second per period of the hardware counter, taking
1351 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1352 	 * processing provides us with.
1353 	 *
1354 	 * The th_adjustment is nanoseconds per second with 32 bit binary
1355 	 * fraction and we want 64 bit binary fraction of second:
1356 	 *
1357 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
1358 	 *
1359 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1360 	 * we can only multiply by about 850 without overflowing, that
1361 	 * leaves no suitably precise fractions for multiply before divide.
1362 	 *
1363 	 * Divide before multiply with a fraction of 2199/512 results in a
1364 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
1365 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1366  	 *
1367 	 * We happily sacrifice the lowest of the 64 bits of our result
1368 	 * to the goddess of code clarity.
1369 	 *
1370 	 */
1371 	scale = (uint64_t)1 << 63;
1372 	scale += (th->th_adjustment / 1024) * 2199;
1373 	scale /= th->th_counter->tc_frequency;
1374 	th->th_scale = scale * 2;
1375 
1376 	/*
1377 	 * Now that the struct timehands is again consistent, set the new
1378 	 * generation number, making sure to not make it zero.
1379 	 */
1380 	if (++ogen == 0)
1381 		ogen = 1;
1382 	th->th_generation = ogen;
1383 
1384 	/* Go live with the new struct timehands. */
1385 #ifdef FFCLOCK
1386 	switch (sysclock_active) {
1387 	case SYSCLOCK_FBCK:
1388 #endif
1389 		time_second = th->th_microtime.tv_sec;
1390 		time_uptime = th->th_offset.sec;
1391 #ifdef FFCLOCK
1392 		break;
1393 	case SYSCLOCK_FFWD:
1394 		time_second = fftimehands->tick_time_lerp.sec;
1395 		time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1396 		break;
1397 	}
1398 #endif
1399 
1400 	timehands = th;
1401 	timekeep_push_vdso();
1402 }
1403 
1404 /* Report or change the active timecounter hardware. */
1405 static int
1406 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1407 {
1408 	char newname[32];
1409 	struct timecounter *newtc, *tc;
1410 	int error;
1411 
1412 	tc = timecounter;
1413 	strlcpy(newname, tc->tc_name, sizeof(newname));
1414 
1415 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1416 	if (error != 0 || req->newptr == NULL ||
1417 	    strcmp(newname, tc->tc_name) == 0)
1418 		return (error);
1419 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1420 		if (strcmp(newname, newtc->tc_name) != 0)
1421 			continue;
1422 
1423 		/* Warm up new timecounter. */
1424 		(void)newtc->tc_get_timecount(newtc);
1425 		(void)newtc->tc_get_timecount(newtc);
1426 
1427 		timecounter = newtc;
1428 		timekeep_push_vdso();
1429 		return (0);
1430 	}
1431 	return (EINVAL);
1432 }
1433 
1434 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1435     0, 0, sysctl_kern_timecounter_hardware, "A",
1436     "Timecounter hardware selected");
1437 
1438 
1439 /* Report or change the active timecounter hardware. */
1440 static int
1441 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1442 {
1443 	char buf[32], *spc;
1444 	struct timecounter *tc;
1445 	int error;
1446 
1447 	spc = "";
1448 	error = 0;
1449 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
1450 		sprintf(buf, "%s%s(%d)",
1451 		    spc, tc->tc_name, tc->tc_quality);
1452 		error = SYSCTL_OUT(req, buf, strlen(buf));
1453 		spc = " ";
1454 	}
1455 	return (error);
1456 }
1457 
1458 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1459     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1460 
1461 /*
1462  * RFC 2783 PPS-API implementation.
1463  */
1464 
1465 static int
1466 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1467 {
1468 	int err, timo;
1469 	pps_seq_t aseq, cseq;
1470 	struct timeval tv;
1471 
1472 	if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1473 		return (EINVAL);
1474 
1475 	/*
1476 	 * If no timeout is requested, immediately return whatever values were
1477 	 * most recently captured.  If timeout seconds is -1, that's a request
1478 	 * to block without a timeout.  WITNESS won't let us sleep forever
1479 	 * without a lock (we really don't need a lock), so just repeatedly
1480 	 * sleep a long time.
1481 	 */
1482 	if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1483 		if (fapi->timeout.tv_sec == -1)
1484 			timo = 0x7fffffff;
1485 		else {
1486 			tv.tv_sec = fapi->timeout.tv_sec;
1487 			tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1488 			timo = tvtohz(&tv);
1489 		}
1490 		aseq = pps->ppsinfo.assert_sequence;
1491 		cseq = pps->ppsinfo.clear_sequence;
1492 		while (aseq == pps->ppsinfo.assert_sequence &&
1493 		    cseq == pps->ppsinfo.clear_sequence) {
1494 			err = tsleep(pps, PCATCH, "ppsfch", timo);
1495 			if (err == EWOULDBLOCK && fapi->timeout.tv_sec == -1) {
1496 				continue;
1497 			} else if (err != 0) {
1498 				return (err);
1499 			}
1500 		}
1501 	}
1502 
1503 	pps->ppsinfo.current_mode = pps->ppsparam.mode;
1504 	fapi->pps_info_buf = pps->ppsinfo;
1505 
1506 	return (0);
1507 }
1508 
1509 int
1510 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1511 {
1512 	pps_params_t *app;
1513 	struct pps_fetch_args *fapi;
1514 #ifdef FFCLOCK
1515 	struct pps_fetch_ffc_args *fapi_ffc;
1516 #endif
1517 #ifdef PPS_SYNC
1518 	struct pps_kcbind_args *kapi;
1519 #endif
1520 
1521 	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1522 	switch (cmd) {
1523 	case PPS_IOC_CREATE:
1524 		return (0);
1525 	case PPS_IOC_DESTROY:
1526 		return (0);
1527 	case PPS_IOC_SETPARAMS:
1528 		app = (pps_params_t *)data;
1529 		if (app->mode & ~pps->ppscap)
1530 			return (EINVAL);
1531 #ifdef FFCLOCK
1532 		/* Ensure only a single clock is selected for ffc timestamp. */
1533 		if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1534 			return (EINVAL);
1535 #endif
1536 		pps->ppsparam = *app;
1537 		return (0);
1538 	case PPS_IOC_GETPARAMS:
1539 		app = (pps_params_t *)data;
1540 		*app = pps->ppsparam;
1541 		app->api_version = PPS_API_VERS_1;
1542 		return (0);
1543 	case PPS_IOC_GETCAP:
1544 		*(int*)data = pps->ppscap;
1545 		return (0);
1546 	case PPS_IOC_FETCH:
1547 		fapi = (struct pps_fetch_args *)data;
1548 		return (pps_fetch(fapi, pps));
1549 #ifdef FFCLOCK
1550 	case PPS_IOC_FETCH_FFCOUNTER:
1551 		fapi_ffc = (struct pps_fetch_ffc_args *)data;
1552 		if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1553 		    PPS_TSFMT_TSPEC)
1554 			return (EINVAL);
1555 		if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1556 			return (EOPNOTSUPP);
1557 		pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1558 		fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1559 		/* Overwrite timestamps if feedback clock selected. */
1560 		switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1561 		case PPS_TSCLK_FBCK:
1562 			fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1563 			    pps->ppsinfo.assert_timestamp;
1564 			fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1565 			    pps->ppsinfo.clear_timestamp;
1566 			break;
1567 		case PPS_TSCLK_FFWD:
1568 			break;
1569 		default:
1570 			break;
1571 		}
1572 		return (0);
1573 #endif /* FFCLOCK */
1574 	case PPS_IOC_KCBIND:
1575 #ifdef PPS_SYNC
1576 		kapi = (struct pps_kcbind_args *)data;
1577 		/* XXX Only root should be able to do this */
1578 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1579 			return (EINVAL);
1580 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1581 			return (EINVAL);
1582 		if (kapi->edge & ~pps->ppscap)
1583 			return (EINVAL);
1584 		pps->kcmode = kapi->edge;
1585 		return (0);
1586 #else
1587 		return (EOPNOTSUPP);
1588 #endif
1589 	default:
1590 		return (ENOIOCTL);
1591 	}
1592 }
1593 
1594 void
1595 pps_init(struct pps_state *pps)
1596 {
1597 	pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1598 	if (pps->ppscap & PPS_CAPTUREASSERT)
1599 		pps->ppscap |= PPS_OFFSETASSERT;
1600 	if (pps->ppscap & PPS_CAPTURECLEAR)
1601 		pps->ppscap |= PPS_OFFSETCLEAR;
1602 #ifdef FFCLOCK
1603 	pps->ppscap |= PPS_TSCLK_MASK;
1604 #endif
1605 }
1606 
1607 void
1608 pps_capture(struct pps_state *pps)
1609 {
1610 	struct timehands *th;
1611 
1612 	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1613 	th = timehands;
1614 	pps->capgen = th->th_generation;
1615 	pps->capth = th;
1616 #ifdef FFCLOCK
1617 	pps->capffth = fftimehands;
1618 #endif
1619 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1620 	if (pps->capgen != th->th_generation)
1621 		pps->capgen = 0;
1622 }
1623 
1624 void
1625 pps_event(struct pps_state *pps, int event)
1626 {
1627 	struct bintime bt;
1628 	struct timespec ts, *tsp, *osp;
1629 	u_int tcount, *pcount;
1630 	int foff, fhard;
1631 	pps_seq_t *pseq;
1632 #ifdef FFCLOCK
1633 	struct timespec *tsp_ffc;
1634 	pps_seq_t *pseq_ffc;
1635 	ffcounter *ffcount;
1636 #endif
1637 
1638 	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1639 	/* If the timecounter was wound up underneath us, bail out. */
1640 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
1641 		return;
1642 
1643 	/* Things would be easier with arrays. */
1644 	if (event == PPS_CAPTUREASSERT) {
1645 		tsp = &pps->ppsinfo.assert_timestamp;
1646 		osp = &pps->ppsparam.assert_offset;
1647 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1648 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1649 		pcount = &pps->ppscount[0];
1650 		pseq = &pps->ppsinfo.assert_sequence;
1651 #ifdef FFCLOCK
1652 		ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1653 		tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1654 		pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1655 #endif
1656 	} else {
1657 		tsp = &pps->ppsinfo.clear_timestamp;
1658 		osp = &pps->ppsparam.clear_offset;
1659 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1660 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1661 		pcount = &pps->ppscount[1];
1662 		pseq = &pps->ppsinfo.clear_sequence;
1663 #ifdef FFCLOCK
1664 		ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1665 		tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1666 		pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1667 #endif
1668 	}
1669 
1670 	/*
1671 	 * If the timecounter changed, we cannot compare the count values, so
1672 	 * we have to drop the rest of the PPS-stuff until the next event.
1673 	 */
1674 	if (pps->ppstc != pps->capth->th_counter) {
1675 		pps->ppstc = pps->capth->th_counter;
1676 		*pcount = pps->capcount;
1677 		pps->ppscount[2] = pps->capcount;
1678 		return;
1679 	}
1680 
1681 	/* Convert the count to a timespec. */
1682 	tcount = pps->capcount - pps->capth->th_offset_count;
1683 	tcount &= pps->capth->th_counter->tc_counter_mask;
1684 	bt = pps->capth->th_offset;
1685 	bintime_addx(&bt, pps->capth->th_scale * tcount);
1686 	bintime_add(&bt, &boottimebin);
1687 	bintime2timespec(&bt, &ts);
1688 
1689 	/* If the timecounter was wound up underneath us, bail out. */
1690 	if (pps->capgen != pps->capth->th_generation)
1691 		return;
1692 
1693 	*pcount = pps->capcount;
1694 	(*pseq)++;
1695 	*tsp = ts;
1696 
1697 	if (foff) {
1698 		timespecadd(tsp, osp);
1699 		if (tsp->tv_nsec < 0) {
1700 			tsp->tv_nsec += 1000000000;
1701 			tsp->tv_sec -= 1;
1702 		}
1703 	}
1704 
1705 #ifdef FFCLOCK
1706 	*ffcount = pps->capffth->tick_ffcount + tcount;
1707 	bt = pps->capffth->tick_time;
1708 	ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1709 	bintime_add(&bt, &pps->capffth->tick_time);
1710 	bintime2timespec(&bt, &ts);
1711 	(*pseq_ffc)++;
1712 	*tsp_ffc = ts;
1713 #endif
1714 
1715 #ifdef PPS_SYNC
1716 	if (fhard) {
1717 		uint64_t scale;
1718 
1719 		/*
1720 		 * Feed the NTP PLL/FLL.
1721 		 * The FLL wants to know how many (hardware) nanoseconds
1722 		 * elapsed since the previous event.
1723 		 */
1724 		tcount = pps->capcount - pps->ppscount[2];
1725 		pps->ppscount[2] = pps->capcount;
1726 		tcount &= pps->capth->th_counter->tc_counter_mask;
1727 		scale = (uint64_t)1 << 63;
1728 		scale /= pps->capth->th_counter->tc_frequency;
1729 		scale *= 2;
1730 		bt.sec = 0;
1731 		bt.frac = 0;
1732 		bintime_addx(&bt, scale * tcount);
1733 		bintime2timespec(&bt, &ts);
1734 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1735 	}
1736 #endif
1737 
1738 	/* Wakeup anyone sleeping in pps_fetch().  */
1739 	wakeup(pps);
1740 }
1741 
1742 /*
1743  * Timecounters need to be updated every so often to prevent the hardware
1744  * counter from overflowing.  Updating also recalculates the cached values
1745  * used by the get*() family of functions, so their precision depends on
1746  * the update frequency.
1747  */
1748 
1749 static int tc_tick;
1750 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1751     "Approximate number of hardclock ticks in a millisecond");
1752 
1753 void
1754 tc_ticktock(int cnt)
1755 {
1756 	static int count;
1757 
1758 	count += cnt;
1759 	if (count < tc_tick)
1760 		return;
1761 	count = 0;
1762 	tc_windup();
1763 }
1764 
1765 static void __inline
1766 tc_adjprecision(void)
1767 {
1768 	int t;
1769 
1770 	if (tc_timepercentage > 0) {
1771 		t = (99 + tc_timepercentage) / tc_timepercentage;
1772 		tc_precexp = fls(t + (t >> 1)) - 1;
1773 		FREQ2BT(hz / tc_tick, &bt_timethreshold);
1774 		FREQ2BT(hz, &bt_tickthreshold);
1775 		bintime_shift(&bt_timethreshold, tc_precexp);
1776 		bintime_shift(&bt_tickthreshold, tc_precexp);
1777 	} else {
1778 		tc_precexp = 31;
1779 		bt_timethreshold.sec = INT_MAX;
1780 		bt_timethreshold.frac = ~(uint64_t)0;
1781 		bt_tickthreshold = bt_timethreshold;
1782 	}
1783 	sbt_timethreshold = bttosbt(bt_timethreshold);
1784 	sbt_tickthreshold = bttosbt(bt_tickthreshold);
1785 }
1786 
1787 static int
1788 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1789 {
1790 	int error, val;
1791 
1792 	val = tc_timepercentage;
1793 	error = sysctl_handle_int(oidp, &val, 0, req);
1794 	if (error != 0 || req->newptr == NULL)
1795 		return (error);
1796 	tc_timepercentage = val;
1797 	tc_adjprecision();
1798 	return (0);
1799 }
1800 
1801 static void
1802 inittimecounter(void *dummy)
1803 {
1804 	u_int p;
1805 	int tick_rate;
1806 
1807 	/*
1808 	 * Set the initial timeout to
1809 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
1810 	 * People should probably not use the sysctl to set the timeout
1811 	 * to smaller than its inital value, since that value is the
1812 	 * smallest reasonable one.  If they want better timestamps they
1813 	 * should use the non-"get"* functions.
1814 	 */
1815 	if (hz > 1000)
1816 		tc_tick = (hz + 500) / 1000;
1817 	else
1818 		tc_tick = 1;
1819 	tc_adjprecision();
1820 	FREQ2BT(hz, &tick_bt);
1821 	tick_sbt = bttosbt(tick_bt);
1822 	tick_rate = hz / tc_tick;
1823 	FREQ2BT(tick_rate, &tc_tick_bt);
1824 	tc_tick_sbt = bttosbt(tc_tick_bt);
1825 	p = (tc_tick * 1000000) / hz;
1826 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1827 
1828 #ifdef FFCLOCK
1829 	ffclock_init();
1830 #endif
1831 	/* warm up new timecounter (again) and get rolling. */
1832 	(void)timecounter->tc_get_timecount(timecounter);
1833 	(void)timecounter->tc_get_timecount(timecounter);
1834 	tc_windup();
1835 }
1836 
1837 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1838 
1839 /* Cpu tick handling -------------------------------------------------*/
1840 
1841 static int cpu_tick_variable;
1842 static uint64_t	cpu_tick_frequency;
1843 
1844 static uint64_t
1845 tc_cpu_ticks(void)
1846 {
1847 	static uint64_t base;
1848 	static unsigned last;
1849 	unsigned u;
1850 	struct timecounter *tc;
1851 
1852 	tc = timehands->th_counter;
1853 	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
1854 	if (u < last)
1855 		base += (uint64_t)tc->tc_counter_mask + 1;
1856 	last = u;
1857 	return (u + base);
1858 }
1859 
1860 void
1861 cpu_tick_calibration(void)
1862 {
1863 	static time_t last_calib;
1864 
1865 	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
1866 		cpu_tick_calibrate(0);
1867 		last_calib = time_uptime;
1868 	}
1869 }
1870 
1871 /*
1872  * This function gets called every 16 seconds on only one designated
1873  * CPU in the system from hardclock() via cpu_tick_calibration()().
1874  *
1875  * Whenever the real time clock is stepped we get called with reset=1
1876  * to make sure we handle suspend/resume and similar events correctly.
1877  */
1878 
1879 static void
1880 cpu_tick_calibrate(int reset)
1881 {
1882 	static uint64_t c_last;
1883 	uint64_t c_this, c_delta;
1884 	static struct bintime  t_last;
1885 	struct bintime t_this, t_delta;
1886 	uint32_t divi;
1887 
1888 	if (reset) {
1889 		/* The clock was stepped, abort & reset */
1890 		t_last.sec = 0;
1891 		return;
1892 	}
1893 
1894 	/* we don't calibrate fixed rate cputicks */
1895 	if (!cpu_tick_variable)
1896 		return;
1897 
1898 	getbinuptime(&t_this);
1899 	c_this = cpu_ticks();
1900 	if (t_last.sec != 0) {
1901 		c_delta = c_this - c_last;
1902 		t_delta = t_this;
1903 		bintime_sub(&t_delta, &t_last);
1904 		/*
1905 		 * Headroom:
1906 		 * 	2^(64-20) / 16[s] =
1907 		 * 	2^(44) / 16[s] =
1908 		 * 	17.592.186.044.416 / 16 =
1909 		 * 	1.099.511.627.776 [Hz]
1910 		 */
1911 		divi = t_delta.sec << 20;
1912 		divi |= t_delta.frac >> (64 - 20);
1913 		c_delta <<= 20;
1914 		c_delta /= divi;
1915 		if (c_delta > cpu_tick_frequency) {
1916 			if (0 && bootverbose)
1917 				printf("cpu_tick increased to %ju Hz\n",
1918 				    c_delta);
1919 			cpu_tick_frequency = c_delta;
1920 		}
1921 	}
1922 	c_last = c_this;
1923 	t_last = t_this;
1924 }
1925 
1926 void
1927 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
1928 {
1929 
1930 	if (func == NULL) {
1931 		cpu_ticks = tc_cpu_ticks;
1932 	} else {
1933 		cpu_tick_frequency = freq;
1934 		cpu_tick_variable = var;
1935 		cpu_ticks = func;
1936 	}
1937 }
1938 
1939 uint64_t
1940 cpu_tickrate(void)
1941 {
1942 
1943 	if (cpu_ticks == tc_cpu_ticks)
1944 		return (tc_getfrequency());
1945 	return (cpu_tick_frequency);
1946 }
1947 
1948 /*
1949  * We need to be slightly careful converting cputicks to microseconds.
1950  * There is plenty of margin in 64 bits of microseconds (half a million
1951  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
1952  * before divide conversion (to retain precision) we find that the
1953  * margin shrinks to 1.5 hours (one millionth of 146y).
1954  * With a three prong approach we never lose significant bits, no
1955  * matter what the cputick rate and length of timeinterval is.
1956  */
1957 
1958 uint64_t
1959 cputick2usec(uint64_t tick)
1960 {
1961 
1962 	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
1963 		return (tick / (cpu_tickrate() / 1000000LL));
1964 	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
1965 		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
1966 	else
1967 		return ((tick * 1000000LL) / cpu_tickrate());
1968 }
1969 
1970 cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
1971 
1972 static int vdso_th_enable = 1;
1973 static int
1974 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
1975 {
1976 	int old_vdso_th_enable, error;
1977 
1978 	old_vdso_th_enable = vdso_th_enable;
1979 	error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
1980 	if (error != 0)
1981 		return (error);
1982 	vdso_th_enable = old_vdso_th_enable;
1983 	timekeep_push_vdso();
1984 	return (0);
1985 }
1986 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
1987     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1988     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
1989 
1990 uint32_t
1991 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
1992 {
1993 	struct timehands *th;
1994 	uint32_t enabled;
1995 
1996 	th = timehands;
1997 	vdso_th->th_algo = VDSO_TH_ALGO_1;
1998 	vdso_th->th_scale = th->th_scale;
1999 	vdso_th->th_offset_count = th->th_offset_count;
2000 	vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2001 	vdso_th->th_offset = th->th_offset;
2002 	vdso_th->th_boottime = boottimebin;
2003 	enabled = cpu_fill_vdso_timehands(vdso_th);
2004 	if (!vdso_th_enable)
2005 		enabled = 0;
2006 	return (enabled);
2007 }
2008 
2009 #ifdef COMPAT_FREEBSD32
2010 uint32_t
2011 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2012 {
2013 	struct timehands *th;
2014 	uint32_t enabled;
2015 
2016 	th = timehands;
2017 	vdso_th32->th_algo = VDSO_TH_ALGO_1;
2018 	*(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2019 	vdso_th32->th_offset_count = th->th_offset_count;
2020 	vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2021 	vdso_th32->th_offset.sec = th->th_offset.sec;
2022 	*(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2023 	vdso_th32->th_boottime.sec = boottimebin.sec;
2024 	*(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
2025 	enabled = cpu_fill_vdso_timehands32(vdso_th32);
2026 	if (!vdso_th_enable)
2027 		enabled = 0;
2028 	return (enabled);
2029 }
2030 #endif
2031