1 /*- 2 * ---------------------------------------------------------------------------- 3 * "THE BEER-WARE LICENSE" (Revision 42): 4 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 5 * can do whatever you want with this stuff. If we meet some day, and you think 6 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 7 * ---------------------------------------------------------------------------- 8 * 9 * Copyright (c) 2011 The FreeBSD Foundation 10 * All rights reserved. 11 * 12 * Portions of this software were developed by Julien Ridoux at the University 13 * of Melbourne under sponsorship from the FreeBSD Foundation. 14 */ 15 16 #include <sys/cdefs.h> 17 __FBSDID("$FreeBSD$"); 18 19 #include "opt_compat.h" 20 #include "opt_ntp.h" 21 #include "opt_ffclock.h" 22 23 #include <sys/param.h> 24 #include <sys/kernel.h> 25 #include <sys/limits.h> 26 #ifdef FFCLOCK 27 #include <sys/lock.h> 28 #include <sys/mutex.h> 29 #endif 30 #include <sys/sysctl.h> 31 #include <sys/syslog.h> 32 #include <sys/systm.h> 33 #include <sys/timeffc.h> 34 #include <sys/timepps.h> 35 #include <sys/timetc.h> 36 #include <sys/timex.h> 37 #include <sys/vdso.h> 38 39 /* 40 * A large step happens on boot. This constant detects such steps. 41 * It is relatively small so that ntp_update_second gets called enough 42 * in the typical 'missed a couple of seconds' case, but doesn't loop 43 * forever when the time step is large. 44 */ 45 #define LARGE_STEP 200 46 47 /* 48 * Implement a dummy timecounter which we can use until we get a real one 49 * in the air. This allows the console and other early stuff to use 50 * time services. 51 */ 52 53 static u_int 54 dummy_get_timecount(struct timecounter *tc) 55 { 56 static u_int now; 57 58 return (++now); 59 } 60 61 static struct timecounter dummy_timecounter = { 62 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 63 }; 64 65 struct timehands { 66 /* These fields must be initialized by the driver. */ 67 struct timecounter *th_counter; 68 int64_t th_adjustment; 69 uint64_t th_scale; 70 u_int th_offset_count; 71 struct bintime th_offset; 72 struct timeval th_microtime; 73 struct timespec th_nanotime; 74 /* Fields not to be copied in tc_windup start with th_generation. */ 75 volatile u_int th_generation; 76 struct timehands *th_next; 77 }; 78 79 static struct timehands th0; 80 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0}; 81 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9}; 82 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8}; 83 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7}; 84 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6}; 85 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5}; 86 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4}; 87 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3}; 88 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2}; 89 static struct timehands th0 = { 90 &dummy_timecounter, 91 0, 92 (uint64_t)-1 / 1000000, 93 0, 94 {1, 0}, 95 {0, 0}, 96 {0, 0}, 97 1, 98 &th1 99 }; 100 101 static struct timehands *volatile timehands = &th0; 102 struct timecounter *timecounter = &dummy_timecounter; 103 static struct timecounter *timecounters = &dummy_timecounter; 104 105 int tc_min_ticktock_freq = 1; 106 107 volatile time_t time_second = 1; 108 volatile time_t time_uptime = 1; 109 110 struct bintime boottimebin; 111 struct timeval boottime; 112 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 113 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD, 114 NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime"); 115 116 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, ""); 117 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, ""); 118 119 static int timestepwarnings; 120 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW, 121 ×tepwarnings, 0, "Log time steps"); 122 123 struct bintime bt_timethreshold; 124 struct bintime bt_tickthreshold; 125 sbintime_t sbt_timethreshold; 126 sbintime_t sbt_tickthreshold; 127 struct bintime tc_tick_bt; 128 sbintime_t tc_tick_sbt; 129 int tc_precexp; 130 int tc_timepercentage = TC_DEFAULTPERC; 131 TUNABLE_INT("kern.timecounter.alloweddeviation", &tc_timepercentage); 132 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 133 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 134 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, 135 sysctl_kern_timecounter_adjprecision, "I", 136 "Allowed time interval deviation in percents"); 137 138 static void tc_windup(void); 139 static void cpu_tick_calibrate(int); 140 141 void dtrace_getnanotime(struct timespec *tsp); 142 143 static int 144 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 145 { 146 #ifndef __mips__ 147 #ifdef SCTL_MASK32 148 int tv[2]; 149 150 if (req->flags & SCTL_MASK32) { 151 tv[0] = boottime.tv_sec; 152 tv[1] = boottime.tv_usec; 153 return SYSCTL_OUT(req, tv, sizeof(tv)); 154 } else 155 #endif 156 #endif 157 return SYSCTL_OUT(req, &boottime, sizeof(boottime)); 158 } 159 160 static int 161 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 162 { 163 u_int ncount; 164 struct timecounter *tc = arg1; 165 166 ncount = tc->tc_get_timecount(tc); 167 return sysctl_handle_int(oidp, &ncount, 0, req); 168 } 169 170 static int 171 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 172 { 173 uint64_t freq; 174 struct timecounter *tc = arg1; 175 176 freq = tc->tc_frequency; 177 return sysctl_handle_64(oidp, &freq, 0, req); 178 } 179 180 /* 181 * Return the difference between the timehands' counter value now and what 182 * was when we copied it to the timehands' offset_count. 183 */ 184 static __inline u_int 185 tc_delta(struct timehands *th) 186 { 187 struct timecounter *tc; 188 189 tc = th->th_counter; 190 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 191 tc->tc_counter_mask); 192 } 193 194 /* 195 * Functions for reading the time. We have to loop until we are sure that 196 * the timehands that we operated on was not updated under our feet. See 197 * the comment in <sys/time.h> for a description of these 12 functions. 198 */ 199 200 #ifdef FFCLOCK 201 void 202 fbclock_binuptime(struct bintime *bt) 203 { 204 struct timehands *th; 205 unsigned int gen; 206 207 do { 208 th = timehands; 209 gen = th->th_generation; 210 *bt = th->th_offset; 211 bintime_addx(bt, th->th_scale * tc_delta(th)); 212 } while (gen == 0 || gen != th->th_generation); 213 } 214 215 void 216 fbclock_nanouptime(struct timespec *tsp) 217 { 218 struct bintime bt; 219 220 fbclock_binuptime(&bt); 221 bintime2timespec(&bt, tsp); 222 } 223 224 void 225 fbclock_microuptime(struct timeval *tvp) 226 { 227 struct bintime bt; 228 229 fbclock_binuptime(&bt); 230 bintime2timeval(&bt, tvp); 231 } 232 233 void 234 fbclock_bintime(struct bintime *bt) 235 { 236 237 fbclock_binuptime(bt); 238 bintime_add(bt, &boottimebin); 239 } 240 241 void 242 fbclock_nanotime(struct timespec *tsp) 243 { 244 struct bintime bt; 245 246 fbclock_bintime(&bt); 247 bintime2timespec(&bt, tsp); 248 } 249 250 void 251 fbclock_microtime(struct timeval *tvp) 252 { 253 struct bintime bt; 254 255 fbclock_bintime(&bt); 256 bintime2timeval(&bt, tvp); 257 } 258 259 void 260 fbclock_getbinuptime(struct bintime *bt) 261 { 262 struct timehands *th; 263 unsigned int gen; 264 265 do { 266 th = timehands; 267 gen = th->th_generation; 268 *bt = th->th_offset; 269 } while (gen == 0 || gen != th->th_generation); 270 } 271 272 void 273 fbclock_getnanouptime(struct timespec *tsp) 274 { 275 struct timehands *th; 276 unsigned int gen; 277 278 do { 279 th = timehands; 280 gen = th->th_generation; 281 bintime2timespec(&th->th_offset, tsp); 282 } while (gen == 0 || gen != th->th_generation); 283 } 284 285 void 286 fbclock_getmicrouptime(struct timeval *tvp) 287 { 288 struct timehands *th; 289 unsigned int gen; 290 291 do { 292 th = timehands; 293 gen = th->th_generation; 294 bintime2timeval(&th->th_offset, tvp); 295 } while (gen == 0 || gen != th->th_generation); 296 } 297 298 void 299 fbclock_getbintime(struct bintime *bt) 300 { 301 struct timehands *th; 302 unsigned int gen; 303 304 do { 305 th = timehands; 306 gen = th->th_generation; 307 *bt = th->th_offset; 308 } while (gen == 0 || gen != th->th_generation); 309 bintime_add(bt, &boottimebin); 310 } 311 312 void 313 fbclock_getnanotime(struct timespec *tsp) 314 { 315 struct timehands *th; 316 unsigned int gen; 317 318 do { 319 th = timehands; 320 gen = th->th_generation; 321 *tsp = th->th_nanotime; 322 } while (gen == 0 || gen != th->th_generation); 323 } 324 325 void 326 fbclock_getmicrotime(struct timeval *tvp) 327 { 328 struct timehands *th; 329 unsigned int gen; 330 331 do { 332 th = timehands; 333 gen = th->th_generation; 334 *tvp = th->th_microtime; 335 } while (gen == 0 || gen != th->th_generation); 336 } 337 #else /* !FFCLOCK */ 338 void 339 binuptime(struct bintime *bt) 340 { 341 struct timehands *th; 342 u_int gen; 343 344 do { 345 th = timehands; 346 gen = th->th_generation; 347 *bt = th->th_offset; 348 bintime_addx(bt, th->th_scale * tc_delta(th)); 349 } while (gen == 0 || gen != th->th_generation); 350 } 351 352 void 353 nanouptime(struct timespec *tsp) 354 { 355 struct bintime bt; 356 357 binuptime(&bt); 358 bintime2timespec(&bt, tsp); 359 } 360 361 void 362 microuptime(struct timeval *tvp) 363 { 364 struct bintime bt; 365 366 binuptime(&bt); 367 bintime2timeval(&bt, tvp); 368 } 369 370 void 371 bintime(struct bintime *bt) 372 { 373 374 binuptime(bt); 375 bintime_add(bt, &boottimebin); 376 } 377 378 void 379 nanotime(struct timespec *tsp) 380 { 381 struct bintime bt; 382 383 bintime(&bt); 384 bintime2timespec(&bt, tsp); 385 } 386 387 void 388 microtime(struct timeval *tvp) 389 { 390 struct bintime bt; 391 392 bintime(&bt); 393 bintime2timeval(&bt, tvp); 394 } 395 396 void 397 getbinuptime(struct bintime *bt) 398 { 399 struct timehands *th; 400 u_int gen; 401 402 do { 403 th = timehands; 404 gen = th->th_generation; 405 *bt = th->th_offset; 406 } while (gen == 0 || gen != th->th_generation); 407 } 408 409 void 410 getnanouptime(struct timespec *tsp) 411 { 412 struct timehands *th; 413 u_int gen; 414 415 do { 416 th = timehands; 417 gen = th->th_generation; 418 bintime2timespec(&th->th_offset, tsp); 419 } while (gen == 0 || gen != th->th_generation); 420 } 421 422 void 423 getmicrouptime(struct timeval *tvp) 424 { 425 struct timehands *th; 426 u_int gen; 427 428 do { 429 th = timehands; 430 gen = th->th_generation; 431 bintime2timeval(&th->th_offset, tvp); 432 } while (gen == 0 || gen != th->th_generation); 433 } 434 435 void 436 getbintime(struct bintime *bt) 437 { 438 struct timehands *th; 439 u_int gen; 440 441 do { 442 th = timehands; 443 gen = th->th_generation; 444 *bt = th->th_offset; 445 } while (gen == 0 || gen != th->th_generation); 446 bintime_add(bt, &boottimebin); 447 } 448 449 void 450 getnanotime(struct timespec *tsp) 451 { 452 struct timehands *th; 453 u_int gen; 454 455 do { 456 th = timehands; 457 gen = th->th_generation; 458 *tsp = th->th_nanotime; 459 } while (gen == 0 || gen != th->th_generation); 460 } 461 462 void 463 getmicrotime(struct timeval *tvp) 464 { 465 struct timehands *th; 466 u_int gen; 467 468 do { 469 th = timehands; 470 gen = th->th_generation; 471 *tvp = th->th_microtime; 472 } while (gen == 0 || gen != th->th_generation); 473 } 474 #endif /* FFCLOCK */ 475 476 #ifdef FFCLOCK 477 /* 478 * Support for feed-forward synchronization algorithms. This is heavily inspired 479 * by the timehands mechanism but kept independent from it. *_windup() functions 480 * have some connection to avoid accessing the timecounter hardware more than 481 * necessary. 482 */ 483 484 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 485 struct ffclock_estimate ffclock_estimate; 486 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 487 uint32_t ffclock_status; /* Feed-forward clock status. */ 488 int8_t ffclock_updated; /* New estimates are available. */ 489 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 490 491 struct fftimehands { 492 struct ffclock_estimate cest; 493 struct bintime tick_time; 494 struct bintime tick_time_lerp; 495 ffcounter tick_ffcount; 496 uint64_t period_lerp; 497 volatile uint8_t gen; 498 struct fftimehands *next; 499 }; 500 501 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 502 503 static struct fftimehands ffth[10]; 504 static struct fftimehands *volatile fftimehands = ffth; 505 506 static void 507 ffclock_init(void) 508 { 509 struct fftimehands *cur; 510 struct fftimehands *last; 511 512 memset(ffth, 0, sizeof(ffth)); 513 514 last = ffth + NUM_ELEMENTS(ffth) - 1; 515 for (cur = ffth; cur < last; cur++) 516 cur->next = cur + 1; 517 last->next = ffth; 518 519 ffclock_updated = 0; 520 ffclock_status = FFCLOCK_STA_UNSYNC; 521 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 522 } 523 524 /* 525 * Reset the feed-forward clock estimates. Called from inittodr() to get things 526 * kick started and uses the timecounter nominal frequency as a first period 527 * estimate. Note: this function may be called several time just after boot. 528 * Note: this is the only function that sets the value of boot time for the 529 * monotonic (i.e. uptime) version of the feed-forward clock. 530 */ 531 void 532 ffclock_reset_clock(struct timespec *ts) 533 { 534 struct timecounter *tc; 535 struct ffclock_estimate cest; 536 537 tc = timehands->th_counter; 538 memset(&cest, 0, sizeof(struct ffclock_estimate)); 539 540 timespec2bintime(ts, &ffclock_boottime); 541 timespec2bintime(ts, &(cest.update_time)); 542 ffclock_read_counter(&cest.update_ffcount); 543 cest.leapsec_next = 0; 544 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 545 cest.errb_abs = 0; 546 cest.errb_rate = 0; 547 cest.status = FFCLOCK_STA_UNSYNC; 548 cest.leapsec_total = 0; 549 cest.leapsec = 0; 550 551 mtx_lock(&ffclock_mtx); 552 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 553 ffclock_updated = INT8_MAX; 554 mtx_unlock(&ffclock_mtx); 555 556 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 557 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 558 (unsigned long)ts->tv_nsec); 559 } 560 561 /* 562 * Sub-routine to convert a time interval measured in RAW counter units to time 563 * in seconds stored in bintime format. 564 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 565 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 566 * extra cycles. 567 */ 568 static void 569 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 570 { 571 struct bintime bt2; 572 ffcounter delta, delta_max; 573 574 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 575 bintime_clear(bt); 576 do { 577 if (ffdelta > delta_max) 578 delta = delta_max; 579 else 580 delta = ffdelta; 581 bt2.sec = 0; 582 bt2.frac = period; 583 bintime_mul(&bt2, (unsigned int)delta); 584 bintime_add(bt, &bt2); 585 ffdelta -= delta; 586 } while (ffdelta > 0); 587 } 588 589 /* 590 * Update the fftimehands. 591 * Push the tick ffcount and time(s) forward based on current clock estimate. 592 * The conversion from ffcounter to bintime relies on the difference clock 593 * principle, whose accuracy relies on computing small time intervals. If a new 594 * clock estimate has been passed by the synchronisation daemon, make it 595 * current, and compute the linear interpolation for monotonic time if needed. 596 */ 597 static void 598 ffclock_windup(unsigned int delta) 599 { 600 struct ffclock_estimate *cest; 601 struct fftimehands *ffth; 602 struct bintime bt, gap_lerp; 603 ffcounter ffdelta; 604 uint64_t frac; 605 unsigned int polling; 606 uint8_t forward_jump, ogen; 607 608 /* 609 * Pick the next timehand, copy current ffclock estimates and move tick 610 * times and counter forward. 611 */ 612 forward_jump = 0; 613 ffth = fftimehands->next; 614 ogen = ffth->gen; 615 ffth->gen = 0; 616 cest = &ffth->cest; 617 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 618 ffdelta = (ffcounter)delta; 619 ffth->period_lerp = fftimehands->period_lerp; 620 621 ffth->tick_time = fftimehands->tick_time; 622 ffclock_convert_delta(ffdelta, cest->period, &bt); 623 bintime_add(&ffth->tick_time, &bt); 624 625 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 626 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 627 bintime_add(&ffth->tick_time_lerp, &bt); 628 629 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 630 631 /* 632 * Assess the status of the clock, if the last update is too old, it is 633 * likely the synchronisation daemon is dead and the clock is free 634 * running. 635 */ 636 if (ffclock_updated == 0) { 637 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 638 ffclock_convert_delta(ffdelta, cest->period, &bt); 639 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 640 ffclock_status |= FFCLOCK_STA_UNSYNC; 641 } 642 643 /* 644 * If available, grab updated clock estimates and make them current. 645 * Recompute time at this tick using the updated estimates. The clock 646 * estimates passed the feed-forward synchronisation daemon may result 647 * in time conversion that is not monotonically increasing (just after 648 * the update). time_lerp is a particular linear interpolation over the 649 * synchronisation algo polling period that ensures monotonicity for the 650 * clock ids requesting it. 651 */ 652 if (ffclock_updated > 0) { 653 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 654 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 655 ffth->tick_time = cest->update_time; 656 ffclock_convert_delta(ffdelta, cest->period, &bt); 657 bintime_add(&ffth->tick_time, &bt); 658 659 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 660 if (ffclock_updated == INT8_MAX) 661 ffth->tick_time_lerp = ffth->tick_time; 662 663 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 664 forward_jump = 1; 665 else 666 forward_jump = 0; 667 668 bintime_clear(&gap_lerp); 669 if (forward_jump) { 670 gap_lerp = ffth->tick_time; 671 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 672 } else { 673 gap_lerp = ffth->tick_time_lerp; 674 bintime_sub(&gap_lerp, &ffth->tick_time); 675 } 676 677 /* 678 * The reset from the RTC clock may be far from accurate, and 679 * reducing the gap between real time and interpolated time 680 * could take a very long time if the interpolated clock insists 681 * on strict monotonicity. The clock is reset under very strict 682 * conditions (kernel time is known to be wrong and 683 * synchronization daemon has been restarted recently. 684 * ffclock_boottime absorbs the jump to ensure boot time is 685 * correct and uptime functions stay consistent. 686 */ 687 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 688 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 689 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 690 if (forward_jump) 691 bintime_add(&ffclock_boottime, &gap_lerp); 692 else 693 bintime_sub(&ffclock_boottime, &gap_lerp); 694 ffth->tick_time_lerp = ffth->tick_time; 695 bintime_clear(&gap_lerp); 696 } 697 698 ffclock_status = cest->status; 699 ffth->period_lerp = cest->period; 700 701 /* 702 * Compute corrected period used for the linear interpolation of 703 * time. The rate of linear interpolation is capped to 5000PPM 704 * (5ms/s). 705 */ 706 if (bintime_isset(&gap_lerp)) { 707 ffdelta = cest->update_ffcount; 708 ffdelta -= fftimehands->cest.update_ffcount; 709 ffclock_convert_delta(ffdelta, cest->period, &bt); 710 polling = bt.sec; 711 bt.sec = 0; 712 bt.frac = 5000000 * (uint64_t)18446744073LL; 713 bintime_mul(&bt, polling); 714 if (bintime_cmp(&gap_lerp, &bt, >)) 715 gap_lerp = bt; 716 717 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 718 frac = 0; 719 if (gap_lerp.sec > 0) { 720 frac -= 1; 721 frac /= ffdelta / gap_lerp.sec; 722 } 723 frac += gap_lerp.frac / ffdelta; 724 725 if (forward_jump) 726 ffth->period_lerp += frac; 727 else 728 ffth->period_lerp -= frac; 729 } 730 731 ffclock_updated = 0; 732 } 733 if (++ogen == 0) 734 ogen = 1; 735 ffth->gen = ogen; 736 fftimehands = ffth; 737 } 738 739 /* 740 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 741 * the old and new hardware counter cannot be read simultaneously. tc_windup() 742 * does read the two counters 'back to back', but a few cycles are effectively 743 * lost, and not accumulated in tick_ffcount. This is a fairly radical 744 * operation for a feed-forward synchronization daemon, and it is its job to not 745 * pushing irrelevant data to the kernel. Because there is no locking here, 746 * simply force to ignore pending or next update to give daemon a chance to 747 * realize the counter has changed. 748 */ 749 static void 750 ffclock_change_tc(struct timehands *th) 751 { 752 struct fftimehands *ffth; 753 struct ffclock_estimate *cest; 754 struct timecounter *tc; 755 uint8_t ogen; 756 757 tc = th->th_counter; 758 ffth = fftimehands->next; 759 ogen = ffth->gen; 760 ffth->gen = 0; 761 762 cest = &ffth->cest; 763 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 764 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 765 cest->errb_abs = 0; 766 cest->errb_rate = 0; 767 cest->status |= FFCLOCK_STA_UNSYNC; 768 769 ffth->tick_ffcount = fftimehands->tick_ffcount; 770 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 771 ffth->tick_time = fftimehands->tick_time; 772 ffth->period_lerp = cest->period; 773 774 /* Do not lock but ignore next update from synchronization daemon. */ 775 ffclock_updated--; 776 777 if (++ogen == 0) 778 ogen = 1; 779 ffth->gen = ogen; 780 fftimehands = ffth; 781 } 782 783 /* 784 * Retrieve feed-forward counter and time of last kernel tick. 785 */ 786 void 787 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 788 { 789 struct fftimehands *ffth; 790 uint8_t gen; 791 792 /* 793 * No locking but check generation has not changed. Also need to make 794 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 795 */ 796 do { 797 ffth = fftimehands; 798 gen = ffth->gen; 799 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 800 *bt = ffth->tick_time_lerp; 801 else 802 *bt = ffth->tick_time; 803 *ffcount = ffth->tick_ffcount; 804 } while (gen == 0 || gen != ffth->gen); 805 } 806 807 /* 808 * Absolute clock conversion. Low level function to convert ffcounter to 809 * bintime. The ffcounter is converted using the current ffclock period estimate 810 * or the "interpolated period" to ensure monotonicity. 811 * NOTE: this conversion may have been deferred, and the clock updated since the 812 * hardware counter has been read. 813 */ 814 void 815 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 816 { 817 struct fftimehands *ffth; 818 struct bintime bt2; 819 ffcounter ffdelta; 820 uint8_t gen; 821 822 /* 823 * No locking but check generation has not changed. Also need to make 824 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 825 */ 826 do { 827 ffth = fftimehands; 828 gen = ffth->gen; 829 if (ffcount > ffth->tick_ffcount) 830 ffdelta = ffcount - ffth->tick_ffcount; 831 else 832 ffdelta = ffth->tick_ffcount - ffcount; 833 834 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 835 *bt = ffth->tick_time_lerp; 836 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 837 } else { 838 *bt = ffth->tick_time; 839 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 840 } 841 842 if (ffcount > ffth->tick_ffcount) 843 bintime_add(bt, &bt2); 844 else 845 bintime_sub(bt, &bt2); 846 } while (gen == 0 || gen != ffth->gen); 847 } 848 849 /* 850 * Difference clock conversion. 851 * Low level function to Convert a time interval measured in RAW counter units 852 * into bintime. The difference clock allows measuring small intervals much more 853 * reliably than the absolute clock. 854 */ 855 void 856 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 857 { 858 struct fftimehands *ffth; 859 uint8_t gen; 860 861 /* No locking but check generation has not changed. */ 862 do { 863 ffth = fftimehands; 864 gen = ffth->gen; 865 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 866 } while (gen == 0 || gen != ffth->gen); 867 } 868 869 /* 870 * Access to current ffcounter value. 871 */ 872 void 873 ffclock_read_counter(ffcounter *ffcount) 874 { 875 struct timehands *th; 876 struct fftimehands *ffth; 877 unsigned int gen, delta; 878 879 /* 880 * ffclock_windup() called from tc_windup(), safe to rely on 881 * th->th_generation only, for correct delta and ffcounter. 882 */ 883 do { 884 th = timehands; 885 gen = th->th_generation; 886 ffth = fftimehands; 887 delta = tc_delta(th); 888 *ffcount = ffth->tick_ffcount; 889 } while (gen == 0 || gen != th->th_generation); 890 891 *ffcount += delta; 892 } 893 894 void 895 binuptime(struct bintime *bt) 896 { 897 898 binuptime_fromclock(bt, sysclock_active); 899 } 900 901 void 902 nanouptime(struct timespec *tsp) 903 { 904 905 nanouptime_fromclock(tsp, sysclock_active); 906 } 907 908 void 909 microuptime(struct timeval *tvp) 910 { 911 912 microuptime_fromclock(tvp, sysclock_active); 913 } 914 915 void 916 bintime(struct bintime *bt) 917 { 918 919 bintime_fromclock(bt, sysclock_active); 920 } 921 922 void 923 nanotime(struct timespec *tsp) 924 { 925 926 nanotime_fromclock(tsp, sysclock_active); 927 } 928 929 void 930 microtime(struct timeval *tvp) 931 { 932 933 microtime_fromclock(tvp, sysclock_active); 934 } 935 936 void 937 getbinuptime(struct bintime *bt) 938 { 939 940 getbinuptime_fromclock(bt, sysclock_active); 941 } 942 943 void 944 getnanouptime(struct timespec *tsp) 945 { 946 947 getnanouptime_fromclock(tsp, sysclock_active); 948 } 949 950 void 951 getmicrouptime(struct timeval *tvp) 952 { 953 954 getmicrouptime_fromclock(tvp, sysclock_active); 955 } 956 957 void 958 getbintime(struct bintime *bt) 959 { 960 961 getbintime_fromclock(bt, sysclock_active); 962 } 963 964 void 965 getnanotime(struct timespec *tsp) 966 { 967 968 getnanotime_fromclock(tsp, sysclock_active); 969 } 970 971 void 972 getmicrotime(struct timeval *tvp) 973 { 974 975 getmicrouptime_fromclock(tvp, sysclock_active); 976 } 977 978 #endif /* FFCLOCK */ 979 980 /* 981 * This is a clone of getnanotime and used for walltimestamps. 982 * The dtrace_ prefix prevents fbt from creating probes for 983 * it so walltimestamp can be safely used in all fbt probes. 984 */ 985 void 986 dtrace_getnanotime(struct timespec *tsp) 987 { 988 struct timehands *th; 989 u_int gen; 990 991 do { 992 th = timehands; 993 gen = th->th_generation; 994 *tsp = th->th_nanotime; 995 } while (gen == 0 || gen != th->th_generation); 996 } 997 998 /* 999 * System clock currently providing time to the system. Modifiable via sysctl 1000 * when the FFCLOCK option is defined. 1001 */ 1002 int sysclock_active = SYSCLOCK_FBCK; 1003 1004 /* Internal NTP status and error estimates. */ 1005 extern int time_status; 1006 extern long time_esterror; 1007 1008 /* 1009 * Take a snapshot of sysclock data which can be used to compare system clocks 1010 * and generate timestamps after the fact. 1011 */ 1012 void 1013 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 1014 { 1015 struct fbclock_info *fbi; 1016 struct timehands *th; 1017 struct bintime bt; 1018 unsigned int delta, gen; 1019 #ifdef FFCLOCK 1020 ffcounter ffcount; 1021 struct fftimehands *ffth; 1022 struct ffclock_info *ffi; 1023 struct ffclock_estimate cest; 1024 1025 ffi = &clock_snap->ff_info; 1026 #endif 1027 1028 fbi = &clock_snap->fb_info; 1029 delta = 0; 1030 1031 do { 1032 th = timehands; 1033 gen = th->th_generation; 1034 fbi->th_scale = th->th_scale; 1035 fbi->tick_time = th->th_offset; 1036 #ifdef FFCLOCK 1037 ffth = fftimehands; 1038 ffi->tick_time = ffth->tick_time_lerp; 1039 ffi->tick_time_lerp = ffth->tick_time_lerp; 1040 ffi->period = ffth->cest.period; 1041 ffi->period_lerp = ffth->period_lerp; 1042 clock_snap->ffcount = ffth->tick_ffcount; 1043 cest = ffth->cest; 1044 #endif 1045 if (!fast) 1046 delta = tc_delta(th); 1047 } while (gen == 0 || gen != th->th_generation); 1048 1049 clock_snap->delta = delta; 1050 clock_snap->sysclock_active = sysclock_active; 1051 1052 /* Record feedback clock status and error. */ 1053 clock_snap->fb_info.status = time_status; 1054 /* XXX: Very crude estimate of feedback clock error. */ 1055 bt.sec = time_esterror / 1000000; 1056 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1057 (uint64_t)18446744073709ULL; 1058 clock_snap->fb_info.error = bt; 1059 1060 #ifdef FFCLOCK 1061 if (!fast) 1062 clock_snap->ffcount += delta; 1063 1064 /* Record feed-forward clock leap second adjustment. */ 1065 ffi->leapsec_adjustment = cest.leapsec_total; 1066 if (clock_snap->ffcount > cest.leapsec_next) 1067 ffi->leapsec_adjustment -= cest.leapsec; 1068 1069 /* Record feed-forward clock status and error. */ 1070 clock_snap->ff_info.status = cest.status; 1071 ffcount = clock_snap->ffcount - cest.update_ffcount; 1072 ffclock_convert_delta(ffcount, cest.period, &bt); 1073 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1074 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1075 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1076 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1077 clock_snap->ff_info.error = bt; 1078 #endif 1079 } 1080 1081 /* 1082 * Convert a sysclock snapshot into a struct bintime based on the specified 1083 * clock source and flags. 1084 */ 1085 int 1086 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1087 int whichclock, uint32_t flags) 1088 { 1089 #ifdef FFCLOCK 1090 struct bintime bt2; 1091 uint64_t period; 1092 #endif 1093 1094 switch (whichclock) { 1095 case SYSCLOCK_FBCK: 1096 *bt = cs->fb_info.tick_time; 1097 1098 /* If snapshot was created with !fast, delta will be >0. */ 1099 if (cs->delta > 0) 1100 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1101 1102 if ((flags & FBCLOCK_UPTIME) == 0) 1103 bintime_add(bt, &boottimebin); 1104 break; 1105 #ifdef FFCLOCK 1106 case SYSCLOCK_FFWD: 1107 if (flags & FFCLOCK_LERP) { 1108 *bt = cs->ff_info.tick_time_lerp; 1109 period = cs->ff_info.period_lerp; 1110 } else { 1111 *bt = cs->ff_info.tick_time; 1112 period = cs->ff_info.period; 1113 } 1114 1115 /* If snapshot was created with !fast, delta will be >0. */ 1116 if (cs->delta > 0) { 1117 ffclock_convert_delta(cs->delta, period, &bt2); 1118 bintime_add(bt, &bt2); 1119 } 1120 1121 /* Leap second adjustment. */ 1122 if (flags & FFCLOCK_LEAPSEC) 1123 bt->sec -= cs->ff_info.leapsec_adjustment; 1124 1125 /* Boot time adjustment, for uptime/monotonic clocks. */ 1126 if (flags & FFCLOCK_UPTIME) 1127 bintime_sub(bt, &ffclock_boottime); 1128 break; 1129 #endif 1130 default: 1131 return (EINVAL); 1132 break; 1133 } 1134 1135 return (0); 1136 } 1137 1138 /* 1139 * Initialize a new timecounter and possibly use it. 1140 */ 1141 void 1142 tc_init(struct timecounter *tc) 1143 { 1144 u_int u; 1145 struct sysctl_oid *tc_root; 1146 1147 u = tc->tc_frequency / tc->tc_counter_mask; 1148 /* XXX: We need some margin here, 10% is a guess */ 1149 u *= 11; 1150 u /= 10; 1151 if (u > hz && tc->tc_quality >= 0) { 1152 tc->tc_quality = -2000; 1153 if (bootverbose) { 1154 printf("Timecounter \"%s\" frequency %ju Hz", 1155 tc->tc_name, (uintmax_t)tc->tc_frequency); 1156 printf(" -- Insufficient hz, needs at least %u\n", u); 1157 } 1158 } else if (tc->tc_quality >= 0 || bootverbose) { 1159 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1160 tc->tc_name, (uintmax_t)tc->tc_frequency, 1161 tc->tc_quality); 1162 } 1163 1164 tc->tc_next = timecounters; 1165 timecounters = tc; 1166 /* 1167 * Set up sysctl tree for this counter. 1168 */ 1169 tc_root = SYSCTL_ADD_NODE(NULL, 1170 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1171 CTLFLAG_RW, 0, "timecounter description"); 1172 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1173 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1174 "mask for implemented bits"); 1175 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1176 "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc), 1177 sysctl_kern_timecounter_get, "IU", "current timecounter value"); 1178 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1179 "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc), 1180 sysctl_kern_timecounter_freq, "QU", "timecounter frequency"); 1181 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1182 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1183 "goodness of time counter"); 1184 /* 1185 * Never automatically use a timecounter with negative quality. 1186 * Even though we run on the dummy counter, switching here may be 1187 * worse since this timecounter may not be monotonous. 1188 */ 1189 if (tc->tc_quality < 0) 1190 return; 1191 if (tc->tc_quality < timecounter->tc_quality) 1192 return; 1193 if (tc->tc_quality == timecounter->tc_quality && 1194 tc->tc_frequency < timecounter->tc_frequency) 1195 return; 1196 (void)tc->tc_get_timecount(tc); 1197 (void)tc->tc_get_timecount(tc); 1198 timecounter = tc; 1199 } 1200 1201 /* Report the frequency of the current timecounter. */ 1202 uint64_t 1203 tc_getfrequency(void) 1204 { 1205 1206 return (timehands->th_counter->tc_frequency); 1207 } 1208 1209 /* 1210 * Step our concept of UTC. This is done by modifying our estimate of 1211 * when we booted. 1212 * XXX: not locked. 1213 */ 1214 void 1215 tc_setclock(struct timespec *ts) 1216 { 1217 struct timespec tbef, taft; 1218 struct bintime bt, bt2; 1219 1220 cpu_tick_calibrate(1); 1221 nanotime(&tbef); 1222 timespec2bintime(ts, &bt); 1223 binuptime(&bt2); 1224 bintime_sub(&bt, &bt2); 1225 bintime_add(&bt2, &boottimebin); 1226 boottimebin = bt; 1227 bintime2timeval(&bt, &boottime); 1228 1229 /* XXX fiddle all the little crinkly bits around the fiords... */ 1230 tc_windup(); 1231 nanotime(&taft); 1232 if (timestepwarnings) { 1233 log(LOG_INFO, 1234 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1235 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1236 (intmax_t)taft.tv_sec, taft.tv_nsec, 1237 (intmax_t)ts->tv_sec, ts->tv_nsec); 1238 } 1239 cpu_tick_calibrate(1); 1240 } 1241 1242 /* 1243 * Initialize the next struct timehands in the ring and make 1244 * it the active timehands. Along the way we might switch to a different 1245 * timecounter and/or do seconds processing in NTP. Slightly magic. 1246 */ 1247 static void 1248 tc_windup(void) 1249 { 1250 struct bintime bt; 1251 struct timehands *th, *tho; 1252 uint64_t scale; 1253 u_int delta, ncount, ogen; 1254 int i; 1255 time_t t; 1256 1257 /* 1258 * Make the next timehands a copy of the current one, but do not 1259 * overwrite the generation or next pointer. While we update 1260 * the contents, the generation must be zero. 1261 */ 1262 tho = timehands; 1263 th = tho->th_next; 1264 ogen = th->th_generation; 1265 th->th_generation = 0; 1266 bcopy(tho, th, offsetof(struct timehands, th_generation)); 1267 1268 /* 1269 * Capture a timecounter delta on the current timecounter and if 1270 * changing timecounters, a counter value from the new timecounter. 1271 * Update the offset fields accordingly. 1272 */ 1273 delta = tc_delta(th); 1274 if (th->th_counter != timecounter) 1275 ncount = timecounter->tc_get_timecount(timecounter); 1276 else 1277 ncount = 0; 1278 #ifdef FFCLOCK 1279 ffclock_windup(delta); 1280 #endif 1281 th->th_offset_count += delta; 1282 th->th_offset_count &= th->th_counter->tc_counter_mask; 1283 while (delta > th->th_counter->tc_frequency) { 1284 /* Eat complete unadjusted seconds. */ 1285 delta -= th->th_counter->tc_frequency; 1286 th->th_offset.sec++; 1287 } 1288 if ((delta > th->th_counter->tc_frequency / 2) && 1289 (th->th_scale * delta < ((uint64_t)1 << 63))) { 1290 /* The product th_scale * delta just barely overflows. */ 1291 th->th_offset.sec++; 1292 } 1293 bintime_addx(&th->th_offset, th->th_scale * delta); 1294 1295 /* 1296 * Hardware latching timecounters may not generate interrupts on 1297 * PPS events, so instead we poll them. There is a finite risk that 1298 * the hardware might capture a count which is later than the one we 1299 * got above, and therefore possibly in the next NTP second which might 1300 * have a different rate than the current NTP second. It doesn't 1301 * matter in practice. 1302 */ 1303 if (tho->th_counter->tc_poll_pps) 1304 tho->th_counter->tc_poll_pps(tho->th_counter); 1305 1306 /* 1307 * Deal with NTP second processing. The for loop normally 1308 * iterates at most once, but in extreme situations it might 1309 * keep NTP sane if timeouts are not run for several seconds. 1310 * At boot, the time step can be large when the TOD hardware 1311 * has been read, so on really large steps, we call 1312 * ntp_update_second only twice. We need to call it twice in 1313 * case we missed a leap second. 1314 */ 1315 bt = th->th_offset; 1316 bintime_add(&bt, &boottimebin); 1317 i = bt.sec - tho->th_microtime.tv_sec; 1318 if (i > LARGE_STEP) 1319 i = 2; 1320 for (; i > 0; i--) { 1321 t = bt.sec; 1322 ntp_update_second(&th->th_adjustment, &bt.sec); 1323 if (bt.sec != t) 1324 boottimebin.sec += bt.sec - t; 1325 } 1326 /* Update the UTC timestamps used by the get*() functions. */ 1327 /* XXX shouldn't do this here. Should force non-`get' versions. */ 1328 bintime2timeval(&bt, &th->th_microtime); 1329 bintime2timespec(&bt, &th->th_nanotime); 1330 1331 /* Now is a good time to change timecounters. */ 1332 if (th->th_counter != timecounter) { 1333 #ifndef __arm__ 1334 if ((timecounter->tc_flags & TC_FLAGS_C3STOP) != 0) 1335 cpu_disable_deep_sleep++; 1336 if ((th->th_counter->tc_flags & TC_FLAGS_C3STOP) != 0) 1337 cpu_disable_deep_sleep--; 1338 #endif 1339 th->th_counter = timecounter; 1340 th->th_offset_count = ncount; 1341 tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 1342 (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1343 #ifdef FFCLOCK 1344 ffclock_change_tc(th); 1345 #endif 1346 } 1347 1348 /*- 1349 * Recalculate the scaling factor. We want the number of 1/2^64 1350 * fractions of a second per period of the hardware counter, taking 1351 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1352 * processing provides us with. 1353 * 1354 * The th_adjustment is nanoseconds per second with 32 bit binary 1355 * fraction and we want 64 bit binary fraction of second: 1356 * 1357 * x = a * 2^32 / 10^9 = a * 4.294967296 1358 * 1359 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1360 * we can only multiply by about 850 without overflowing, that 1361 * leaves no suitably precise fractions for multiply before divide. 1362 * 1363 * Divide before multiply with a fraction of 2199/512 results in a 1364 * systematic undercompensation of 10PPM of th_adjustment. On a 1365 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1366 * 1367 * We happily sacrifice the lowest of the 64 bits of our result 1368 * to the goddess of code clarity. 1369 * 1370 */ 1371 scale = (uint64_t)1 << 63; 1372 scale += (th->th_adjustment / 1024) * 2199; 1373 scale /= th->th_counter->tc_frequency; 1374 th->th_scale = scale * 2; 1375 1376 /* 1377 * Now that the struct timehands is again consistent, set the new 1378 * generation number, making sure to not make it zero. 1379 */ 1380 if (++ogen == 0) 1381 ogen = 1; 1382 th->th_generation = ogen; 1383 1384 /* Go live with the new struct timehands. */ 1385 #ifdef FFCLOCK 1386 switch (sysclock_active) { 1387 case SYSCLOCK_FBCK: 1388 #endif 1389 time_second = th->th_microtime.tv_sec; 1390 time_uptime = th->th_offset.sec; 1391 #ifdef FFCLOCK 1392 break; 1393 case SYSCLOCK_FFWD: 1394 time_second = fftimehands->tick_time_lerp.sec; 1395 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1396 break; 1397 } 1398 #endif 1399 1400 timehands = th; 1401 timekeep_push_vdso(); 1402 } 1403 1404 /* Report or change the active timecounter hardware. */ 1405 static int 1406 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1407 { 1408 char newname[32]; 1409 struct timecounter *newtc, *tc; 1410 int error; 1411 1412 tc = timecounter; 1413 strlcpy(newname, tc->tc_name, sizeof(newname)); 1414 1415 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1416 if (error != 0 || req->newptr == NULL || 1417 strcmp(newname, tc->tc_name) == 0) 1418 return (error); 1419 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1420 if (strcmp(newname, newtc->tc_name) != 0) 1421 continue; 1422 1423 /* Warm up new timecounter. */ 1424 (void)newtc->tc_get_timecount(newtc); 1425 (void)newtc->tc_get_timecount(newtc); 1426 1427 timecounter = newtc; 1428 timekeep_push_vdso(); 1429 return (0); 1430 } 1431 return (EINVAL); 1432 } 1433 1434 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW, 1435 0, 0, sysctl_kern_timecounter_hardware, "A", 1436 "Timecounter hardware selected"); 1437 1438 1439 /* Report or change the active timecounter hardware. */ 1440 static int 1441 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1442 { 1443 char buf[32], *spc; 1444 struct timecounter *tc; 1445 int error; 1446 1447 spc = ""; 1448 error = 0; 1449 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) { 1450 sprintf(buf, "%s%s(%d)", 1451 spc, tc->tc_name, tc->tc_quality); 1452 error = SYSCTL_OUT(req, buf, strlen(buf)); 1453 spc = " "; 1454 } 1455 return (error); 1456 } 1457 1458 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD, 1459 0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected"); 1460 1461 /* 1462 * RFC 2783 PPS-API implementation. 1463 */ 1464 1465 static int 1466 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1467 { 1468 int err, timo; 1469 pps_seq_t aseq, cseq; 1470 struct timeval tv; 1471 1472 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1473 return (EINVAL); 1474 1475 /* 1476 * If no timeout is requested, immediately return whatever values were 1477 * most recently captured. If timeout seconds is -1, that's a request 1478 * to block without a timeout. WITNESS won't let us sleep forever 1479 * without a lock (we really don't need a lock), so just repeatedly 1480 * sleep a long time. 1481 */ 1482 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1483 if (fapi->timeout.tv_sec == -1) 1484 timo = 0x7fffffff; 1485 else { 1486 tv.tv_sec = fapi->timeout.tv_sec; 1487 tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1488 timo = tvtohz(&tv); 1489 } 1490 aseq = pps->ppsinfo.assert_sequence; 1491 cseq = pps->ppsinfo.clear_sequence; 1492 while (aseq == pps->ppsinfo.assert_sequence && 1493 cseq == pps->ppsinfo.clear_sequence) { 1494 err = tsleep(pps, PCATCH, "ppsfch", timo); 1495 if (err == EWOULDBLOCK && fapi->timeout.tv_sec == -1) { 1496 continue; 1497 } else if (err != 0) { 1498 return (err); 1499 } 1500 } 1501 } 1502 1503 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1504 fapi->pps_info_buf = pps->ppsinfo; 1505 1506 return (0); 1507 } 1508 1509 int 1510 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1511 { 1512 pps_params_t *app; 1513 struct pps_fetch_args *fapi; 1514 #ifdef FFCLOCK 1515 struct pps_fetch_ffc_args *fapi_ffc; 1516 #endif 1517 #ifdef PPS_SYNC 1518 struct pps_kcbind_args *kapi; 1519 #endif 1520 1521 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1522 switch (cmd) { 1523 case PPS_IOC_CREATE: 1524 return (0); 1525 case PPS_IOC_DESTROY: 1526 return (0); 1527 case PPS_IOC_SETPARAMS: 1528 app = (pps_params_t *)data; 1529 if (app->mode & ~pps->ppscap) 1530 return (EINVAL); 1531 #ifdef FFCLOCK 1532 /* Ensure only a single clock is selected for ffc timestamp. */ 1533 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1534 return (EINVAL); 1535 #endif 1536 pps->ppsparam = *app; 1537 return (0); 1538 case PPS_IOC_GETPARAMS: 1539 app = (pps_params_t *)data; 1540 *app = pps->ppsparam; 1541 app->api_version = PPS_API_VERS_1; 1542 return (0); 1543 case PPS_IOC_GETCAP: 1544 *(int*)data = pps->ppscap; 1545 return (0); 1546 case PPS_IOC_FETCH: 1547 fapi = (struct pps_fetch_args *)data; 1548 return (pps_fetch(fapi, pps)); 1549 #ifdef FFCLOCK 1550 case PPS_IOC_FETCH_FFCOUNTER: 1551 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1552 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1553 PPS_TSFMT_TSPEC) 1554 return (EINVAL); 1555 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1556 return (EOPNOTSUPP); 1557 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1558 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1559 /* Overwrite timestamps if feedback clock selected. */ 1560 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1561 case PPS_TSCLK_FBCK: 1562 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1563 pps->ppsinfo.assert_timestamp; 1564 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1565 pps->ppsinfo.clear_timestamp; 1566 break; 1567 case PPS_TSCLK_FFWD: 1568 break; 1569 default: 1570 break; 1571 } 1572 return (0); 1573 #endif /* FFCLOCK */ 1574 case PPS_IOC_KCBIND: 1575 #ifdef PPS_SYNC 1576 kapi = (struct pps_kcbind_args *)data; 1577 /* XXX Only root should be able to do this */ 1578 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1579 return (EINVAL); 1580 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1581 return (EINVAL); 1582 if (kapi->edge & ~pps->ppscap) 1583 return (EINVAL); 1584 pps->kcmode = kapi->edge; 1585 return (0); 1586 #else 1587 return (EOPNOTSUPP); 1588 #endif 1589 default: 1590 return (ENOIOCTL); 1591 } 1592 } 1593 1594 void 1595 pps_init(struct pps_state *pps) 1596 { 1597 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1598 if (pps->ppscap & PPS_CAPTUREASSERT) 1599 pps->ppscap |= PPS_OFFSETASSERT; 1600 if (pps->ppscap & PPS_CAPTURECLEAR) 1601 pps->ppscap |= PPS_OFFSETCLEAR; 1602 #ifdef FFCLOCK 1603 pps->ppscap |= PPS_TSCLK_MASK; 1604 #endif 1605 } 1606 1607 void 1608 pps_capture(struct pps_state *pps) 1609 { 1610 struct timehands *th; 1611 1612 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1613 th = timehands; 1614 pps->capgen = th->th_generation; 1615 pps->capth = th; 1616 #ifdef FFCLOCK 1617 pps->capffth = fftimehands; 1618 #endif 1619 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1620 if (pps->capgen != th->th_generation) 1621 pps->capgen = 0; 1622 } 1623 1624 void 1625 pps_event(struct pps_state *pps, int event) 1626 { 1627 struct bintime bt; 1628 struct timespec ts, *tsp, *osp; 1629 u_int tcount, *pcount; 1630 int foff, fhard; 1631 pps_seq_t *pseq; 1632 #ifdef FFCLOCK 1633 struct timespec *tsp_ffc; 1634 pps_seq_t *pseq_ffc; 1635 ffcounter *ffcount; 1636 #endif 1637 1638 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1639 /* If the timecounter was wound up underneath us, bail out. */ 1640 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation) 1641 return; 1642 1643 /* Things would be easier with arrays. */ 1644 if (event == PPS_CAPTUREASSERT) { 1645 tsp = &pps->ppsinfo.assert_timestamp; 1646 osp = &pps->ppsparam.assert_offset; 1647 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1648 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1649 pcount = &pps->ppscount[0]; 1650 pseq = &pps->ppsinfo.assert_sequence; 1651 #ifdef FFCLOCK 1652 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1653 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1654 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1655 #endif 1656 } else { 1657 tsp = &pps->ppsinfo.clear_timestamp; 1658 osp = &pps->ppsparam.clear_offset; 1659 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1660 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1661 pcount = &pps->ppscount[1]; 1662 pseq = &pps->ppsinfo.clear_sequence; 1663 #ifdef FFCLOCK 1664 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1665 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1666 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1667 #endif 1668 } 1669 1670 /* 1671 * If the timecounter changed, we cannot compare the count values, so 1672 * we have to drop the rest of the PPS-stuff until the next event. 1673 */ 1674 if (pps->ppstc != pps->capth->th_counter) { 1675 pps->ppstc = pps->capth->th_counter; 1676 *pcount = pps->capcount; 1677 pps->ppscount[2] = pps->capcount; 1678 return; 1679 } 1680 1681 /* Convert the count to a timespec. */ 1682 tcount = pps->capcount - pps->capth->th_offset_count; 1683 tcount &= pps->capth->th_counter->tc_counter_mask; 1684 bt = pps->capth->th_offset; 1685 bintime_addx(&bt, pps->capth->th_scale * tcount); 1686 bintime_add(&bt, &boottimebin); 1687 bintime2timespec(&bt, &ts); 1688 1689 /* If the timecounter was wound up underneath us, bail out. */ 1690 if (pps->capgen != pps->capth->th_generation) 1691 return; 1692 1693 *pcount = pps->capcount; 1694 (*pseq)++; 1695 *tsp = ts; 1696 1697 if (foff) { 1698 timespecadd(tsp, osp); 1699 if (tsp->tv_nsec < 0) { 1700 tsp->tv_nsec += 1000000000; 1701 tsp->tv_sec -= 1; 1702 } 1703 } 1704 1705 #ifdef FFCLOCK 1706 *ffcount = pps->capffth->tick_ffcount + tcount; 1707 bt = pps->capffth->tick_time; 1708 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1709 bintime_add(&bt, &pps->capffth->tick_time); 1710 bintime2timespec(&bt, &ts); 1711 (*pseq_ffc)++; 1712 *tsp_ffc = ts; 1713 #endif 1714 1715 #ifdef PPS_SYNC 1716 if (fhard) { 1717 uint64_t scale; 1718 1719 /* 1720 * Feed the NTP PLL/FLL. 1721 * The FLL wants to know how many (hardware) nanoseconds 1722 * elapsed since the previous event. 1723 */ 1724 tcount = pps->capcount - pps->ppscount[2]; 1725 pps->ppscount[2] = pps->capcount; 1726 tcount &= pps->capth->th_counter->tc_counter_mask; 1727 scale = (uint64_t)1 << 63; 1728 scale /= pps->capth->th_counter->tc_frequency; 1729 scale *= 2; 1730 bt.sec = 0; 1731 bt.frac = 0; 1732 bintime_addx(&bt, scale * tcount); 1733 bintime2timespec(&bt, &ts); 1734 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1735 } 1736 #endif 1737 1738 /* Wakeup anyone sleeping in pps_fetch(). */ 1739 wakeup(pps); 1740 } 1741 1742 /* 1743 * Timecounters need to be updated every so often to prevent the hardware 1744 * counter from overflowing. Updating also recalculates the cached values 1745 * used by the get*() family of functions, so their precision depends on 1746 * the update frequency. 1747 */ 1748 1749 static int tc_tick; 1750 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1751 "Approximate number of hardclock ticks in a millisecond"); 1752 1753 void 1754 tc_ticktock(int cnt) 1755 { 1756 static int count; 1757 1758 count += cnt; 1759 if (count < tc_tick) 1760 return; 1761 count = 0; 1762 tc_windup(); 1763 } 1764 1765 static void __inline 1766 tc_adjprecision(void) 1767 { 1768 int t; 1769 1770 if (tc_timepercentage > 0) { 1771 t = (99 + tc_timepercentage) / tc_timepercentage; 1772 tc_precexp = fls(t + (t >> 1)) - 1; 1773 FREQ2BT(hz / tc_tick, &bt_timethreshold); 1774 FREQ2BT(hz, &bt_tickthreshold); 1775 bintime_shift(&bt_timethreshold, tc_precexp); 1776 bintime_shift(&bt_tickthreshold, tc_precexp); 1777 } else { 1778 tc_precexp = 31; 1779 bt_timethreshold.sec = INT_MAX; 1780 bt_timethreshold.frac = ~(uint64_t)0; 1781 bt_tickthreshold = bt_timethreshold; 1782 } 1783 sbt_timethreshold = bttosbt(bt_timethreshold); 1784 sbt_tickthreshold = bttosbt(bt_tickthreshold); 1785 } 1786 1787 static int 1788 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 1789 { 1790 int error, val; 1791 1792 val = tc_timepercentage; 1793 error = sysctl_handle_int(oidp, &val, 0, req); 1794 if (error != 0 || req->newptr == NULL) 1795 return (error); 1796 tc_timepercentage = val; 1797 tc_adjprecision(); 1798 return (0); 1799 } 1800 1801 static void 1802 inittimecounter(void *dummy) 1803 { 1804 u_int p; 1805 int tick_rate; 1806 1807 /* 1808 * Set the initial timeout to 1809 * max(1, <approx. number of hardclock ticks in a millisecond>). 1810 * People should probably not use the sysctl to set the timeout 1811 * to smaller than its inital value, since that value is the 1812 * smallest reasonable one. If they want better timestamps they 1813 * should use the non-"get"* functions. 1814 */ 1815 if (hz > 1000) 1816 tc_tick = (hz + 500) / 1000; 1817 else 1818 tc_tick = 1; 1819 tc_adjprecision(); 1820 FREQ2BT(hz, &tick_bt); 1821 tick_sbt = bttosbt(tick_bt); 1822 tick_rate = hz / tc_tick; 1823 FREQ2BT(tick_rate, &tc_tick_bt); 1824 tc_tick_sbt = bttosbt(tc_tick_bt); 1825 p = (tc_tick * 1000000) / hz; 1826 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 1827 1828 #ifdef FFCLOCK 1829 ffclock_init(); 1830 #endif 1831 /* warm up new timecounter (again) and get rolling. */ 1832 (void)timecounter->tc_get_timecount(timecounter); 1833 (void)timecounter->tc_get_timecount(timecounter); 1834 tc_windup(); 1835 } 1836 1837 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 1838 1839 /* Cpu tick handling -------------------------------------------------*/ 1840 1841 static int cpu_tick_variable; 1842 static uint64_t cpu_tick_frequency; 1843 1844 static uint64_t 1845 tc_cpu_ticks(void) 1846 { 1847 static uint64_t base; 1848 static unsigned last; 1849 unsigned u; 1850 struct timecounter *tc; 1851 1852 tc = timehands->th_counter; 1853 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 1854 if (u < last) 1855 base += (uint64_t)tc->tc_counter_mask + 1; 1856 last = u; 1857 return (u + base); 1858 } 1859 1860 void 1861 cpu_tick_calibration(void) 1862 { 1863 static time_t last_calib; 1864 1865 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 1866 cpu_tick_calibrate(0); 1867 last_calib = time_uptime; 1868 } 1869 } 1870 1871 /* 1872 * This function gets called every 16 seconds on only one designated 1873 * CPU in the system from hardclock() via cpu_tick_calibration()(). 1874 * 1875 * Whenever the real time clock is stepped we get called with reset=1 1876 * to make sure we handle suspend/resume and similar events correctly. 1877 */ 1878 1879 static void 1880 cpu_tick_calibrate(int reset) 1881 { 1882 static uint64_t c_last; 1883 uint64_t c_this, c_delta; 1884 static struct bintime t_last; 1885 struct bintime t_this, t_delta; 1886 uint32_t divi; 1887 1888 if (reset) { 1889 /* The clock was stepped, abort & reset */ 1890 t_last.sec = 0; 1891 return; 1892 } 1893 1894 /* we don't calibrate fixed rate cputicks */ 1895 if (!cpu_tick_variable) 1896 return; 1897 1898 getbinuptime(&t_this); 1899 c_this = cpu_ticks(); 1900 if (t_last.sec != 0) { 1901 c_delta = c_this - c_last; 1902 t_delta = t_this; 1903 bintime_sub(&t_delta, &t_last); 1904 /* 1905 * Headroom: 1906 * 2^(64-20) / 16[s] = 1907 * 2^(44) / 16[s] = 1908 * 17.592.186.044.416 / 16 = 1909 * 1.099.511.627.776 [Hz] 1910 */ 1911 divi = t_delta.sec << 20; 1912 divi |= t_delta.frac >> (64 - 20); 1913 c_delta <<= 20; 1914 c_delta /= divi; 1915 if (c_delta > cpu_tick_frequency) { 1916 if (0 && bootverbose) 1917 printf("cpu_tick increased to %ju Hz\n", 1918 c_delta); 1919 cpu_tick_frequency = c_delta; 1920 } 1921 } 1922 c_last = c_this; 1923 t_last = t_this; 1924 } 1925 1926 void 1927 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 1928 { 1929 1930 if (func == NULL) { 1931 cpu_ticks = tc_cpu_ticks; 1932 } else { 1933 cpu_tick_frequency = freq; 1934 cpu_tick_variable = var; 1935 cpu_ticks = func; 1936 } 1937 } 1938 1939 uint64_t 1940 cpu_tickrate(void) 1941 { 1942 1943 if (cpu_ticks == tc_cpu_ticks) 1944 return (tc_getfrequency()); 1945 return (cpu_tick_frequency); 1946 } 1947 1948 /* 1949 * We need to be slightly careful converting cputicks to microseconds. 1950 * There is plenty of margin in 64 bits of microseconds (half a million 1951 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 1952 * before divide conversion (to retain precision) we find that the 1953 * margin shrinks to 1.5 hours (one millionth of 146y). 1954 * With a three prong approach we never lose significant bits, no 1955 * matter what the cputick rate and length of timeinterval is. 1956 */ 1957 1958 uint64_t 1959 cputick2usec(uint64_t tick) 1960 { 1961 1962 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 1963 return (tick / (cpu_tickrate() / 1000000LL)); 1964 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 1965 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 1966 else 1967 return ((tick * 1000000LL) / cpu_tickrate()); 1968 } 1969 1970 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 1971 1972 static int vdso_th_enable = 1; 1973 static int 1974 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 1975 { 1976 int old_vdso_th_enable, error; 1977 1978 old_vdso_th_enable = vdso_th_enable; 1979 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 1980 if (error != 0) 1981 return (error); 1982 vdso_th_enable = old_vdso_th_enable; 1983 timekeep_push_vdso(); 1984 return (0); 1985 } 1986 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 1987 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 1988 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 1989 1990 uint32_t 1991 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 1992 { 1993 struct timehands *th; 1994 uint32_t enabled; 1995 1996 th = timehands; 1997 vdso_th->th_algo = VDSO_TH_ALGO_1; 1998 vdso_th->th_scale = th->th_scale; 1999 vdso_th->th_offset_count = th->th_offset_count; 2000 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2001 vdso_th->th_offset = th->th_offset; 2002 vdso_th->th_boottime = boottimebin; 2003 enabled = cpu_fill_vdso_timehands(vdso_th); 2004 if (!vdso_th_enable) 2005 enabled = 0; 2006 return (enabled); 2007 } 2008 2009 #ifdef COMPAT_FREEBSD32 2010 uint32_t 2011 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2012 { 2013 struct timehands *th; 2014 uint32_t enabled; 2015 2016 th = timehands; 2017 vdso_th32->th_algo = VDSO_TH_ALGO_1; 2018 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2019 vdso_th32->th_offset_count = th->th_offset_count; 2020 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2021 vdso_th32->th_offset.sec = th->th_offset.sec; 2022 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 2023 vdso_th32->th_boottime.sec = boottimebin.sec; 2024 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac; 2025 enabled = cpu_fill_vdso_timehands32(vdso_th32); 2026 if (!vdso_th_enable) 2027 enabled = 0; 2028 return (enabled); 2029 } 2030 #endif 2031