xref: /freebsd/sys/kern/kern_tc.c (revision 3823d5e198425b4f5e5a80267d195769d1063773)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * Copyright (c) 2011 The FreeBSD Foundation
10  * All rights reserved.
11  *
12  * Portions of this software were developed by Julien Ridoux at the University
13  * of Melbourne under sponsorship from the FreeBSD Foundation.
14  */
15 
16 #include <sys/cdefs.h>
17 __FBSDID("$FreeBSD$");
18 
19 #include "opt_compat.h"
20 #include "opt_ntp.h"
21 #include "opt_ffclock.h"
22 
23 #include <sys/param.h>
24 #include <sys/kernel.h>
25 #include <sys/limits.h>
26 #ifdef FFCLOCK
27 #include <sys/lock.h>
28 #include <sys/mutex.h>
29 #endif
30 #include <sys/sysctl.h>
31 #include <sys/syslog.h>
32 #include <sys/systm.h>
33 #include <sys/timeffc.h>
34 #include <sys/timepps.h>
35 #include <sys/timetc.h>
36 #include <sys/timex.h>
37 #include <sys/vdso.h>
38 
39 /*
40  * A large step happens on boot.  This constant detects such steps.
41  * It is relatively small so that ntp_update_second gets called enough
42  * in the typical 'missed a couple of seconds' case, but doesn't loop
43  * forever when the time step is large.
44  */
45 #define LARGE_STEP	200
46 
47 /*
48  * Implement a dummy timecounter which we can use until we get a real one
49  * in the air.  This allows the console and other early stuff to use
50  * time services.
51  */
52 
53 static u_int
54 dummy_get_timecount(struct timecounter *tc)
55 {
56 	static u_int now;
57 
58 	return (++now);
59 }
60 
61 static struct timecounter dummy_timecounter = {
62 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
63 };
64 
65 struct timehands {
66 	/* These fields must be initialized by the driver. */
67 	struct timecounter	*th_counter;
68 	int64_t			th_adjustment;
69 	uint64_t		th_scale;
70 	u_int	 		th_offset_count;
71 	struct bintime		th_offset;
72 	struct timeval		th_microtime;
73 	struct timespec		th_nanotime;
74 	/* Fields not to be copied in tc_windup start with th_generation. */
75 	volatile u_int		th_generation;
76 	struct timehands	*th_next;
77 };
78 
79 static struct timehands th0;
80 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
81 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
82 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
83 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
84 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
85 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
86 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
87 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
88 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
89 static struct timehands th0 = {
90 	&dummy_timecounter,
91 	0,
92 	(uint64_t)-1 / 1000000,
93 	0,
94 	{1, 0},
95 	{0, 0},
96 	{0, 0},
97 	1,
98 	&th1
99 };
100 
101 static struct timehands *volatile timehands = &th0;
102 struct timecounter *timecounter = &dummy_timecounter;
103 static struct timecounter *timecounters = &dummy_timecounter;
104 
105 int tc_min_ticktock_freq = 1;
106 
107 volatile time_t time_second = 1;
108 volatile time_t time_uptime = 1;
109 
110 struct bintime boottimebin;
111 struct timeval boottime;
112 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
113 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
114     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
115 
116 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
117 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
118 
119 static int timestepwarnings;
120 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
121     &timestepwarnings, 0, "Log time steps");
122 
123 struct bintime bt_timethreshold;
124 struct bintime bt_tickthreshold;
125 sbintime_t sbt_timethreshold;
126 sbintime_t sbt_tickthreshold;
127 struct bintime tc_tick_bt;
128 sbintime_t tc_tick_sbt;
129 int tc_precexp;
130 int tc_timepercentage = TC_DEFAULTPERC;
131 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
132 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
133     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
134     sysctl_kern_timecounter_adjprecision, "I",
135     "Allowed time interval deviation in percents");
136 
137 static void tc_windup(void);
138 static void cpu_tick_calibrate(int);
139 
140 void dtrace_getnanotime(struct timespec *tsp);
141 
142 static int
143 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
144 {
145 #ifndef __mips__
146 #ifdef SCTL_MASK32
147 	int tv[2];
148 
149 	if (req->flags & SCTL_MASK32) {
150 		tv[0] = boottime.tv_sec;
151 		tv[1] = boottime.tv_usec;
152 		return SYSCTL_OUT(req, tv, sizeof(tv));
153 	} else
154 #endif
155 #endif
156 		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
157 }
158 
159 static int
160 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
161 {
162 	u_int ncount;
163 	struct timecounter *tc = arg1;
164 
165 	ncount = tc->tc_get_timecount(tc);
166 	return sysctl_handle_int(oidp, &ncount, 0, req);
167 }
168 
169 static int
170 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
171 {
172 	uint64_t freq;
173 	struct timecounter *tc = arg1;
174 
175 	freq = tc->tc_frequency;
176 	return sysctl_handle_64(oidp, &freq, 0, req);
177 }
178 
179 /*
180  * Return the difference between the timehands' counter value now and what
181  * was when we copied it to the timehands' offset_count.
182  */
183 static __inline u_int
184 tc_delta(struct timehands *th)
185 {
186 	struct timecounter *tc;
187 
188 	tc = th->th_counter;
189 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
190 	    tc->tc_counter_mask);
191 }
192 
193 /*
194  * Functions for reading the time.  We have to loop until we are sure that
195  * the timehands that we operated on was not updated under our feet.  See
196  * the comment in <sys/time.h> for a description of these 12 functions.
197  */
198 
199 #ifdef FFCLOCK
200 void
201 fbclock_binuptime(struct bintime *bt)
202 {
203 	struct timehands *th;
204 	unsigned int gen;
205 
206 	do {
207 		th = timehands;
208 		gen = th->th_generation;
209 		*bt = th->th_offset;
210 		bintime_addx(bt, th->th_scale * tc_delta(th));
211 	} while (gen == 0 || gen != th->th_generation);
212 }
213 
214 void
215 fbclock_nanouptime(struct timespec *tsp)
216 {
217 	struct bintime bt;
218 
219 	fbclock_binuptime(&bt);
220 	bintime2timespec(&bt, tsp);
221 }
222 
223 void
224 fbclock_microuptime(struct timeval *tvp)
225 {
226 	struct bintime bt;
227 
228 	fbclock_binuptime(&bt);
229 	bintime2timeval(&bt, tvp);
230 }
231 
232 void
233 fbclock_bintime(struct bintime *bt)
234 {
235 
236 	fbclock_binuptime(bt);
237 	bintime_add(bt, &boottimebin);
238 }
239 
240 void
241 fbclock_nanotime(struct timespec *tsp)
242 {
243 	struct bintime bt;
244 
245 	fbclock_bintime(&bt);
246 	bintime2timespec(&bt, tsp);
247 }
248 
249 void
250 fbclock_microtime(struct timeval *tvp)
251 {
252 	struct bintime bt;
253 
254 	fbclock_bintime(&bt);
255 	bintime2timeval(&bt, tvp);
256 }
257 
258 void
259 fbclock_getbinuptime(struct bintime *bt)
260 {
261 	struct timehands *th;
262 	unsigned int gen;
263 
264 	do {
265 		th = timehands;
266 		gen = th->th_generation;
267 		*bt = th->th_offset;
268 	} while (gen == 0 || gen != th->th_generation);
269 }
270 
271 void
272 fbclock_getnanouptime(struct timespec *tsp)
273 {
274 	struct timehands *th;
275 	unsigned int gen;
276 
277 	do {
278 		th = timehands;
279 		gen = th->th_generation;
280 		bintime2timespec(&th->th_offset, tsp);
281 	} while (gen == 0 || gen != th->th_generation);
282 }
283 
284 void
285 fbclock_getmicrouptime(struct timeval *tvp)
286 {
287 	struct timehands *th;
288 	unsigned int gen;
289 
290 	do {
291 		th = timehands;
292 		gen = th->th_generation;
293 		bintime2timeval(&th->th_offset, tvp);
294 	} while (gen == 0 || gen != th->th_generation);
295 }
296 
297 void
298 fbclock_getbintime(struct bintime *bt)
299 {
300 	struct timehands *th;
301 	unsigned int gen;
302 
303 	do {
304 		th = timehands;
305 		gen = th->th_generation;
306 		*bt = th->th_offset;
307 	} while (gen == 0 || gen != th->th_generation);
308 	bintime_add(bt, &boottimebin);
309 }
310 
311 void
312 fbclock_getnanotime(struct timespec *tsp)
313 {
314 	struct timehands *th;
315 	unsigned int gen;
316 
317 	do {
318 		th = timehands;
319 		gen = th->th_generation;
320 		*tsp = th->th_nanotime;
321 	} while (gen == 0 || gen != th->th_generation);
322 }
323 
324 void
325 fbclock_getmicrotime(struct timeval *tvp)
326 {
327 	struct timehands *th;
328 	unsigned int gen;
329 
330 	do {
331 		th = timehands;
332 		gen = th->th_generation;
333 		*tvp = th->th_microtime;
334 	} while (gen == 0 || gen != th->th_generation);
335 }
336 #else /* !FFCLOCK */
337 void
338 binuptime(struct bintime *bt)
339 {
340 	struct timehands *th;
341 	u_int gen;
342 
343 	do {
344 		th = timehands;
345 		gen = th->th_generation;
346 		*bt = th->th_offset;
347 		bintime_addx(bt, th->th_scale * tc_delta(th));
348 	} while (gen == 0 || gen != th->th_generation);
349 }
350 
351 void
352 nanouptime(struct timespec *tsp)
353 {
354 	struct bintime bt;
355 
356 	binuptime(&bt);
357 	bintime2timespec(&bt, tsp);
358 }
359 
360 void
361 microuptime(struct timeval *tvp)
362 {
363 	struct bintime bt;
364 
365 	binuptime(&bt);
366 	bintime2timeval(&bt, tvp);
367 }
368 
369 void
370 bintime(struct bintime *bt)
371 {
372 
373 	binuptime(bt);
374 	bintime_add(bt, &boottimebin);
375 }
376 
377 void
378 nanotime(struct timespec *tsp)
379 {
380 	struct bintime bt;
381 
382 	bintime(&bt);
383 	bintime2timespec(&bt, tsp);
384 }
385 
386 void
387 microtime(struct timeval *tvp)
388 {
389 	struct bintime bt;
390 
391 	bintime(&bt);
392 	bintime2timeval(&bt, tvp);
393 }
394 
395 void
396 getbinuptime(struct bintime *bt)
397 {
398 	struct timehands *th;
399 	u_int gen;
400 
401 	do {
402 		th = timehands;
403 		gen = th->th_generation;
404 		*bt = th->th_offset;
405 	} while (gen == 0 || gen != th->th_generation);
406 }
407 
408 void
409 getnanouptime(struct timespec *tsp)
410 {
411 	struct timehands *th;
412 	u_int gen;
413 
414 	do {
415 		th = timehands;
416 		gen = th->th_generation;
417 		bintime2timespec(&th->th_offset, tsp);
418 	} while (gen == 0 || gen != th->th_generation);
419 }
420 
421 void
422 getmicrouptime(struct timeval *tvp)
423 {
424 	struct timehands *th;
425 	u_int gen;
426 
427 	do {
428 		th = timehands;
429 		gen = th->th_generation;
430 		bintime2timeval(&th->th_offset, tvp);
431 	} while (gen == 0 || gen != th->th_generation);
432 }
433 
434 void
435 getbintime(struct bintime *bt)
436 {
437 	struct timehands *th;
438 	u_int gen;
439 
440 	do {
441 		th = timehands;
442 		gen = th->th_generation;
443 		*bt = th->th_offset;
444 	} while (gen == 0 || gen != th->th_generation);
445 	bintime_add(bt, &boottimebin);
446 }
447 
448 void
449 getnanotime(struct timespec *tsp)
450 {
451 	struct timehands *th;
452 	u_int gen;
453 
454 	do {
455 		th = timehands;
456 		gen = th->th_generation;
457 		*tsp = th->th_nanotime;
458 	} while (gen == 0 || gen != th->th_generation);
459 }
460 
461 void
462 getmicrotime(struct timeval *tvp)
463 {
464 	struct timehands *th;
465 	u_int gen;
466 
467 	do {
468 		th = timehands;
469 		gen = th->th_generation;
470 		*tvp = th->th_microtime;
471 	} while (gen == 0 || gen != th->th_generation);
472 }
473 #endif /* FFCLOCK */
474 
475 #ifdef FFCLOCK
476 /*
477  * Support for feed-forward synchronization algorithms. This is heavily inspired
478  * by the timehands mechanism but kept independent from it. *_windup() functions
479  * have some connection to avoid accessing the timecounter hardware more than
480  * necessary.
481  */
482 
483 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
484 struct ffclock_estimate ffclock_estimate;
485 struct bintime ffclock_boottime;	/* Feed-forward boot time estimate. */
486 uint32_t ffclock_status;		/* Feed-forward clock status. */
487 int8_t ffclock_updated;			/* New estimates are available. */
488 struct mtx ffclock_mtx;			/* Mutex on ffclock_estimate. */
489 
490 struct fftimehands {
491 	struct ffclock_estimate	cest;
492 	struct bintime		tick_time;
493 	struct bintime		tick_time_lerp;
494 	ffcounter		tick_ffcount;
495 	uint64_t		period_lerp;
496 	volatile uint8_t	gen;
497 	struct fftimehands	*next;
498 };
499 
500 #define	NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
501 
502 static struct fftimehands ffth[10];
503 static struct fftimehands *volatile fftimehands = ffth;
504 
505 static void
506 ffclock_init(void)
507 {
508 	struct fftimehands *cur;
509 	struct fftimehands *last;
510 
511 	memset(ffth, 0, sizeof(ffth));
512 
513 	last = ffth + NUM_ELEMENTS(ffth) - 1;
514 	for (cur = ffth; cur < last; cur++)
515 		cur->next = cur + 1;
516 	last->next = ffth;
517 
518 	ffclock_updated = 0;
519 	ffclock_status = FFCLOCK_STA_UNSYNC;
520 	mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
521 }
522 
523 /*
524  * Reset the feed-forward clock estimates. Called from inittodr() to get things
525  * kick started and uses the timecounter nominal frequency as a first period
526  * estimate. Note: this function may be called several time just after boot.
527  * Note: this is the only function that sets the value of boot time for the
528  * monotonic (i.e. uptime) version of the feed-forward clock.
529  */
530 void
531 ffclock_reset_clock(struct timespec *ts)
532 {
533 	struct timecounter *tc;
534 	struct ffclock_estimate cest;
535 
536 	tc = timehands->th_counter;
537 	memset(&cest, 0, sizeof(struct ffclock_estimate));
538 
539 	timespec2bintime(ts, &ffclock_boottime);
540 	timespec2bintime(ts, &(cest.update_time));
541 	ffclock_read_counter(&cest.update_ffcount);
542 	cest.leapsec_next = 0;
543 	cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
544 	cest.errb_abs = 0;
545 	cest.errb_rate = 0;
546 	cest.status = FFCLOCK_STA_UNSYNC;
547 	cest.leapsec_total = 0;
548 	cest.leapsec = 0;
549 
550 	mtx_lock(&ffclock_mtx);
551 	bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
552 	ffclock_updated = INT8_MAX;
553 	mtx_unlock(&ffclock_mtx);
554 
555 	printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
556 	    (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
557 	    (unsigned long)ts->tv_nsec);
558 }
559 
560 /*
561  * Sub-routine to convert a time interval measured in RAW counter units to time
562  * in seconds stored in bintime format.
563  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
564  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
565  * extra cycles.
566  */
567 static void
568 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
569 {
570 	struct bintime bt2;
571 	ffcounter delta, delta_max;
572 
573 	delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
574 	bintime_clear(bt);
575 	do {
576 		if (ffdelta > delta_max)
577 			delta = delta_max;
578 		else
579 			delta = ffdelta;
580 		bt2.sec = 0;
581 		bt2.frac = period;
582 		bintime_mul(&bt2, (unsigned int)delta);
583 		bintime_add(bt, &bt2);
584 		ffdelta -= delta;
585 	} while (ffdelta > 0);
586 }
587 
588 /*
589  * Update the fftimehands.
590  * Push the tick ffcount and time(s) forward based on current clock estimate.
591  * The conversion from ffcounter to bintime relies on the difference clock
592  * principle, whose accuracy relies on computing small time intervals. If a new
593  * clock estimate has been passed by the synchronisation daemon, make it
594  * current, and compute the linear interpolation for monotonic time if needed.
595  */
596 static void
597 ffclock_windup(unsigned int delta)
598 {
599 	struct ffclock_estimate *cest;
600 	struct fftimehands *ffth;
601 	struct bintime bt, gap_lerp;
602 	ffcounter ffdelta;
603 	uint64_t frac;
604 	unsigned int polling;
605 	uint8_t forward_jump, ogen;
606 
607 	/*
608 	 * Pick the next timehand, copy current ffclock estimates and move tick
609 	 * times and counter forward.
610 	 */
611 	forward_jump = 0;
612 	ffth = fftimehands->next;
613 	ogen = ffth->gen;
614 	ffth->gen = 0;
615 	cest = &ffth->cest;
616 	bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
617 	ffdelta = (ffcounter)delta;
618 	ffth->period_lerp = fftimehands->period_lerp;
619 
620 	ffth->tick_time = fftimehands->tick_time;
621 	ffclock_convert_delta(ffdelta, cest->period, &bt);
622 	bintime_add(&ffth->tick_time, &bt);
623 
624 	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
625 	ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
626 	bintime_add(&ffth->tick_time_lerp, &bt);
627 
628 	ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
629 
630 	/*
631 	 * Assess the status of the clock, if the last update is too old, it is
632 	 * likely the synchronisation daemon is dead and the clock is free
633 	 * running.
634 	 */
635 	if (ffclock_updated == 0) {
636 		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
637 		ffclock_convert_delta(ffdelta, cest->period, &bt);
638 		if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
639 			ffclock_status |= FFCLOCK_STA_UNSYNC;
640 	}
641 
642 	/*
643 	 * If available, grab updated clock estimates and make them current.
644 	 * Recompute time at this tick using the updated estimates. The clock
645 	 * estimates passed the feed-forward synchronisation daemon may result
646 	 * in time conversion that is not monotonically increasing (just after
647 	 * the update). time_lerp is a particular linear interpolation over the
648 	 * synchronisation algo polling period that ensures monotonicity for the
649 	 * clock ids requesting it.
650 	 */
651 	if (ffclock_updated > 0) {
652 		bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
653 		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
654 		ffth->tick_time = cest->update_time;
655 		ffclock_convert_delta(ffdelta, cest->period, &bt);
656 		bintime_add(&ffth->tick_time, &bt);
657 
658 		/* ffclock_reset sets ffclock_updated to INT8_MAX */
659 		if (ffclock_updated == INT8_MAX)
660 			ffth->tick_time_lerp = ffth->tick_time;
661 
662 		if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
663 			forward_jump = 1;
664 		else
665 			forward_jump = 0;
666 
667 		bintime_clear(&gap_lerp);
668 		if (forward_jump) {
669 			gap_lerp = ffth->tick_time;
670 			bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
671 		} else {
672 			gap_lerp = ffth->tick_time_lerp;
673 			bintime_sub(&gap_lerp, &ffth->tick_time);
674 		}
675 
676 		/*
677 		 * The reset from the RTC clock may be far from accurate, and
678 		 * reducing the gap between real time and interpolated time
679 		 * could take a very long time if the interpolated clock insists
680 		 * on strict monotonicity. The clock is reset under very strict
681 		 * conditions (kernel time is known to be wrong and
682 		 * synchronization daemon has been restarted recently.
683 		 * ffclock_boottime absorbs the jump to ensure boot time is
684 		 * correct and uptime functions stay consistent.
685 		 */
686 		if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
687 		    ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
688 		    ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
689 			if (forward_jump)
690 				bintime_add(&ffclock_boottime, &gap_lerp);
691 			else
692 				bintime_sub(&ffclock_boottime, &gap_lerp);
693 			ffth->tick_time_lerp = ffth->tick_time;
694 			bintime_clear(&gap_lerp);
695 		}
696 
697 		ffclock_status = cest->status;
698 		ffth->period_lerp = cest->period;
699 
700 		/*
701 		 * Compute corrected period used for the linear interpolation of
702 		 * time. The rate of linear interpolation is capped to 5000PPM
703 		 * (5ms/s).
704 		 */
705 		if (bintime_isset(&gap_lerp)) {
706 			ffdelta = cest->update_ffcount;
707 			ffdelta -= fftimehands->cest.update_ffcount;
708 			ffclock_convert_delta(ffdelta, cest->period, &bt);
709 			polling = bt.sec;
710 			bt.sec = 0;
711 			bt.frac = 5000000 * (uint64_t)18446744073LL;
712 			bintime_mul(&bt, polling);
713 			if (bintime_cmp(&gap_lerp, &bt, >))
714 				gap_lerp = bt;
715 
716 			/* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
717 			frac = 0;
718 			if (gap_lerp.sec > 0) {
719 				frac -= 1;
720 				frac /= ffdelta / gap_lerp.sec;
721 			}
722 			frac += gap_lerp.frac / ffdelta;
723 
724 			if (forward_jump)
725 				ffth->period_lerp += frac;
726 			else
727 				ffth->period_lerp -= frac;
728 		}
729 
730 		ffclock_updated = 0;
731 	}
732 	if (++ogen == 0)
733 		ogen = 1;
734 	ffth->gen = ogen;
735 	fftimehands = ffth;
736 }
737 
738 /*
739  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
740  * the old and new hardware counter cannot be read simultaneously. tc_windup()
741  * does read the two counters 'back to back', but a few cycles are effectively
742  * lost, and not accumulated in tick_ffcount. This is a fairly radical
743  * operation for a feed-forward synchronization daemon, and it is its job to not
744  * pushing irrelevant data to the kernel. Because there is no locking here,
745  * simply force to ignore pending or next update to give daemon a chance to
746  * realize the counter has changed.
747  */
748 static void
749 ffclock_change_tc(struct timehands *th)
750 {
751 	struct fftimehands *ffth;
752 	struct ffclock_estimate *cest;
753 	struct timecounter *tc;
754 	uint8_t ogen;
755 
756 	tc = th->th_counter;
757 	ffth = fftimehands->next;
758 	ogen = ffth->gen;
759 	ffth->gen = 0;
760 
761 	cest = &ffth->cest;
762 	bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
763 	cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
764 	cest->errb_abs = 0;
765 	cest->errb_rate = 0;
766 	cest->status |= FFCLOCK_STA_UNSYNC;
767 
768 	ffth->tick_ffcount = fftimehands->tick_ffcount;
769 	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
770 	ffth->tick_time = fftimehands->tick_time;
771 	ffth->period_lerp = cest->period;
772 
773 	/* Do not lock but ignore next update from synchronization daemon. */
774 	ffclock_updated--;
775 
776 	if (++ogen == 0)
777 		ogen = 1;
778 	ffth->gen = ogen;
779 	fftimehands = ffth;
780 }
781 
782 /*
783  * Retrieve feed-forward counter and time of last kernel tick.
784  */
785 void
786 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
787 {
788 	struct fftimehands *ffth;
789 	uint8_t gen;
790 
791 	/*
792 	 * No locking but check generation has not changed. Also need to make
793 	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
794 	 */
795 	do {
796 		ffth = fftimehands;
797 		gen = ffth->gen;
798 		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
799 			*bt = ffth->tick_time_lerp;
800 		else
801 			*bt = ffth->tick_time;
802 		*ffcount = ffth->tick_ffcount;
803 	} while (gen == 0 || gen != ffth->gen);
804 }
805 
806 /*
807  * Absolute clock conversion. Low level function to convert ffcounter to
808  * bintime. The ffcounter is converted using the current ffclock period estimate
809  * or the "interpolated period" to ensure monotonicity.
810  * NOTE: this conversion may have been deferred, and the clock updated since the
811  * hardware counter has been read.
812  */
813 void
814 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
815 {
816 	struct fftimehands *ffth;
817 	struct bintime bt2;
818 	ffcounter ffdelta;
819 	uint8_t gen;
820 
821 	/*
822 	 * No locking but check generation has not changed. Also need to make
823 	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
824 	 */
825 	do {
826 		ffth = fftimehands;
827 		gen = ffth->gen;
828 		if (ffcount > ffth->tick_ffcount)
829 			ffdelta = ffcount - ffth->tick_ffcount;
830 		else
831 			ffdelta = ffth->tick_ffcount - ffcount;
832 
833 		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
834 			*bt = ffth->tick_time_lerp;
835 			ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
836 		} else {
837 			*bt = ffth->tick_time;
838 			ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
839 		}
840 
841 		if (ffcount > ffth->tick_ffcount)
842 			bintime_add(bt, &bt2);
843 		else
844 			bintime_sub(bt, &bt2);
845 	} while (gen == 0 || gen != ffth->gen);
846 }
847 
848 /*
849  * Difference clock conversion.
850  * Low level function to Convert a time interval measured in RAW counter units
851  * into bintime. The difference clock allows measuring small intervals much more
852  * reliably than the absolute clock.
853  */
854 void
855 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
856 {
857 	struct fftimehands *ffth;
858 	uint8_t gen;
859 
860 	/* No locking but check generation has not changed. */
861 	do {
862 		ffth = fftimehands;
863 		gen = ffth->gen;
864 		ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
865 	} while (gen == 0 || gen != ffth->gen);
866 }
867 
868 /*
869  * Access to current ffcounter value.
870  */
871 void
872 ffclock_read_counter(ffcounter *ffcount)
873 {
874 	struct timehands *th;
875 	struct fftimehands *ffth;
876 	unsigned int gen, delta;
877 
878 	/*
879 	 * ffclock_windup() called from tc_windup(), safe to rely on
880 	 * th->th_generation only, for correct delta and ffcounter.
881 	 */
882 	do {
883 		th = timehands;
884 		gen = th->th_generation;
885 		ffth = fftimehands;
886 		delta = tc_delta(th);
887 		*ffcount = ffth->tick_ffcount;
888 	} while (gen == 0 || gen != th->th_generation);
889 
890 	*ffcount += delta;
891 }
892 
893 void
894 binuptime(struct bintime *bt)
895 {
896 
897 	binuptime_fromclock(bt, sysclock_active);
898 }
899 
900 void
901 nanouptime(struct timespec *tsp)
902 {
903 
904 	nanouptime_fromclock(tsp, sysclock_active);
905 }
906 
907 void
908 microuptime(struct timeval *tvp)
909 {
910 
911 	microuptime_fromclock(tvp, sysclock_active);
912 }
913 
914 void
915 bintime(struct bintime *bt)
916 {
917 
918 	bintime_fromclock(bt, sysclock_active);
919 }
920 
921 void
922 nanotime(struct timespec *tsp)
923 {
924 
925 	nanotime_fromclock(tsp, sysclock_active);
926 }
927 
928 void
929 microtime(struct timeval *tvp)
930 {
931 
932 	microtime_fromclock(tvp, sysclock_active);
933 }
934 
935 void
936 getbinuptime(struct bintime *bt)
937 {
938 
939 	getbinuptime_fromclock(bt, sysclock_active);
940 }
941 
942 void
943 getnanouptime(struct timespec *tsp)
944 {
945 
946 	getnanouptime_fromclock(tsp, sysclock_active);
947 }
948 
949 void
950 getmicrouptime(struct timeval *tvp)
951 {
952 
953 	getmicrouptime_fromclock(tvp, sysclock_active);
954 }
955 
956 void
957 getbintime(struct bintime *bt)
958 {
959 
960 	getbintime_fromclock(bt, sysclock_active);
961 }
962 
963 void
964 getnanotime(struct timespec *tsp)
965 {
966 
967 	getnanotime_fromclock(tsp, sysclock_active);
968 }
969 
970 void
971 getmicrotime(struct timeval *tvp)
972 {
973 
974 	getmicrouptime_fromclock(tvp, sysclock_active);
975 }
976 
977 #endif /* FFCLOCK */
978 
979 /*
980  * This is a clone of getnanotime and used for walltimestamps.
981  * The dtrace_ prefix prevents fbt from creating probes for
982  * it so walltimestamp can be safely used in all fbt probes.
983  */
984 void
985 dtrace_getnanotime(struct timespec *tsp)
986 {
987 	struct timehands *th;
988 	u_int gen;
989 
990 	do {
991 		th = timehands;
992 		gen = th->th_generation;
993 		*tsp = th->th_nanotime;
994 	} while (gen == 0 || gen != th->th_generation);
995 }
996 
997 /*
998  * System clock currently providing time to the system. Modifiable via sysctl
999  * when the FFCLOCK option is defined.
1000  */
1001 int sysclock_active = SYSCLOCK_FBCK;
1002 
1003 /* Internal NTP status and error estimates. */
1004 extern int time_status;
1005 extern long time_esterror;
1006 
1007 /*
1008  * Take a snapshot of sysclock data which can be used to compare system clocks
1009  * and generate timestamps after the fact.
1010  */
1011 void
1012 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1013 {
1014 	struct fbclock_info *fbi;
1015 	struct timehands *th;
1016 	struct bintime bt;
1017 	unsigned int delta, gen;
1018 #ifdef FFCLOCK
1019 	ffcounter ffcount;
1020 	struct fftimehands *ffth;
1021 	struct ffclock_info *ffi;
1022 	struct ffclock_estimate cest;
1023 
1024 	ffi = &clock_snap->ff_info;
1025 #endif
1026 
1027 	fbi = &clock_snap->fb_info;
1028 	delta = 0;
1029 
1030 	do {
1031 		th = timehands;
1032 		gen = th->th_generation;
1033 		fbi->th_scale = th->th_scale;
1034 		fbi->tick_time = th->th_offset;
1035 #ifdef FFCLOCK
1036 		ffth = fftimehands;
1037 		ffi->tick_time = ffth->tick_time_lerp;
1038 		ffi->tick_time_lerp = ffth->tick_time_lerp;
1039 		ffi->period = ffth->cest.period;
1040 		ffi->period_lerp = ffth->period_lerp;
1041 		clock_snap->ffcount = ffth->tick_ffcount;
1042 		cest = ffth->cest;
1043 #endif
1044 		if (!fast)
1045 			delta = tc_delta(th);
1046 	} while (gen == 0 || gen != th->th_generation);
1047 
1048 	clock_snap->delta = delta;
1049 	clock_snap->sysclock_active = sysclock_active;
1050 
1051 	/* Record feedback clock status and error. */
1052 	clock_snap->fb_info.status = time_status;
1053 	/* XXX: Very crude estimate of feedback clock error. */
1054 	bt.sec = time_esterror / 1000000;
1055 	bt.frac = ((time_esterror - bt.sec) * 1000000) *
1056 	    (uint64_t)18446744073709ULL;
1057 	clock_snap->fb_info.error = bt;
1058 
1059 #ifdef FFCLOCK
1060 	if (!fast)
1061 		clock_snap->ffcount += delta;
1062 
1063 	/* Record feed-forward clock leap second adjustment. */
1064 	ffi->leapsec_adjustment = cest.leapsec_total;
1065 	if (clock_snap->ffcount > cest.leapsec_next)
1066 		ffi->leapsec_adjustment -= cest.leapsec;
1067 
1068 	/* Record feed-forward clock status and error. */
1069 	clock_snap->ff_info.status = cest.status;
1070 	ffcount = clock_snap->ffcount - cest.update_ffcount;
1071 	ffclock_convert_delta(ffcount, cest.period, &bt);
1072 	/* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1073 	bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1074 	/* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1075 	bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1076 	clock_snap->ff_info.error = bt;
1077 #endif
1078 }
1079 
1080 /*
1081  * Convert a sysclock snapshot into a struct bintime based on the specified
1082  * clock source and flags.
1083  */
1084 int
1085 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1086     int whichclock, uint32_t flags)
1087 {
1088 #ifdef FFCLOCK
1089 	struct bintime bt2;
1090 	uint64_t period;
1091 #endif
1092 
1093 	switch (whichclock) {
1094 	case SYSCLOCK_FBCK:
1095 		*bt = cs->fb_info.tick_time;
1096 
1097 		/* If snapshot was created with !fast, delta will be >0. */
1098 		if (cs->delta > 0)
1099 			bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1100 
1101 		if ((flags & FBCLOCK_UPTIME) == 0)
1102 			bintime_add(bt, &boottimebin);
1103 		break;
1104 #ifdef FFCLOCK
1105 	case SYSCLOCK_FFWD:
1106 		if (flags & FFCLOCK_LERP) {
1107 			*bt = cs->ff_info.tick_time_lerp;
1108 			period = cs->ff_info.period_lerp;
1109 		} else {
1110 			*bt = cs->ff_info.tick_time;
1111 			period = cs->ff_info.period;
1112 		}
1113 
1114 		/* If snapshot was created with !fast, delta will be >0. */
1115 		if (cs->delta > 0) {
1116 			ffclock_convert_delta(cs->delta, period, &bt2);
1117 			bintime_add(bt, &bt2);
1118 		}
1119 
1120 		/* Leap second adjustment. */
1121 		if (flags & FFCLOCK_LEAPSEC)
1122 			bt->sec -= cs->ff_info.leapsec_adjustment;
1123 
1124 		/* Boot time adjustment, for uptime/monotonic clocks. */
1125 		if (flags & FFCLOCK_UPTIME)
1126 			bintime_sub(bt, &ffclock_boottime);
1127 		break;
1128 #endif
1129 	default:
1130 		return (EINVAL);
1131 		break;
1132 	}
1133 
1134 	return (0);
1135 }
1136 
1137 /*
1138  * Initialize a new timecounter and possibly use it.
1139  */
1140 void
1141 tc_init(struct timecounter *tc)
1142 {
1143 	u_int u;
1144 	struct sysctl_oid *tc_root;
1145 
1146 	u = tc->tc_frequency / tc->tc_counter_mask;
1147 	/* XXX: We need some margin here, 10% is a guess */
1148 	u *= 11;
1149 	u /= 10;
1150 	if (u > hz && tc->tc_quality >= 0) {
1151 		tc->tc_quality = -2000;
1152 		if (bootverbose) {
1153 			printf("Timecounter \"%s\" frequency %ju Hz",
1154 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
1155 			printf(" -- Insufficient hz, needs at least %u\n", u);
1156 		}
1157 	} else if (tc->tc_quality >= 0 || bootverbose) {
1158 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1159 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
1160 		    tc->tc_quality);
1161 	}
1162 
1163 	tc->tc_next = timecounters;
1164 	timecounters = tc;
1165 	/*
1166 	 * Set up sysctl tree for this counter.
1167 	 */
1168 	tc_root = SYSCTL_ADD_NODE(NULL,
1169 	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1170 	    CTLFLAG_RW, 0, "timecounter description");
1171 	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1172 	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1173 	    "mask for implemented bits");
1174 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1175 	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1176 	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
1177 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1178 	    "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1179 	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1180 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1181 	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1182 	    "goodness of time counter");
1183 	/*
1184 	 * Never automatically use a timecounter with negative quality.
1185 	 * Even though we run on the dummy counter, switching here may be
1186 	 * worse since this timecounter may not be monotonous.
1187 	 */
1188 	if (tc->tc_quality < 0)
1189 		return;
1190 	if (tc->tc_quality < timecounter->tc_quality)
1191 		return;
1192 	if (tc->tc_quality == timecounter->tc_quality &&
1193 	    tc->tc_frequency < timecounter->tc_frequency)
1194 		return;
1195 	(void)tc->tc_get_timecount(tc);
1196 	(void)tc->tc_get_timecount(tc);
1197 	timecounter = tc;
1198 }
1199 
1200 /* Report the frequency of the current timecounter. */
1201 uint64_t
1202 tc_getfrequency(void)
1203 {
1204 
1205 	return (timehands->th_counter->tc_frequency);
1206 }
1207 
1208 /*
1209  * Step our concept of UTC.  This is done by modifying our estimate of
1210  * when we booted.
1211  * XXX: not locked.
1212  */
1213 void
1214 tc_setclock(struct timespec *ts)
1215 {
1216 	struct timespec tbef, taft;
1217 	struct bintime bt, bt2;
1218 
1219 	cpu_tick_calibrate(1);
1220 	nanotime(&tbef);
1221 	timespec2bintime(ts, &bt);
1222 	binuptime(&bt2);
1223 	bintime_sub(&bt, &bt2);
1224 	bintime_add(&bt2, &boottimebin);
1225 	boottimebin = bt;
1226 	bintime2timeval(&bt, &boottime);
1227 
1228 	/* XXX fiddle all the little crinkly bits around the fiords... */
1229 	tc_windup();
1230 	nanotime(&taft);
1231 	if (timestepwarnings) {
1232 		log(LOG_INFO,
1233 		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1234 		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1235 		    (intmax_t)taft.tv_sec, taft.tv_nsec,
1236 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
1237 	}
1238 	cpu_tick_calibrate(1);
1239 }
1240 
1241 /*
1242  * Initialize the next struct timehands in the ring and make
1243  * it the active timehands.  Along the way we might switch to a different
1244  * timecounter and/or do seconds processing in NTP.  Slightly magic.
1245  */
1246 static void
1247 tc_windup(void)
1248 {
1249 	struct bintime bt;
1250 	struct timehands *th, *tho;
1251 	uint64_t scale;
1252 	u_int delta, ncount, ogen;
1253 	int i;
1254 	time_t t;
1255 
1256 	/*
1257 	 * Make the next timehands a copy of the current one, but do not
1258 	 * overwrite the generation or next pointer.  While we update
1259 	 * the contents, the generation must be zero.
1260 	 */
1261 	tho = timehands;
1262 	th = tho->th_next;
1263 	ogen = th->th_generation;
1264 	th->th_generation = 0;
1265 	bcopy(tho, th, offsetof(struct timehands, th_generation));
1266 
1267 	/*
1268 	 * Capture a timecounter delta on the current timecounter and if
1269 	 * changing timecounters, a counter value from the new timecounter.
1270 	 * Update the offset fields accordingly.
1271 	 */
1272 	delta = tc_delta(th);
1273 	if (th->th_counter != timecounter)
1274 		ncount = timecounter->tc_get_timecount(timecounter);
1275 	else
1276 		ncount = 0;
1277 #ifdef FFCLOCK
1278 	ffclock_windup(delta);
1279 #endif
1280 	th->th_offset_count += delta;
1281 	th->th_offset_count &= th->th_counter->tc_counter_mask;
1282 	while (delta > th->th_counter->tc_frequency) {
1283 		/* Eat complete unadjusted seconds. */
1284 		delta -= th->th_counter->tc_frequency;
1285 		th->th_offset.sec++;
1286 	}
1287 	if ((delta > th->th_counter->tc_frequency / 2) &&
1288 	    (th->th_scale * delta < ((uint64_t)1 << 63))) {
1289 		/* The product th_scale * delta just barely overflows. */
1290 		th->th_offset.sec++;
1291 	}
1292 	bintime_addx(&th->th_offset, th->th_scale * delta);
1293 
1294 	/*
1295 	 * Hardware latching timecounters may not generate interrupts on
1296 	 * PPS events, so instead we poll them.  There is a finite risk that
1297 	 * the hardware might capture a count which is later than the one we
1298 	 * got above, and therefore possibly in the next NTP second which might
1299 	 * have a different rate than the current NTP second.  It doesn't
1300 	 * matter in practice.
1301 	 */
1302 	if (tho->th_counter->tc_poll_pps)
1303 		tho->th_counter->tc_poll_pps(tho->th_counter);
1304 
1305 	/*
1306 	 * Deal with NTP second processing.  The for loop normally
1307 	 * iterates at most once, but in extreme situations it might
1308 	 * keep NTP sane if timeouts are not run for several seconds.
1309 	 * At boot, the time step can be large when the TOD hardware
1310 	 * has been read, so on really large steps, we call
1311 	 * ntp_update_second only twice.  We need to call it twice in
1312 	 * case we missed a leap second.
1313 	 */
1314 	bt = th->th_offset;
1315 	bintime_add(&bt, &boottimebin);
1316 	i = bt.sec - tho->th_microtime.tv_sec;
1317 	if (i > LARGE_STEP)
1318 		i = 2;
1319 	for (; i > 0; i--) {
1320 		t = bt.sec;
1321 		ntp_update_second(&th->th_adjustment, &bt.sec);
1322 		if (bt.sec != t)
1323 			boottimebin.sec += bt.sec - t;
1324 	}
1325 	/* Update the UTC timestamps used by the get*() functions. */
1326 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
1327 	bintime2timeval(&bt, &th->th_microtime);
1328 	bintime2timespec(&bt, &th->th_nanotime);
1329 
1330 	/* Now is a good time to change timecounters. */
1331 	if (th->th_counter != timecounter) {
1332 #ifndef __arm__
1333 		if ((timecounter->tc_flags & TC_FLAGS_C3STOP) != 0)
1334 			cpu_disable_deep_sleep++;
1335 		if ((th->th_counter->tc_flags & TC_FLAGS_C3STOP) != 0)
1336 			cpu_disable_deep_sleep--;
1337 #endif
1338 		th->th_counter = timecounter;
1339 		th->th_offset_count = ncount;
1340 		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1341 		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1342 #ifdef FFCLOCK
1343 		ffclock_change_tc(th);
1344 #endif
1345 	}
1346 
1347 	/*-
1348 	 * Recalculate the scaling factor.  We want the number of 1/2^64
1349 	 * fractions of a second per period of the hardware counter, taking
1350 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1351 	 * processing provides us with.
1352 	 *
1353 	 * The th_adjustment is nanoseconds per second with 32 bit binary
1354 	 * fraction and we want 64 bit binary fraction of second:
1355 	 *
1356 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
1357 	 *
1358 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1359 	 * we can only multiply by about 850 without overflowing, that
1360 	 * leaves no suitably precise fractions for multiply before divide.
1361 	 *
1362 	 * Divide before multiply with a fraction of 2199/512 results in a
1363 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
1364 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1365  	 *
1366 	 * We happily sacrifice the lowest of the 64 bits of our result
1367 	 * to the goddess of code clarity.
1368 	 *
1369 	 */
1370 	scale = (uint64_t)1 << 63;
1371 	scale += (th->th_adjustment / 1024) * 2199;
1372 	scale /= th->th_counter->tc_frequency;
1373 	th->th_scale = scale * 2;
1374 
1375 	/*
1376 	 * Now that the struct timehands is again consistent, set the new
1377 	 * generation number, making sure to not make it zero.
1378 	 */
1379 	if (++ogen == 0)
1380 		ogen = 1;
1381 	th->th_generation = ogen;
1382 
1383 	/* Go live with the new struct timehands. */
1384 #ifdef FFCLOCK
1385 	switch (sysclock_active) {
1386 	case SYSCLOCK_FBCK:
1387 #endif
1388 		time_second = th->th_microtime.tv_sec;
1389 		time_uptime = th->th_offset.sec;
1390 #ifdef FFCLOCK
1391 		break;
1392 	case SYSCLOCK_FFWD:
1393 		time_second = fftimehands->tick_time_lerp.sec;
1394 		time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1395 		break;
1396 	}
1397 #endif
1398 
1399 	timehands = th;
1400 	timekeep_push_vdso();
1401 }
1402 
1403 /* Report or change the active timecounter hardware. */
1404 static int
1405 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1406 {
1407 	char newname[32];
1408 	struct timecounter *newtc, *tc;
1409 	int error;
1410 
1411 	tc = timecounter;
1412 	strlcpy(newname, tc->tc_name, sizeof(newname));
1413 
1414 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1415 	if (error != 0 || req->newptr == NULL ||
1416 	    strcmp(newname, tc->tc_name) == 0)
1417 		return (error);
1418 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1419 		if (strcmp(newname, newtc->tc_name) != 0)
1420 			continue;
1421 
1422 		/* Warm up new timecounter. */
1423 		(void)newtc->tc_get_timecount(newtc);
1424 		(void)newtc->tc_get_timecount(newtc);
1425 
1426 		timecounter = newtc;
1427 		timekeep_push_vdso();
1428 		return (0);
1429 	}
1430 	return (EINVAL);
1431 }
1432 
1433 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1434     0, 0, sysctl_kern_timecounter_hardware, "A",
1435     "Timecounter hardware selected");
1436 
1437 
1438 /* Report or change the active timecounter hardware. */
1439 static int
1440 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1441 {
1442 	char buf[32], *spc;
1443 	struct timecounter *tc;
1444 	int error;
1445 
1446 	spc = "";
1447 	error = 0;
1448 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
1449 		sprintf(buf, "%s%s(%d)",
1450 		    spc, tc->tc_name, tc->tc_quality);
1451 		error = SYSCTL_OUT(req, buf, strlen(buf));
1452 		spc = " ";
1453 	}
1454 	return (error);
1455 }
1456 
1457 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1458     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1459 
1460 /*
1461  * RFC 2783 PPS-API implementation.
1462  */
1463 
1464 static int
1465 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1466 {
1467 	int err, timo;
1468 	pps_seq_t aseq, cseq;
1469 	struct timeval tv;
1470 
1471 	if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1472 		return (EINVAL);
1473 
1474 	/*
1475 	 * If no timeout is requested, immediately return whatever values were
1476 	 * most recently captured.  If timeout seconds is -1, that's a request
1477 	 * to block without a timeout.  WITNESS won't let us sleep forever
1478 	 * without a lock (we really don't need a lock), so just repeatedly
1479 	 * sleep a long time.
1480 	 */
1481 	if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1482 		if (fapi->timeout.tv_sec == -1)
1483 			timo = 0x7fffffff;
1484 		else {
1485 			tv.tv_sec = fapi->timeout.tv_sec;
1486 			tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1487 			timo = tvtohz(&tv);
1488 		}
1489 		aseq = pps->ppsinfo.assert_sequence;
1490 		cseq = pps->ppsinfo.clear_sequence;
1491 		while (aseq == pps->ppsinfo.assert_sequence &&
1492 		    cseq == pps->ppsinfo.clear_sequence) {
1493 			err = tsleep(pps, PCATCH, "ppsfch", timo);
1494 			if (err == EWOULDBLOCK && fapi->timeout.tv_sec == -1) {
1495 				continue;
1496 			} else if (err != 0) {
1497 				return (err);
1498 			}
1499 		}
1500 	}
1501 
1502 	pps->ppsinfo.current_mode = pps->ppsparam.mode;
1503 	fapi->pps_info_buf = pps->ppsinfo;
1504 
1505 	return (0);
1506 }
1507 
1508 int
1509 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1510 {
1511 	pps_params_t *app;
1512 	struct pps_fetch_args *fapi;
1513 #ifdef FFCLOCK
1514 	struct pps_fetch_ffc_args *fapi_ffc;
1515 #endif
1516 #ifdef PPS_SYNC
1517 	struct pps_kcbind_args *kapi;
1518 #endif
1519 
1520 	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1521 	switch (cmd) {
1522 	case PPS_IOC_CREATE:
1523 		return (0);
1524 	case PPS_IOC_DESTROY:
1525 		return (0);
1526 	case PPS_IOC_SETPARAMS:
1527 		app = (pps_params_t *)data;
1528 		if (app->mode & ~pps->ppscap)
1529 			return (EINVAL);
1530 #ifdef FFCLOCK
1531 		/* Ensure only a single clock is selected for ffc timestamp. */
1532 		if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1533 			return (EINVAL);
1534 #endif
1535 		pps->ppsparam = *app;
1536 		return (0);
1537 	case PPS_IOC_GETPARAMS:
1538 		app = (pps_params_t *)data;
1539 		*app = pps->ppsparam;
1540 		app->api_version = PPS_API_VERS_1;
1541 		return (0);
1542 	case PPS_IOC_GETCAP:
1543 		*(int*)data = pps->ppscap;
1544 		return (0);
1545 	case PPS_IOC_FETCH:
1546 		fapi = (struct pps_fetch_args *)data;
1547 		return (pps_fetch(fapi, pps));
1548 #ifdef FFCLOCK
1549 	case PPS_IOC_FETCH_FFCOUNTER:
1550 		fapi_ffc = (struct pps_fetch_ffc_args *)data;
1551 		if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1552 		    PPS_TSFMT_TSPEC)
1553 			return (EINVAL);
1554 		if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1555 			return (EOPNOTSUPP);
1556 		pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1557 		fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1558 		/* Overwrite timestamps if feedback clock selected. */
1559 		switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1560 		case PPS_TSCLK_FBCK:
1561 			fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1562 			    pps->ppsinfo.assert_timestamp;
1563 			fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1564 			    pps->ppsinfo.clear_timestamp;
1565 			break;
1566 		case PPS_TSCLK_FFWD:
1567 			break;
1568 		default:
1569 			break;
1570 		}
1571 		return (0);
1572 #endif /* FFCLOCK */
1573 	case PPS_IOC_KCBIND:
1574 #ifdef PPS_SYNC
1575 		kapi = (struct pps_kcbind_args *)data;
1576 		/* XXX Only root should be able to do this */
1577 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1578 			return (EINVAL);
1579 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1580 			return (EINVAL);
1581 		if (kapi->edge & ~pps->ppscap)
1582 			return (EINVAL);
1583 		pps->kcmode = kapi->edge;
1584 		return (0);
1585 #else
1586 		return (EOPNOTSUPP);
1587 #endif
1588 	default:
1589 		return (ENOIOCTL);
1590 	}
1591 }
1592 
1593 void
1594 pps_init(struct pps_state *pps)
1595 {
1596 	pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1597 	if (pps->ppscap & PPS_CAPTUREASSERT)
1598 		pps->ppscap |= PPS_OFFSETASSERT;
1599 	if (pps->ppscap & PPS_CAPTURECLEAR)
1600 		pps->ppscap |= PPS_OFFSETCLEAR;
1601 #ifdef FFCLOCK
1602 	pps->ppscap |= PPS_TSCLK_MASK;
1603 #endif
1604 }
1605 
1606 void
1607 pps_capture(struct pps_state *pps)
1608 {
1609 	struct timehands *th;
1610 
1611 	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1612 	th = timehands;
1613 	pps->capgen = th->th_generation;
1614 	pps->capth = th;
1615 #ifdef FFCLOCK
1616 	pps->capffth = fftimehands;
1617 #endif
1618 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1619 	if (pps->capgen != th->th_generation)
1620 		pps->capgen = 0;
1621 }
1622 
1623 void
1624 pps_event(struct pps_state *pps, int event)
1625 {
1626 	struct bintime bt;
1627 	struct timespec ts, *tsp, *osp;
1628 	u_int tcount, *pcount;
1629 	int foff, fhard;
1630 	pps_seq_t *pseq;
1631 #ifdef FFCLOCK
1632 	struct timespec *tsp_ffc;
1633 	pps_seq_t *pseq_ffc;
1634 	ffcounter *ffcount;
1635 #endif
1636 
1637 	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1638 	/* If the timecounter was wound up underneath us, bail out. */
1639 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
1640 		return;
1641 
1642 	/* Things would be easier with arrays. */
1643 	if (event == PPS_CAPTUREASSERT) {
1644 		tsp = &pps->ppsinfo.assert_timestamp;
1645 		osp = &pps->ppsparam.assert_offset;
1646 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1647 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1648 		pcount = &pps->ppscount[0];
1649 		pseq = &pps->ppsinfo.assert_sequence;
1650 #ifdef FFCLOCK
1651 		ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1652 		tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1653 		pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1654 #endif
1655 	} else {
1656 		tsp = &pps->ppsinfo.clear_timestamp;
1657 		osp = &pps->ppsparam.clear_offset;
1658 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1659 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1660 		pcount = &pps->ppscount[1];
1661 		pseq = &pps->ppsinfo.clear_sequence;
1662 #ifdef FFCLOCK
1663 		ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1664 		tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1665 		pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1666 #endif
1667 	}
1668 
1669 	/*
1670 	 * If the timecounter changed, we cannot compare the count values, so
1671 	 * we have to drop the rest of the PPS-stuff until the next event.
1672 	 */
1673 	if (pps->ppstc != pps->capth->th_counter) {
1674 		pps->ppstc = pps->capth->th_counter;
1675 		*pcount = pps->capcount;
1676 		pps->ppscount[2] = pps->capcount;
1677 		return;
1678 	}
1679 
1680 	/* Convert the count to a timespec. */
1681 	tcount = pps->capcount - pps->capth->th_offset_count;
1682 	tcount &= pps->capth->th_counter->tc_counter_mask;
1683 	bt = pps->capth->th_offset;
1684 	bintime_addx(&bt, pps->capth->th_scale * tcount);
1685 	bintime_add(&bt, &boottimebin);
1686 	bintime2timespec(&bt, &ts);
1687 
1688 	/* If the timecounter was wound up underneath us, bail out. */
1689 	if (pps->capgen != pps->capth->th_generation)
1690 		return;
1691 
1692 	*pcount = pps->capcount;
1693 	(*pseq)++;
1694 	*tsp = ts;
1695 
1696 	if (foff) {
1697 		timespecadd(tsp, osp);
1698 		if (tsp->tv_nsec < 0) {
1699 			tsp->tv_nsec += 1000000000;
1700 			tsp->tv_sec -= 1;
1701 		}
1702 	}
1703 
1704 #ifdef FFCLOCK
1705 	*ffcount = pps->capffth->tick_ffcount + tcount;
1706 	bt = pps->capffth->tick_time;
1707 	ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1708 	bintime_add(&bt, &pps->capffth->tick_time);
1709 	bintime2timespec(&bt, &ts);
1710 	(*pseq_ffc)++;
1711 	*tsp_ffc = ts;
1712 #endif
1713 
1714 #ifdef PPS_SYNC
1715 	if (fhard) {
1716 		uint64_t scale;
1717 
1718 		/*
1719 		 * Feed the NTP PLL/FLL.
1720 		 * The FLL wants to know how many (hardware) nanoseconds
1721 		 * elapsed since the previous event.
1722 		 */
1723 		tcount = pps->capcount - pps->ppscount[2];
1724 		pps->ppscount[2] = pps->capcount;
1725 		tcount &= pps->capth->th_counter->tc_counter_mask;
1726 		scale = (uint64_t)1 << 63;
1727 		scale /= pps->capth->th_counter->tc_frequency;
1728 		scale *= 2;
1729 		bt.sec = 0;
1730 		bt.frac = 0;
1731 		bintime_addx(&bt, scale * tcount);
1732 		bintime2timespec(&bt, &ts);
1733 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1734 	}
1735 #endif
1736 
1737 	/* Wakeup anyone sleeping in pps_fetch().  */
1738 	wakeup(pps);
1739 }
1740 
1741 /*
1742  * Timecounters need to be updated every so often to prevent the hardware
1743  * counter from overflowing.  Updating also recalculates the cached values
1744  * used by the get*() family of functions, so their precision depends on
1745  * the update frequency.
1746  */
1747 
1748 static int tc_tick;
1749 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1750     "Approximate number of hardclock ticks in a millisecond");
1751 
1752 void
1753 tc_ticktock(int cnt)
1754 {
1755 	static int count;
1756 
1757 	count += cnt;
1758 	if (count < tc_tick)
1759 		return;
1760 	count = 0;
1761 	tc_windup();
1762 }
1763 
1764 static void __inline
1765 tc_adjprecision(void)
1766 {
1767 	int t;
1768 
1769 	if (tc_timepercentage > 0) {
1770 		t = (99 + tc_timepercentage) / tc_timepercentage;
1771 		tc_precexp = fls(t + (t >> 1)) - 1;
1772 		FREQ2BT(hz / tc_tick, &bt_timethreshold);
1773 		FREQ2BT(hz, &bt_tickthreshold);
1774 		bintime_shift(&bt_timethreshold, tc_precexp);
1775 		bintime_shift(&bt_tickthreshold, tc_precexp);
1776 	} else {
1777 		tc_precexp = 31;
1778 		bt_timethreshold.sec = INT_MAX;
1779 		bt_timethreshold.frac = ~(uint64_t)0;
1780 		bt_tickthreshold = bt_timethreshold;
1781 	}
1782 	sbt_timethreshold = bttosbt(bt_timethreshold);
1783 	sbt_tickthreshold = bttosbt(bt_tickthreshold);
1784 }
1785 
1786 static int
1787 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
1788 {
1789 	int error, val;
1790 
1791 	val = tc_timepercentage;
1792 	error = sysctl_handle_int(oidp, &val, 0, req);
1793 	if (error != 0 || req->newptr == NULL)
1794 		return (error);
1795 	tc_timepercentage = val;
1796 	if (cold)
1797 		goto done;
1798 	tc_adjprecision();
1799 done:
1800 	return (0);
1801 }
1802 
1803 static void
1804 inittimecounter(void *dummy)
1805 {
1806 	u_int p;
1807 	int tick_rate;
1808 
1809 	/*
1810 	 * Set the initial timeout to
1811 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
1812 	 * People should probably not use the sysctl to set the timeout
1813 	 * to smaller than its inital value, since that value is the
1814 	 * smallest reasonable one.  If they want better timestamps they
1815 	 * should use the non-"get"* functions.
1816 	 */
1817 	if (hz > 1000)
1818 		tc_tick = (hz + 500) / 1000;
1819 	else
1820 		tc_tick = 1;
1821 	tc_adjprecision();
1822 	FREQ2BT(hz, &tick_bt);
1823 	tick_sbt = bttosbt(tick_bt);
1824 	tick_rate = hz / tc_tick;
1825 	FREQ2BT(tick_rate, &tc_tick_bt);
1826 	tc_tick_sbt = bttosbt(tc_tick_bt);
1827 	p = (tc_tick * 1000000) / hz;
1828 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
1829 
1830 #ifdef FFCLOCK
1831 	ffclock_init();
1832 #endif
1833 	/* warm up new timecounter (again) and get rolling. */
1834 	(void)timecounter->tc_get_timecount(timecounter);
1835 	(void)timecounter->tc_get_timecount(timecounter);
1836 	tc_windup();
1837 }
1838 
1839 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
1840 
1841 /* Cpu tick handling -------------------------------------------------*/
1842 
1843 static int cpu_tick_variable;
1844 static uint64_t	cpu_tick_frequency;
1845 
1846 static uint64_t
1847 tc_cpu_ticks(void)
1848 {
1849 	static uint64_t base;
1850 	static unsigned last;
1851 	unsigned u;
1852 	struct timecounter *tc;
1853 
1854 	tc = timehands->th_counter;
1855 	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
1856 	if (u < last)
1857 		base += (uint64_t)tc->tc_counter_mask + 1;
1858 	last = u;
1859 	return (u + base);
1860 }
1861 
1862 void
1863 cpu_tick_calibration(void)
1864 {
1865 	static time_t last_calib;
1866 
1867 	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
1868 		cpu_tick_calibrate(0);
1869 		last_calib = time_uptime;
1870 	}
1871 }
1872 
1873 /*
1874  * This function gets called every 16 seconds on only one designated
1875  * CPU in the system from hardclock() via cpu_tick_calibration()().
1876  *
1877  * Whenever the real time clock is stepped we get called with reset=1
1878  * to make sure we handle suspend/resume and similar events correctly.
1879  */
1880 
1881 static void
1882 cpu_tick_calibrate(int reset)
1883 {
1884 	static uint64_t c_last;
1885 	uint64_t c_this, c_delta;
1886 	static struct bintime  t_last;
1887 	struct bintime t_this, t_delta;
1888 	uint32_t divi;
1889 
1890 	if (reset) {
1891 		/* The clock was stepped, abort & reset */
1892 		t_last.sec = 0;
1893 		return;
1894 	}
1895 
1896 	/* we don't calibrate fixed rate cputicks */
1897 	if (!cpu_tick_variable)
1898 		return;
1899 
1900 	getbinuptime(&t_this);
1901 	c_this = cpu_ticks();
1902 	if (t_last.sec != 0) {
1903 		c_delta = c_this - c_last;
1904 		t_delta = t_this;
1905 		bintime_sub(&t_delta, &t_last);
1906 		/*
1907 		 * Headroom:
1908 		 * 	2^(64-20) / 16[s] =
1909 		 * 	2^(44) / 16[s] =
1910 		 * 	17.592.186.044.416 / 16 =
1911 		 * 	1.099.511.627.776 [Hz]
1912 		 */
1913 		divi = t_delta.sec << 20;
1914 		divi |= t_delta.frac >> (64 - 20);
1915 		c_delta <<= 20;
1916 		c_delta /= divi;
1917 		if (c_delta > cpu_tick_frequency) {
1918 			if (0 && bootverbose)
1919 				printf("cpu_tick increased to %ju Hz\n",
1920 				    c_delta);
1921 			cpu_tick_frequency = c_delta;
1922 		}
1923 	}
1924 	c_last = c_this;
1925 	t_last = t_this;
1926 }
1927 
1928 void
1929 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
1930 {
1931 
1932 	if (func == NULL) {
1933 		cpu_ticks = tc_cpu_ticks;
1934 	} else {
1935 		cpu_tick_frequency = freq;
1936 		cpu_tick_variable = var;
1937 		cpu_ticks = func;
1938 	}
1939 }
1940 
1941 uint64_t
1942 cpu_tickrate(void)
1943 {
1944 
1945 	if (cpu_ticks == tc_cpu_ticks)
1946 		return (tc_getfrequency());
1947 	return (cpu_tick_frequency);
1948 }
1949 
1950 /*
1951  * We need to be slightly careful converting cputicks to microseconds.
1952  * There is plenty of margin in 64 bits of microseconds (half a million
1953  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
1954  * before divide conversion (to retain precision) we find that the
1955  * margin shrinks to 1.5 hours (one millionth of 146y).
1956  * With a three prong approach we never lose significant bits, no
1957  * matter what the cputick rate and length of timeinterval is.
1958  */
1959 
1960 uint64_t
1961 cputick2usec(uint64_t tick)
1962 {
1963 
1964 	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
1965 		return (tick / (cpu_tickrate() / 1000000LL));
1966 	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
1967 		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
1968 	else
1969 		return ((tick * 1000000LL) / cpu_tickrate());
1970 }
1971 
1972 cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
1973 
1974 static int vdso_th_enable = 1;
1975 static int
1976 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
1977 {
1978 	int old_vdso_th_enable, error;
1979 
1980 	old_vdso_th_enable = vdso_th_enable;
1981 	error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
1982 	if (error != 0)
1983 		return (error);
1984 	vdso_th_enable = old_vdso_th_enable;
1985 	timekeep_push_vdso();
1986 	return (0);
1987 }
1988 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
1989     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1990     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
1991 
1992 uint32_t
1993 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
1994 {
1995 	struct timehands *th;
1996 	uint32_t enabled;
1997 
1998 	th = timehands;
1999 	vdso_th->th_algo = VDSO_TH_ALGO_1;
2000 	vdso_th->th_scale = th->th_scale;
2001 	vdso_th->th_offset_count = th->th_offset_count;
2002 	vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2003 	vdso_th->th_offset = th->th_offset;
2004 	vdso_th->th_boottime = boottimebin;
2005 	enabled = cpu_fill_vdso_timehands(vdso_th);
2006 	if (!vdso_th_enable)
2007 		enabled = 0;
2008 	return (enabled);
2009 }
2010 
2011 #ifdef COMPAT_FREEBSD32
2012 uint32_t
2013 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2014 {
2015 	struct timehands *th;
2016 	uint32_t enabled;
2017 
2018 	th = timehands;
2019 	vdso_th32->th_algo = VDSO_TH_ALGO_1;
2020 	*(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2021 	vdso_th32->th_offset_count = th->th_offset_count;
2022 	vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2023 	vdso_th32->th_offset.sec = th->th_offset.sec;
2024 	*(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2025 	vdso_th32->th_boottime.sec = boottimebin.sec;
2026 	*(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
2027 	enabled = cpu_fill_vdso_timehands32(vdso_th32);
2028 	if (!vdso_th_enable)
2029 		enabled = 0;
2030 	return (enabled);
2031 }
2032 #endif
2033