1 /*- 2 * SPDX-License-Identifier: Beerware 3 * 4 * ---------------------------------------------------------------------------- 5 * "THE BEER-WARE LICENSE" (Revision 42): 6 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 7 * can do whatever you want with this stuff. If we meet some day, and you think 8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 9 * ---------------------------------------------------------------------------- 10 * 11 * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation 12 * 13 * Portions of this software were developed by Julien Ridoux at the University 14 * of Melbourne under sponsorship from the FreeBSD Foundation. 15 * 16 * Portions of this software were developed by Konstantin Belousov 17 * under sponsorship from the FreeBSD Foundation. 18 */ 19 20 #include <sys/cdefs.h> 21 __FBSDID("$FreeBSD$"); 22 23 #include "opt_ntp.h" 24 #include "opt_ffclock.h" 25 26 #include <sys/param.h> 27 #include <sys/kernel.h> 28 #include <sys/limits.h> 29 #include <sys/lock.h> 30 #include <sys/mutex.h> 31 #include <sys/proc.h> 32 #include <sys/sbuf.h> 33 #include <sys/sleepqueue.h> 34 #include <sys/sysctl.h> 35 #include <sys/syslog.h> 36 #include <sys/systm.h> 37 #include <sys/timeffc.h> 38 #include <sys/timepps.h> 39 #include <sys/timetc.h> 40 #include <sys/timex.h> 41 #include <sys/vdso.h> 42 43 /* 44 * A large step happens on boot. This constant detects such steps. 45 * It is relatively small so that ntp_update_second gets called enough 46 * in the typical 'missed a couple of seconds' case, but doesn't loop 47 * forever when the time step is large. 48 */ 49 #define LARGE_STEP 200 50 51 /* 52 * Implement a dummy timecounter which we can use until we get a real one 53 * in the air. This allows the console and other early stuff to use 54 * time services. 55 */ 56 57 static u_int 58 dummy_get_timecount(struct timecounter *tc) 59 { 60 static u_int now; 61 62 return (++now); 63 } 64 65 static struct timecounter dummy_timecounter = { 66 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 67 }; 68 69 struct timehands { 70 /* These fields must be initialized by the driver. */ 71 struct timecounter *th_counter; 72 int64_t th_adjustment; 73 uint64_t th_scale; 74 u_int th_large_delta; 75 u_int th_offset_count; 76 struct bintime th_offset; 77 struct bintime th_bintime; 78 struct timeval th_microtime; 79 struct timespec th_nanotime; 80 struct bintime th_boottime; 81 /* Fields not to be copied in tc_windup start with th_generation. */ 82 u_int th_generation; 83 struct timehands *th_next; 84 }; 85 86 static struct timehands ths[16] = { 87 [0] = { 88 .th_counter = &dummy_timecounter, 89 .th_scale = (uint64_t)-1 / 1000000, 90 .th_large_delta = 1000000, 91 .th_offset = { .sec = 1 }, 92 .th_generation = 1, 93 }, 94 }; 95 96 static struct timehands *volatile timehands = &ths[0]; 97 struct timecounter *timecounter = &dummy_timecounter; 98 static struct timecounter *timecounters = &dummy_timecounter; 99 100 /* Mutex to protect the timecounter list. */ 101 static struct mtx tc_lock; 102 103 int tc_min_ticktock_freq = 1; 104 105 volatile time_t time_second = 1; 106 volatile time_t time_uptime = 1; 107 108 /* 109 * The system time is always computed by summing the estimated boot time and the 110 * system uptime. The timehands track boot time, but it changes when the system 111 * time is set by the user, stepped by ntpd or adjusted when resuming. It 112 * is set to new_time - uptime. 113 */ 114 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 115 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, 116 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 117 sysctl_kern_boottime, "S,timeval", 118 "Estimated system boottime"); 119 120 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 121 ""); 122 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, 123 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 124 ""); 125 126 static int timestepwarnings; 127 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RWTUN, 128 ×tepwarnings, 0, "Log time steps"); 129 130 static int timehands_count = 2; 131 SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count, 132 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 133 &timehands_count, 0, "Count of timehands in rotation"); 134 135 struct bintime bt_timethreshold; 136 struct bintime bt_tickthreshold; 137 sbintime_t sbt_timethreshold; 138 sbintime_t sbt_tickthreshold; 139 struct bintime tc_tick_bt; 140 sbintime_t tc_tick_sbt; 141 int tc_precexp; 142 int tc_timepercentage = TC_DEFAULTPERC; 143 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 144 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 145 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 146 sysctl_kern_timecounter_adjprecision, "I", 147 "Allowed time interval deviation in percents"); 148 149 volatile int rtc_generation = 1; 150 151 static int tc_chosen; /* Non-zero if a specific tc was chosen via sysctl. */ 152 static char tc_from_tunable[16]; 153 154 static void tc_windup(struct bintime *new_boottimebin); 155 static void cpu_tick_calibrate(int); 156 157 void dtrace_getnanotime(struct timespec *tsp); 158 void dtrace_getnanouptime(struct timespec *tsp); 159 160 static int 161 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 162 { 163 struct timeval boottime; 164 165 getboottime(&boottime); 166 167 /* i386 is the only arch which uses a 32bits time_t */ 168 #ifdef __amd64__ 169 #ifdef SCTL_MASK32 170 int tv[2]; 171 172 if (req->flags & SCTL_MASK32) { 173 tv[0] = boottime.tv_sec; 174 tv[1] = boottime.tv_usec; 175 return (SYSCTL_OUT(req, tv, sizeof(tv))); 176 } 177 #endif 178 #endif 179 return (SYSCTL_OUT(req, &boottime, sizeof(boottime))); 180 } 181 182 static int 183 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 184 { 185 u_int ncount; 186 struct timecounter *tc = arg1; 187 188 ncount = tc->tc_get_timecount(tc); 189 return (sysctl_handle_int(oidp, &ncount, 0, req)); 190 } 191 192 static int 193 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 194 { 195 uint64_t freq; 196 struct timecounter *tc = arg1; 197 198 freq = tc->tc_frequency; 199 return (sysctl_handle_64(oidp, &freq, 0, req)); 200 } 201 202 /* 203 * Return the difference between the timehands' counter value now and what 204 * was when we copied it to the timehands' offset_count. 205 */ 206 static __inline u_int 207 tc_delta(struct timehands *th) 208 { 209 struct timecounter *tc; 210 211 tc = th->th_counter; 212 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 213 tc->tc_counter_mask); 214 } 215 216 static __inline void 217 bintime_add_tc_delta(struct bintime *bt, uint64_t scale, 218 uint64_t large_delta, uint64_t delta) 219 { 220 uint64_t x; 221 222 if (__predict_false(delta >= large_delta)) { 223 /* Avoid overflow for scale * delta. */ 224 x = (scale >> 32) * delta; 225 bt->sec += x >> 32; 226 bintime_addx(bt, x << 32); 227 bintime_addx(bt, (scale & 0xffffffff) * delta); 228 } else { 229 bintime_addx(bt, scale * delta); 230 } 231 } 232 233 /* 234 * Functions for reading the time. We have to loop until we are sure that 235 * the timehands that we operated on was not updated under our feet. See 236 * the comment in <sys/time.h> for a description of these 12 functions. 237 */ 238 239 static __inline void 240 bintime_off(struct bintime *bt, u_int off) 241 { 242 struct timehands *th; 243 struct bintime *btp; 244 uint64_t scale; 245 u_int delta, gen, large_delta; 246 247 do { 248 th = timehands; 249 gen = atomic_load_acq_int(&th->th_generation); 250 btp = (struct bintime *)((vm_offset_t)th + off); 251 *bt = *btp; 252 scale = th->th_scale; 253 delta = tc_delta(th); 254 large_delta = th->th_large_delta; 255 atomic_thread_fence_acq(); 256 } while (gen == 0 || gen != th->th_generation); 257 258 bintime_add_tc_delta(bt, scale, large_delta, delta); 259 } 260 #define GETTHBINTIME(dst, member) \ 261 do { \ 262 _Static_assert(_Generic(((struct timehands *)NULL)->member, \ 263 struct bintime: 1, default: 0) == 1, \ 264 "struct timehands member is not of struct bintime type"); \ 265 bintime_off(dst, __offsetof(struct timehands, member)); \ 266 } while (0) 267 268 static __inline void 269 getthmember(void *out, size_t out_size, u_int off) 270 { 271 struct timehands *th; 272 u_int gen; 273 274 do { 275 th = timehands; 276 gen = atomic_load_acq_int(&th->th_generation); 277 memcpy(out, (char *)th + off, out_size); 278 atomic_thread_fence_acq(); 279 } while (gen == 0 || gen != th->th_generation); 280 } 281 #define GETTHMEMBER(dst, member) \ 282 do { \ 283 _Static_assert(_Generic(*dst, \ 284 __typeof(((struct timehands *)NULL)->member): 1, \ 285 default: 0) == 1, \ 286 "*dst and struct timehands member have different types"); \ 287 getthmember(dst, sizeof(*dst), __offsetof(struct timehands, \ 288 member)); \ 289 } while (0) 290 291 #ifdef FFCLOCK 292 void 293 fbclock_binuptime(struct bintime *bt) 294 { 295 296 GETTHBINTIME(bt, th_offset); 297 } 298 299 void 300 fbclock_nanouptime(struct timespec *tsp) 301 { 302 struct bintime bt; 303 304 fbclock_binuptime(&bt); 305 bintime2timespec(&bt, tsp); 306 } 307 308 void 309 fbclock_microuptime(struct timeval *tvp) 310 { 311 struct bintime bt; 312 313 fbclock_binuptime(&bt); 314 bintime2timeval(&bt, tvp); 315 } 316 317 void 318 fbclock_bintime(struct bintime *bt) 319 { 320 321 GETTHBINTIME(bt, th_bintime); 322 } 323 324 void 325 fbclock_nanotime(struct timespec *tsp) 326 { 327 struct bintime bt; 328 329 fbclock_bintime(&bt); 330 bintime2timespec(&bt, tsp); 331 } 332 333 void 334 fbclock_microtime(struct timeval *tvp) 335 { 336 struct bintime bt; 337 338 fbclock_bintime(&bt); 339 bintime2timeval(&bt, tvp); 340 } 341 342 void 343 fbclock_getbinuptime(struct bintime *bt) 344 { 345 346 GETTHMEMBER(bt, th_offset); 347 } 348 349 void 350 fbclock_getnanouptime(struct timespec *tsp) 351 { 352 struct bintime bt; 353 354 GETTHMEMBER(&bt, th_offset); 355 bintime2timespec(&bt, tsp); 356 } 357 358 void 359 fbclock_getmicrouptime(struct timeval *tvp) 360 { 361 struct bintime bt; 362 363 GETTHMEMBER(&bt, th_offset); 364 bintime2timeval(&bt, tvp); 365 } 366 367 void 368 fbclock_getbintime(struct bintime *bt) 369 { 370 371 GETTHMEMBER(bt, th_bintime); 372 } 373 374 void 375 fbclock_getnanotime(struct timespec *tsp) 376 { 377 378 GETTHMEMBER(tsp, th_nanotime); 379 } 380 381 void 382 fbclock_getmicrotime(struct timeval *tvp) 383 { 384 385 GETTHMEMBER(tvp, th_microtime); 386 } 387 #else /* !FFCLOCK */ 388 389 void 390 binuptime(struct bintime *bt) 391 { 392 393 GETTHBINTIME(bt, th_offset); 394 } 395 396 void 397 nanouptime(struct timespec *tsp) 398 { 399 struct bintime bt; 400 401 binuptime(&bt); 402 bintime2timespec(&bt, tsp); 403 } 404 405 void 406 microuptime(struct timeval *tvp) 407 { 408 struct bintime bt; 409 410 binuptime(&bt); 411 bintime2timeval(&bt, tvp); 412 } 413 414 void 415 bintime(struct bintime *bt) 416 { 417 418 GETTHBINTIME(bt, th_bintime); 419 } 420 421 void 422 nanotime(struct timespec *tsp) 423 { 424 struct bintime bt; 425 426 bintime(&bt); 427 bintime2timespec(&bt, tsp); 428 } 429 430 void 431 microtime(struct timeval *tvp) 432 { 433 struct bintime bt; 434 435 bintime(&bt); 436 bintime2timeval(&bt, tvp); 437 } 438 439 void 440 getbinuptime(struct bintime *bt) 441 { 442 443 GETTHMEMBER(bt, th_offset); 444 } 445 446 void 447 getnanouptime(struct timespec *tsp) 448 { 449 struct bintime bt; 450 451 GETTHMEMBER(&bt, th_offset); 452 bintime2timespec(&bt, tsp); 453 } 454 455 void 456 getmicrouptime(struct timeval *tvp) 457 { 458 struct bintime bt; 459 460 GETTHMEMBER(&bt, th_offset); 461 bintime2timeval(&bt, tvp); 462 } 463 464 void 465 getbintime(struct bintime *bt) 466 { 467 468 GETTHMEMBER(bt, th_bintime); 469 } 470 471 void 472 getnanotime(struct timespec *tsp) 473 { 474 475 GETTHMEMBER(tsp, th_nanotime); 476 } 477 478 void 479 getmicrotime(struct timeval *tvp) 480 { 481 482 GETTHMEMBER(tvp, th_microtime); 483 } 484 #endif /* FFCLOCK */ 485 486 void 487 getboottime(struct timeval *boottime) 488 { 489 struct bintime boottimebin; 490 491 getboottimebin(&boottimebin); 492 bintime2timeval(&boottimebin, boottime); 493 } 494 495 void 496 getboottimebin(struct bintime *boottimebin) 497 { 498 499 GETTHMEMBER(boottimebin, th_boottime); 500 } 501 502 #ifdef FFCLOCK 503 /* 504 * Support for feed-forward synchronization algorithms. This is heavily inspired 505 * by the timehands mechanism but kept independent from it. *_windup() functions 506 * have some connection to avoid accessing the timecounter hardware more than 507 * necessary. 508 */ 509 510 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 511 struct ffclock_estimate ffclock_estimate; 512 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 513 uint32_t ffclock_status; /* Feed-forward clock status. */ 514 int8_t ffclock_updated; /* New estimates are available. */ 515 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 516 517 struct fftimehands { 518 struct ffclock_estimate cest; 519 struct bintime tick_time; 520 struct bintime tick_time_lerp; 521 ffcounter tick_ffcount; 522 uint64_t period_lerp; 523 volatile uint8_t gen; 524 struct fftimehands *next; 525 }; 526 527 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 528 529 static struct fftimehands ffth[10]; 530 static struct fftimehands *volatile fftimehands = ffth; 531 532 static void 533 ffclock_init(void) 534 { 535 struct fftimehands *cur; 536 struct fftimehands *last; 537 538 memset(ffth, 0, sizeof(ffth)); 539 540 last = ffth + NUM_ELEMENTS(ffth) - 1; 541 for (cur = ffth; cur < last; cur++) 542 cur->next = cur + 1; 543 last->next = ffth; 544 545 ffclock_updated = 0; 546 ffclock_status = FFCLOCK_STA_UNSYNC; 547 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 548 } 549 550 /* 551 * Reset the feed-forward clock estimates. Called from inittodr() to get things 552 * kick started and uses the timecounter nominal frequency as a first period 553 * estimate. Note: this function may be called several time just after boot. 554 * Note: this is the only function that sets the value of boot time for the 555 * monotonic (i.e. uptime) version of the feed-forward clock. 556 */ 557 void 558 ffclock_reset_clock(struct timespec *ts) 559 { 560 struct timecounter *tc; 561 struct ffclock_estimate cest; 562 563 tc = timehands->th_counter; 564 memset(&cest, 0, sizeof(struct ffclock_estimate)); 565 566 timespec2bintime(ts, &ffclock_boottime); 567 timespec2bintime(ts, &(cest.update_time)); 568 ffclock_read_counter(&cest.update_ffcount); 569 cest.leapsec_next = 0; 570 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 571 cest.errb_abs = 0; 572 cest.errb_rate = 0; 573 cest.status = FFCLOCK_STA_UNSYNC; 574 cest.leapsec_total = 0; 575 cest.leapsec = 0; 576 577 mtx_lock(&ffclock_mtx); 578 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 579 ffclock_updated = INT8_MAX; 580 mtx_unlock(&ffclock_mtx); 581 582 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 583 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 584 (unsigned long)ts->tv_nsec); 585 } 586 587 /* 588 * Sub-routine to convert a time interval measured in RAW counter units to time 589 * in seconds stored in bintime format. 590 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 591 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 592 * extra cycles. 593 */ 594 static void 595 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 596 { 597 struct bintime bt2; 598 ffcounter delta, delta_max; 599 600 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 601 bintime_clear(bt); 602 do { 603 if (ffdelta > delta_max) 604 delta = delta_max; 605 else 606 delta = ffdelta; 607 bt2.sec = 0; 608 bt2.frac = period; 609 bintime_mul(&bt2, (unsigned int)delta); 610 bintime_add(bt, &bt2); 611 ffdelta -= delta; 612 } while (ffdelta > 0); 613 } 614 615 /* 616 * Update the fftimehands. 617 * Push the tick ffcount and time(s) forward based on current clock estimate. 618 * The conversion from ffcounter to bintime relies on the difference clock 619 * principle, whose accuracy relies on computing small time intervals. If a new 620 * clock estimate has been passed by the synchronisation daemon, make it 621 * current, and compute the linear interpolation for monotonic time if needed. 622 */ 623 static void 624 ffclock_windup(unsigned int delta) 625 { 626 struct ffclock_estimate *cest; 627 struct fftimehands *ffth; 628 struct bintime bt, gap_lerp; 629 ffcounter ffdelta; 630 uint64_t frac; 631 unsigned int polling; 632 uint8_t forward_jump, ogen; 633 634 /* 635 * Pick the next timehand, copy current ffclock estimates and move tick 636 * times and counter forward. 637 */ 638 forward_jump = 0; 639 ffth = fftimehands->next; 640 ogen = ffth->gen; 641 ffth->gen = 0; 642 cest = &ffth->cest; 643 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 644 ffdelta = (ffcounter)delta; 645 ffth->period_lerp = fftimehands->period_lerp; 646 647 ffth->tick_time = fftimehands->tick_time; 648 ffclock_convert_delta(ffdelta, cest->period, &bt); 649 bintime_add(&ffth->tick_time, &bt); 650 651 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 652 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 653 bintime_add(&ffth->tick_time_lerp, &bt); 654 655 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 656 657 /* 658 * Assess the status of the clock, if the last update is too old, it is 659 * likely the synchronisation daemon is dead and the clock is free 660 * running. 661 */ 662 if (ffclock_updated == 0) { 663 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 664 ffclock_convert_delta(ffdelta, cest->period, &bt); 665 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 666 ffclock_status |= FFCLOCK_STA_UNSYNC; 667 } 668 669 /* 670 * If available, grab updated clock estimates and make them current. 671 * Recompute time at this tick using the updated estimates. The clock 672 * estimates passed the feed-forward synchronisation daemon may result 673 * in time conversion that is not monotonically increasing (just after 674 * the update). time_lerp is a particular linear interpolation over the 675 * synchronisation algo polling period that ensures monotonicity for the 676 * clock ids requesting it. 677 */ 678 if (ffclock_updated > 0) { 679 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 680 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 681 ffth->tick_time = cest->update_time; 682 ffclock_convert_delta(ffdelta, cest->period, &bt); 683 bintime_add(&ffth->tick_time, &bt); 684 685 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 686 if (ffclock_updated == INT8_MAX) 687 ffth->tick_time_lerp = ffth->tick_time; 688 689 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 690 forward_jump = 1; 691 else 692 forward_jump = 0; 693 694 bintime_clear(&gap_lerp); 695 if (forward_jump) { 696 gap_lerp = ffth->tick_time; 697 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 698 } else { 699 gap_lerp = ffth->tick_time_lerp; 700 bintime_sub(&gap_lerp, &ffth->tick_time); 701 } 702 703 /* 704 * The reset from the RTC clock may be far from accurate, and 705 * reducing the gap between real time and interpolated time 706 * could take a very long time if the interpolated clock insists 707 * on strict monotonicity. The clock is reset under very strict 708 * conditions (kernel time is known to be wrong and 709 * synchronization daemon has been restarted recently. 710 * ffclock_boottime absorbs the jump to ensure boot time is 711 * correct and uptime functions stay consistent. 712 */ 713 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 714 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 715 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 716 if (forward_jump) 717 bintime_add(&ffclock_boottime, &gap_lerp); 718 else 719 bintime_sub(&ffclock_boottime, &gap_lerp); 720 ffth->tick_time_lerp = ffth->tick_time; 721 bintime_clear(&gap_lerp); 722 } 723 724 ffclock_status = cest->status; 725 ffth->period_lerp = cest->period; 726 727 /* 728 * Compute corrected period used for the linear interpolation of 729 * time. The rate of linear interpolation is capped to 5000PPM 730 * (5ms/s). 731 */ 732 if (bintime_isset(&gap_lerp)) { 733 ffdelta = cest->update_ffcount; 734 ffdelta -= fftimehands->cest.update_ffcount; 735 ffclock_convert_delta(ffdelta, cest->period, &bt); 736 polling = bt.sec; 737 bt.sec = 0; 738 bt.frac = 5000000 * (uint64_t)18446744073LL; 739 bintime_mul(&bt, polling); 740 if (bintime_cmp(&gap_lerp, &bt, >)) 741 gap_lerp = bt; 742 743 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 744 frac = 0; 745 if (gap_lerp.sec > 0) { 746 frac -= 1; 747 frac /= ffdelta / gap_lerp.sec; 748 } 749 frac += gap_lerp.frac / ffdelta; 750 751 if (forward_jump) 752 ffth->period_lerp += frac; 753 else 754 ffth->period_lerp -= frac; 755 } 756 757 ffclock_updated = 0; 758 } 759 if (++ogen == 0) 760 ogen = 1; 761 ffth->gen = ogen; 762 fftimehands = ffth; 763 } 764 765 /* 766 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 767 * the old and new hardware counter cannot be read simultaneously. tc_windup() 768 * does read the two counters 'back to back', but a few cycles are effectively 769 * lost, and not accumulated in tick_ffcount. This is a fairly radical 770 * operation for a feed-forward synchronization daemon, and it is its job to not 771 * pushing irrelevant data to the kernel. Because there is no locking here, 772 * simply force to ignore pending or next update to give daemon a chance to 773 * realize the counter has changed. 774 */ 775 static void 776 ffclock_change_tc(struct timehands *th) 777 { 778 struct fftimehands *ffth; 779 struct ffclock_estimate *cest; 780 struct timecounter *tc; 781 uint8_t ogen; 782 783 tc = th->th_counter; 784 ffth = fftimehands->next; 785 ogen = ffth->gen; 786 ffth->gen = 0; 787 788 cest = &ffth->cest; 789 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 790 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 791 cest->errb_abs = 0; 792 cest->errb_rate = 0; 793 cest->status |= FFCLOCK_STA_UNSYNC; 794 795 ffth->tick_ffcount = fftimehands->tick_ffcount; 796 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 797 ffth->tick_time = fftimehands->tick_time; 798 ffth->period_lerp = cest->period; 799 800 /* Do not lock but ignore next update from synchronization daemon. */ 801 ffclock_updated--; 802 803 if (++ogen == 0) 804 ogen = 1; 805 ffth->gen = ogen; 806 fftimehands = ffth; 807 } 808 809 /* 810 * Retrieve feed-forward counter and time of last kernel tick. 811 */ 812 void 813 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 814 { 815 struct fftimehands *ffth; 816 uint8_t gen; 817 818 /* 819 * No locking but check generation has not changed. Also need to make 820 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 821 */ 822 do { 823 ffth = fftimehands; 824 gen = ffth->gen; 825 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 826 *bt = ffth->tick_time_lerp; 827 else 828 *bt = ffth->tick_time; 829 *ffcount = ffth->tick_ffcount; 830 } while (gen == 0 || gen != ffth->gen); 831 } 832 833 /* 834 * Absolute clock conversion. Low level function to convert ffcounter to 835 * bintime. The ffcounter is converted using the current ffclock period estimate 836 * or the "interpolated period" to ensure monotonicity. 837 * NOTE: this conversion may have been deferred, and the clock updated since the 838 * hardware counter has been read. 839 */ 840 void 841 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 842 { 843 struct fftimehands *ffth; 844 struct bintime bt2; 845 ffcounter ffdelta; 846 uint8_t gen; 847 848 /* 849 * No locking but check generation has not changed. Also need to make 850 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 851 */ 852 do { 853 ffth = fftimehands; 854 gen = ffth->gen; 855 if (ffcount > ffth->tick_ffcount) 856 ffdelta = ffcount - ffth->tick_ffcount; 857 else 858 ffdelta = ffth->tick_ffcount - ffcount; 859 860 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 861 *bt = ffth->tick_time_lerp; 862 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 863 } else { 864 *bt = ffth->tick_time; 865 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 866 } 867 868 if (ffcount > ffth->tick_ffcount) 869 bintime_add(bt, &bt2); 870 else 871 bintime_sub(bt, &bt2); 872 } while (gen == 0 || gen != ffth->gen); 873 } 874 875 /* 876 * Difference clock conversion. 877 * Low level function to Convert a time interval measured in RAW counter units 878 * into bintime. The difference clock allows measuring small intervals much more 879 * reliably than the absolute clock. 880 */ 881 void 882 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 883 { 884 struct fftimehands *ffth; 885 uint8_t gen; 886 887 /* No locking but check generation has not changed. */ 888 do { 889 ffth = fftimehands; 890 gen = ffth->gen; 891 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 892 } while (gen == 0 || gen != ffth->gen); 893 } 894 895 /* 896 * Access to current ffcounter value. 897 */ 898 void 899 ffclock_read_counter(ffcounter *ffcount) 900 { 901 struct timehands *th; 902 struct fftimehands *ffth; 903 unsigned int gen, delta; 904 905 /* 906 * ffclock_windup() called from tc_windup(), safe to rely on 907 * th->th_generation only, for correct delta and ffcounter. 908 */ 909 do { 910 th = timehands; 911 gen = atomic_load_acq_int(&th->th_generation); 912 ffth = fftimehands; 913 delta = tc_delta(th); 914 *ffcount = ffth->tick_ffcount; 915 atomic_thread_fence_acq(); 916 } while (gen == 0 || gen != th->th_generation); 917 918 *ffcount += delta; 919 } 920 921 void 922 binuptime(struct bintime *bt) 923 { 924 925 binuptime_fromclock(bt, sysclock_active); 926 } 927 928 void 929 nanouptime(struct timespec *tsp) 930 { 931 932 nanouptime_fromclock(tsp, sysclock_active); 933 } 934 935 void 936 microuptime(struct timeval *tvp) 937 { 938 939 microuptime_fromclock(tvp, sysclock_active); 940 } 941 942 void 943 bintime(struct bintime *bt) 944 { 945 946 bintime_fromclock(bt, sysclock_active); 947 } 948 949 void 950 nanotime(struct timespec *tsp) 951 { 952 953 nanotime_fromclock(tsp, sysclock_active); 954 } 955 956 void 957 microtime(struct timeval *tvp) 958 { 959 960 microtime_fromclock(tvp, sysclock_active); 961 } 962 963 void 964 getbinuptime(struct bintime *bt) 965 { 966 967 getbinuptime_fromclock(bt, sysclock_active); 968 } 969 970 void 971 getnanouptime(struct timespec *tsp) 972 { 973 974 getnanouptime_fromclock(tsp, sysclock_active); 975 } 976 977 void 978 getmicrouptime(struct timeval *tvp) 979 { 980 981 getmicrouptime_fromclock(tvp, sysclock_active); 982 } 983 984 void 985 getbintime(struct bintime *bt) 986 { 987 988 getbintime_fromclock(bt, sysclock_active); 989 } 990 991 void 992 getnanotime(struct timespec *tsp) 993 { 994 995 getnanotime_fromclock(tsp, sysclock_active); 996 } 997 998 void 999 getmicrotime(struct timeval *tvp) 1000 { 1001 1002 getmicrouptime_fromclock(tvp, sysclock_active); 1003 } 1004 1005 #endif /* FFCLOCK */ 1006 1007 /* 1008 * This is a clone of getnanotime and used for walltimestamps. 1009 * The dtrace_ prefix prevents fbt from creating probes for 1010 * it so walltimestamp can be safely used in all fbt probes. 1011 */ 1012 void 1013 dtrace_getnanotime(struct timespec *tsp) 1014 { 1015 1016 GETTHMEMBER(tsp, th_nanotime); 1017 } 1018 1019 /* 1020 * This is a clone of getnanouptime used for time since boot. 1021 * The dtrace_ prefix prevents fbt from creating probes for 1022 * it so an uptime that can be safely used in all fbt probes. 1023 */ 1024 void 1025 dtrace_getnanouptime(struct timespec *tsp) 1026 { 1027 struct bintime bt; 1028 1029 GETTHMEMBER(&bt, th_offset); 1030 bintime2timespec(&bt, tsp); 1031 } 1032 1033 /* 1034 * System clock currently providing time to the system. Modifiable via sysctl 1035 * when the FFCLOCK option is defined. 1036 */ 1037 int sysclock_active = SYSCLOCK_FBCK; 1038 1039 /* Internal NTP status and error estimates. */ 1040 extern int time_status; 1041 extern long time_esterror; 1042 1043 /* 1044 * Take a snapshot of sysclock data which can be used to compare system clocks 1045 * and generate timestamps after the fact. 1046 */ 1047 void 1048 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 1049 { 1050 struct fbclock_info *fbi; 1051 struct timehands *th; 1052 struct bintime bt; 1053 unsigned int delta, gen; 1054 #ifdef FFCLOCK 1055 ffcounter ffcount; 1056 struct fftimehands *ffth; 1057 struct ffclock_info *ffi; 1058 struct ffclock_estimate cest; 1059 1060 ffi = &clock_snap->ff_info; 1061 #endif 1062 1063 fbi = &clock_snap->fb_info; 1064 delta = 0; 1065 1066 do { 1067 th = timehands; 1068 gen = atomic_load_acq_int(&th->th_generation); 1069 fbi->th_scale = th->th_scale; 1070 fbi->tick_time = th->th_offset; 1071 #ifdef FFCLOCK 1072 ffth = fftimehands; 1073 ffi->tick_time = ffth->tick_time_lerp; 1074 ffi->tick_time_lerp = ffth->tick_time_lerp; 1075 ffi->period = ffth->cest.period; 1076 ffi->period_lerp = ffth->period_lerp; 1077 clock_snap->ffcount = ffth->tick_ffcount; 1078 cest = ffth->cest; 1079 #endif 1080 if (!fast) 1081 delta = tc_delta(th); 1082 atomic_thread_fence_acq(); 1083 } while (gen == 0 || gen != th->th_generation); 1084 1085 clock_snap->delta = delta; 1086 clock_snap->sysclock_active = sysclock_active; 1087 1088 /* Record feedback clock status and error. */ 1089 clock_snap->fb_info.status = time_status; 1090 /* XXX: Very crude estimate of feedback clock error. */ 1091 bt.sec = time_esterror / 1000000; 1092 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1093 (uint64_t)18446744073709ULL; 1094 clock_snap->fb_info.error = bt; 1095 1096 #ifdef FFCLOCK 1097 if (!fast) 1098 clock_snap->ffcount += delta; 1099 1100 /* Record feed-forward clock leap second adjustment. */ 1101 ffi->leapsec_adjustment = cest.leapsec_total; 1102 if (clock_snap->ffcount > cest.leapsec_next) 1103 ffi->leapsec_adjustment -= cest.leapsec; 1104 1105 /* Record feed-forward clock status and error. */ 1106 clock_snap->ff_info.status = cest.status; 1107 ffcount = clock_snap->ffcount - cest.update_ffcount; 1108 ffclock_convert_delta(ffcount, cest.period, &bt); 1109 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1110 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1111 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1112 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1113 clock_snap->ff_info.error = bt; 1114 #endif 1115 } 1116 1117 /* 1118 * Convert a sysclock snapshot into a struct bintime based on the specified 1119 * clock source and flags. 1120 */ 1121 int 1122 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1123 int whichclock, uint32_t flags) 1124 { 1125 struct bintime boottimebin; 1126 #ifdef FFCLOCK 1127 struct bintime bt2; 1128 uint64_t period; 1129 #endif 1130 1131 switch (whichclock) { 1132 case SYSCLOCK_FBCK: 1133 *bt = cs->fb_info.tick_time; 1134 1135 /* If snapshot was created with !fast, delta will be >0. */ 1136 if (cs->delta > 0) 1137 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1138 1139 if ((flags & FBCLOCK_UPTIME) == 0) { 1140 getboottimebin(&boottimebin); 1141 bintime_add(bt, &boottimebin); 1142 } 1143 break; 1144 #ifdef FFCLOCK 1145 case SYSCLOCK_FFWD: 1146 if (flags & FFCLOCK_LERP) { 1147 *bt = cs->ff_info.tick_time_lerp; 1148 period = cs->ff_info.period_lerp; 1149 } else { 1150 *bt = cs->ff_info.tick_time; 1151 period = cs->ff_info.period; 1152 } 1153 1154 /* If snapshot was created with !fast, delta will be >0. */ 1155 if (cs->delta > 0) { 1156 ffclock_convert_delta(cs->delta, period, &bt2); 1157 bintime_add(bt, &bt2); 1158 } 1159 1160 /* Leap second adjustment. */ 1161 if (flags & FFCLOCK_LEAPSEC) 1162 bt->sec -= cs->ff_info.leapsec_adjustment; 1163 1164 /* Boot time adjustment, for uptime/monotonic clocks. */ 1165 if (flags & FFCLOCK_UPTIME) 1166 bintime_sub(bt, &ffclock_boottime); 1167 break; 1168 #endif 1169 default: 1170 return (EINVAL); 1171 break; 1172 } 1173 1174 return (0); 1175 } 1176 1177 /* 1178 * Initialize a new timecounter and possibly use it. 1179 */ 1180 void 1181 tc_init(struct timecounter *tc) 1182 { 1183 u_int u; 1184 struct sysctl_oid *tc_root; 1185 1186 u = tc->tc_frequency / tc->tc_counter_mask; 1187 /* XXX: We need some margin here, 10% is a guess */ 1188 u *= 11; 1189 u /= 10; 1190 if (u > hz && tc->tc_quality >= 0) { 1191 tc->tc_quality = -2000; 1192 if (bootverbose) { 1193 printf("Timecounter \"%s\" frequency %ju Hz", 1194 tc->tc_name, (uintmax_t)tc->tc_frequency); 1195 printf(" -- Insufficient hz, needs at least %u\n", u); 1196 } 1197 } else if (tc->tc_quality >= 0 || bootverbose) { 1198 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1199 tc->tc_name, (uintmax_t)tc->tc_frequency, 1200 tc->tc_quality); 1201 } 1202 1203 /* 1204 * Set up sysctl tree for this counter. 1205 */ 1206 tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL, 1207 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1208 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1209 "timecounter description", "timecounter"); 1210 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1211 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1212 "mask for implemented bits"); 1213 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1214 "counter", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, tc, 1215 sizeof(*tc), sysctl_kern_timecounter_get, "IU", 1216 "current timecounter value"); 1217 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1218 "frequency", CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, tc, 1219 sizeof(*tc), sysctl_kern_timecounter_freq, "QU", 1220 "timecounter frequency"); 1221 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1222 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1223 "goodness of time counter"); 1224 1225 mtx_lock(&tc_lock); 1226 tc->tc_next = timecounters; 1227 timecounters = tc; 1228 1229 /* 1230 * Do not automatically switch if the current tc was specifically 1231 * chosen. Never automatically use a timecounter with negative quality. 1232 * Even though we run on the dummy counter, switching here may be 1233 * worse since this timecounter may not be monotonic. 1234 */ 1235 if (tc_chosen) 1236 goto unlock; 1237 if (tc->tc_quality < 0) 1238 goto unlock; 1239 if (tc_from_tunable[0] != '\0' && 1240 strcmp(tc->tc_name, tc_from_tunable) == 0) { 1241 tc_chosen = 1; 1242 tc_from_tunable[0] = '\0'; 1243 } else { 1244 if (tc->tc_quality < timecounter->tc_quality) 1245 goto unlock; 1246 if (tc->tc_quality == timecounter->tc_quality && 1247 tc->tc_frequency < timecounter->tc_frequency) 1248 goto unlock; 1249 } 1250 (void)tc->tc_get_timecount(tc); 1251 timecounter = tc; 1252 unlock: 1253 mtx_unlock(&tc_lock); 1254 } 1255 1256 /* Report the frequency of the current timecounter. */ 1257 uint64_t 1258 tc_getfrequency(void) 1259 { 1260 1261 return (timehands->th_counter->tc_frequency); 1262 } 1263 1264 static bool 1265 sleeping_on_old_rtc(struct thread *td) 1266 { 1267 1268 /* 1269 * td_rtcgen is modified by curthread when it is running, 1270 * and by other threads in this function. By finding the thread 1271 * on a sleepqueue and holding the lock on the sleepqueue 1272 * chain, we guarantee that the thread is not running and that 1273 * modifying td_rtcgen is safe. Setting td_rtcgen to zero informs 1274 * the thread that it was woken due to a real-time clock adjustment. 1275 * (The declaration of td_rtcgen refers to this comment.) 1276 */ 1277 if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) { 1278 td->td_rtcgen = 0; 1279 return (true); 1280 } 1281 return (false); 1282 } 1283 1284 static struct mtx tc_setclock_mtx; 1285 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN); 1286 1287 /* 1288 * Step our concept of UTC. This is done by modifying our estimate of 1289 * when we booted. 1290 */ 1291 void 1292 tc_setclock(struct timespec *ts) 1293 { 1294 struct timespec tbef, taft; 1295 struct bintime bt, bt2; 1296 1297 timespec2bintime(ts, &bt); 1298 nanotime(&tbef); 1299 mtx_lock_spin(&tc_setclock_mtx); 1300 cpu_tick_calibrate(1); 1301 binuptime(&bt2); 1302 bintime_sub(&bt, &bt2); 1303 1304 /* XXX fiddle all the little crinkly bits around the fiords... */ 1305 tc_windup(&bt); 1306 mtx_unlock_spin(&tc_setclock_mtx); 1307 1308 /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */ 1309 atomic_add_rel_int(&rtc_generation, 2); 1310 sleepq_chains_remove_matching(sleeping_on_old_rtc); 1311 if (timestepwarnings) { 1312 nanotime(&taft); 1313 log(LOG_INFO, 1314 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1315 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1316 (intmax_t)taft.tv_sec, taft.tv_nsec, 1317 (intmax_t)ts->tv_sec, ts->tv_nsec); 1318 } 1319 } 1320 1321 /* 1322 * Recalculate the scaling factor. We want the number of 1/2^64 1323 * fractions of a second per period of the hardware counter, taking 1324 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1325 * processing provides us with. 1326 * 1327 * The th_adjustment is nanoseconds per second with 32 bit binary 1328 * fraction and we want 64 bit binary fraction of second: 1329 * 1330 * x = a * 2^32 / 10^9 = a * 4.294967296 1331 * 1332 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1333 * we can only multiply by about 850 without overflowing, that 1334 * leaves no suitably precise fractions for multiply before divide. 1335 * 1336 * Divide before multiply with a fraction of 2199/512 results in a 1337 * systematic undercompensation of 10PPM of th_adjustment. On a 1338 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1339 * 1340 * We happily sacrifice the lowest of the 64 bits of our result 1341 * to the goddess of code clarity. 1342 */ 1343 static void 1344 recalculate_scaling_factor_and_large_delta(struct timehands *th) 1345 { 1346 uint64_t scale; 1347 1348 scale = (uint64_t)1 << 63; 1349 scale += (th->th_adjustment / 1024) * 2199; 1350 scale /= th->th_counter->tc_frequency; 1351 th->th_scale = scale * 2; 1352 th->th_large_delta = MIN(((uint64_t)1 << 63) / scale, UINT_MAX); 1353 } 1354 1355 /* 1356 * Initialize the next struct timehands in the ring and make 1357 * it the active timehands. Along the way we might switch to a different 1358 * timecounter and/or do seconds processing in NTP. Slightly magic. 1359 */ 1360 static void 1361 tc_windup(struct bintime *new_boottimebin) 1362 { 1363 struct bintime bt; 1364 struct timecounter *tc; 1365 struct timehands *th, *tho; 1366 u_int delta, ncount, ogen; 1367 int i; 1368 time_t t; 1369 1370 /* 1371 * Make the next timehands a copy of the current one, but do 1372 * not overwrite the generation or next pointer. While we 1373 * update the contents, the generation must be zero. We need 1374 * to ensure that the zero generation is visible before the 1375 * data updates become visible, which requires release fence. 1376 * For similar reasons, re-reading of the generation after the 1377 * data is read should use acquire fence. 1378 */ 1379 tho = timehands; 1380 th = tho->th_next; 1381 ogen = th->th_generation; 1382 th->th_generation = 0; 1383 atomic_thread_fence_rel(); 1384 memcpy(th, tho, offsetof(struct timehands, th_generation)); 1385 if (new_boottimebin != NULL) 1386 th->th_boottime = *new_boottimebin; 1387 1388 /* 1389 * Capture a timecounter delta on the current timecounter and if 1390 * changing timecounters, a counter value from the new timecounter. 1391 * Update the offset fields accordingly. 1392 */ 1393 tc = atomic_load_ptr(&timecounter); 1394 delta = tc_delta(th); 1395 if (th->th_counter != tc) 1396 ncount = tc->tc_get_timecount(tc); 1397 else 1398 ncount = 0; 1399 #ifdef FFCLOCK 1400 ffclock_windup(delta); 1401 #endif 1402 th->th_offset_count += delta; 1403 th->th_offset_count &= th->th_counter->tc_counter_mask; 1404 bintime_add_tc_delta(&th->th_offset, th->th_scale, 1405 th->th_large_delta, delta); 1406 1407 /* 1408 * Hardware latching timecounters may not generate interrupts on 1409 * PPS events, so instead we poll them. There is a finite risk that 1410 * the hardware might capture a count which is later than the one we 1411 * got above, and therefore possibly in the next NTP second which might 1412 * have a different rate than the current NTP second. It doesn't 1413 * matter in practice. 1414 */ 1415 if (tho->th_counter->tc_poll_pps) 1416 tho->th_counter->tc_poll_pps(tho->th_counter); 1417 1418 /* 1419 * Deal with NTP second processing. The loop normally 1420 * iterates at most once, but in extreme situations it might 1421 * keep NTP sane if timeouts are not run for several seconds. 1422 * At boot, the time step can be large when the TOD hardware 1423 * has been read, so on really large steps, we call 1424 * ntp_update_second only twice. We need to call it twice in 1425 * case we missed a leap second. 1426 */ 1427 bt = th->th_offset; 1428 bintime_add(&bt, &th->th_boottime); 1429 i = bt.sec - tho->th_microtime.tv_sec; 1430 if (i > 0) { 1431 if (i > LARGE_STEP) 1432 i = 2; 1433 1434 do { 1435 t = bt.sec; 1436 ntp_update_second(&th->th_adjustment, &bt.sec); 1437 if (bt.sec != t) 1438 th->th_boottime.sec += bt.sec - t; 1439 --i; 1440 } while (i > 0); 1441 1442 recalculate_scaling_factor_and_large_delta(th); 1443 } 1444 1445 /* Update the UTC timestamps used by the get*() functions. */ 1446 th->th_bintime = bt; 1447 bintime2timeval(&bt, &th->th_microtime); 1448 bintime2timespec(&bt, &th->th_nanotime); 1449 1450 /* Now is a good time to change timecounters. */ 1451 if (th->th_counter != tc) { 1452 #ifndef __arm__ 1453 if ((tc->tc_flags & TC_FLAGS_C2STOP) != 0) 1454 cpu_disable_c2_sleep++; 1455 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 1456 cpu_disable_c2_sleep--; 1457 #endif 1458 th->th_counter = tc; 1459 th->th_offset_count = ncount; 1460 tc_min_ticktock_freq = max(1, tc->tc_frequency / 1461 (((uint64_t)tc->tc_counter_mask + 1) / 3)); 1462 recalculate_scaling_factor_and_large_delta(th); 1463 #ifdef FFCLOCK 1464 ffclock_change_tc(th); 1465 #endif 1466 } 1467 1468 /* 1469 * Now that the struct timehands is again consistent, set the new 1470 * generation number, making sure to not make it zero. 1471 */ 1472 if (++ogen == 0) 1473 ogen = 1; 1474 atomic_store_rel_int(&th->th_generation, ogen); 1475 1476 /* Go live with the new struct timehands. */ 1477 #ifdef FFCLOCK 1478 switch (sysclock_active) { 1479 case SYSCLOCK_FBCK: 1480 #endif 1481 time_second = th->th_microtime.tv_sec; 1482 time_uptime = th->th_offset.sec; 1483 #ifdef FFCLOCK 1484 break; 1485 case SYSCLOCK_FFWD: 1486 time_second = fftimehands->tick_time_lerp.sec; 1487 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1488 break; 1489 } 1490 #endif 1491 1492 timehands = th; 1493 timekeep_push_vdso(); 1494 } 1495 1496 /* Report or change the active timecounter hardware. */ 1497 static int 1498 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1499 { 1500 char newname[32]; 1501 struct timecounter *newtc, *tc; 1502 int error; 1503 1504 mtx_lock(&tc_lock); 1505 tc = timecounter; 1506 strlcpy(newname, tc->tc_name, sizeof(newname)); 1507 mtx_unlock(&tc_lock); 1508 1509 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1510 if (error != 0 || req->newptr == NULL) 1511 return (error); 1512 1513 mtx_lock(&tc_lock); 1514 /* Record that the tc in use now was specifically chosen. */ 1515 tc_chosen = 1; 1516 if (strcmp(newname, tc->tc_name) == 0) { 1517 mtx_unlock(&tc_lock); 1518 return (0); 1519 } 1520 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1521 if (strcmp(newname, newtc->tc_name) != 0) 1522 continue; 1523 1524 /* Warm up new timecounter. */ 1525 (void)newtc->tc_get_timecount(newtc); 1526 1527 timecounter = newtc; 1528 1529 /* 1530 * The vdso timehands update is deferred until the next 1531 * 'tc_windup()'. 1532 * 1533 * This is prudent given that 'timekeep_push_vdso()' does not 1534 * use any locking and that it can be called in hard interrupt 1535 * context via 'tc_windup()'. 1536 */ 1537 break; 1538 } 1539 mtx_unlock(&tc_lock); 1540 return (newtc != NULL ? 0 : EINVAL); 1541 } 1542 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, 1543 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 0, 0, 1544 sysctl_kern_timecounter_hardware, "A", 1545 "Timecounter hardware selected"); 1546 1547 /* Report the available timecounter hardware. */ 1548 static int 1549 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1550 { 1551 struct sbuf sb; 1552 struct timecounter *tc; 1553 int error; 1554 1555 error = sysctl_wire_old_buffer(req, 0); 1556 if (error != 0) 1557 return (error); 1558 sbuf_new_for_sysctl(&sb, NULL, 0, req); 1559 mtx_lock(&tc_lock); 1560 for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 1561 if (tc != timecounters) 1562 sbuf_putc(&sb, ' '); 1563 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality); 1564 } 1565 mtx_unlock(&tc_lock); 1566 error = sbuf_finish(&sb); 1567 sbuf_delete(&sb); 1568 return (error); 1569 } 1570 1571 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, 1572 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, 1573 sysctl_kern_timecounter_choice, "A", 1574 "Timecounter hardware detected"); 1575 1576 /* 1577 * RFC 2783 PPS-API implementation. 1578 */ 1579 1580 /* 1581 * Return true if the driver is aware of the abi version extensions in the 1582 * pps_state structure, and it supports at least the given abi version number. 1583 */ 1584 static inline int 1585 abi_aware(struct pps_state *pps, int vers) 1586 { 1587 1588 return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers); 1589 } 1590 1591 static int 1592 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1593 { 1594 int err, timo; 1595 pps_seq_t aseq, cseq; 1596 struct timeval tv; 1597 1598 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1599 return (EINVAL); 1600 1601 /* 1602 * If no timeout is requested, immediately return whatever values were 1603 * most recently captured. If timeout seconds is -1, that's a request 1604 * to block without a timeout. WITNESS won't let us sleep forever 1605 * without a lock (we really don't need a lock), so just repeatedly 1606 * sleep a long time. 1607 */ 1608 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1609 if (fapi->timeout.tv_sec == -1) 1610 timo = 0x7fffffff; 1611 else { 1612 tv.tv_sec = fapi->timeout.tv_sec; 1613 tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1614 timo = tvtohz(&tv); 1615 } 1616 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence); 1617 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence); 1618 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) && 1619 cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) { 1620 if (abi_aware(pps, 1) && pps->driver_mtx != NULL) { 1621 if (pps->flags & PPSFLAG_MTX_SPIN) { 1622 err = msleep_spin(pps, pps->driver_mtx, 1623 "ppsfch", timo); 1624 } else { 1625 err = msleep(pps, pps->driver_mtx, PCATCH, 1626 "ppsfch", timo); 1627 } 1628 } else { 1629 err = tsleep(pps, PCATCH, "ppsfch", timo); 1630 } 1631 if (err == EWOULDBLOCK) { 1632 if (fapi->timeout.tv_sec == -1) { 1633 continue; 1634 } else { 1635 return (ETIMEDOUT); 1636 } 1637 } else if (err != 0) { 1638 return (err); 1639 } 1640 } 1641 } 1642 1643 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1644 fapi->pps_info_buf = pps->ppsinfo; 1645 1646 return (0); 1647 } 1648 1649 int 1650 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1651 { 1652 pps_params_t *app; 1653 struct pps_fetch_args *fapi; 1654 #ifdef FFCLOCK 1655 struct pps_fetch_ffc_args *fapi_ffc; 1656 #endif 1657 #ifdef PPS_SYNC 1658 struct pps_kcbind_args *kapi; 1659 #endif 1660 1661 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1662 switch (cmd) { 1663 case PPS_IOC_CREATE: 1664 return (0); 1665 case PPS_IOC_DESTROY: 1666 return (0); 1667 case PPS_IOC_SETPARAMS: 1668 app = (pps_params_t *)data; 1669 if (app->mode & ~pps->ppscap) 1670 return (EINVAL); 1671 #ifdef FFCLOCK 1672 /* Ensure only a single clock is selected for ffc timestamp. */ 1673 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1674 return (EINVAL); 1675 #endif 1676 pps->ppsparam = *app; 1677 return (0); 1678 case PPS_IOC_GETPARAMS: 1679 app = (pps_params_t *)data; 1680 *app = pps->ppsparam; 1681 app->api_version = PPS_API_VERS_1; 1682 return (0); 1683 case PPS_IOC_GETCAP: 1684 *(int*)data = pps->ppscap; 1685 return (0); 1686 case PPS_IOC_FETCH: 1687 fapi = (struct pps_fetch_args *)data; 1688 return (pps_fetch(fapi, pps)); 1689 #ifdef FFCLOCK 1690 case PPS_IOC_FETCH_FFCOUNTER: 1691 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1692 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1693 PPS_TSFMT_TSPEC) 1694 return (EINVAL); 1695 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1696 return (EOPNOTSUPP); 1697 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1698 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1699 /* Overwrite timestamps if feedback clock selected. */ 1700 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1701 case PPS_TSCLK_FBCK: 1702 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1703 pps->ppsinfo.assert_timestamp; 1704 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1705 pps->ppsinfo.clear_timestamp; 1706 break; 1707 case PPS_TSCLK_FFWD: 1708 break; 1709 default: 1710 break; 1711 } 1712 return (0); 1713 #endif /* FFCLOCK */ 1714 case PPS_IOC_KCBIND: 1715 #ifdef PPS_SYNC 1716 kapi = (struct pps_kcbind_args *)data; 1717 /* XXX Only root should be able to do this */ 1718 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1719 return (EINVAL); 1720 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1721 return (EINVAL); 1722 if (kapi->edge & ~pps->ppscap) 1723 return (EINVAL); 1724 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) | 1725 (pps->kcmode & KCMODE_ABIFLAG); 1726 return (0); 1727 #else 1728 return (EOPNOTSUPP); 1729 #endif 1730 default: 1731 return (ENOIOCTL); 1732 } 1733 } 1734 1735 void 1736 pps_init(struct pps_state *pps) 1737 { 1738 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1739 if (pps->ppscap & PPS_CAPTUREASSERT) 1740 pps->ppscap |= PPS_OFFSETASSERT; 1741 if (pps->ppscap & PPS_CAPTURECLEAR) 1742 pps->ppscap |= PPS_OFFSETCLEAR; 1743 #ifdef FFCLOCK 1744 pps->ppscap |= PPS_TSCLK_MASK; 1745 #endif 1746 pps->kcmode &= ~KCMODE_ABIFLAG; 1747 } 1748 1749 void 1750 pps_init_abi(struct pps_state *pps) 1751 { 1752 1753 pps_init(pps); 1754 if (pps->driver_abi > 0) { 1755 pps->kcmode |= KCMODE_ABIFLAG; 1756 pps->kernel_abi = PPS_ABI_VERSION; 1757 } 1758 } 1759 1760 void 1761 pps_capture(struct pps_state *pps) 1762 { 1763 struct timehands *th; 1764 1765 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1766 th = timehands; 1767 pps->capgen = atomic_load_acq_int(&th->th_generation); 1768 pps->capth = th; 1769 #ifdef FFCLOCK 1770 pps->capffth = fftimehands; 1771 #endif 1772 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1773 atomic_thread_fence_acq(); 1774 if (pps->capgen != th->th_generation) 1775 pps->capgen = 0; 1776 } 1777 1778 void 1779 pps_event(struct pps_state *pps, int event) 1780 { 1781 struct bintime bt; 1782 struct timespec ts, *tsp, *osp; 1783 u_int tcount, *pcount; 1784 int foff; 1785 pps_seq_t *pseq; 1786 #ifdef FFCLOCK 1787 struct timespec *tsp_ffc; 1788 pps_seq_t *pseq_ffc; 1789 ffcounter *ffcount; 1790 #endif 1791 #ifdef PPS_SYNC 1792 int fhard; 1793 #endif 1794 1795 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1796 /* Nothing to do if not currently set to capture this event type. */ 1797 if ((event & pps->ppsparam.mode) == 0) 1798 return; 1799 /* If the timecounter was wound up underneath us, bail out. */ 1800 if (pps->capgen == 0 || pps->capgen != 1801 atomic_load_acq_int(&pps->capth->th_generation)) 1802 return; 1803 1804 /* Things would be easier with arrays. */ 1805 if (event == PPS_CAPTUREASSERT) { 1806 tsp = &pps->ppsinfo.assert_timestamp; 1807 osp = &pps->ppsparam.assert_offset; 1808 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1809 #ifdef PPS_SYNC 1810 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1811 #endif 1812 pcount = &pps->ppscount[0]; 1813 pseq = &pps->ppsinfo.assert_sequence; 1814 #ifdef FFCLOCK 1815 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1816 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1817 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1818 #endif 1819 } else { 1820 tsp = &pps->ppsinfo.clear_timestamp; 1821 osp = &pps->ppsparam.clear_offset; 1822 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1823 #ifdef PPS_SYNC 1824 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1825 #endif 1826 pcount = &pps->ppscount[1]; 1827 pseq = &pps->ppsinfo.clear_sequence; 1828 #ifdef FFCLOCK 1829 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1830 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1831 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1832 #endif 1833 } 1834 1835 /* 1836 * If the timecounter changed, we cannot compare the count values, so 1837 * we have to drop the rest of the PPS-stuff until the next event. 1838 */ 1839 if (pps->ppstc != pps->capth->th_counter) { 1840 pps->ppstc = pps->capth->th_counter; 1841 *pcount = pps->capcount; 1842 pps->ppscount[2] = pps->capcount; 1843 return; 1844 } 1845 1846 /* Convert the count to a timespec. */ 1847 tcount = pps->capcount - pps->capth->th_offset_count; 1848 tcount &= pps->capth->th_counter->tc_counter_mask; 1849 bt = pps->capth->th_bintime; 1850 bintime_addx(&bt, pps->capth->th_scale * tcount); 1851 bintime2timespec(&bt, &ts); 1852 1853 /* If the timecounter was wound up underneath us, bail out. */ 1854 atomic_thread_fence_acq(); 1855 if (pps->capgen != pps->capth->th_generation) 1856 return; 1857 1858 *pcount = pps->capcount; 1859 (*pseq)++; 1860 *tsp = ts; 1861 1862 if (foff) { 1863 timespecadd(tsp, osp, tsp); 1864 if (tsp->tv_nsec < 0) { 1865 tsp->tv_nsec += 1000000000; 1866 tsp->tv_sec -= 1; 1867 } 1868 } 1869 1870 #ifdef FFCLOCK 1871 *ffcount = pps->capffth->tick_ffcount + tcount; 1872 bt = pps->capffth->tick_time; 1873 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1874 bintime_add(&bt, &pps->capffth->tick_time); 1875 bintime2timespec(&bt, &ts); 1876 (*pseq_ffc)++; 1877 *tsp_ffc = ts; 1878 #endif 1879 1880 #ifdef PPS_SYNC 1881 if (fhard) { 1882 uint64_t scale; 1883 1884 /* 1885 * Feed the NTP PLL/FLL. 1886 * The FLL wants to know how many (hardware) nanoseconds 1887 * elapsed since the previous event. 1888 */ 1889 tcount = pps->capcount - pps->ppscount[2]; 1890 pps->ppscount[2] = pps->capcount; 1891 tcount &= pps->capth->th_counter->tc_counter_mask; 1892 scale = (uint64_t)1 << 63; 1893 scale /= pps->capth->th_counter->tc_frequency; 1894 scale *= 2; 1895 bt.sec = 0; 1896 bt.frac = 0; 1897 bintime_addx(&bt, scale * tcount); 1898 bintime2timespec(&bt, &ts); 1899 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1900 } 1901 #endif 1902 1903 /* Wakeup anyone sleeping in pps_fetch(). */ 1904 wakeup(pps); 1905 } 1906 1907 /* 1908 * Timecounters need to be updated every so often to prevent the hardware 1909 * counter from overflowing. Updating also recalculates the cached values 1910 * used by the get*() family of functions, so their precision depends on 1911 * the update frequency. 1912 */ 1913 1914 static int tc_tick; 1915 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1916 "Approximate number of hardclock ticks in a millisecond"); 1917 1918 void 1919 tc_ticktock(int cnt) 1920 { 1921 static int count; 1922 1923 if (mtx_trylock_spin(&tc_setclock_mtx)) { 1924 count += cnt; 1925 if (count >= tc_tick) { 1926 count = 0; 1927 tc_windup(NULL); 1928 } 1929 mtx_unlock_spin(&tc_setclock_mtx); 1930 } 1931 } 1932 1933 static void __inline 1934 tc_adjprecision(void) 1935 { 1936 int t; 1937 1938 if (tc_timepercentage > 0) { 1939 t = (99 + tc_timepercentage) / tc_timepercentage; 1940 tc_precexp = fls(t + (t >> 1)) - 1; 1941 FREQ2BT(hz / tc_tick, &bt_timethreshold); 1942 FREQ2BT(hz, &bt_tickthreshold); 1943 bintime_shift(&bt_timethreshold, tc_precexp); 1944 bintime_shift(&bt_tickthreshold, tc_precexp); 1945 } else { 1946 tc_precexp = 31; 1947 bt_timethreshold.sec = INT_MAX; 1948 bt_timethreshold.frac = ~(uint64_t)0; 1949 bt_tickthreshold = bt_timethreshold; 1950 } 1951 sbt_timethreshold = bttosbt(bt_timethreshold); 1952 sbt_tickthreshold = bttosbt(bt_tickthreshold); 1953 } 1954 1955 static int 1956 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 1957 { 1958 int error, val; 1959 1960 val = tc_timepercentage; 1961 error = sysctl_handle_int(oidp, &val, 0, req); 1962 if (error != 0 || req->newptr == NULL) 1963 return (error); 1964 tc_timepercentage = val; 1965 if (cold) 1966 goto done; 1967 tc_adjprecision(); 1968 done: 1969 return (0); 1970 } 1971 1972 /* Set up the requested number of timehands. */ 1973 static void 1974 inittimehands(void *dummy) 1975 { 1976 struct timehands *thp; 1977 int i; 1978 1979 TUNABLE_INT_FETCH("kern.timecounter.timehands_count", 1980 &timehands_count); 1981 if (timehands_count < 1) 1982 timehands_count = 1; 1983 if (timehands_count > nitems(ths)) 1984 timehands_count = nitems(ths); 1985 for (i = 1, thp = &ths[0]; i < timehands_count; thp = &ths[i++]) 1986 thp->th_next = &ths[i]; 1987 thp->th_next = &ths[0]; 1988 1989 TUNABLE_STR_FETCH("kern.timecounter.hardware", tc_from_tunable, 1990 sizeof(tc_from_tunable)); 1991 1992 mtx_init(&tc_lock, "tc", NULL, MTX_DEF); 1993 } 1994 SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL); 1995 1996 static void 1997 inittimecounter(void *dummy) 1998 { 1999 u_int p; 2000 int tick_rate; 2001 2002 /* 2003 * Set the initial timeout to 2004 * max(1, <approx. number of hardclock ticks in a millisecond>). 2005 * People should probably not use the sysctl to set the timeout 2006 * to smaller than its initial value, since that value is the 2007 * smallest reasonable one. If they want better timestamps they 2008 * should use the non-"get"* functions. 2009 */ 2010 if (hz > 1000) 2011 tc_tick = (hz + 500) / 1000; 2012 else 2013 tc_tick = 1; 2014 tc_adjprecision(); 2015 FREQ2BT(hz, &tick_bt); 2016 tick_sbt = bttosbt(tick_bt); 2017 tick_rate = hz / tc_tick; 2018 FREQ2BT(tick_rate, &tc_tick_bt); 2019 tc_tick_sbt = bttosbt(tc_tick_bt); 2020 p = (tc_tick * 1000000) / hz; 2021 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 2022 2023 #ifdef FFCLOCK 2024 ffclock_init(); 2025 #endif 2026 2027 /* warm up new timecounter (again) and get rolling. */ 2028 (void)timecounter->tc_get_timecount(timecounter); 2029 mtx_lock_spin(&tc_setclock_mtx); 2030 tc_windup(NULL); 2031 mtx_unlock_spin(&tc_setclock_mtx); 2032 } 2033 2034 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 2035 2036 /* Cpu tick handling -------------------------------------------------*/ 2037 2038 static int cpu_tick_variable; 2039 static uint64_t cpu_tick_frequency; 2040 2041 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base); 2042 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last); 2043 2044 static uint64_t 2045 tc_cpu_ticks(void) 2046 { 2047 struct timecounter *tc; 2048 uint64_t res, *base; 2049 unsigned u, *last; 2050 2051 critical_enter(); 2052 base = DPCPU_PTR(tc_cpu_ticks_base); 2053 last = DPCPU_PTR(tc_cpu_ticks_last); 2054 tc = timehands->th_counter; 2055 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 2056 if (u < *last) 2057 *base += (uint64_t)tc->tc_counter_mask + 1; 2058 *last = u; 2059 res = u + *base; 2060 critical_exit(); 2061 return (res); 2062 } 2063 2064 void 2065 cpu_tick_calibration(void) 2066 { 2067 static time_t last_calib; 2068 2069 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 2070 cpu_tick_calibrate(0); 2071 last_calib = time_uptime; 2072 } 2073 } 2074 2075 /* 2076 * This function gets called every 16 seconds on only one designated 2077 * CPU in the system from hardclock() via cpu_tick_calibration()(). 2078 * 2079 * Whenever the real time clock is stepped we get called with reset=1 2080 * to make sure we handle suspend/resume and similar events correctly. 2081 */ 2082 2083 static void 2084 cpu_tick_calibrate(int reset) 2085 { 2086 static uint64_t c_last; 2087 uint64_t c_this, c_delta; 2088 static struct bintime t_last; 2089 struct bintime t_this, t_delta; 2090 uint32_t divi; 2091 2092 if (reset) { 2093 /* The clock was stepped, abort & reset */ 2094 t_last.sec = 0; 2095 return; 2096 } 2097 2098 /* we don't calibrate fixed rate cputicks */ 2099 if (!cpu_tick_variable) 2100 return; 2101 2102 getbinuptime(&t_this); 2103 c_this = cpu_ticks(); 2104 if (t_last.sec != 0) { 2105 c_delta = c_this - c_last; 2106 t_delta = t_this; 2107 bintime_sub(&t_delta, &t_last); 2108 /* 2109 * Headroom: 2110 * 2^(64-20) / 16[s] = 2111 * 2^(44) / 16[s] = 2112 * 17.592.186.044.416 / 16 = 2113 * 1.099.511.627.776 [Hz] 2114 */ 2115 divi = t_delta.sec << 20; 2116 divi |= t_delta.frac >> (64 - 20); 2117 c_delta <<= 20; 2118 c_delta /= divi; 2119 if (c_delta > cpu_tick_frequency) { 2120 if (0 && bootverbose) 2121 printf("cpu_tick increased to %ju Hz\n", 2122 c_delta); 2123 cpu_tick_frequency = c_delta; 2124 } 2125 } 2126 c_last = c_this; 2127 t_last = t_this; 2128 } 2129 2130 void 2131 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 2132 { 2133 2134 if (func == NULL) { 2135 cpu_ticks = tc_cpu_ticks; 2136 } else { 2137 cpu_tick_frequency = freq; 2138 cpu_tick_variable = var; 2139 cpu_ticks = func; 2140 } 2141 } 2142 2143 uint64_t 2144 cpu_tickrate(void) 2145 { 2146 2147 if (cpu_ticks == tc_cpu_ticks) 2148 return (tc_getfrequency()); 2149 return (cpu_tick_frequency); 2150 } 2151 2152 /* 2153 * We need to be slightly careful converting cputicks to microseconds. 2154 * There is plenty of margin in 64 bits of microseconds (half a million 2155 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 2156 * before divide conversion (to retain precision) we find that the 2157 * margin shrinks to 1.5 hours (one millionth of 146y). 2158 * With a three prong approach we never lose significant bits, no 2159 * matter what the cputick rate and length of timeinterval is. 2160 */ 2161 2162 uint64_t 2163 cputick2usec(uint64_t tick) 2164 { 2165 2166 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 2167 return (tick / (cpu_tickrate() / 1000000LL)); 2168 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 2169 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 2170 else 2171 return ((tick * 1000000LL) / cpu_tickrate()); 2172 } 2173 2174 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 2175 2176 static int vdso_th_enable = 1; 2177 static int 2178 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 2179 { 2180 int old_vdso_th_enable, error; 2181 2182 old_vdso_th_enable = vdso_th_enable; 2183 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 2184 if (error != 0) 2185 return (error); 2186 vdso_th_enable = old_vdso_th_enable; 2187 return (0); 2188 } 2189 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 2190 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 2191 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 2192 2193 uint32_t 2194 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2195 { 2196 struct timehands *th; 2197 uint32_t enabled; 2198 2199 th = timehands; 2200 vdso_th->th_scale = th->th_scale; 2201 vdso_th->th_offset_count = th->th_offset_count; 2202 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2203 vdso_th->th_offset = th->th_offset; 2204 vdso_th->th_boottime = th->th_boottime; 2205 if (th->th_counter->tc_fill_vdso_timehands != NULL) { 2206 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th, 2207 th->th_counter); 2208 } else 2209 enabled = 0; 2210 if (!vdso_th_enable) 2211 enabled = 0; 2212 return (enabled); 2213 } 2214 2215 #ifdef COMPAT_FREEBSD32 2216 uint32_t 2217 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2218 { 2219 struct timehands *th; 2220 uint32_t enabled; 2221 2222 th = timehands; 2223 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2224 vdso_th32->th_offset_count = th->th_offset_count; 2225 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2226 vdso_th32->th_offset.sec = th->th_offset.sec; 2227 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 2228 vdso_th32->th_boottime.sec = th->th_boottime.sec; 2229 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac; 2230 if (th->th_counter->tc_fill_vdso_timehands32 != NULL) { 2231 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32, 2232 th->th_counter); 2233 } else 2234 enabled = 0; 2235 if (!vdso_th_enable) 2236 enabled = 0; 2237 return (enabled); 2238 } 2239 #endif 2240 2241 #include "opt_ddb.h" 2242 #ifdef DDB 2243 #include <ddb/ddb.h> 2244 2245 DB_SHOW_COMMAND(timecounter, db_show_timecounter) 2246 { 2247 struct timehands *th; 2248 struct timecounter *tc; 2249 u_int val1, val2; 2250 2251 th = timehands; 2252 tc = th->th_counter; 2253 val1 = tc->tc_get_timecount(tc); 2254 __compiler_membar(); 2255 val2 = tc->tc_get_timecount(tc); 2256 2257 db_printf("timecounter %p %s\n", tc, tc->tc_name); 2258 db_printf(" mask %#x freq %ju qual %d flags %#x priv %p\n", 2259 tc->tc_counter_mask, (uintmax_t)tc->tc_frequency, tc->tc_quality, 2260 tc->tc_flags, tc->tc_priv); 2261 db_printf(" val %#x %#x\n", val1, val2); 2262 db_printf("timehands adj %#jx scale %#jx ldelta %d off_cnt %d gen %d\n", 2263 (uintmax_t)th->th_adjustment, (uintmax_t)th->th_scale, 2264 th->th_large_delta, th->th_offset_count, th->th_generation); 2265 db_printf(" offset %jd %jd boottime %jd %jd\n", 2266 (intmax_t)th->th_offset.sec, (uintmax_t)th->th_offset.frac, 2267 (intmax_t)th->th_boottime.sec, (uintmax_t)th->th_boottime.frac); 2268 } 2269 #endif 2270