1 /*- 2 * ---------------------------------------------------------------------------- 3 * "THE BEER-WARE LICENSE" (Revision 42): 4 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 5 * can do whatever you want with this stuff. If we meet some day, and you think 6 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 7 * ---------------------------------------------------------------------------- 8 * 9 * Copyright (c) 2011 The FreeBSD Foundation 10 * All rights reserved. 11 * 12 * Portions of this software were developed by Julien Ridoux at the University 13 * of Melbourne under sponsorship from the FreeBSD Foundation. 14 */ 15 16 #include <sys/cdefs.h> 17 __FBSDID("$FreeBSD$"); 18 19 #include "opt_compat.h" 20 #include "opt_ntp.h" 21 #include "opt_ffclock.h" 22 23 #include <sys/param.h> 24 #include <sys/kernel.h> 25 #include <sys/limits.h> 26 #include <sys/lock.h> 27 #include <sys/mutex.h> 28 #include <sys/sbuf.h> 29 #include <sys/sysctl.h> 30 #include <sys/syslog.h> 31 #include <sys/systm.h> 32 #include <sys/timeffc.h> 33 #include <sys/timepps.h> 34 #include <sys/timetc.h> 35 #include <sys/timex.h> 36 #include <sys/vdso.h> 37 38 /* 39 * A large step happens on boot. This constant detects such steps. 40 * It is relatively small so that ntp_update_second gets called enough 41 * in the typical 'missed a couple of seconds' case, but doesn't loop 42 * forever when the time step is large. 43 */ 44 #define LARGE_STEP 200 45 46 /* 47 * Implement a dummy timecounter which we can use until we get a real one 48 * in the air. This allows the console and other early stuff to use 49 * time services. 50 */ 51 52 static u_int 53 dummy_get_timecount(struct timecounter *tc) 54 { 55 static u_int now; 56 57 return (++now); 58 } 59 60 static struct timecounter dummy_timecounter = { 61 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 62 }; 63 64 struct timehands { 65 /* These fields must be initialized by the driver. */ 66 struct timecounter *th_counter; 67 int64_t th_adjustment; 68 uint64_t th_scale; 69 u_int th_offset_count; 70 struct bintime th_offset; 71 struct timeval th_microtime; 72 struct timespec th_nanotime; 73 /* Fields not to be copied in tc_windup start with th_generation. */ 74 volatile u_int th_generation; 75 struct timehands *th_next; 76 }; 77 78 static struct timehands th0; 79 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0}; 80 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9}; 81 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8}; 82 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7}; 83 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6}; 84 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5}; 85 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4}; 86 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3}; 87 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2}; 88 static struct timehands th0 = { 89 &dummy_timecounter, 90 0, 91 (uint64_t)-1 / 1000000, 92 0, 93 {1, 0}, 94 {0, 0}, 95 {0, 0}, 96 1, 97 &th1 98 }; 99 100 static struct timehands *volatile timehands = &th0; 101 struct timecounter *timecounter = &dummy_timecounter; 102 static struct timecounter *timecounters = &dummy_timecounter; 103 104 int tc_min_ticktock_freq = 1; 105 106 volatile time_t time_second = 1; 107 volatile time_t time_uptime = 1; 108 109 struct bintime boottimebin; 110 struct timeval boottime; 111 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 112 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD, 113 NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime"); 114 115 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, ""); 116 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, ""); 117 118 static int timestepwarnings; 119 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW, 120 ×tepwarnings, 0, "Log time steps"); 121 122 struct bintime bt_timethreshold; 123 struct bintime bt_tickthreshold; 124 sbintime_t sbt_timethreshold; 125 sbintime_t sbt_tickthreshold; 126 struct bintime tc_tick_bt; 127 sbintime_t tc_tick_sbt; 128 int tc_precexp; 129 int tc_timepercentage = TC_DEFAULTPERC; 130 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 131 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 132 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 133 sysctl_kern_timecounter_adjprecision, "I", 134 "Allowed time interval deviation in percents"); 135 136 static void tc_windup(void); 137 static void cpu_tick_calibrate(int); 138 139 void dtrace_getnanotime(struct timespec *tsp); 140 141 static int 142 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 143 { 144 #ifndef __mips__ 145 #ifdef SCTL_MASK32 146 int tv[2]; 147 148 if (req->flags & SCTL_MASK32) { 149 tv[0] = boottime.tv_sec; 150 tv[1] = boottime.tv_usec; 151 return SYSCTL_OUT(req, tv, sizeof(tv)); 152 } else 153 #endif 154 #endif 155 return SYSCTL_OUT(req, &boottime, sizeof(boottime)); 156 } 157 158 static int 159 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 160 { 161 u_int ncount; 162 struct timecounter *tc = arg1; 163 164 ncount = tc->tc_get_timecount(tc); 165 return sysctl_handle_int(oidp, &ncount, 0, req); 166 } 167 168 static int 169 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 170 { 171 uint64_t freq; 172 struct timecounter *tc = arg1; 173 174 freq = tc->tc_frequency; 175 return sysctl_handle_64(oidp, &freq, 0, req); 176 } 177 178 /* 179 * Return the difference between the timehands' counter value now and what 180 * was when we copied it to the timehands' offset_count. 181 */ 182 static __inline u_int 183 tc_delta(struct timehands *th) 184 { 185 struct timecounter *tc; 186 187 tc = th->th_counter; 188 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 189 tc->tc_counter_mask); 190 } 191 192 /* 193 * Functions for reading the time. We have to loop until we are sure that 194 * the timehands that we operated on was not updated under our feet. See 195 * the comment in <sys/time.h> for a description of these 12 functions. 196 */ 197 198 #ifdef FFCLOCK 199 void 200 fbclock_binuptime(struct bintime *bt) 201 { 202 struct timehands *th; 203 unsigned int gen; 204 205 do { 206 th = timehands; 207 gen = th->th_generation; 208 *bt = th->th_offset; 209 bintime_addx(bt, th->th_scale * tc_delta(th)); 210 } while (gen == 0 || gen != th->th_generation); 211 } 212 213 void 214 fbclock_nanouptime(struct timespec *tsp) 215 { 216 struct bintime bt; 217 218 fbclock_binuptime(&bt); 219 bintime2timespec(&bt, tsp); 220 } 221 222 void 223 fbclock_microuptime(struct timeval *tvp) 224 { 225 struct bintime bt; 226 227 fbclock_binuptime(&bt); 228 bintime2timeval(&bt, tvp); 229 } 230 231 void 232 fbclock_bintime(struct bintime *bt) 233 { 234 235 fbclock_binuptime(bt); 236 bintime_add(bt, &boottimebin); 237 } 238 239 void 240 fbclock_nanotime(struct timespec *tsp) 241 { 242 struct bintime bt; 243 244 fbclock_bintime(&bt); 245 bintime2timespec(&bt, tsp); 246 } 247 248 void 249 fbclock_microtime(struct timeval *tvp) 250 { 251 struct bintime bt; 252 253 fbclock_bintime(&bt); 254 bintime2timeval(&bt, tvp); 255 } 256 257 void 258 fbclock_getbinuptime(struct bintime *bt) 259 { 260 struct timehands *th; 261 unsigned int gen; 262 263 do { 264 th = timehands; 265 gen = th->th_generation; 266 *bt = th->th_offset; 267 } while (gen == 0 || gen != th->th_generation); 268 } 269 270 void 271 fbclock_getnanouptime(struct timespec *tsp) 272 { 273 struct timehands *th; 274 unsigned int gen; 275 276 do { 277 th = timehands; 278 gen = th->th_generation; 279 bintime2timespec(&th->th_offset, tsp); 280 } while (gen == 0 || gen != th->th_generation); 281 } 282 283 void 284 fbclock_getmicrouptime(struct timeval *tvp) 285 { 286 struct timehands *th; 287 unsigned int gen; 288 289 do { 290 th = timehands; 291 gen = th->th_generation; 292 bintime2timeval(&th->th_offset, tvp); 293 } while (gen == 0 || gen != th->th_generation); 294 } 295 296 void 297 fbclock_getbintime(struct bintime *bt) 298 { 299 struct timehands *th; 300 unsigned int gen; 301 302 do { 303 th = timehands; 304 gen = th->th_generation; 305 *bt = th->th_offset; 306 } while (gen == 0 || gen != th->th_generation); 307 bintime_add(bt, &boottimebin); 308 } 309 310 void 311 fbclock_getnanotime(struct timespec *tsp) 312 { 313 struct timehands *th; 314 unsigned int gen; 315 316 do { 317 th = timehands; 318 gen = th->th_generation; 319 *tsp = th->th_nanotime; 320 } while (gen == 0 || gen != th->th_generation); 321 } 322 323 void 324 fbclock_getmicrotime(struct timeval *tvp) 325 { 326 struct timehands *th; 327 unsigned int gen; 328 329 do { 330 th = timehands; 331 gen = th->th_generation; 332 *tvp = th->th_microtime; 333 } while (gen == 0 || gen != th->th_generation); 334 } 335 #else /* !FFCLOCK */ 336 void 337 binuptime(struct bintime *bt) 338 { 339 struct timehands *th; 340 u_int gen; 341 342 do { 343 th = timehands; 344 gen = th->th_generation; 345 *bt = th->th_offset; 346 bintime_addx(bt, th->th_scale * tc_delta(th)); 347 } while (gen == 0 || gen != th->th_generation); 348 } 349 350 void 351 nanouptime(struct timespec *tsp) 352 { 353 struct bintime bt; 354 355 binuptime(&bt); 356 bintime2timespec(&bt, tsp); 357 } 358 359 void 360 microuptime(struct timeval *tvp) 361 { 362 struct bintime bt; 363 364 binuptime(&bt); 365 bintime2timeval(&bt, tvp); 366 } 367 368 void 369 bintime(struct bintime *bt) 370 { 371 372 binuptime(bt); 373 bintime_add(bt, &boottimebin); 374 } 375 376 void 377 nanotime(struct timespec *tsp) 378 { 379 struct bintime bt; 380 381 bintime(&bt); 382 bintime2timespec(&bt, tsp); 383 } 384 385 void 386 microtime(struct timeval *tvp) 387 { 388 struct bintime bt; 389 390 bintime(&bt); 391 bintime2timeval(&bt, tvp); 392 } 393 394 void 395 getbinuptime(struct bintime *bt) 396 { 397 struct timehands *th; 398 u_int gen; 399 400 do { 401 th = timehands; 402 gen = th->th_generation; 403 *bt = th->th_offset; 404 } while (gen == 0 || gen != th->th_generation); 405 } 406 407 void 408 getnanouptime(struct timespec *tsp) 409 { 410 struct timehands *th; 411 u_int gen; 412 413 do { 414 th = timehands; 415 gen = th->th_generation; 416 bintime2timespec(&th->th_offset, tsp); 417 } while (gen == 0 || gen != th->th_generation); 418 } 419 420 void 421 getmicrouptime(struct timeval *tvp) 422 { 423 struct timehands *th; 424 u_int gen; 425 426 do { 427 th = timehands; 428 gen = th->th_generation; 429 bintime2timeval(&th->th_offset, tvp); 430 } while (gen == 0 || gen != th->th_generation); 431 } 432 433 void 434 getbintime(struct bintime *bt) 435 { 436 struct timehands *th; 437 u_int gen; 438 439 do { 440 th = timehands; 441 gen = th->th_generation; 442 *bt = th->th_offset; 443 } while (gen == 0 || gen != th->th_generation); 444 bintime_add(bt, &boottimebin); 445 } 446 447 void 448 getnanotime(struct timespec *tsp) 449 { 450 struct timehands *th; 451 u_int gen; 452 453 do { 454 th = timehands; 455 gen = th->th_generation; 456 *tsp = th->th_nanotime; 457 } while (gen == 0 || gen != th->th_generation); 458 } 459 460 void 461 getmicrotime(struct timeval *tvp) 462 { 463 struct timehands *th; 464 u_int gen; 465 466 do { 467 th = timehands; 468 gen = th->th_generation; 469 *tvp = th->th_microtime; 470 } while (gen == 0 || gen != th->th_generation); 471 } 472 #endif /* FFCLOCK */ 473 474 #ifdef FFCLOCK 475 /* 476 * Support for feed-forward synchronization algorithms. This is heavily inspired 477 * by the timehands mechanism but kept independent from it. *_windup() functions 478 * have some connection to avoid accessing the timecounter hardware more than 479 * necessary. 480 */ 481 482 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 483 struct ffclock_estimate ffclock_estimate; 484 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 485 uint32_t ffclock_status; /* Feed-forward clock status. */ 486 int8_t ffclock_updated; /* New estimates are available. */ 487 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 488 489 struct fftimehands { 490 struct ffclock_estimate cest; 491 struct bintime tick_time; 492 struct bintime tick_time_lerp; 493 ffcounter tick_ffcount; 494 uint64_t period_lerp; 495 volatile uint8_t gen; 496 struct fftimehands *next; 497 }; 498 499 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 500 501 static struct fftimehands ffth[10]; 502 static struct fftimehands *volatile fftimehands = ffth; 503 504 static void 505 ffclock_init(void) 506 { 507 struct fftimehands *cur; 508 struct fftimehands *last; 509 510 memset(ffth, 0, sizeof(ffth)); 511 512 last = ffth + NUM_ELEMENTS(ffth) - 1; 513 for (cur = ffth; cur < last; cur++) 514 cur->next = cur + 1; 515 last->next = ffth; 516 517 ffclock_updated = 0; 518 ffclock_status = FFCLOCK_STA_UNSYNC; 519 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 520 } 521 522 /* 523 * Reset the feed-forward clock estimates. Called from inittodr() to get things 524 * kick started and uses the timecounter nominal frequency as a first period 525 * estimate. Note: this function may be called several time just after boot. 526 * Note: this is the only function that sets the value of boot time for the 527 * monotonic (i.e. uptime) version of the feed-forward clock. 528 */ 529 void 530 ffclock_reset_clock(struct timespec *ts) 531 { 532 struct timecounter *tc; 533 struct ffclock_estimate cest; 534 535 tc = timehands->th_counter; 536 memset(&cest, 0, sizeof(struct ffclock_estimate)); 537 538 timespec2bintime(ts, &ffclock_boottime); 539 timespec2bintime(ts, &(cest.update_time)); 540 ffclock_read_counter(&cest.update_ffcount); 541 cest.leapsec_next = 0; 542 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 543 cest.errb_abs = 0; 544 cest.errb_rate = 0; 545 cest.status = FFCLOCK_STA_UNSYNC; 546 cest.leapsec_total = 0; 547 cest.leapsec = 0; 548 549 mtx_lock(&ffclock_mtx); 550 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 551 ffclock_updated = INT8_MAX; 552 mtx_unlock(&ffclock_mtx); 553 554 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 555 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 556 (unsigned long)ts->tv_nsec); 557 } 558 559 /* 560 * Sub-routine to convert a time interval measured in RAW counter units to time 561 * in seconds stored in bintime format. 562 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 563 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 564 * extra cycles. 565 */ 566 static void 567 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 568 { 569 struct bintime bt2; 570 ffcounter delta, delta_max; 571 572 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 573 bintime_clear(bt); 574 do { 575 if (ffdelta > delta_max) 576 delta = delta_max; 577 else 578 delta = ffdelta; 579 bt2.sec = 0; 580 bt2.frac = period; 581 bintime_mul(&bt2, (unsigned int)delta); 582 bintime_add(bt, &bt2); 583 ffdelta -= delta; 584 } while (ffdelta > 0); 585 } 586 587 /* 588 * Update the fftimehands. 589 * Push the tick ffcount and time(s) forward based on current clock estimate. 590 * The conversion from ffcounter to bintime relies on the difference clock 591 * principle, whose accuracy relies on computing small time intervals. If a new 592 * clock estimate has been passed by the synchronisation daemon, make it 593 * current, and compute the linear interpolation for monotonic time if needed. 594 */ 595 static void 596 ffclock_windup(unsigned int delta) 597 { 598 struct ffclock_estimate *cest; 599 struct fftimehands *ffth; 600 struct bintime bt, gap_lerp; 601 ffcounter ffdelta; 602 uint64_t frac; 603 unsigned int polling; 604 uint8_t forward_jump, ogen; 605 606 /* 607 * Pick the next timehand, copy current ffclock estimates and move tick 608 * times and counter forward. 609 */ 610 forward_jump = 0; 611 ffth = fftimehands->next; 612 ogen = ffth->gen; 613 ffth->gen = 0; 614 cest = &ffth->cest; 615 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 616 ffdelta = (ffcounter)delta; 617 ffth->period_lerp = fftimehands->period_lerp; 618 619 ffth->tick_time = fftimehands->tick_time; 620 ffclock_convert_delta(ffdelta, cest->period, &bt); 621 bintime_add(&ffth->tick_time, &bt); 622 623 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 624 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 625 bintime_add(&ffth->tick_time_lerp, &bt); 626 627 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 628 629 /* 630 * Assess the status of the clock, if the last update is too old, it is 631 * likely the synchronisation daemon is dead and the clock is free 632 * running. 633 */ 634 if (ffclock_updated == 0) { 635 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 636 ffclock_convert_delta(ffdelta, cest->period, &bt); 637 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 638 ffclock_status |= FFCLOCK_STA_UNSYNC; 639 } 640 641 /* 642 * If available, grab updated clock estimates and make them current. 643 * Recompute time at this tick using the updated estimates. The clock 644 * estimates passed the feed-forward synchronisation daemon may result 645 * in time conversion that is not monotonically increasing (just after 646 * the update). time_lerp is a particular linear interpolation over the 647 * synchronisation algo polling period that ensures monotonicity for the 648 * clock ids requesting it. 649 */ 650 if (ffclock_updated > 0) { 651 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 652 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 653 ffth->tick_time = cest->update_time; 654 ffclock_convert_delta(ffdelta, cest->period, &bt); 655 bintime_add(&ffth->tick_time, &bt); 656 657 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 658 if (ffclock_updated == INT8_MAX) 659 ffth->tick_time_lerp = ffth->tick_time; 660 661 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 662 forward_jump = 1; 663 else 664 forward_jump = 0; 665 666 bintime_clear(&gap_lerp); 667 if (forward_jump) { 668 gap_lerp = ffth->tick_time; 669 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 670 } else { 671 gap_lerp = ffth->tick_time_lerp; 672 bintime_sub(&gap_lerp, &ffth->tick_time); 673 } 674 675 /* 676 * The reset from the RTC clock may be far from accurate, and 677 * reducing the gap between real time and interpolated time 678 * could take a very long time if the interpolated clock insists 679 * on strict monotonicity. The clock is reset under very strict 680 * conditions (kernel time is known to be wrong and 681 * synchronization daemon has been restarted recently. 682 * ffclock_boottime absorbs the jump to ensure boot time is 683 * correct and uptime functions stay consistent. 684 */ 685 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 686 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 687 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 688 if (forward_jump) 689 bintime_add(&ffclock_boottime, &gap_lerp); 690 else 691 bintime_sub(&ffclock_boottime, &gap_lerp); 692 ffth->tick_time_lerp = ffth->tick_time; 693 bintime_clear(&gap_lerp); 694 } 695 696 ffclock_status = cest->status; 697 ffth->period_lerp = cest->period; 698 699 /* 700 * Compute corrected period used for the linear interpolation of 701 * time. The rate of linear interpolation is capped to 5000PPM 702 * (5ms/s). 703 */ 704 if (bintime_isset(&gap_lerp)) { 705 ffdelta = cest->update_ffcount; 706 ffdelta -= fftimehands->cest.update_ffcount; 707 ffclock_convert_delta(ffdelta, cest->period, &bt); 708 polling = bt.sec; 709 bt.sec = 0; 710 bt.frac = 5000000 * (uint64_t)18446744073LL; 711 bintime_mul(&bt, polling); 712 if (bintime_cmp(&gap_lerp, &bt, >)) 713 gap_lerp = bt; 714 715 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 716 frac = 0; 717 if (gap_lerp.sec > 0) { 718 frac -= 1; 719 frac /= ffdelta / gap_lerp.sec; 720 } 721 frac += gap_lerp.frac / ffdelta; 722 723 if (forward_jump) 724 ffth->period_lerp += frac; 725 else 726 ffth->period_lerp -= frac; 727 } 728 729 ffclock_updated = 0; 730 } 731 if (++ogen == 0) 732 ogen = 1; 733 ffth->gen = ogen; 734 fftimehands = ffth; 735 } 736 737 /* 738 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 739 * the old and new hardware counter cannot be read simultaneously. tc_windup() 740 * does read the two counters 'back to back', but a few cycles are effectively 741 * lost, and not accumulated in tick_ffcount. This is a fairly radical 742 * operation for a feed-forward synchronization daemon, and it is its job to not 743 * pushing irrelevant data to the kernel. Because there is no locking here, 744 * simply force to ignore pending or next update to give daemon a chance to 745 * realize the counter has changed. 746 */ 747 static void 748 ffclock_change_tc(struct timehands *th) 749 { 750 struct fftimehands *ffth; 751 struct ffclock_estimate *cest; 752 struct timecounter *tc; 753 uint8_t ogen; 754 755 tc = th->th_counter; 756 ffth = fftimehands->next; 757 ogen = ffth->gen; 758 ffth->gen = 0; 759 760 cest = &ffth->cest; 761 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 762 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 763 cest->errb_abs = 0; 764 cest->errb_rate = 0; 765 cest->status |= FFCLOCK_STA_UNSYNC; 766 767 ffth->tick_ffcount = fftimehands->tick_ffcount; 768 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 769 ffth->tick_time = fftimehands->tick_time; 770 ffth->period_lerp = cest->period; 771 772 /* Do not lock but ignore next update from synchronization daemon. */ 773 ffclock_updated--; 774 775 if (++ogen == 0) 776 ogen = 1; 777 ffth->gen = ogen; 778 fftimehands = ffth; 779 } 780 781 /* 782 * Retrieve feed-forward counter and time of last kernel tick. 783 */ 784 void 785 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 786 { 787 struct fftimehands *ffth; 788 uint8_t gen; 789 790 /* 791 * No locking but check generation has not changed. Also need to make 792 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 793 */ 794 do { 795 ffth = fftimehands; 796 gen = ffth->gen; 797 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 798 *bt = ffth->tick_time_lerp; 799 else 800 *bt = ffth->tick_time; 801 *ffcount = ffth->tick_ffcount; 802 } while (gen == 0 || gen != ffth->gen); 803 } 804 805 /* 806 * Absolute clock conversion. Low level function to convert ffcounter to 807 * bintime. The ffcounter is converted using the current ffclock period estimate 808 * or the "interpolated period" to ensure monotonicity. 809 * NOTE: this conversion may have been deferred, and the clock updated since the 810 * hardware counter has been read. 811 */ 812 void 813 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 814 { 815 struct fftimehands *ffth; 816 struct bintime bt2; 817 ffcounter ffdelta; 818 uint8_t gen; 819 820 /* 821 * No locking but check generation has not changed. Also need to make 822 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 823 */ 824 do { 825 ffth = fftimehands; 826 gen = ffth->gen; 827 if (ffcount > ffth->tick_ffcount) 828 ffdelta = ffcount - ffth->tick_ffcount; 829 else 830 ffdelta = ffth->tick_ffcount - ffcount; 831 832 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 833 *bt = ffth->tick_time_lerp; 834 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 835 } else { 836 *bt = ffth->tick_time; 837 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 838 } 839 840 if (ffcount > ffth->tick_ffcount) 841 bintime_add(bt, &bt2); 842 else 843 bintime_sub(bt, &bt2); 844 } while (gen == 0 || gen != ffth->gen); 845 } 846 847 /* 848 * Difference clock conversion. 849 * Low level function to Convert a time interval measured in RAW counter units 850 * into bintime. The difference clock allows measuring small intervals much more 851 * reliably than the absolute clock. 852 */ 853 void 854 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 855 { 856 struct fftimehands *ffth; 857 uint8_t gen; 858 859 /* No locking but check generation has not changed. */ 860 do { 861 ffth = fftimehands; 862 gen = ffth->gen; 863 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 864 } while (gen == 0 || gen != ffth->gen); 865 } 866 867 /* 868 * Access to current ffcounter value. 869 */ 870 void 871 ffclock_read_counter(ffcounter *ffcount) 872 { 873 struct timehands *th; 874 struct fftimehands *ffth; 875 unsigned int gen, delta; 876 877 /* 878 * ffclock_windup() called from tc_windup(), safe to rely on 879 * th->th_generation only, for correct delta and ffcounter. 880 */ 881 do { 882 th = timehands; 883 gen = th->th_generation; 884 ffth = fftimehands; 885 delta = tc_delta(th); 886 *ffcount = ffth->tick_ffcount; 887 } while (gen == 0 || gen != th->th_generation); 888 889 *ffcount += delta; 890 } 891 892 void 893 binuptime(struct bintime *bt) 894 { 895 896 binuptime_fromclock(bt, sysclock_active); 897 } 898 899 void 900 nanouptime(struct timespec *tsp) 901 { 902 903 nanouptime_fromclock(tsp, sysclock_active); 904 } 905 906 void 907 microuptime(struct timeval *tvp) 908 { 909 910 microuptime_fromclock(tvp, sysclock_active); 911 } 912 913 void 914 bintime(struct bintime *bt) 915 { 916 917 bintime_fromclock(bt, sysclock_active); 918 } 919 920 void 921 nanotime(struct timespec *tsp) 922 { 923 924 nanotime_fromclock(tsp, sysclock_active); 925 } 926 927 void 928 microtime(struct timeval *tvp) 929 { 930 931 microtime_fromclock(tvp, sysclock_active); 932 } 933 934 void 935 getbinuptime(struct bintime *bt) 936 { 937 938 getbinuptime_fromclock(bt, sysclock_active); 939 } 940 941 void 942 getnanouptime(struct timespec *tsp) 943 { 944 945 getnanouptime_fromclock(tsp, sysclock_active); 946 } 947 948 void 949 getmicrouptime(struct timeval *tvp) 950 { 951 952 getmicrouptime_fromclock(tvp, sysclock_active); 953 } 954 955 void 956 getbintime(struct bintime *bt) 957 { 958 959 getbintime_fromclock(bt, sysclock_active); 960 } 961 962 void 963 getnanotime(struct timespec *tsp) 964 { 965 966 getnanotime_fromclock(tsp, sysclock_active); 967 } 968 969 void 970 getmicrotime(struct timeval *tvp) 971 { 972 973 getmicrouptime_fromclock(tvp, sysclock_active); 974 } 975 976 #endif /* FFCLOCK */ 977 978 /* 979 * This is a clone of getnanotime and used for walltimestamps. 980 * The dtrace_ prefix prevents fbt from creating probes for 981 * it so walltimestamp can be safely used in all fbt probes. 982 */ 983 void 984 dtrace_getnanotime(struct timespec *tsp) 985 { 986 struct timehands *th; 987 u_int gen; 988 989 do { 990 th = timehands; 991 gen = th->th_generation; 992 *tsp = th->th_nanotime; 993 } while (gen == 0 || gen != th->th_generation); 994 } 995 996 /* 997 * System clock currently providing time to the system. Modifiable via sysctl 998 * when the FFCLOCK option is defined. 999 */ 1000 int sysclock_active = SYSCLOCK_FBCK; 1001 1002 /* Internal NTP status and error estimates. */ 1003 extern int time_status; 1004 extern long time_esterror; 1005 1006 /* 1007 * Take a snapshot of sysclock data which can be used to compare system clocks 1008 * and generate timestamps after the fact. 1009 */ 1010 void 1011 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 1012 { 1013 struct fbclock_info *fbi; 1014 struct timehands *th; 1015 struct bintime bt; 1016 unsigned int delta, gen; 1017 #ifdef FFCLOCK 1018 ffcounter ffcount; 1019 struct fftimehands *ffth; 1020 struct ffclock_info *ffi; 1021 struct ffclock_estimate cest; 1022 1023 ffi = &clock_snap->ff_info; 1024 #endif 1025 1026 fbi = &clock_snap->fb_info; 1027 delta = 0; 1028 1029 do { 1030 th = timehands; 1031 gen = th->th_generation; 1032 fbi->th_scale = th->th_scale; 1033 fbi->tick_time = th->th_offset; 1034 #ifdef FFCLOCK 1035 ffth = fftimehands; 1036 ffi->tick_time = ffth->tick_time_lerp; 1037 ffi->tick_time_lerp = ffth->tick_time_lerp; 1038 ffi->period = ffth->cest.period; 1039 ffi->period_lerp = ffth->period_lerp; 1040 clock_snap->ffcount = ffth->tick_ffcount; 1041 cest = ffth->cest; 1042 #endif 1043 if (!fast) 1044 delta = tc_delta(th); 1045 } while (gen == 0 || gen != th->th_generation); 1046 1047 clock_snap->delta = delta; 1048 clock_snap->sysclock_active = sysclock_active; 1049 1050 /* Record feedback clock status and error. */ 1051 clock_snap->fb_info.status = time_status; 1052 /* XXX: Very crude estimate of feedback clock error. */ 1053 bt.sec = time_esterror / 1000000; 1054 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1055 (uint64_t)18446744073709ULL; 1056 clock_snap->fb_info.error = bt; 1057 1058 #ifdef FFCLOCK 1059 if (!fast) 1060 clock_snap->ffcount += delta; 1061 1062 /* Record feed-forward clock leap second adjustment. */ 1063 ffi->leapsec_adjustment = cest.leapsec_total; 1064 if (clock_snap->ffcount > cest.leapsec_next) 1065 ffi->leapsec_adjustment -= cest.leapsec; 1066 1067 /* Record feed-forward clock status and error. */ 1068 clock_snap->ff_info.status = cest.status; 1069 ffcount = clock_snap->ffcount - cest.update_ffcount; 1070 ffclock_convert_delta(ffcount, cest.period, &bt); 1071 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1072 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1073 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1074 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1075 clock_snap->ff_info.error = bt; 1076 #endif 1077 } 1078 1079 /* 1080 * Convert a sysclock snapshot into a struct bintime based on the specified 1081 * clock source and flags. 1082 */ 1083 int 1084 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1085 int whichclock, uint32_t flags) 1086 { 1087 #ifdef FFCLOCK 1088 struct bintime bt2; 1089 uint64_t period; 1090 #endif 1091 1092 switch (whichclock) { 1093 case SYSCLOCK_FBCK: 1094 *bt = cs->fb_info.tick_time; 1095 1096 /* If snapshot was created with !fast, delta will be >0. */ 1097 if (cs->delta > 0) 1098 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1099 1100 if ((flags & FBCLOCK_UPTIME) == 0) 1101 bintime_add(bt, &boottimebin); 1102 break; 1103 #ifdef FFCLOCK 1104 case SYSCLOCK_FFWD: 1105 if (flags & FFCLOCK_LERP) { 1106 *bt = cs->ff_info.tick_time_lerp; 1107 period = cs->ff_info.period_lerp; 1108 } else { 1109 *bt = cs->ff_info.tick_time; 1110 period = cs->ff_info.period; 1111 } 1112 1113 /* If snapshot was created with !fast, delta will be >0. */ 1114 if (cs->delta > 0) { 1115 ffclock_convert_delta(cs->delta, period, &bt2); 1116 bintime_add(bt, &bt2); 1117 } 1118 1119 /* Leap second adjustment. */ 1120 if (flags & FFCLOCK_LEAPSEC) 1121 bt->sec -= cs->ff_info.leapsec_adjustment; 1122 1123 /* Boot time adjustment, for uptime/monotonic clocks. */ 1124 if (flags & FFCLOCK_UPTIME) 1125 bintime_sub(bt, &ffclock_boottime); 1126 break; 1127 #endif 1128 default: 1129 return (EINVAL); 1130 break; 1131 } 1132 1133 return (0); 1134 } 1135 1136 /* 1137 * Initialize a new timecounter and possibly use it. 1138 */ 1139 void 1140 tc_init(struct timecounter *tc) 1141 { 1142 u_int u; 1143 struct sysctl_oid *tc_root; 1144 1145 u = tc->tc_frequency / tc->tc_counter_mask; 1146 /* XXX: We need some margin here, 10% is a guess */ 1147 u *= 11; 1148 u /= 10; 1149 if (u > hz && tc->tc_quality >= 0) { 1150 tc->tc_quality = -2000; 1151 if (bootverbose) { 1152 printf("Timecounter \"%s\" frequency %ju Hz", 1153 tc->tc_name, (uintmax_t)tc->tc_frequency); 1154 printf(" -- Insufficient hz, needs at least %u\n", u); 1155 } 1156 } else if (tc->tc_quality >= 0 || bootverbose) { 1157 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1158 tc->tc_name, (uintmax_t)tc->tc_frequency, 1159 tc->tc_quality); 1160 } 1161 1162 tc->tc_next = timecounters; 1163 timecounters = tc; 1164 /* 1165 * Set up sysctl tree for this counter. 1166 */ 1167 tc_root = SYSCTL_ADD_NODE(NULL, 1168 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1169 CTLFLAG_RW, 0, "timecounter description"); 1170 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1171 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1172 "mask for implemented bits"); 1173 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1174 "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc), 1175 sysctl_kern_timecounter_get, "IU", "current timecounter value"); 1176 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1177 "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc), 1178 sysctl_kern_timecounter_freq, "QU", "timecounter frequency"); 1179 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1180 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1181 "goodness of time counter"); 1182 /* 1183 * Never automatically use a timecounter with negative quality. 1184 * Even though we run on the dummy counter, switching here may be 1185 * worse since this timecounter may not be monotonous. 1186 */ 1187 if (tc->tc_quality < 0) 1188 return; 1189 if (tc->tc_quality < timecounter->tc_quality) 1190 return; 1191 if (tc->tc_quality == timecounter->tc_quality && 1192 tc->tc_frequency < timecounter->tc_frequency) 1193 return; 1194 (void)tc->tc_get_timecount(tc); 1195 (void)tc->tc_get_timecount(tc); 1196 timecounter = tc; 1197 } 1198 1199 /* Report the frequency of the current timecounter. */ 1200 uint64_t 1201 tc_getfrequency(void) 1202 { 1203 1204 return (timehands->th_counter->tc_frequency); 1205 } 1206 1207 /* 1208 * Step our concept of UTC. This is done by modifying our estimate of 1209 * when we booted. 1210 * XXX: not locked. 1211 */ 1212 void 1213 tc_setclock(struct timespec *ts) 1214 { 1215 struct timespec tbef, taft; 1216 struct bintime bt, bt2; 1217 1218 cpu_tick_calibrate(1); 1219 nanotime(&tbef); 1220 timespec2bintime(ts, &bt); 1221 binuptime(&bt2); 1222 bintime_sub(&bt, &bt2); 1223 bintime_add(&bt2, &boottimebin); 1224 boottimebin = bt; 1225 bintime2timeval(&bt, &boottime); 1226 1227 /* XXX fiddle all the little crinkly bits around the fiords... */ 1228 tc_windup(); 1229 nanotime(&taft); 1230 if (timestepwarnings) { 1231 log(LOG_INFO, 1232 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1233 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1234 (intmax_t)taft.tv_sec, taft.tv_nsec, 1235 (intmax_t)ts->tv_sec, ts->tv_nsec); 1236 } 1237 cpu_tick_calibrate(1); 1238 } 1239 1240 /* 1241 * Initialize the next struct timehands in the ring and make 1242 * it the active timehands. Along the way we might switch to a different 1243 * timecounter and/or do seconds processing in NTP. Slightly magic. 1244 */ 1245 static void 1246 tc_windup(void) 1247 { 1248 struct bintime bt; 1249 struct timehands *th, *tho; 1250 uint64_t scale; 1251 u_int delta, ncount, ogen; 1252 int i; 1253 time_t t; 1254 1255 /* 1256 * Make the next timehands a copy of the current one, but do not 1257 * overwrite the generation or next pointer. While we update 1258 * the contents, the generation must be zero. 1259 */ 1260 tho = timehands; 1261 th = tho->th_next; 1262 ogen = th->th_generation; 1263 th->th_generation = 0; 1264 bcopy(tho, th, offsetof(struct timehands, th_generation)); 1265 1266 /* 1267 * Capture a timecounter delta on the current timecounter and if 1268 * changing timecounters, a counter value from the new timecounter. 1269 * Update the offset fields accordingly. 1270 */ 1271 delta = tc_delta(th); 1272 if (th->th_counter != timecounter) 1273 ncount = timecounter->tc_get_timecount(timecounter); 1274 else 1275 ncount = 0; 1276 #ifdef FFCLOCK 1277 ffclock_windup(delta); 1278 #endif 1279 th->th_offset_count += delta; 1280 th->th_offset_count &= th->th_counter->tc_counter_mask; 1281 while (delta > th->th_counter->tc_frequency) { 1282 /* Eat complete unadjusted seconds. */ 1283 delta -= th->th_counter->tc_frequency; 1284 th->th_offset.sec++; 1285 } 1286 if ((delta > th->th_counter->tc_frequency / 2) && 1287 (th->th_scale * delta < ((uint64_t)1 << 63))) { 1288 /* The product th_scale * delta just barely overflows. */ 1289 th->th_offset.sec++; 1290 } 1291 bintime_addx(&th->th_offset, th->th_scale * delta); 1292 1293 /* 1294 * Hardware latching timecounters may not generate interrupts on 1295 * PPS events, so instead we poll them. There is a finite risk that 1296 * the hardware might capture a count which is later than the one we 1297 * got above, and therefore possibly in the next NTP second which might 1298 * have a different rate than the current NTP second. It doesn't 1299 * matter in practice. 1300 */ 1301 if (tho->th_counter->tc_poll_pps) 1302 tho->th_counter->tc_poll_pps(tho->th_counter); 1303 1304 /* 1305 * Deal with NTP second processing. The for loop normally 1306 * iterates at most once, but in extreme situations it might 1307 * keep NTP sane if timeouts are not run for several seconds. 1308 * At boot, the time step can be large when the TOD hardware 1309 * has been read, so on really large steps, we call 1310 * ntp_update_second only twice. We need to call it twice in 1311 * case we missed a leap second. 1312 */ 1313 bt = th->th_offset; 1314 bintime_add(&bt, &boottimebin); 1315 i = bt.sec - tho->th_microtime.tv_sec; 1316 if (i > LARGE_STEP) 1317 i = 2; 1318 for (; i > 0; i--) { 1319 t = bt.sec; 1320 ntp_update_second(&th->th_adjustment, &bt.sec); 1321 if (bt.sec != t) 1322 boottimebin.sec += bt.sec - t; 1323 } 1324 /* Update the UTC timestamps used by the get*() functions. */ 1325 /* XXX shouldn't do this here. Should force non-`get' versions. */ 1326 bintime2timeval(&bt, &th->th_microtime); 1327 bintime2timespec(&bt, &th->th_nanotime); 1328 1329 /* Now is a good time to change timecounters. */ 1330 if (th->th_counter != timecounter) { 1331 #ifndef __arm__ 1332 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0) 1333 cpu_disable_c2_sleep++; 1334 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 1335 cpu_disable_c2_sleep--; 1336 #endif 1337 th->th_counter = timecounter; 1338 th->th_offset_count = ncount; 1339 tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 1340 (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1341 #ifdef FFCLOCK 1342 ffclock_change_tc(th); 1343 #endif 1344 } 1345 1346 /*- 1347 * Recalculate the scaling factor. We want the number of 1/2^64 1348 * fractions of a second per period of the hardware counter, taking 1349 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1350 * processing provides us with. 1351 * 1352 * The th_adjustment is nanoseconds per second with 32 bit binary 1353 * fraction and we want 64 bit binary fraction of second: 1354 * 1355 * x = a * 2^32 / 10^9 = a * 4.294967296 1356 * 1357 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1358 * we can only multiply by about 850 without overflowing, that 1359 * leaves no suitably precise fractions for multiply before divide. 1360 * 1361 * Divide before multiply with a fraction of 2199/512 results in a 1362 * systematic undercompensation of 10PPM of th_adjustment. On a 1363 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1364 * 1365 * We happily sacrifice the lowest of the 64 bits of our result 1366 * to the goddess of code clarity. 1367 * 1368 */ 1369 scale = (uint64_t)1 << 63; 1370 scale += (th->th_adjustment / 1024) * 2199; 1371 scale /= th->th_counter->tc_frequency; 1372 th->th_scale = scale * 2; 1373 1374 /* 1375 * Now that the struct timehands is again consistent, set the new 1376 * generation number, making sure to not make it zero. 1377 */ 1378 if (++ogen == 0) 1379 ogen = 1; 1380 th->th_generation = ogen; 1381 1382 /* Go live with the new struct timehands. */ 1383 #ifdef FFCLOCK 1384 switch (sysclock_active) { 1385 case SYSCLOCK_FBCK: 1386 #endif 1387 time_second = th->th_microtime.tv_sec; 1388 time_uptime = th->th_offset.sec; 1389 #ifdef FFCLOCK 1390 break; 1391 case SYSCLOCK_FFWD: 1392 time_second = fftimehands->tick_time_lerp.sec; 1393 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1394 break; 1395 } 1396 #endif 1397 1398 timehands = th; 1399 timekeep_push_vdso(); 1400 } 1401 1402 /* Report or change the active timecounter hardware. */ 1403 static int 1404 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1405 { 1406 char newname[32]; 1407 struct timecounter *newtc, *tc; 1408 int error; 1409 1410 tc = timecounter; 1411 strlcpy(newname, tc->tc_name, sizeof(newname)); 1412 1413 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1414 if (error != 0 || req->newptr == NULL || 1415 strcmp(newname, tc->tc_name) == 0) 1416 return (error); 1417 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1418 if (strcmp(newname, newtc->tc_name) != 0) 1419 continue; 1420 1421 /* Warm up new timecounter. */ 1422 (void)newtc->tc_get_timecount(newtc); 1423 (void)newtc->tc_get_timecount(newtc); 1424 1425 timecounter = newtc; 1426 1427 /* 1428 * The vdso timehands update is deferred until the next 1429 * 'tc_windup()'. 1430 * 1431 * This is prudent given that 'timekeep_push_vdso()' does not 1432 * use any locking and that it can be called in hard interrupt 1433 * context via 'tc_windup()'. 1434 */ 1435 return (0); 1436 } 1437 return (EINVAL); 1438 } 1439 1440 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW, 1441 0, 0, sysctl_kern_timecounter_hardware, "A", 1442 "Timecounter hardware selected"); 1443 1444 1445 /* Report or change the active timecounter hardware. */ 1446 static int 1447 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1448 { 1449 struct sbuf sb; 1450 struct timecounter *tc; 1451 int error; 1452 1453 sbuf_new_for_sysctl(&sb, NULL, 0, req); 1454 for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 1455 if (tc != timecounters) 1456 sbuf_putc(&sb, ' '); 1457 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality); 1458 } 1459 error = sbuf_finish(&sb); 1460 sbuf_delete(&sb); 1461 return (error); 1462 } 1463 1464 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD, 1465 0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected"); 1466 1467 /* 1468 * RFC 2783 PPS-API implementation. 1469 */ 1470 1471 static int 1472 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1473 { 1474 int err, timo; 1475 pps_seq_t aseq, cseq; 1476 struct timeval tv; 1477 1478 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1479 return (EINVAL); 1480 1481 /* 1482 * If no timeout is requested, immediately return whatever values were 1483 * most recently captured. If timeout seconds is -1, that's a request 1484 * to block without a timeout. WITNESS won't let us sleep forever 1485 * without a lock (we really don't need a lock), so just repeatedly 1486 * sleep a long time. 1487 */ 1488 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1489 if (fapi->timeout.tv_sec == -1) 1490 timo = 0x7fffffff; 1491 else { 1492 tv.tv_sec = fapi->timeout.tv_sec; 1493 tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1494 timo = tvtohz(&tv); 1495 } 1496 aseq = pps->ppsinfo.assert_sequence; 1497 cseq = pps->ppsinfo.clear_sequence; 1498 while (aseq == pps->ppsinfo.assert_sequence && 1499 cseq == pps->ppsinfo.clear_sequence) { 1500 if (pps->mtx != NULL) 1501 err = msleep(pps, pps->mtx, PCATCH, "ppsfch", timo); 1502 else 1503 err = tsleep(pps, PCATCH, "ppsfch", timo); 1504 if (err == EWOULDBLOCK && fapi->timeout.tv_sec == -1) { 1505 continue; 1506 } else if (err != 0) { 1507 return (err); 1508 } 1509 } 1510 } 1511 1512 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1513 fapi->pps_info_buf = pps->ppsinfo; 1514 1515 return (0); 1516 } 1517 1518 int 1519 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1520 { 1521 pps_params_t *app; 1522 struct pps_fetch_args *fapi; 1523 #ifdef FFCLOCK 1524 struct pps_fetch_ffc_args *fapi_ffc; 1525 #endif 1526 #ifdef PPS_SYNC 1527 struct pps_kcbind_args *kapi; 1528 #endif 1529 1530 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1531 switch (cmd) { 1532 case PPS_IOC_CREATE: 1533 return (0); 1534 case PPS_IOC_DESTROY: 1535 return (0); 1536 case PPS_IOC_SETPARAMS: 1537 app = (pps_params_t *)data; 1538 if (app->mode & ~pps->ppscap) 1539 return (EINVAL); 1540 #ifdef FFCLOCK 1541 /* Ensure only a single clock is selected for ffc timestamp. */ 1542 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1543 return (EINVAL); 1544 #endif 1545 pps->ppsparam = *app; 1546 return (0); 1547 case PPS_IOC_GETPARAMS: 1548 app = (pps_params_t *)data; 1549 *app = pps->ppsparam; 1550 app->api_version = PPS_API_VERS_1; 1551 return (0); 1552 case PPS_IOC_GETCAP: 1553 *(int*)data = pps->ppscap; 1554 return (0); 1555 case PPS_IOC_FETCH: 1556 fapi = (struct pps_fetch_args *)data; 1557 return (pps_fetch(fapi, pps)); 1558 #ifdef FFCLOCK 1559 case PPS_IOC_FETCH_FFCOUNTER: 1560 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1561 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1562 PPS_TSFMT_TSPEC) 1563 return (EINVAL); 1564 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1565 return (EOPNOTSUPP); 1566 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1567 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1568 /* Overwrite timestamps if feedback clock selected. */ 1569 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1570 case PPS_TSCLK_FBCK: 1571 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1572 pps->ppsinfo.assert_timestamp; 1573 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1574 pps->ppsinfo.clear_timestamp; 1575 break; 1576 case PPS_TSCLK_FFWD: 1577 break; 1578 default: 1579 break; 1580 } 1581 return (0); 1582 #endif /* FFCLOCK */ 1583 case PPS_IOC_KCBIND: 1584 #ifdef PPS_SYNC 1585 kapi = (struct pps_kcbind_args *)data; 1586 /* XXX Only root should be able to do this */ 1587 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1588 return (EINVAL); 1589 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1590 return (EINVAL); 1591 if (kapi->edge & ~pps->ppscap) 1592 return (EINVAL); 1593 pps->kcmode = kapi->edge; 1594 return (0); 1595 #else 1596 return (EOPNOTSUPP); 1597 #endif 1598 default: 1599 return (ENOIOCTL); 1600 } 1601 } 1602 1603 void 1604 pps_init(struct pps_state *pps) 1605 { 1606 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1607 if (pps->ppscap & PPS_CAPTUREASSERT) 1608 pps->ppscap |= PPS_OFFSETASSERT; 1609 if (pps->ppscap & PPS_CAPTURECLEAR) 1610 pps->ppscap |= PPS_OFFSETCLEAR; 1611 #ifdef FFCLOCK 1612 pps->ppscap |= PPS_TSCLK_MASK; 1613 #endif 1614 } 1615 1616 void 1617 pps_capture(struct pps_state *pps) 1618 { 1619 struct timehands *th; 1620 1621 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1622 th = timehands; 1623 pps->capgen = th->th_generation; 1624 pps->capth = th; 1625 #ifdef FFCLOCK 1626 pps->capffth = fftimehands; 1627 #endif 1628 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1629 if (pps->capgen != th->th_generation) 1630 pps->capgen = 0; 1631 } 1632 1633 void 1634 pps_event(struct pps_state *pps, int event) 1635 { 1636 struct bintime bt; 1637 struct timespec ts, *tsp, *osp; 1638 u_int tcount, *pcount; 1639 int foff, fhard; 1640 pps_seq_t *pseq; 1641 #ifdef FFCLOCK 1642 struct timespec *tsp_ffc; 1643 pps_seq_t *pseq_ffc; 1644 ffcounter *ffcount; 1645 #endif 1646 1647 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1648 /* If the timecounter was wound up underneath us, bail out. */ 1649 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation) 1650 return; 1651 1652 /* Things would be easier with arrays. */ 1653 if (event == PPS_CAPTUREASSERT) { 1654 tsp = &pps->ppsinfo.assert_timestamp; 1655 osp = &pps->ppsparam.assert_offset; 1656 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1657 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1658 pcount = &pps->ppscount[0]; 1659 pseq = &pps->ppsinfo.assert_sequence; 1660 #ifdef FFCLOCK 1661 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1662 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1663 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1664 #endif 1665 } else { 1666 tsp = &pps->ppsinfo.clear_timestamp; 1667 osp = &pps->ppsparam.clear_offset; 1668 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1669 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1670 pcount = &pps->ppscount[1]; 1671 pseq = &pps->ppsinfo.clear_sequence; 1672 #ifdef FFCLOCK 1673 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1674 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1675 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1676 #endif 1677 } 1678 1679 /* 1680 * If the timecounter changed, we cannot compare the count values, so 1681 * we have to drop the rest of the PPS-stuff until the next event. 1682 */ 1683 if (pps->ppstc != pps->capth->th_counter) { 1684 pps->ppstc = pps->capth->th_counter; 1685 *pcount = pps->capcount; 1686 pps->ppscount[2] = pps->capcount; 1687 return; 1688 } 1689 1690 /* Convert the count to a timespec. */ 1691 tcount = pps->capcount - pps->capth->th_offset_count; 1692 tcount &= pps->capth->th_counter->tc_counter_mask; 1693 bt = pps->capth->th_offset; 1694 bintime_addx(&bt, pps->capth->th_scale * tcount); 1695 bintime_add(&bt, &boottimebin); 1696 bintime2timespec(&bt, &ts); 1697 1698 /* If the timecounter was wound up underneath us, bail out. */ 1699 if (pps->capgen != pps->capth->th_generation) 1700 return; 1701 1702 *pcount = pps->capcount; 1703 (*pseq)++; 1704 *tsp = ts; 1705 1706 if (foff) { 1707 timespecadd(tsp, osp); 1708 if (tsp->tv_nsec < 0) { 1709 tsp->tv_nsec += 1000000000; 1710 tsp->tv_sec -= 1; 1711 } 1712 } 1713 1714 #ifdef FFCLOCK 1715 *ffcount = pps->capffth->tick_ffcount + tcount; 1716 bt = pps->capffth->tick_time; 1717 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1718 bintime_add(&bt, &pps->capffth->tick_time); 1719 bintime2timespec(&bt, &ts); 1720 (*pseq_ffc)++; 1721 *tsp_ffc = ts; 1722 #endif 1723 1724 #ifdef PPS_SYNC 1725 if (fhard) { 1726 uint64_t scale; 1727 1728 /* 1729 * Feed the NTP PLL/FLL. 1730 * The FLL wants to know how many (hardware) nanoseconds 1731 * elapsed since the previous event. 1732 */ 1733 tcount = pps->capcount - pps->ppscount[2]; 1734 pps->ppscount[2] = pps->capcount; 1735 tcount &= pps->capth->th_counter->tc_counter_mask; 1736 scale = (uint64_t)1 << 63; 1737 scale /= pps->capth->th_counter->tc_frequency; 1738 scale *= 2; 1739 bt.sec = 0; 1740 bt.frac = 0; 1741 bintime_addx(&bt, scale * tcount); 1742 bintime2timespec(&bt, &ts); 1743 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 1744 } 1745 #endif 1746 1747 /* Wakeup anyone sleeping in pps_fetch(). */ 1748 wakeup(pps); 1749 } 1750 1751 /* 1752 * Timecounters need to be updated every so often to prevent the hardware 1753 * counter from overflowing. Updating also recalculates the cached values 1754 * used by the get*() family of functions, so their precision depends on 1755 * the update frequency. 1756 */ 1757 1758 static int tc_tick; 1759 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1760 "Approximate number of hardclock ticks in a millisecond"); 1761 1762 void 1763 tc_ticktock(int cnt) 1764 { 1765 static int count; 1766 1767 count += cnt; 1768 if (count < tc_tick) 1769 return; 1770 count = 0; 1771 tc_windup(); 1772 } 1773 1774 static void __inline 1775 tc_adjprecision(void) 1776 { 1777 int t; 1778 1779 if (tc_timepercentage > 0) { 1780 t = (99 + tc_timepercentage) / tc_timepercentage; 1781 tc_precexp = fls(t + (t >> 1)) - 1; 1782 FREQ2BT(hz / tc_tick, &bt_timethreshold); 1783 FREQ2BT(hz, &bt_tickthreshold); 1784 bintime_shift(&bt_timethreshold, tc_precexp); 1785 bintime_shift(&bt_tickthreshold, tc_precexp); 1786 } else { 1787 tc_precexp = 31; 1788 bt_timethreshold.sec = INT_MAX; 1789 bt_timethreshold.frac = ~(uint64_t)0; 1790 bt_tickthreshold = bt_timethreshold; 1791 } 1792 sbt_timethreshold = bttosbt(bt_timethreshold); 1793 sbt_tickthreshold = bttosbt(bt_tickthreshold); 1794 } 1795 1796 static int 1797 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 1798 { 1799 int error, val; 1800 1801 val = tc_timepercentage; 1802 error = sysctl_handle_int(oidp, &val, 0, req); 1803 if (error != 0 || req->newptr == NULL) 1804 return (error); 1805 tc_timepercentage = val; 1806 if (cold) 1807 goto done; 1808 tc_adjprecision(); 1809 done: 1810 return (0); 1811 } 1812 1813 static void 1814 inittimecounter(void *dummy) 1815 { 1816 u_int p; 1817 int tick_rate; 1818 1819 /* 1820 * Set the initial timeout to 1821 * max(1, <approx. number of hardclock ticks in a millisecond>). 1822 * People should probably not use the sysctl to set the timeout 1823 * to smaller than its inital value, since that value is the 1824 * smallest reasonable one. If they want better timestamps they 1825 * should use the non-"get"* functions. 1826 */ 1827 if (hz > 1000) 1828 tc_tick = (hz + 500) / 1000; 1829 else 1830 tc_tick = 1; 1831 tc_adjprecision(); 1832 FREQ2BT(hz, &tick_bt); 1833 tick_sbt = bttosbt(tick_bt); 1834 tick_rate = hz / tc_tick; 1835 FREQ2BT(tick_rate, &tc_tick_bt); 1836 tc_tick_sbt = bttosbt(tc_tick_bt); 1837 p = (tc_tick * 1000000) / hz; 1838 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 1839 1840 #ifdef FFCLOCK 1841 ffclock_init(); 1842 #endif 1843 /* warm up new timecounter (again) and get rolling. */ 1844 (void)timecounter->tc_get_timecount(timecounter); 1845 (void)timecounter->tc_get_timecount(timecounter); 1846 tc_windup(); 1847 } 1848 1849 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 1850 1851 /* Cpu tick handling -------------------------------------------------*/ 1852 1853 static int cpu_tick_variable; 1854 static uint64_t cpu_tick_frequency; 1855 1856 static uint64_t 1857 tc_cpu_ticks(void) 1858 { 1859 static uint64_t base; 1860 static unsigned last; 1861 unsigned u; 1862 struct timecounter *tc; 1863 1864 tc = timehands->th_counter; 1865 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 1866 if (u < last) 1867 base += (uint64_t)tc->tc_counter_mask + 1; 1868 last = u; 1869 return (u + base); 1870 } 1871 1872 void 1873 cpu_tick_calibration(void) 1874 { 1875 static time_t last_calib; 1876 1877 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 1878 cpu_tick_calibrate(0); 1879 last_calib = time_uptime; 1880 } 1881 } 1882 1883 /* 1884 * This function gets called every 16 seconds on only one designated 1885 * CPU in the system from hardclock() via cpu_tick_calibration()(). 1886 * 1887 * Whenever the real time clock is stepped we get called with reset=1 1888 * to make sure we handle suspend/resume and similar events correctly. 1889 */ 1890 1891 static void 1892 cpu_tick_calibrate(int reset) 1893 { 1894 static uint64_t c_last; 1895 uint64_t c_this, c_delta; 1896 static struct bintime t_last; 1897 struct bintime t_this, t_delta; 1898 uint32_t divi; 1899 1900 if (reset) { 1901 /* The clock was stepped, abort & reset */ 1902 t_last.sec = 0; 1903 return; 1904 } 1905 1906 /* we don't calibrate fixed rate cputicks */ 1907 if (!cpu_tick_variable) 1908 return; 1909 1910 getbinuptime(&t_this); 1911 c_this = cpu_ticks(); 1912 if (t_last.sec != 0) { 1913 c_delta = c_this - c_last; 1914 t_delta = t_this; 1915 bintime_sub(&t_delta, &t_last); 1916 /* 1917 * Headroom: 1918 * 2^(64-20) / 16[s] = 1919 * 2^(44) / 16[s] = 1920 * 17.592.186.044.416 / 16 = 1921 * 1.099.511.627.776 [Hz] 1922 */ 1923 divi = t_delta.sec << 20; 1924 divi |= t_delta.frac >> (64 - 20); 1925 c_delta <<= 20; 1926 c_delta /= divi; 1927 if (c_delta > cpu_tick_frequency) { 1928 if (0 && bootverbose) 1929 printf("cpu_tick increased to %ju Hz\n", 1930 c_delta); 1931 cpu_tick_frequency = c_delta; 1932 } 1933 } 1934 c_last = c_this; 1935 t_last = t_this; 1936 } 1937 1938 void 1939 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 1940 { 1941 1942 if (func == NULL) { 1943 cpu_ticks = tc_cpu_ticks; 1944 } else { 1945 cpu_tick_frequency = freq; 1946 cpu_tick_variable = var; 1947 cpu_ticks = func; 1948 } 1949 } 1950 1951 uint64_t 1952 cpu_tickrate(void) 1953 { 1954 1955 if (cpu_ticks == tc_cpu_ticks) 1956 return (tc_getfrequency()); 1957 return (cpu_tick_frequency); 1958 } 1959 1960 /* 1961 * We need to be slightly careful converting cputicks to microseconds. 1962 * There is plenty of margin in 64 bits of microseconds (half a million 1963 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 1964 * before divide conversion (to retain precision) we find that the 1965 * margin shrinks to 1.5 hours (one millionth of 146y). 1966 * With a three prong approach we never lose significant bits, no 1967 * matter what the cputick rate and length of timeinterval is. 1968 */ 1969 1970 uint64_t 1971 cputick2usec(uint64_t tick) 1972 { 1973 1974 if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 1975 return (tick / (cpu_tickrate() / 1000000LL)); 1976 else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 1977 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 1978 else 1979 return ((tick * 1000000LL) / cpu_tickrate()); 1980 } 1981 1982 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 1983 1984 static int vdso_th_enable = 1; 1985 static int 1986 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 1987 { 1988 int old_vdso_th_enable, error; 1989 1990 old_vdso_th_enable = vdso_th_enable; 1991 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 1992 if (error != 0) 1993 return (error); 1994 vdso_th_enable = old_vdso_th_enable; 1995 return (0); 1996 } 1997 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 1998 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 1999 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 2000 2001 uint32_t 2002 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2003 { 2004 struct timehands *th; 2005 uint32_t enabled; 2006 2007 th = timehands; 2008 vdso_th->th_algo = VDSO_TH_ALGO_1; 2009 vdso_th->th_scale = th->th_scale; 2010 vdso_th->th_offset_count = th->th_offset_count; 2011 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2012 vdso_th->th_offset = th->th_offset; 2013 vdso_th->th_boottime = boottimebin; 2014 enabled = cpu_fill_vdso_timehands(vdso_th, th->th_counter); 2015 if (!vdso_th_enable) 2016 enabled = 0; 2017 return (enabled); 2018 } 2019 2020 #ifdef COMPAT_FREEBSD32 2021 uint32_t 2022 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2023 { 2024 struct timehands *th; 2025 uint32_t enabled; 2026 2027 th = timehands; 2028 vdso_th32->th_algo = VDSO_TH_ALGO_1; 2029 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2030 vdso_th32->th_offset_count = th->th_offset_count; 2031 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2032 vdso_th32->th_offset.sec = th->th_offset.sec; 2033 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 2034 vdso_th32->th_boottime.sec = boottimebin.sec; 2035 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac; 2036 enabled = cpu_fill_vdso_timehands32(vdso_th32, th->th_counter); 2037 if (!vdso_th_enable) 2038 enabled = 0; 2039 return (enabled); 2040 } 2041 #endif 2042