1 /*- 2 * SPDX-License-Identifier: Beerware 3 * 4 * ---------------------------------------------------------------------------- 5 * "THE BEER-WARE LICENSE" (Revision 42): 6 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 7 * can do whatever you want with this stuff. If we meet some day, and you think 8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 9 * ---------------------------------------------------------------------------- 10 * 11 * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation 12 * 13 * Portions of this software were developed by Julien Ridoux at the University 14 * of Melbourne under sponsorship from the FreeBSD Foundation. 15 * 16 * Portions of this software were developed by Konstantin Belousov 17 * under sponsorship from the FreeBSD Foundation. 18 */ 19 20 #include <sys/cdefs.h> 21 #include "opt_ntp.h" 22 #include "opt_ffclock.h" 23 24 #include <sys/param.h> 25 #include <sys/kernel.h> 26 #include <sys/limits.h> 27 #include <sys/lock.h> 28 #include <sys/mutex.h> 29 #include <sys/proc.h> 30 #include <sys/sbuf.h> 31 #include <sys/sleepqueue.h> 32 #include <sys/sysctl.h> 33 #include <sys/syslog.h> 34 #include <sys/systm.h> 35 #include <sys/timeffc.h> 36 #include <sys/timepps.h> 37 #include <sys/timetc.h> 38 #include <sys/timex.h> 39 #include <sys/vdso.h> 40 41 /* 42 * A large step happens on boot. This constant detects such steps. 43 * It is relatively small so that ntp_update_second gets called enough 44 * in the typical 'missed a couple of seconds' case, but doesn't loop 45 * forever when the time step is large. 46 */ 47 #define LARGE_STEP 200 48 49 /* 50 * Implement a dummy timecounter which we can use until we get a real one 51 * in the air. This allows the console and other early stuff to use 52 * time services. 53 */ 54 55 static u_int 56 dummy_get_timecount(struct timecounter *tc) 57 { 58 static u_int now; 59 60 return (++now); 61 } 62 63 static struct timecounter dummy_timecounter = { 64 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 65 }; 66 67 struct timehands { 68 /* These fields must be initialized by the driver. */ 69 struct timecounter *th_counter; 70 int64_t th_adjustment; 71 uint64_t th_scale; 72 u_int th_large_delta; 73 u_int th_offset_count; 74 struct bintime th_offset; 75 struct bintime th_bintime; 76 struct timeval th_microtime; 77 struct timespec th_nanotime; 78 struct bintime th_boottime; 79 /* Fields not to be copied in tc_windup start with th_generation. */ 80 u_int th_generation; 81 struct timehands *th_next; 82 }; 83 84 static struct timehands ths[16] = { 85 [0] = { 86 .th_counter = &dummy_timecounter, 87 .th_scale = (uint64_t)-1 / 1000000, 88 .th_large_delta = 1000000, 89 .th_offset = { .sec = 1 }, 90 .th_generation = 1, 91 }, 92 }; 93 94 static struct timehands *volatile timehands = &ths[0]; 95 struct timecounter *timecounter = &dummy_timecounter; 96 static struct timecounter *timecounters = &dummy_timecounter; 97 98 /* Mutex to protect the timecounter list. */ 99 static struct mtx tc_lock; 100 101 int tc_min_ticktock_freq = 1; 102 103 volatile time_t time_second = 1; 104 volatile time_t time_uptime = 1; 105 106 /* 107 * The system time is always computed by summing the estimated boot time and the 108 * system uptime. The timehands track boot time, but it changes when the system 109 * time is set by the user, stepped by ntpd or adjusted when resuming. It 110 * is set to new_time - uptime. 111 */ 112 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 113 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, 114 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 115 sysctl_kern_boottime, "S,timeval", 116 "Estimated system boottime"); 117 118 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 119 ""); 120 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, 121 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 122 ""); 123 124 static int timestepwarnings; 125 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RWTUN, 126 ×tepwarnings, 0, "Log time steps"); 127 128 static int timehands_count = 2; 129 SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count, 130 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 131 &timehands_count, 0, "Count of timehands in rotation"); 132 133 struct bintime bt_timethreshold; 134 struct bintime bt_tickthreshold; 135 sbintime_t sbt_timethreshold; 136 sbintime_t sbt_tickthreshold; 137 struct bintime tc_tick_bt; 138 sbintime_t tc_tick_sbt; 139 int tc_precexp; 140 int tc_timepercentage = TC_DEFAULTPERC; 141 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 142 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 143 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 144 sysctl_kern_timecounter_adjprecision, "I", 145 "Allowed time interval deviation in percents"); 146 147 volatile int rtc_generation = 1; 148 149 static int tc_chosen; /* Non-zero if a specific tc was chosen via sysctl. */ 150 static char tc_from_tunable[16]; 151 152 static void tc_windup(struct bintime *new_boottimebin); 153 static void cpu_tick_calibrate(int); 154 155 void dtrace_getnanotime(struct timespec *tsp); 156 void dtrace_getnanouptime(struct timespec *tsp); 157 158 static int 159 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 160 { 161 struct timeval boottime; 162 163 getboottime(&boottime); 164 165 /* i386 is the only arch which uses a 32bits time_t */ 166 #ifdef __amd64__ 167 #ifdef SCTL_MASK32 168 int tv[2]; 169 170 if (req->flags & SCTL_MASK32) { 171 tv[0] = boottime.tv_sec; 172 tv[1] = boottime.tv_usec; 173 return (SYSCTL_OUT(req, tv, sizeof(tv))); 174 } 175 #endif 176 #endif 177 return (SYSCTL_OUT(req, &boottime, sizeof(boottime))); 178 } 179 180 static int 181 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 182 { 183 u_int ncount; 184 struct timecounter *tc = arg1; 185 186 ncount = tc->tc_get_timecount(tc); 187 return (sysctl_handle_int(oidp, &ncount, 0, req)); 188 } 189 190 static int 191 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 192 { 193 uint64_t freq; 194 struct timecounter *tc = arg1; 195 196 freq = tc->tc_frequency; 197 return (sysctl_handle_64(oidp, &freq, 0, req)); 198 } 199 200 /* 201 * Return the difference between the timehands' counter value now and what 202 * was when we copied it to the timehands' offset_count. 203 */ 204 static __inline u_int 205 tc_delta(struct timehands *th) 206 { 207 struct timecounter *tc; 208 209 tc = th->th_counter; 210 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 211 tc->tc_counter_mask); 212 } 213 214 static __inline void 215 bintime_add_tc_delta(struct bintime *bt, uint64_t scale, 216 uint64_t large_delta, uint64_t delta) 217 { 218 uint64_t x; 219 220 if (__predict_false(delta >= large_delta)) { 221 /* Avoid overflow for scale * delta. */ 222 x = (scale >> 32) * delta; 223 bt->sec += x >> 32; 224 bintime_addx(bt, x << 32); 225 bintime_addx(bt, (scale & 0xffffffff) * delta); 226 } else { 227 bintime_addx(bt, scale * delta); 228 } 229 } 230 231 /* 232 * Functions for reading the time. We have to loop until we are sure that 233 * the timehands that we operated on was not updated under our feet. See 234 * the comment in <sys/time.h> for a description of these 12 functions. 235 */ 236 237 static __inline void 238 bintime_off(struct bintime *bt, u_int off) 239 { 240 struct timehands *th; 241 struct bintime *btp; 242 uint64_t scale; 243 u_int delta, gen, large_delta; 244 245 do { 246 th = timehands; 247 gen = atomic_load_acq_int(&th->th_generation); 248 btp = (struct bintime *)((vm_offset_t)th + off); 249 *bt = *btp; 250 scale = th->th_scale; 251 delta = tc_delta(th); 252 large_delta = th->th_large_delta; 253 atomic_thread_fence_acq(); 254 } while (gen == 0 || gen != th->th_generation); 255 256 bintime_add_tc_delta(bt, scale, large_delta, delta); 257 } 258 #define GETTHBINTIME(dst, member) \ 259 do { \ 260 _Static_assert(_Generic(((struct timehands *)NULL)->member, \ 261 struct bintime: 1, default: 0) == 1, \ 262 "struct timehands member is not of struct bintime type"); \ 263 bintime_off(dst, __offsetof(struct timehands, member)); \ 264 } while (0) 265 266 static __inline void 267 getthmember(void *out, size_t out_size, u_int off) 268 { 269 struct timehands *th; 270 u_int gen; 271 272 do { 273 th = timehands; 274 gen = atomic_load_acq_int(&th->th_generation); 275 memcpy(out, (char *)th + off, out_size); 276 atomic_thread_fence_acq(); 277 } while (gen == 0 || gen != th->th_generation); 278 } 279 #define GETTHMEMBER(dst, member) \ 280 do { \ 281 _Static_assert(_Generic(*dst, \ 282 __typeof(((struct timehands *)NULL)->member): 1, \ 283 default: 0) == 1, \ 284 "*dst and struct timehands member have different types"); \ 285 getthmember(dst, sizeof(*dst), __offsetof(struct timehands, \ 286 member)); \ 287 } while (0) 288 289 #ifdef FFCLOCK 290 void 291 fbclock_binuptime(struct bintime *bt) 292 { 293 294 GETTHBINTIME(bt, th_offset); 295 } 296 297 void 298 fbclock_nanouptime(struct timespec *tsp) 299 { 300 struct bintime bt; 301 302 fbclock_binuptime(&bt); 303 bintime2timespec(&bt, tsp); 304 } 305 306 void 307 fbclock_microuptime(struct timeval *tvp) 308 { 309 struct bintime bt; 310 311 fbclock_binuptime(&bt); 312 bintime2timeval(&bt, tvp); 313 } 314 315 void 316 fbclock_bintime(struct bintime *bt) 317 { 318 319 GETTHBINTIME(bt, th_bintime); 320 } 321 322 void 323 fbclock_nanotime(struct timespec *tsp) 324 { 325 struct bintime bt; 326 327 fbclock_bintime(&bt); 328 bintime2timespec(&bt, tsp); 329 } 330 331 void 332 fbclock_microtime(struct timeval *tvp) 333 { 334 struct bintime bt; 335 336 fbclock_bintime(&bt); 337 bintime2timeval(&bt, tvp); 338 } 339 340 void 341 fbclock_getbinuptime(struct bintime *bt) 342 { 343 344 GETTHMEMBER(bt, th_offset); 345 } 346 347 void 348 fbclock_getnanouptime(struct timespec *tsp) 349 { 350 struct bintime bt; 351 352 GETTHMEMBER(&bt, th_offset); 353 bintime2timespec(&bt, tsp); 354 } 355 356 void 357 fbclock_getmicrouptime(struct timeval *tvp) 358 { 359 struct bintime bt; 360 361 GETTHMEMBER(&bt, th_offset); 362 bintime2timeval(&bt, tvp); 363 } 364 365 void 366 fbclock_getbintime(struct bintime *bt) 367 { 368 369 GETTHMEMBER(bt, th_bintime); 370 } 371 372 void 373 fbclock_getnanotime(struct timespec *tsp) 374 { 375 376 GETTHMEMBER(tsp, th_nanotime); 377 } 378 379 void 380 fbclock_getmicrotime(struct timeval *tvp) 381 { 382 383 GETTHMEMBER(tvp, th_microtime); 384 } 385 #else /* !FFCLOCK */ 386 387 void 388 binuptime(struct bintime *bt) 389 { 390 391 GETTHBINTIME(bt, th_offset); 392 } 393 394 void 395 nanouptime(struct timespec *tsp) 396 { 397 struct bintime bt; 398 399 binuptime(&bt); 400 bintime2timespec(&bt, tsp); 401 } 402 403 void 404 microuptime(struct timeval *tvp) 405 { 406 struct bintime bt; 407 408 binuptime(&bt); 409 bintime2timeval(&bt, tvp); 410 } 411 412 void 413 bintime(struct bintime *bt) 414 { 415 416 GETTHBINTIME(bt, th_bintime); 417 } 418 419 void 420 nanotime(struct timespec *tsp) 421 { 422 struct bintime bt; 423 424 bintime(&bt); 425 bintime2timespec(&bt, tsp); 426 } 427 428 void 429 microtime(struct timeval *tvp) 430 { 431 struct bintime bt; 432 433 bintime(&bt); 434 bintime2timeval(&bt, tvp); 435 } 436 437 void 438 getbinuptime(struct bintime *bt) 439 { 440 441 GETTHMEMBER(bt, th_offset); 442 } 443 444 void 445 getnanouptime(struct timespec *tsp) 446 { 447 struct bintime bt; 448 449 GETTHMEMBER(&bt, th_offset); 450 bintime2timespec(&bt, tsp); 451 } 452 453 void 454 getmicrouptime(struct timeval *tvp) 455 { 456 struct bintime bt; 457 458 GETTHMEMBER(&bt, th_offset); 459 bintime2timeval(&bt, tvp); 460 } 461 462 void 463 getbintime(struct bintime *bt) 464 { 465 466 GETTHMEMBER(bt, th_bintime); 467 } 468 469 void 470 getnanotime(struct timespec *tsp) 471 { 472 473 GETTHMEMBER(tsp, th_nanotime); 474 } 475 476 void 477 getmicrotime(struct timeval *tvp) 478 { 479 480 GETTHMEMBER(tvp, th_microtime); 481 } 482 #endif /* FFCLOCK */ 483 484 void 485 getboottime(struct timeval *boottime) 486 { 487 struct bintime boottimebin; 488 489 getboottimebin(&boottimebin); 490 bintime2timeval(&boottimebin, boottime); 491 } 492 493 void 494 getboottimebin(struct bintime *boottimebin) 495 { 496 497 GETTHMEMBER(boottimebin, th_boottime); 498 } 499 500 #ifdef FFCLOCK 501 /* 502 * Support for feed-forward synchronization algorithms. This is heavily inspired 503 * by the timehands mechanism but kept independent from it. *_windup() functions 504 * have some connection to avoid accessing the timecounter hardware more than 505 * necessary. 506 */ 507 508 /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 509 struct ffclock_estimate ffclock_estimate; 510 struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 511 uint32_t ffclock_status; /* Feed-forward clock status. */ 512 int8_t ffclock_updated; /* New estimates are available. */ 513 struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 514 515 struct fftimehands { 516 struct ffclock_estimate cest; 517 struct bintime tick_time; 518 struct bintime tick_time_lerp; 519 ffcounter tick_ffcount; 520 uint64_t period_lerp; 521 volatile uint8_t gen; 522 struct fftimehands *next; 523 }; 524 525 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 526 527 static struct fftimehands ffth[10]; 528 static struct fftimehands *volatile fftimehands = ffth; 529 530 static void 531 ffclock_init(void) 532 { 533 struct fftimehands *cur; 534 struct fftimehands *last; 535 536 memset(ffth, 0, sizeof(ffth)); 537 538 last = ffth + NUM_ELEMENTS(ffth) - 1; 539 for (cur = ffth; cur < last; cur++) 540 cur->next = cur + 1; 541 last->next = ffth; 542 543 ffclock_updated = 0; 544 ffclock_status = FFCLOCK_STA_UNSYNC; 545 mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 546 } 547 548 /* 549 * Reset the feed-forward clock estimates. Called from inittodr() to get things 550 * kick started and uses the timecounter nominal frequency as a first period 551 * estimate. Note: this function may be called several time just after boot. 552 * Note: this is the only function that sets the value of boot time for the 553 * monotonic (i.e. uptime) version of the feed-forward clock. 554 */ 555 void 556 ffclock_reset_clock(struct timespec *ts) 557 { 558 struct timecounter *tc; 559 struct ffclock_estimate cest; 560 561 tc = timehands->th_counter; 562 memset(&cest, 0, sizeof(struct ffclock_estimate)); 563 564 timespec2bintime(ts, &ffclock_boottime); 565 timespec2bintime(ts, &(cest.update_time)); 566 ffclock_read_counter(&cest.update_ffcount); 567 cest.leapsec_next = 0; 568 cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 569 cest.errb_abs = 0; 570 cest.errb_rate = 0; 571 cest.status = FFCLOCK_STA_UNSYNC; 572 cest.leapsec_total = 0; 573 cest.leapsec = 0; 574 575 mtx_lock(&ffclock_mtx); 576 bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 577 ffclock_updated = INT8_MAX; 578 mtx_unlock(&ffclock_mtx); 579 580 printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 581 (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 582 (unsigned long)ts->tv_nsec); 583 } 584 585 /* 586 * Sub-routine to convert a time interval measured in RAW counter units to time 587 * in seconds stored in bintime format. 588 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 589 * larger than the max value of u_int (on 32 bit architecture). Loop to consume 590 * extra cycles. 591 */ 592 static void 593 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 594 { 595 struct bintime bt2; 596 ffcounter delta, delta_max; 597 598 delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 599 bintime_clear(bt); 600 do { 601 if (ffdelta > delta_max) 602 delta = delta_max; 603 else 604 delta = ffdelta; 605 bt2.sec = 0; 606 bt2.frac = period; 607 bintime_mul(&bt2, (unsigned int)delta); 608 bintime_add(bt, &bt2); 609 ffdelta -= delta; 610 } while (ffdelta > 0); 611 } 612 613 /* 614 * Update the fftimehands. 615 * Push the tick ffcount and time(s) forward based on current clock estimate. 616 * The conversion from ffcounter to bintime relies on the difference clock 617 * principle, whose accuracy relies on computing small time intervals. If a new 618 * clock estimate has been passed by the synchronisation daemon, make it 619 * current, and compute the linear interpolation for monotonic time if needed. 620 */ 621 static void 622 ffclock_windup(unsigned int delta) 623 { 624 struct ffclock_estimate *cest; 625 struct fftimehands *ffth; 626 struct bintime bt, gap_lerp; 627 ffcounter ffdelta; 628 uint64_t frac; 629 unsigned int polling; 630 uint8_t forward_jump, ogen; 631 632 /* 633 * Pick the next timehand, copy current ffclock estimates and move tick 634 * times and counter forward. 635 */ 636 forward_jump = 0; 637 ffth = fftimehands->next; 638 ogen = ffth->gen; 639 ffth->gen = 0; 640 cest = &ffth->cest; 641 bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 642 ffdelta = (ffcounter)delta; 643 ffth->period_lerp = fftimehands->period_lerp; 644 645 ffth->tick_time = fftimehands->tick_time; 646 ffclock_convert_delta(ffdelta, cest->period, &bt); 647 bintime_add(&ffth->tick_time, &bt); 648 649 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 650 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 651 bintime_add(&ffth->tick_time_lerp, &bt); 652 653 ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 654 655 /* 656 * Assess the status of the clock, if the last update is too old, it is 657 * likely the synchronisation daemon is dead and the clock is free 658 * running. 659 */ 660 if (ffclock_updated == 0) { 661 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 662 ffclock_convert_delta(ffdelta, cest->period, &bt); 663 if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 664 ffclock_status |= FFCLOCK_STA_UNSYNC; 665 } 666 667 /* 668 * If available, grab updated clock estimates and make them current. 669 * Recompute time at this tick using the updated estimates. The clock 670 * estimates passed the feed-forward synchronisation daemon may result 671 * in time conversion that is not monotonically increasing (just after 672 * the update). time_lerp is a particular linear interpolation over the 673 * synchronisation algo polling period that ensures monotonicity for the 674 * clock ids requesting it. 675 */ 676 if (ffclock_updated > 0) { 677 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 678 ffdelta = ffth->tick_ffcount - cest->update_ffcount; 679 ffth->tick_time = cest->update_time; 680 ffclock_convert_delta(ffdelta, cest->period, &bt); 681 bintime_add(&ffth->tick_time, &bt); 682 683 /* ffclock_reset sets ffclock_updated to INT8_MAX */ 684 if (ffclock_updated == INT8_MAX) 685 ffth->tick_time_lerp = ffth->tick_time; 686 687 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 688 forward_jump = 1; 689 else 690 forward_jump = 0; 691 692 bintime_clear(&gap_lerp); 693 if (forward_jump) { 694 gap_lerp = ffth->tick_time; 695 bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 696 } else { 697 gap_lerp = ffth->tick_time_lerp; 698 bintime_sub(&gap_lerp, &ffth->tick_time); 699 } 700 701 /* 702 * The reset from the RTC clock may be far from accurate, and 703 * reducing the gap between real time and interpolated time 704 * could take a very long time if the interpolated clock insists 705 * on strict monotonicity. The clock is reset under very strict 706 * conditions (kernel time is known to be wrong and 707 * synchronization daemon has been restarted recently. 708 * ffclock_boottime absorbs the jump to ensure boot time is 709 * correct and uptime functions stay consistent. 710 */ 711 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 712 ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 713 ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 714 if (forward_jump) 715 bintime_add(&ffclock_boottime, &gap_lerp); 716 else 717 bintime_sub(&ffclock_boottime, &gap_lerp); 718 ffth->tick_time_lerp = ffth->tick_time; 719 bintime_clear(&gap_lerp); 720 } 721 722 ffclock_status = cest->status; 723 ffth->period_lerp = cest->period; 724 725 /* 726 * Compute corrected period used for the linear interpolation of 727 * time. The rate of linear interpolation is capped to 5000PPM 728 * (5ms/s). 729 */ 730 if (bintime_isset(&gap_lerp)) { 731 ffdelta = cest->update_ffcount; 732 ffdelta -= fftimehands->cest.update_ffcount; 733 ffclock_convert_delta(ffdelta, cest->period, &bt); 734 polling = bt.sec; 735 bt.sec = 0; 736 bt.frac = 5000000 * (uint64_t)18446744073LL; 737 bintime_mul(&bt, polling); 738 if (bintime_cmp(&gap_lerp, &bt, >)) 739 gap_lerp = bt; 740 741 /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 742 frac = 0; 743 if (gap_lerp.sec > 0) { 744 frac -= 1; 745 frac /= ffdelta / gap_lerp.sec; 746 } 747 frac += gap_lerp.frac / ffdelta; 748 749 if (forward_jump) 750 ffth->period_lerp += frac; 751 else 752 ffth->period_lerp -= frac; 753 } 754 755 ffclock_updated = 0; 756 } 757 if (++ogen == 0) 758 ogen = 1; 759 ffth->gen = ogen; 760 fftimehands = ffth; 761 } 762 763 /* 764 * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 765 * the old and new hardware counter cannot be read simultaneously. tc_windup() 766 * does read the two counters 'back to back', but a few cycles are effectively 767 * lost, and not accumulated in tick_ffcount. This is a fairly radical 768 * operation for a feed-forward synchronization daemon, and it is its job to not 769 * pushing irrelevant data to the kernel. Because there is no locking here, 770 * simply force to ignore pending or next update to give daemon a chance to 771 * realize the counter has changed. 772 */ 773 static void 774 ffclock_change_tc(struct timehands *th) 775 { 776 struct fftimehands *ffth; 777 struct ffclock_estimate *cest; 778 struct timecounter *tc; 779 uint8_t ogen; 780 781 tc = th->th_counter; 782 ffth = fftimehands->next; 783 ogen = ffth->gen; 784 ffth->gen = 0; 785 786 cest = &ffth->cest; 787 bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 788 cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 789 cest->errb_abs = 0; 790 cest->errb_rate = 0; 791 cest->status |= FFCLOCK_STA_UNSYNC; 792 793 ffth->tick_ffcount = fftimehands->tick_ffcount; 794 ffth->tick_time_lerp = fftimehands->tick_time_lerp; 795 ffth->tick_time = fftimehands->tick_time; 796 ffth->period_lerp = cest->period; 797 798 /* Do not lock but ignore next update from synchronization daemon. */ 799 ffclock_updated--; 800 801 if (++ogen == 0) 802 ogen = 1; 803 ffth->gen = ogen; 804 fftimehands = ffth; 805 } 806 807 /* 808 * Retrieve feed-forward counter and time of last kernel tick. 809 */ 810 void 811 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 812 { 813 struct fftimehands *ffth; 814 uint8_t gen; 815 816 /* 817 * No locking but check generation has not changed. Also need to make 818 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 819 */ 820 do { 821 ffth = fftimehands; 822 gen = ffth->gen; 823 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 824 *bt = ffth->tick_time_lerp; 825 else 826 *bt = ffth->tick_time; 827 *ffcount = ffth->tick_ffcount; 828 } while (gen == 0 || gen != ffth->gen); 829 } 830 831 /* 832 * Absolute clock conversion. Low level function to convert ffcounter to 833 * bintime. The ffcounter is converted using the current ffclock period estimate 834 * or the "interpolated period" to ensure monotonicity. 835 * NOTE: this conversion may have been deferred, and the clock updated since the 836 * hardware counter has been read. 837 */ 838 void 839 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 840 { 841 struct fftimehands *ffth; 842 struct bintime bt2; 843 ffcounter ffdelta; 844 uint8_t gen; 845 846 /* 847 * No locking but check generation has not changed. Also need to make 848 * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 849 */ 850 do { 851 ffth = fftimehands; 852 gen = ffth->gen; 853 if (ffcount > ffth->tick_ffcount) 854 ffdelta = ffcount - ffth->tick_ffcount; 855 else 856 ffdelta = ffth->tick_ffcount - ffcount; 857 858 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 859 *bt = ffth->tick_time_lerp; 860 ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 861 } else { 862 *bt = ffth->tick_time; 863 ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 864 } 865 866 if (ffcount > ffth->tick_ffcount) 867 bintime_add(bt, &bt2); 868 else 869 bintime_sub(bt, &bt2); 870 } while (gen == 0 || gen != ffth->gen); 871 } 872 873 /* 874 * Difference clock conversion. 875 * Low level function to Convert a time interval measured in RAW counter units 876 * into bintime. The difference clock allows measuring small intervals much more 877 * reliably than the absolute clock. 878 */ 879 void 880 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 881 { 882 struct fftimehands *ffth; 883 uint8_t gen; 884 885 /* No locking but check generation has not changed. */ 886 do { 887 ffth = fftimehands; 888 gen = ffth->gen; 889 ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 890 } while (gen == 0 || gen != ffth->gen); 891 } 892 893 /* 894 * Access to current ffcounter value. 895 */ 896 void 897 ffclock_read_counter(ffcounter *ffcount) 898 { 899 struct timehands *th; 900 struct fftimehands *ffth; 901 unsigned int gen, delta; 902 903 /* 904 * ffclock_windup() called from tc_windup(), safe to rely on 905 * th->th_generation only, for correct delta and ffcounter. 906 */ 907 do { 908 th = timehands; 909 gen = atomic_load_acq_int(&th->th_generation); 910 ffth = fftimehands; 911 delta = tc_delta(th); 912 *ffcount = ffth->tick_ffcount; 913 atomic_thread_fence_acq(); 914 } while (gen == 0 || gen != th->th_generation); 915 916 *ffcount += delta; 917 } 918 919 void 920 binuptime(struct bintime *bt) 921 { 922 923 binuptime_fromclock(bt, sysclock_active); 924 } 925 926 void 927 nanouptime(struct timespec *tsp) 928 { 929 930 nanouptime_fromclock(tsp, sysclock_active); 931 } 932 933 void 934 microuptime(struct timeval *tvp) 935 { 936 937 microuptime_fromclock(tvp, sysclock_active); 938 } 939 940 void 941 bintime(struct bintime *bt) 942 { 943 944 bintime_fromclock(bt, sysclock_active); 945 } 946 947 void 948 nanotime(struct timespec *tsp) 949 { 950 951 nanotime_fromclock(tsp, sysclock_active); 952 } 953 954 void 955 microtime(struct timeval *tvp) 956 { 957 958 microtime_fromclock(tvp, sysclock_active); 959 } 960 961 void 962 getbinuptime(struct bintime *bt) 963 { 964 965 getbinuptime_fromclock(bt, sysclock_active); 966 } 967 968 void 969 getnanouptime(struct timespec *tsp) 970 { 971 972 getnanouptime_fromclock(tsp, sysclock_active); 973 } 974 975 void 976 getmicrouptime(struct timeval *tvp) 977 { 978 979 getmicrouptime_fromclock(tvp, sysclock_active); 980 } 981 982 void 983 getbintime(struct bintime *bt) 984 { 985 986 getbintime_fromclock(bt, sysclock_active); 987 } 988 989 void 990 getnanotime(struct timespec *tsp) 991 { 992 993 getnanotime_fromclock(tsp, sysclock_active); 994 } 995 996 void 997 getmicrotime(struct timeval *tvp) 998 { 999 1000 getmicrouptime_fromclock(tvp, sysclock_active); 1001 } 1002 1003 #endif /* FFCLOCK */ 1004 1005 /* 1006 * This is a clone of getnanotime and used for walltimestamps. 1007 * The dtrace_ prefix prevents fbt from creating probes for 1008 * it so walltimestamp can be safely used in all fbt probes. 1009 */ 1010 void 1011 dtrace_getnanotime(struct timespec *tsp) 1012 { 1013 1014 GETTHMEMBER(tsp, th_nanotime); 1015 } 1016 1017 /* 1018 * This is a clone of getnanouptime used for time since boot. 1019 * The dtrace_ prefix prevents fbt from creating probes for 1020 * it so an uptime that can be safely used in all fbt probes. 1021 */ 1022 void 1023 dtrace_getnanouptime(struct timespec *tsp) 1024 { 1025 struct bintime bt; 1026 1027 GETTHMEMBER(&bt, th_offset); 1028 bintime2timespec(&bt, tsp); 1029 } 1030 1031 /* 1032 * System clock currently providing time to the system. Modifiable via sysctl 1033 * when the FFCLOCK option is defined. 1034 */ 1035 int sysclock_active = SYSCLOCK_FBCK; 1036 1037 /* Internal NTP status and error estimates. */ 1038 extern int time_status; 1039 extern long time_esterror; 1040 1041 /* 1042 * Take a snapshot of sysclock data which can be used to compare system clocks 1043 * and generate timestamps after the fact. 1044 */ 1045 void 1046 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 1047 { 1048 struct fbclock_info *fbi; 1049 struct timehands *th; 1050 struct bintime bt; 1051 unsigned int delta, gen; 1052 #ifdef FFCLOCK 1053 ffcounter ffcount; 1054 struct fftimehands *ffth; 1055 struct ffclock_info *ffi; 1056 struct ffclock_estimate cest; 1057 1058 ffi = &clock_snap->ff_info; 1059 #endif 1060 1061 fbi = &clock_snap->fb_info; 1062 delta = 0; 1063 1064 do { 1065 th = timehands; 1066 gen = atomic_load_acq_int(&th->th_generation); 1067 fbi->th_scale = th->th_scale; 1068 fbi->tick_time = th->th_offset; 1069 #ifdef FFCLOCK 1070 ffth = fftimehands; 1071 ffi->tick_time = ffth->tick_time_lerp; 1072 ffi->tick_time_lerp = ffth->tick_time_lerp; 1073 ffi->period = ffth->cest.period; 1074 ffi->period_lerp = ffth->period_lerp; 1075 clock_snap->ffcount = ffth->tick_ffcount; 1076 cest = ffth->cest; 1077 #endif 1078 if (!fast) 1079 delta = tc_delta(th); 1080 atomic_thread_fence_acq(); 1081 } while (gen == 0 || gen != th->th_generation); 1082 1083 clock_snap->delta = delta; 1084 clock_snap->sysclock_active = sysclock_active; 1085 1086 /* Record feedback clock status and error. */ 1087 clock_snap->fb_info.status = time_status; 1088 /* XXX: Very crude estimate of feedback clock error. */ 1089 bt.sec = time_esterror / 1000000; 1090 bt.frac = ((time_esterror - bt.sec) * 1000000) * 1091 (uint64_t)18446744073709ULL; 1092 clock_snap->fb_info.error = bt; 1093 1094 #ifdef FFCLOCK 1095 if (!fast) 1096 clock_snap->ffcount += delta; 1097 1098 /* Record feed-forward clock leap second adjustment. */ 1099 ffi->leapsec_adjustment = cest.leapsec_total; 1100 if (clock_snap->ffcount > cest.leapsec_next) 1101 ffi->leapsec_adjustment -= cest.leapsec; 1102 1103 /* Record feed-forward clock status and error. */ 1104 clock_snap->ff_info.status = cest.status; 1105 ffcount = clock_snap->ffcount - cest.update_ffcount; 1106 ffclock_convert_delta(ffcount, cest.period, &bt); 1107 /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 1108 bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 1109 /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 1110 bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 1111 clock_snap->ff_info.error = bt; 1112 #endif 1113 } 1114 1115 /* 1116 * Convert a sysclock snapshot into a struct bintime based on the specified 1117 * clock source and flags. 1118 */ 1119 int 1120 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 1121 int whichclock, uint32_t flags) 1122 { 1123 struct bintime boottimebin; 1124 #ifdef FFCLOCK 1125 struct bintime bt2; 1126 uint64_t period; 1127 #endif 1128 1129 switch (whichclock) { 1130 case SYSCLOCK_FBCK: 1131 *bt = cs->fb_info.tick_time; 1132 1133 /* If snapshot was created with !fast, delta will be >0. */ 1134 if (cs->delta > 0) 1135 bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 1136 1137 if ((flags & FBCLOCK_UPTIME) == 0) { 1138 getboottimebin(&boottimebin); 1139 bintime_add(bt, &boottimebin); 1140 } 1141 break; 1142 #ifdef FFCLOCK 1143 case SYSCLOCK_FFWD: 1144 if (flags & FFCLOCK_LERP) { 1145 *bt = cs->ff_info.tick_time_lerp; 1146 period = cs->ff_info.period_lerp; 1147 } else { 1148 *bt = cs->ff_info.tick_time; 1149 period = cs->ff_info.period; 1150 } 1151 1152 /* If snapshot was created with !fast, delta will be >0. */ 1153 if (cs->delta > 0) { 1154 ffclock_convert_delta(cs->delta, period, &bt2); 1155 bintime_add(bt, &bt2); 1156 } 1157 1158 /* Leap second adjustment. */ 1159 if (flags & FFCLOCK_LEAPSEC) 1160 bt->sec -= cs->ff_info.leapsec_adjustment; 1161 1162 /* Boot time adjustment, for uptime/monotonic clocks. */ 1163 if (flags & FFCLOCK_UPTIME) 1164 bintime_sub(bt, &ffclock_boottime); 1165 break; 1166 #endif 1167 default: 1168 return (EINVAL); 1169 break; 1170 } 1171 1172 return (0); 1173 } 1174 1175 /* 1176 * Initialize a new timecounter and possibly use it. 1177 */ 1178 void 1179 tc_init(struct timecounter *tc) 1180 { 1181 u_int u; 1182 struct sysctl_oid *tc_root; 1183 1184 u = tc->tc_frequency / tc->tc_counter_mask; 1185 /* XXX: We need some margin here, 10% is a guess */ 1186 u *= 11; 1187 u /= 10; 1188 if (u > hz && tc->tc_quality >= 0) { 1189 tc->tc_quality = -2000; 1190 if (bootverbose) { 1191 printf("Timecounter \"%s\" frequency %ju Hz", 1192 tc->tc_name, (uintmax_t)tc->tc_frequency); 1193 printf(" -- Insufficient hz, needs at least %u\n", u); 1194 } 1195 } else if (tc->tc_quality >= 0 || bootverbose) { 1196 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1197 tc->tc_name, (uintmax_t)tc->tc_frequency, 1198 tc->tc_quality); 1199 } 1200 1201 /* 1202 * Set up sysctl tree for this counter. 1203 */ 1204 tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL, 1205 SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1206 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1207 "timecounter description", "timecounter"); 1208 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1209 "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 1210 "mask for implemented bits"); 1211 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1212 "counter", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, tc, 1213 sizeof(*tc), sysctl_kern_timecounter_get, "IU", 1214 "current timecounter value"); 1215 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1216 "frequency", CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, tc, 1217 sizeof(*tc), sysctl_kern_timecounter_freq, "QU", 1218 "timecounter frequency"); 1219 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1220 "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 1221 "goodness of time counter"); 1222 1223 mtx_lock(&tc_lock); 1224 tc->tc_next = timecounters; 1225 timecounters = tc; 1226 1227 /* 1228 * Do not automatically switch if the current tc was specifically 1229 * chosen. Never automatically use a timecounter with negative quality. 1230 * Even though we run on the dummy counter, switching here may be 1231 * worse since this timecounter may not be monotonic. 1232 */ 1233 if (tc_chosen) 1234 goto unlock; 1235 if (tc->tc_quality < 0) 1236 goto unlock; 1237 if (tc_from_tunable[0] != '\0' && 1238 strcmp(tc->tc_name, tc_from_tunable) == 0) { 1239 tc_chosen = 1; 1240 tc_from_tunable[0] = '\0'; 1241 } else { 1242 if (tc->tc_quality < timecounter->tc_quality) 1243 goto unlock; 1244 if (tc->tc_quality == timecounter->tc_quality && 1245 tc->tc_frequency < timecounter->tc_frequency) 1246 goto unlock; 1247 } 1248 (void)tc->tc_get_timecount(tc); 1249 timecounter = tc; 1250 unlock: 1251 mtx_unlock(&tc_lock); 1252 } 1253 1254 /* Report the frequency of the current timecounter. */ 1255 uint64_t 1256 tc_getfrequency(void) 1257 { 1258 1259 return (timehands->th_counter->tc_frequency); 1260 } 1261 1262 static bool 1263 sleeping_on_old_rtc(struct thread *td) 1264 { 1265 1266 /* 1267 * td_rtcgen is modified by curthread when it is running, 1268 * and by other threads in this function. By finding the thread 1269 * on a sleepqueue and holding the lock on the sleepqueue 1270 * chain, we guarantee that the thread is not running and that 1271 * modifying td_rtcgen is safe. Setting td_rtcgen to zero informs 1272 * the thread that it was woken due to a real-time clock adjustment. 1273 * (The declaration of td_rtcgen refers to this comment.) 1274 */ 1275 if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) { 1276 td->td_rtcgen = 0; 1277 return (true); 1278 } 1279 return (false); 1280 } 1281 1282 static struct mtx tc_setclock_mtx; 1283 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN); 1284 1285 /* 1286 * Step our concept of UTC. This is done by modifying our estimate of 1287 * when we booted. 1288 */ 1289 void 1290 tc_setclock(struct timespec *ts) 1291 { 1292 struct timespec tbef, taft; 1293 struct bintime bt, bt2; 1294 1295 timespec2bintime(ts, &bt); 1296 nanotime(&tbef); 1297 mtx_lock_spin(&tc_setclock_mtx); 1298 cpu_tick_calibrate(1); 1299 binuptime(&bt2); 1300 bintime_sub(&bt, &bt2); 1301 1302 /* XXX fiddle all the little crinkly bits around the fiords... */ 1303 tc_windup(&bt); 1304 mtx_unlock_spin(&tc_setclock_mtx); 1305 1306 /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */ 1307 atomic_add_rel_int(&rtc_generation, 2); 1308 sleepq_chains_remove_matching(sleeping_on_old_rtc); 1309 if (timestepwarnings) { 1310 nanotime(&taft); 1311 log(LOG_INFO, 1312 "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 1313 (intmax_t)tbef.tv_sec, tbef.tv_nsec, 1314 (intmax_t)taft.tv_sec, taft.tv_nsec, 1315 (intmax_t)ts->tv_sec, ts->tv_nsec); 1316 } 1317 } 1318 1319 /* 1320 * Recalculate the scaling factor. We want the number of 1/2^64 1321 * fractions of a second per period of the hardware counter, taking 1322 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 1323 * processing provides us with. 1324 * 1325 * The th_adjustment is nanoseconds per second with 32 bit binary 1326 * fraction and we want 64 bit binary fraction of second: 1327 * 1328 * x = a * 2^32 / 10^9 = a * 4.294967296 1329 * 1330 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1331 * we can only multiply by about 850 without overflowing, that 1332 * leaves no suitably precise fractions for multiply before divide. 1333 * 1334 * Divide before multiply with a fraction of 2199/512 results in a 1335 * systematic undercompensation of 10PPM of th_adjustment. On a 1336 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 1337 * 1338 * We happily sacrifice the lowest of the 64 bits of our result 1339 * to the goddess of code clarity. 1340 */ 1341 static void 1342 recalculate_scaling_factor_and_large_delta(struct timehands *th) 1343 { 1344 uint64_t scale; 1345 1346 scale = (uint64_t)1 << 63; 1347 scale += (th->th_adjustment / 1024) * 2199; 1348 scale /= th->th_counter->tc_frequency; 1349 th->th_scale = scale * 2; 1350 th->th_large_delta = MIN(((uint64_t)1 << 63) / scale, UINT_MAX); 1351 } 1352 1353 /* 1354 * Initialize the next struct timehands in the ring and make 1355 * it the active timehands. Along the way we might switch to a different 1356 * timecounter and/or do seconds processing in NTP. Slightly magic. 1357 */ 1358 static void 1359 tc_windup(struct bintime *new_boottimebin) 1360 { 1361 struct bintime bt; 1362 struct timecounter *tc; 1363 struct timehands *th, *tho; 1364 u_int delta, ncount, ogen; 1365 int i; 1366 time_t t; 1367 1368 /* 1369 * Make the next timehands a copy of the current one, but do 1370 * not overwrite the generation or next pointer. While we 1371 * update the contents, the generation must be zero. We need 1372 * to ensure that the zero generation is visible before the 1373 * data updates become visible, which requires release fence. 1374 * For similar reasons, re-reading of the generation after the 1375 * data is read should use acquire fence. 1376 */ 1377 tho = timehands; 1378 th = tho->th_next; 1379 ogen = th->th_generation; 1380 th->th_generation = 0; 1381 atomic_thread_fence_rel(); 1382 memcpy(th, tho, offsetof(struct timehands, th_generation)); 1383 if (new_boottimebin != NULL) 1384 th->th_boottime = *new_boottimebin; 1385 1386 /* 1387 * Capture a timecounter delta on the current timecounter and if 1388 * changing timecounters, a counter value from the new timecounter. 1389 * Update the offset fields accordingly. 1390 */ 1391 tc = atomic_load_ptr(&timecounter); 1392 delta = tc_delta(th); 1393 if (th->th_counter != tc) 1394 ncount = tc->tc_get_timecount(tc); 1395 else 1396 ncount = 0; 1397 #ifdef FFCLOCK 1398 ffclock_windup(delta); 1399 #endif 1400 th->th_offset_count += delta; 1401 th->th_offset_count &= th->th_counter->tc_counter_mask; 1402 bintime_add_tc_delta(&th->th_offset, th->th_scale, 1403 th->th_large_delta, delta); 1404 1405 /* 1406 * Hardware latching timecounters may not generate interrupts on 1407 * PPS events, so instead we poll them. There is a finite risk that 1408 * the hardware might capture a count which is later than the one we 1409 * got above, and therefore possibly in the next NTP second which might 1410 * have a different rate than the current NTP second. It doesn't 1411 * matter in practice. 1412 */ 1413 if (tho->th_counter->tc_poll_pps) 1414 tho->th_counter->tc_poll_pps(tho->th_counter); 1415 1416 /* 1417 * Deal with NTP second processing. The loop normally 1418 * iterates at most once, but in extreme situations it might 1419 * keep NTP sane if timeouts are not run for several seconds. 1420 * At boot, the time step can be large when the TOD hardware 1421 * has been read, so on really large steps, we call 1422 * ntp_update_second only twice. We need to call it twice in 1423 * case we missed a leap second. 1424 */ 1425 bt = th->th_offset; 1426 bintime_add(&bt, &th->th_boottime); 1427 i = bt.sec - tho->th_microtime.tv_sec; 1428 if (i > 0) { 1429 if (i > LARGE_STEP) 1430 i = 2; 1431 1432 do { 1433 t = bt.sec; 1434 ntp_update_second(&th->th_adjustment, &bt.sec); 1435 if (bt.sec != t) 1436 th->th_boottime.sec += bt.sec - t; 1437 --i; 1438 } while (i > 0); 1439 1440 recalculate_scaling_factor_and_large_delta(th); 1441 } 1442 1443 /* Update the UTC timestamps used by the get*() functions. */ 1444 th->th_bintime = bt; 1445 bintime2timeval(&bt, &th->th_microtime); 1446 bintime2timespec(&bt, &th->th_nanotime); 1447 1448 /* Now is a good time to change timecounters. */ 1449 if (th->th_counter != tc) { 1450 #ifndef __arm__ 1451 if ((tc->tc_flags & TC_FLAGS_C2STOP) != 0) 1452 cpu_disable_c2_sleep++; 1453 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 1454 cpu_disable_c2_sleep--; 1455 #endif 1456 th->th_counter = tc; 1457 th->th_offset_count = ncount; 1458 tc_min_ticktock_freq = max(1, tc->tc_frequency / 1459 (((uint64_t)tc->tc_counter_mask + 1) / 3)); 1460 recalculate_scaling_factor_and_large_delta(th); 1461 #ifdef FFCLOCK 1462 ffclock_change_tc(th); 1463 #endif 1464 } 1465 1466 /* 1467 * Now that the struct timehands is again consistent, set the new 1468 * generation number, making sure to not make it zero. 1469 */ 1470 if (++ogen == 0) 1471 ogen = 1; 1472 atomic_store_rel_int(&th->th_generation, ogen); 1473 1474 /* Go live with the new struct timehands. */ 1475 #ifdef FFCLOCK 1476 switch (sysclock_active) { 1477 case SYSCLOCK_FBCK: 1478 #endif 1479 time_second = th->th_microtime.tv_sec; 1480 time_uptime = th->th_offset.sec; 1481 #ifdef FFCLOCK 1482 break; 1483 case SYSCLOCK_FFWD: 1484 time_second = fftimehands->tick_time_lerp.sec; 1485 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 1486 break; 1487 } 1488 #endif 1489 1490 timehands = th; 1491 timekeep_push_vdso(); 1492 } 1493 1494 /* Report or change the active timecounter hardware. */ 1495 static int 1496 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 1497 { 1498 char newname[32]; 1499 struct timecounter *newtc, *tc; 1500 int error; 1501 1502 mtx_lock(&tc_lock); 1503 tc = timecounter; 1504 strlcpy(newname, tc->tc_name, sizeof(newname)); 1505 mtx_unlock(&tc_lock); 1506 1507 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1508 if (error != 0 || req->newptr == NULL) 1509 return (error); 1510 1511 mtx_lock(&tc_lock); 1512 /* Record that the tc in use now was specifically chosen. */ 1513 tc_chosen = 1; 1514 if (strcmp(newname, tc->tc_name) == 0) { 1515 mtx_unlock(&tc_lock); 1516 return (0); 1517 } 1518 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 1519 if (strcmp(newname, newtc->tc_name) != 0) 1520 continue; 1521 1522 /* Warm up new timecounter. */ 1523 (void)newtc->tc_get_timecount(newtc); 1524 1525 timecounter = newtc; 1526 1527 /* 1528 * The vdso timehands update is deferred until the next 1529 * 'tc_windup()'. 1530 * 1531 * This is prudent given that 'timekeep_push_vdso()' does not 1532 * use any locking and that it can be called in hard interrupt 1533 * context via 'tc_windup()'. 1534 */ 1535 break; 1536 } 1537 mtx_unlock(&tc_lock); 1538 return (newtc != NULL ? 0 : EINVAL); 1539 } 1540 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, 1541 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 0, 0, 1542 sysctl_kern_timecounter_hardware, "A", 1543 "Timecounter hardware selected"); 1544 1545 /* Report the available timecounter hardware. */ 1546 static int 1547 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 1548 { 1549 struct sbuf sb; 1550 struct timecounter *tc; 1551 int error; 1552 1553 error = sysctl_wire_old_buffer(req, 0); 1554 if (error != 0) 1555 return (error); 1556 sbuf_new_for_sysctl(&sb, NULL, 0, req); 1557 mtx_lock(&tc_lock); 1558 for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 1559 if (tc != timecounters) 1560 sbuf_putc(&sb, ' '); 1561 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality); 1562 } 1563 mtx_unlock(&tc_lock); 1564 error = sbuf_finish(&sb); 1565 sbuf_delete(&sb); 1566 return (error); 1567 } 1568 1569 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, 1570 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, 1571 sysctl_kern_timecounter_choice, "A", 1572 "Timecounter hardware detected"); 1573 1574 /* 1575 * RFC 2783 PPS-API implementation. 1576 */ 1577 1578 /* 1579 * Return true if the driver is aware of the abi version extensions in the 1580 * pps_state structure, and it supports at least the given abi version number. 1581 */ 1582 static inline int 1583 abi_aware(struct pps_state *pps, int vers) 1584 { 1585 1586 return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers); 1587 } 1588 1589 static int 1590 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1591 { 1592 int err, timo; 1593 pps_seq_t aseq, cseq; 1594 struct timeval tv; 1595 1596 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1597 return (EINVAL); 1598 1599 /* 1600 * If no timeout is requested, immediately return whatever values were 1601 * most recently captured. If timeout seconds is -1, that's a request 1602 * to block without a timeout. WITNESS won't let us sleep forever 1603 * without a lock (we really don't need a lock), so just repeatedly 1604 * sleep a long time. 1605 */ 1606 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1607 if (fapi->timeout.tv_sec == -1) 1608 timo = 0x7fffffff; 1609 else { 1610 tv.tv_sec = fapi->timeout.tv_sec; 1611 tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1612 timo = tvtohz(&tv); 1613 } 1614 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence); 1615 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence); 1616 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) && 1617 cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) { 1618 if (abi_aware(pps, 1) && pps->driver_mtx != NULL) { 1619 if (pps->flags & PPSFLAG_MTX_SPIN) { 1620 err = msleep_spin(pps, pps->driver_mtx, 1621 "ppsfch", timo); 1622 } else { 1623 err = msleep(pps, pps->driver_mtx, PCATCH, 1624 "ppsfch", timo); 1625 } 1626 } else { 1627 err = tsleep(pps, PCATCH, "ppsfch", timo); 1628 } 1629 if (err == EWOULDBLOCK) { 1630 if (fapi->timeout.tv_sec == -1) { 1631 continue; 1632 } else { 1633 return (ETIMEDOUT); 1634 } 1635 } else if (err != 0) { 1636 return (err); 1637 } 1638 } 1639 } 1640 1641 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1642 fapi->pps_info_buf = pps->ppsinfo; 1643 1644 return (0); 1645 } 1646 1647 int 1648 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1649 { 1650 pps_params_t *app; 1651 struct pps_fetch_args *fapi; 1652 #ifdef FFCLOCK 1653 struct pps_fetch_ffc_args *fapi_ffc; 1654 #endif 1655 #ifdef PPS_SYNC 1656 struct pps_kcbind_args *kapi; 1657 #endif 1658 1659 KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 1660 switch (cmd) { 1661 case PPS_IOC_CREATE: 1662 return (0); 1663 case PPS_IOC_DESTROY: 1664 return (0); 1665 case PPS_IOC_SETPARAMS: 1666 app = (pps_params_t *)data; 1667 if (app->mode & ~pps->ppscap) 1668 return (EINVAL); 1669 #ifdef FFCLOCK 1670 /* Ensure only a single clock is selected for ffc timestamp. */ 1671 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 1672 return (EINVAL); 1673 #endif 1674 pps->ppsparam = *app; 1675 return (0); 1676 case PPS_IOC_GETPARAMS: 1677 app = (pps_params_t *)data; 1678 *app = pps->ppsparam; 1679 app->api_version = PPS_API_VERS_1; 1680 return (0); 1681 case PPS_IOC_GETCAP: 1682 *(int*)data = pps->ppscap; 1683 return (0); 1684 case PPS_IOC_FETCH: 1685 fapi = (struct pps_fetch_args *)data; 1686 return (pps_fetch(fapi, pps)); 1687 #ifdef FFCLOCK 1688 case PPS_IOC_FETCH_FFCOUNTER: 1689 fapi_ffc = (struct pps_fetch_ffc_args *)data; 1690 if (fapi_ffc->tsformat && fapi_ffc->tsformat != 1691 PPS_TSFMT_TSPEC) 1692 return (EINVAL); 1693 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 1694 return (EOPNOTSUPP); 1695 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 1696 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 1697 /* Overwrite timestamps if feedback clock selected. */ 1698 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 1699 case PPS_TSCLK_FBCK: 1700 fapi_ffc->pps_info_buf_ffc.assert_timestamp = 1701 pps->ppsinfo.assert_timestamp; 1702 fapi_ffc->pps_info_buf_ffc.clear_timestamp = 1703 pps->ppsinfo.clear_timestamp; 1704 break; 1705 case PPS_TSCLK_FFWD: 1706 break; 1707 default: 1708 break; 1709 } 1710 return (0); 1711 #endif /* FFCLOCK */ 1712 case PPS_IOC_KCBIND: 1713 #ifdef PPS_SYNC 1714 kapi = (struct pps_kcbind_args *)data; 1715 /* XXX Only root should be able to do this */ 1716 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1717 return (EINVAL); 1718 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1719 return (EINVAL); 1720 if (kapi->edge & ~pps->ppscap) 1721 return (EINVAL); 1722 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) | 1723 (pps->kcmode & KCMODE_ABIFLAG); 1724 return (0); 1725 #else 1726 return (EOPNOTSUPP); 1727 #endif 1728 default: 1729 return (ENOIOCTL); 1730 } 1731 } 1732 1733 void 1734 pps_init(struct pps_state *pps) 1735 { 1736 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1737 if (pps->ppscap & PPS_CAPTUREASSERT) 1738 pps->ppscap |= PPS_OFFSETASSERT; 1739 if (pps->ppscap & PPS_CAPTURECLEAR) 1740 pps->ppscap |= PPS_OFFSETCLEAR; 1741 #ifdef FFCLOCK 1742 pps->ppscap |= PPS_TSCLK_MASK; 1743 #endif 1744 pps->kcmode &= ~KCMODE_ABIFLAG; 1745 } 1746 1747 void 1748 pps_init_abi(struct pps_state *pps) 1749 { 1750 1751 pps_init(pps); 1752 if (pps->driver_abi > 0) { 1753 pps->kcmode |= KCMODE_ABIFLAG; 1754 pps->kernel_abi = PPS_ABI_VERSION; 1755 } 1756 } 1757 1758 void 1759 pps_capture(struct pps_state *pps) 1760 { 1761 struct timehands *th; 1762 struct timecounter *tc; 1763 1764 KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 1765 th = timehands; 1766 pps->capgen = atomic_load_acq_int(&th->th_generation); 1767 pps->capth = th; 1768 #ifdef FFCLOCK 1769 pps->capffth = fftimehands; 1770 #endif 1771 tc = th->th_counter; 1772 pps->capcount = tc->tc_get_timecount(tc); 1773 } 1774 1775 void 1776 pps_event(struct pps_state *pps, int event) 1777 { 1778 struct timehands *capth; 1779 struct timecounter *captc; 1780 uint64_t capth_scale; 1781 struct bintime bt; 1782 struct timespec *tsp, *osp; 1783 u_int tcount, *pcount; 1784 int foff; 1785 pps_seq_t *pseq; 1786 #ifdef FFCLOCK 1787 struct timespec *tsp_ffc; 1788 pps_seq_t *pseq_ffc; 1789 ffcounter *ffcount; 1790 #endif 1791 #ifdef PPS_SYNC 1792 int fhard; 1793 #endif 1794 1795 KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1796 /* Nothing to do if not currently set to capture this event type. */ 1797 if ((event & pps->ppsparam.mode) == 0) 1798 return; 1799 1800 /* Make a snapshot of the captured timehand */ 1801 capth = pps->capth; 1802 captc = capth->th_counter; 1803 capth_scale = capth->th_scale; 1804 tcount = capth->th_offset_count; 1805 bt = capth->th_bintime; 1806 1807 /* If the timecounter was wound up underneath us, bail out. */ 1808 atomic_thread_fence_acq(); 1809 if (pps->capgen == 0 || pps->capgen != capth->th_generation) 1810 return; 1811 1812 /* Things would be easier with arrays. */ 1813 if (event == PPS_CAPTUREASSERT) { 1814 tsp = &pps->ppsinfo.assert_timestamp; 1815 osp = &pps->ppsparam.assert_offset; 1816 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1817 #ifdef PPS_SYNC 1818 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1819 #endif 1820 pcount = &pps->ppscount[0]; 1821 pseq = &pps->ppsinfo.assert_sequence; 1822 #ifdef FFCLOCK 1823 ffcount = &pps->ppsinfo_ffc.assert_ffcount; 1824 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 1825 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 1826 #endif 1827 } else { 1828 tsp = &pps->ppsinfo.clear_timestamp; 1829 osp = &pps->ppsparam.clear_offset; 1830 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1831 #ifdef PPS_SYNC 1832 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1833 #endif 1834 pcount = &pps->ppscount[1]; 1835 pseq = &pps->ppsinfo.clear_sequence; 1836 #ifdef FFCLOCK 1837 ffcount = &pps->ppsinfo_ffc.clear_ffcount; 1838 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 1839 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 1840 #endif 1841 } 1842 1843 *pcount = pps->capcount; 1844 1845 /* 1846 * If the timecounter changed, we cannot compare the count values, so 1847 * we have to drop the rest of the PPS-stuff until the next event. 1848 */ 1849 if (__predict_false(pps->ppstc != captc)) { 1850 pps->ppstc = captc; 1851 pps->ppscount[2] = pps->capcount; 1852 return; 1853 } 1854 1855 (*pseq)++; 1856 1857 /* Convert the count to a timespec. */ 1858 tcount = pps->capcount - tcount; 1859 tcount &= captc->tc_counter_mask; 1860 bintime_addx(&bt, capth_scale * tcount); 1861 bintime2timespec(&bt, tsp); 1862 1863 if (foff) { 1864 timespecadd(tsp, osp, tsp); 1865 if (tsp->tv_nsec < 0) { 1866 tsp->tv_nsec += 1000000000; 1867 tsp->tv_sec -= 1; 1868 } 1869 } 1870 1871 #ifdef FFCLOCK 1872 *ffcount = pps->capffth->tick_ffcount + tcount; 1873 bt = pps->capffth->tick_time; 1874 ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 1875 bintime_add(&bt, &pps->capffth->tick_time); 1876 (*pseq_ffc)++; 1877 bintime2timespec(&bt, tsp_ffc); 1878 #endif 1879 1880 #ifdef PPS_SYNC 1881 if (fhard) { 1882 uint64_t delta_nsec; 1883 uint64_t freq; 1884 1885 /* 1886 * Feed the NTP PLL/FLL. 1887 * The FLL wants to know how many (hardware) nanoseconds 1888 * elapsed since the previous event. 1889 */ 1890 tcount = pps->capcount - pps->ppscount[2]; 1891 pps->ppscount[2] = pps->capcount; 1892 tcount &= captc->tc_counter_mask; 1893 delta_nsec = 1000000000; 1894 delta_nsec *= tcount; 1895 freq = captc->tc_frequency; 1896 delta_nsec = (delta_nsec + freq / 2) / freq; 1897 hardpps(tsp, (long)delta_nsec); 1898 } 1899 #endif 1900 1901 /* Wakeup anyone sleeping in pps_fetch(). */ 1902 wakeup(pps); 1903 } 1904 1905 /* 1906 * Timecounters need to be updated every so often to prevent the hardware 1907 * counter from overflowing. Updating also recalculates the cached values 1908 * used by the get*() family of functions, so their precision depends on 1909 * the update frequency. 1910 */ 1911 1912 static int tc_tick; 1913 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1914 "Approximate number of hardclock ticks in a millisecond"); 1915 1916 void 1917 tc_ticktock(int cnt) 1918 { 1919 static int count; 1920 1921 if (mtx_trylock_spin(&tc_setclock_mtx)) { 1922 count += cnt; 1923 if (count >= tc_tick) { 1924 count = 0; 1925 tc_windup(NULL); 1926 } 1927 mtx_unlock_spin(&tc_setclock_mtx); 1928 } 1929 } 1930 1931 static void __inline 1932 tc_adjprecision(void) 1933 { 1934 int t; 1935 1936 if (tc_timepercentage > 0) { 1937 t = (99 + tc_timepercentage) / tc_timepercentage; 1938 tc_precexp = fls(t + (t >> 1)) - 1; 1939 FREQ2BT(hz / tc_tick, &bt_timethreshold); 1940 FREQ2BT(hz, &bt_tickthreshold); 1941 bintime_shift(&bt_timethreshold, tc_precexp); 1942 bintime_shift(&bt_tickthreshold, tc_precexp); 1943 } else { 1944 tc_precexp = 31; 1945 bt_timethreshold.sec = INT_MAX; 1946 bt_timethreshold.frac = ~(uint64_t)0; 1947 bt_tickthreshold = bt_timethreshold; 1948 } 1949 sbt_timethreshold = bttosbt(bt_timethreshold); 1950 sbt_tickthreshold = bttosbt(bt_tickthreshold); 1951 } 1952 1953 static int 1954 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 1955 { 1956 int error, val; 1957 1958 val = tc_timepercentage; 1959 error = sysctl_handle_int(oidp, &val, 0, req); 1960 if (error != 0 || req->newptr == NULL) 1961 return (error); 1962 tc_timepercentage = val; 1963 if (cold) 1964 goto done; 1965 tc_adjprecision(); 1966 done: 1967 return (0); 1968 } 1969 1970 /* Set up the requested number of timehands. */ 1971 static void 1972 inittimehands(void *dummy) 1973 { 1974 struct timehands *thp; 1975 int i; 1976 1977 TUNABLE_INT_FETCH("kern.timecounter.timehands_count", 1978 &timehands_count); 1979 if (timehands_count < 1) 1980 timehands_count = 1; 1981 if (timehands_count > nitems(ths)) 1982 timehands_count = nitems(ths); 1983 for (i = 1, thp = &ths[0]; i < timehands_count; thp = &ths[i++]) 1984 thp->th_next = &ths[i]; 1985 thp->th_next = &ths[0]; 1986 1987 TUNABLE_STR_FETCH("kern.timecounter.hardware", tc_from_tunable, 1988 sizeof(tc_from_tunable)); 1989 1990 mtx_init(&tc_lock, "tc", NULL, MTX_DEF); 1991 } 1992 SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL); 1993 1994 static void 1995 inittimecounter(void *dummy) 1996 { 1997 u_int p; 1998 int tick_rate; 1999 2000 /* 2001 * Set the initial timeout to 2002 * max(1, <approx. number of hardclock ticks in a millisecond>). 2003 * People should probably not use the sysctl to set the timeout 2004 * to smaller than its initial value, since that value is the 2005 * smallest reasonable one. If they want better timestamps they 2006 * should use the non-"get"* functions. 2007 */ 2008 if (hz > 1000) 2009 tc_tick = (hz + 500) / 1000; 2010 else 2011 tc_tick = 1; 2012 tc_adjprecision(); 2013 FREQ2BT(hz, &tick_bt); 2014 tick_sbt = bttosbt(tick_bt); 2015 tick_rate = hz / tc_tick; 2016 FREQ2BT(tick_rate, &tc_tick_bt); 2017 tc_tick_sbt = bttosbt(tc_tick_bt); 2018 p = (tc_tick * 1000000) / hz; 2019 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 2020 2021 #ifdef FFCLOCK 2022 ffclock_init(); 2023 #endif 2024 2025 /* warm up new timecounter (again) and get rolling. */ 2026 (void)timecounter->tc_get_timecount(timecounter); 2027 mtx_lock_spin(&tc_setclock_mtx); 2028 tc_windup(NULL); 2029 mtx_unlock_spin(&tc_setclock_mtx); 2030 } 2031 2032 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 2033 2034 /* Cpu tick handling -------------------------------------------------*/ 2035 2036 static bool cpu_tick_variable; 2037 static uint64_t cpu_tick_frequency; 2038 2039 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base); 2040 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last); 2041 2042 static uint64_t 2043 tc_cpu_ticks(void) 2044 { 2045 struct timecounter *tc; 2046 uint64_t res, *base; 2047 unsigned u, *last; 2048 2049 critical_enter(); 2050 base = DPCPU_PTR(tc_cpu_ticks_base); 2051 last = DPCPU_PTR(tc_cpu_ticks_last); 2052 tc = timehands->th_counter; 2053 u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 2054 if (u < *last) 2055 *base += (uint64_t)tc->tc_counter_mask + 1; 2056 *last = u; 2057 res = u + *base; 2058 critical_exit(); 2059 return (res); 2060 } 2061 2062 void 2063 cpu_tick_calibration(void) 2064 { 2065 static time_t last_calib; 2066 2067 if (time_uptime != last_calib && !(time_uptime & 0xf)) { 2068 cpu_tick_calibrate(0); 2069 last_calib = time_uptime; 2070 } 2071 } 2072 2073 /* 2074 * This function gets called every 16 seconds on only one designated 2075 * CPU in the system from hardclock() via cpu_tick_calibration()(). 2076 * 2077 * Whenever the real time clock is stepped we get called with reset=1 2078 * to make sure we handle suspend/resume and similar events correctly. 2079 */ 2080 2081 static void 2082 cpu_tick_calibrate(int reset) 2083 { 2084 static uint64_t c_last; 2085 uint64_t c_this, c_delta; 2086 static struct bintime t_last; 2087 struct bintime t_this, t_delta; 2088 uint32_t divi; 2089 2090 if (reset) { 2091 /* The clock was stepped, abort & reset */ 2092 t_last.sec = 0; 2093 return; 2094 } 2095 2096 /* we don't calibrate fixed rate cputicks */ 2097 if (!cpu_tick_variable) 2098 return; 2099 2100 getbinuptime(&t_this); 2101 c_this = cpu_ticks(); 2102 if (t_last.sec != 0) { 2103 c_delta = c_this - c_last; 2104 t_delta = t_this; 2105 bintime_sub(&t_delta, &t_last); 2106 /* 2107 * Headroom: 2108 * 2^(64-20) / 16[s] = 2109 * 2^(44) / 16[s] = 2110 * 17.592.186.044.416 / 16 = 2111 * 1.099.511.627.776 [Hz] 2112 */ 2113 divi = t_delta.sec << 20; 2114 divi |= t_delta.frac >> (64 - 20); 2115 c_delta <<= 20; 2116 c_delta /= divi; 2117 if (c_delta > cpu_tick_frequency) { 2118 if (0 && bootverbose) 2119 printf("cpu_tick increased to %ju Hz\n", 2120 c_delta); 2121 cpu_tick_frequency = c_delta; 2122 } 2123 } 2124 c_last = c_this; 2125 t_last = t_this; 2126 } 2127 2128 void 2129 set_cputicker(cpu_tick_f *func, uint64_t freq, bool isvariable) 2130 { 2131 2132 if (func == NULL) { 2133 cpu_ticks = tc_cpu_ticks; 2134 } else { 2135 cpu_tick_frequency = freq; 2136 cpu_tick_variable = isvariable; 2137 cpu_ticks = func; 2138 } 2139 } 2140 2141 uint64_t 2142 cpu_tickrate(void) 2143 { 2144 2145 if (cpu_ticks == tc_cpu_ticks) 2146 return (tc_getfrequency()); 2147 return (cpu_tick_frequency); 2148 } 2149 2150 /* 2151 * We need to be slightly careful converting cputicks to microseconds. 2152 * There is plenty of margin in 64 bits of microseconds (half a million 2153 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 2154 * before divide conversion (to retain precision) we find that the 2155 * margin shrinks to 1.5 hours (one millionth of 146y). 2156 */ 2157 2158 uint64_t 2159 cputick2usec(uint64_t tick) 2160 { 2161 uint64_t tr; 2162 tr = cpu_tickrate(); 2163 return ((tick / tr) * 1000000ULL) + ((tick % tr) * 1000000ULL) / tr; 2164 } 2165 2166 cpu_tick_f *cpu_ticks = tc_cpu_ticks; 2167 2168 static int vdso_th_enable = 1; 2169 static int 2170 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 2171 { 2172 int old_vdso_th_enable, error; 2173 2174 old_vdso_th_enable = vdso_th_enable; 2175 error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 2176 if (error != 0) 2177 return (error); 2178 vdso_th_enable = old_vdso_th_enable; 2179 return (0); 2180 } 2181 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 2182 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 2183 NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 2184 2185 uint32_t 2186 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2187 { 2188 struct timehands *th; 2189 uint32_t enabled; 2190 2191 th = timehands; 2192 vdso_th->th_scale = th->th_scale; 2193 vdso_th->th_offset_count = th->th_offset_count; 2194 vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2195 vdso_th->th_offset = th->th_offset; 2196 vdso_th->th_boottime = th->th_boottime; 2197 if (th->th_counter->tc_fill_vdso_timehands != NULL) { 2198 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th, 2199 th->th_counter); 2200 } else 2201 enabled = 0; 2202 if (!vdso_th_enable) 2203 enabled = 0; 2204 return (enabled); 2205 } 2206 2207 #ifdef COMPAT_FREEBSD32 2208 uint32_t 2209 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2210 { 2211 struct timehands *th; 2212 uint32_t enabled; 2213 2214 th = timehands; 2215 *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2216 vdso_th32->th_offset_count = th->th_offset_count; 2217 vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2218 vdso_th32->th_offset.sec = th->th_offset.sec; 2219 *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 2220 vdso_th32->th_boottime.sec = th->th_boottime.sec; 2221 *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac; 2222 if (th->th_counter->tc_fill_vdso_timehands32 != NULL) { 2223 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32, 2224 th->th_counter); 2225 } else 2226 enabled = 0; 2227 if (!vdso_th_enable) 2228 enabled = 0; 2229 return (enabled); 2230 } 2231 #endif 2232 2233 #include "opt_ddb.h" 2234 #ifdef DDB 2235 #include <ddb/ddb.h> 2236 2237 DB_SHOW_COMMAND(timecounter, db_show_timecounter) 2238 { 2239 struct timehands *th; 2240 struct timecounter *tc; 2241 u_int val1, val2; 2242 2243 th = timehands; 2244 tc = th->th_counter; 2245 val1 = tc->tc_get_timecount(tc); 2246 __compiler_membar(); 2247 val2 = tc->tc_get_timecount(tc); 2248 2249 db_printf("timecounter %p %s\n", tc, tc->tc_name); 2250 db_printf(" mask %#x freq %ju qual %d flags %#x priv %p\n", 2251 tc->tc_counter_mask, (uintmax_t)tc->tc_frequency, tc->tc_quality, 2252 tc->tc_flags, tc->tc_priv); 2253 db_printf(" val %#x %#x\n", val1, val2); 2254 db_printf("timehands adj %#jx scale %#jx ldelta %d off_cnt %d gen %d\n", 2255 (uintmax_t)th->th_adjustment, (uintmax_t)th->th_scale, 2256 th->th_large_delta, th->th_offset_count, th->th_generation); 2257 db_printf(" offset %jd %jd boottime %jd %jd\n", 2258 (intmax_t)th->th_offset.sec, (uintmax_t)th->th_offset.frac, 2259 (intmax_t)th->th_boottime.sec, (uintmax_t)th->th_boottime.frac); 2260 } 2261 #endif 2262