xref: /freebsd/sys/kern/kern_tc.c (revision 0fa02ea5f786ef02befd46f8f083f48c8cd9630b)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  */
9 
10 #include <sys/cdefs.h>
11 __FBSDID("$FreeBSD$");
12 
13 #include "opt_ntp.h"
14 
15 #include <sys/param.h>
16 #include <sys/kernel.h>
17 #include <sys/sysctl.h>
18 #include <sys/systm.h>
19 #include <sys/timepps.h>
20 #include <sys/timetc.h>
21 #include <sys/timex.h>
22 
23 /*
24  * A large step happens on boot.  This constant detects such steps.
25  * It is relatively small so that ntp_update_second gets called enough
26  * in the typical 'missed a couple of seconds' case, but doesn't loop
27  * forever when the time step is large.
28  */
29 #define LARGE_STEP	200
30 
31 /*
32  * Implement a dummy timecounter which we can use until we get a real one
33  * in the air.  This allows the console and other early stuff to use
34  * time services.
35  */
36 
37 static u_int
38 dummy_get_timecount(struct timecounter *tc)
39 {
40 	static u_int now;
41 
42 	return (++now);
43 }
44 
45 static struct timecounter dummy_timecounter = {
46 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
47 };
48 
49 struct timehands {
50 	/* These fields must be initialized by the driver. */
51 	struct timecounter	*th_counter;
52 	int64_t			th_adjustment;
53 	u_int64_t		th_scale;
54 	u_int	 		th_offset_count;
55 	struct bintime		th_offset;
56 	struct timeval		th_microtime;
57 	struct timespec		th_nanotime;
58 	/* Fields not to be copied in tc_windup start with th_generation. */
59 	volatile u_int		th_generation;
60 	struct timehands	*th_next;
61 };
62 
63 extern struct timehands th0;
64 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
65 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
66 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
67 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
68 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
69 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
70 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
71 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
72 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
73 static struct timehands th0 = {
74 	&dummy_timecounter,
75 	0,
76 	(uint64_t)-1 / 1000000,
77 	0,
78 	{1, 0},
79 	{0, 0},
80 	{0, 0},
81 	1,
82 	&th1
83 };
84 
85 static struct timehands *volatile timehands = &th0;
86 struct timecounter *timecounter = &dummy_timecounter;
87 static struct timecounter *timecounters = &dummy_timecounter;
88 
89 time_t time_second = 1;
90 time_t time_uptime = 0;
91 
92 static struct bintime boottimebin;
93 struct timeval boottime;
94 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
95     &boottime, timeval, "System boottime");
96 
97 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
98 
99 #define TC_STATS(foo) \
100 	static u_int foo; \
101 	SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
102 	struct __hack
103 
104 TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
105 TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
106 TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
107 TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
108 TC_STATS(nsetclock);
109 
110 #undef TC_STATS
111 
112 static void tc_windup(void);
113 
114 /*
115  * Return the difference between the timehands' counter value now and what
116  * was when we copied it to the timehands' offset_count.
117  */
118 static __inline u_int
119 tc_delta(struct timehands *th)
120 {
121 	struct timecounter *tc;
122 
123 	tc = th->th_counter;
124 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
125 	    tc->tc_counter_mask);
126 }
127 
128 /*
129  * Functions for reading the time.  We have to loop until we are sure that
130  * the timehands that we operated on was not updated under our feet.  See
131  * the comment in <sys/time.h> for a description of these 12 functions.
132  */
133 
134 void
135 binuptime(struct bintime *bt)
136 {
137 	struct timehands *th;
138 	u_int gen;
139 
140 	nbinuptime++;
141 	do {
142 		th = timehands;
143 		gen = th->th_generation;
144 		*bt = th->th_offset;
145 		bintime_addx(bt, th->th_scale * tc_delta(th));
146 	} while (gen == 0 || gen != th->th_generation);
147 }
148 
149 void
150 nanouptime(struct timespec *tsp)
151 {
152 	struct bintime bt;
153 
154 	nnanouptime++;
155 	binuptime(&bt);
156 	bintime2timespec(&bt, tsp);
157 }
158 
159 void
160 microuptime(struct timeval *tvp)
161 {
162 	struct bintime bt;
163 
164 	nmicrouptime++;
165 	binuptime(&bt);
166 	bintime2timeval(&bt, tvp);
167 }
168 
169 void
170 bintime(struct bintime *bt)
171 {
172 
173 	nbintime++;
174 	binuptime(bt);
175 	bintime_add(bt, &boottimebin);
176 }
177 
178 void
179 nanotime(struct timespec *tsp)
180 {
181 	struct bintime bt;
182 
183 	nnanotime++;
184 	bintime(&bt);
185 	bintime2timespec(&bt, tsp);
186 }
187 
188 void
189 microtime(struct timeval *tvp)
190 {
191 	struct bintime bt;
192 
193 	nmicrotime++;
194 	bintime(&bt);
195 	bintime2timeval(&bt, tvp);
196 }
197 
198 void
199 getbinuptime(struct bintime *bt)
200 {
201 	struct timehands *th;
202 	u_int gen;
203 
204 	ngetbinuptime++;
205 	do {
206 		th = timehands;
207 		gen = th->th_generation;
208 		*bt = th->th_offset;
209 	} while (gen == 0 || gen != th->th_generation);
210 }
211 
212 void
213 getnanouptime(struct timespec *tsp)
214 {
215 	struct timehands *th;
216 	u_int gen;
217 
218 	ngetnanouptime++;
219 	do {
220 		th = timehands;
221 		gen = th->th_generation;
222 		bintime2timespec(&th->th_offset, tsp);
223 	} while (gen == 0 || gen != th->th_generation);
224 }
225 
226 void
227 getmicrouptime(struct timeval *tvp)
228 {
229 	struct timehands *th;
230 	u_int gen;
231 
232 	ngetmicrouptime++;
233 	do {
234 		th = timehands;
235 		gen = th->th_generation;
236 		bintime2timeval(&th->th_offset, tvp);
237 	} while (gen == 0 || gen != th->th_generation);
238 }
239 
240 void
241 getbintime(struct bintime *bt)
242 {
243 	struct timehands *th;
244 	u_int gen;
245 
246 	ngetbintime++;
247 	do {
248 		th = timehands;
249 		gen = th->th_generation;
250 		*bt = th->th_offset;
251 	} while (gen == 0 || gen != th->th_generation);
252 	bintime_add(bt, &boottimebin);
253 }
254 
255 void
256 getnanotime(struct timespec *tsp)
257 {
258 	struct timehands *th;
259 	u_int gen;
260 
261 	ngetnanotime++;
262 	do {
263 		th = timehands;
264 		gen = th->th_generation;
265 		*tsp = th->th_nanotime;
266 	} while (gen == 0 || gen != th->th_generation);
267 }
268 
269 void
270 getmicrotime(struct timeval *tvp)
271 {
272 	struct timehands *th;
273 	u_int gen;
274 
275 	ngetmicrotime++;
276 	do {
277 		th = timehands;
278 		gen = th->th_generation;
279 		*tvp = th->th_microtime;
280 	} while (gen == 0 || gen != th->th_generation);
281 }
282 
283 /*
284  * Initialize a new timecounter and possibly use it.
285  */
286 void
287 tc_init(struct timecounter *tc)
288 {
289 	u_int u;
290 
291 	u = tc->tc_frequency / tc->tc_counter_mask;
292 	/* XXX: We need some margin here, 10% is a guess */
293 	u *= 11;
294 	u /= 10;
295 	if (u > hz && tc->tc_quality >= 0) {
296 		tc->tc_quality = -2000;
297 		if (bootverbose) {
298 			printf("Timecounter \"%s\" frequency %ju Hz",
299 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
300 			printf(" -- Insufficient hz, needs at least %u\n", u);
301 		}
302 	} else if (tc->tc_quality >= 0 || bootverbose) {
303 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
304 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
305 		    tc->tc_quality);
306 	}
307 
308 	tc->tc_next = timecounters;
309 	timecounters = tc;
310 	/*
311 	 * Never automatically use a timecounter with negative quality.
312 	 * Even though we run on the dummy counter, switching here may be
313 	 * worse since this timecounter may not be monotonous.
314 	 */
315 	if (tc->tc_quality < 0)
316 		return;
317 	if (tc->tc_quality < timecounter->tc_quality)
318 		return;
319 	if (tc->tc_quality == timecounter->tc_quality &&
320 	    tc->tc_frequency < timecounter->tc_frequency)
321 		return;
322 	(void)tc->tc_get_timecount(tc);
323 	(void)tc->tc_get_timecount(tc);
324 	timecounter = tc;
325 }
326 
327 /* Report the frequency of the current timecounter. */
328 u_int64_t
329 tc_getfrequency(void)
330 {
331 
332 	return (timehands->th_counter->tc_frequency);
333 }
334 
335 /*
336  * Step our concept of UTC.  This is done by modifying our estimate of
337  * when we booted.  XXX: needs further work.
338  */
339 void
340 tc_setclock(struct timespec *ts)
341 {
342 	struct timespec ts2;
343 
344 	nsetclock++;
345 	nanouptime(&ts2);
346 	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
347 	/* XXX boottime should probably be a timespec. */
348 	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
349 	if (boottime.tv_usec < 0) {
350 		boottime.tv_usec += 1000000;
351 		boottime.tv_sec--;
352 	}
353 	timeval2bintime(&boottime, &boottimebin);
354 
355 	/* XXX fiddle all the little crinkly bits around the fiords... */
356 	tc_windup();
357 }
358 
359 /*
360  * Initialize the next struct timehands in the ring and make
361  * it the active timehands.  Along the way we might switch to a different
362  * timecounter and/or do seconds processing in NTP.  Slightly magic.
363  */
364 static void
365 tc_windup(void)
366 {
367 	struct bintime bt;
368 	struct timehands *th, *tho;
369 	u_int64_t scale;
370 	u_int delta, ncount, ogen;
371 	int i;
372 	time_t t;
373 
374 	/*
375 	 * Make the next timehands a copy of the current one, but do not
376 	 * overwrite the generation or next pointer.  While we update
377 	 * the contents, the generation must be zero.
378 	 */
379 	tho = timehands;
380 	th = tho->th_next;
381 	ogen = th->th_generation;
382 	th->th_generation = 0;
383 	bcopy(tho, th, offsetof(struct timehands, th_generation));
384 
385 	/*
386 	 * Capture a timecounter delta on the current timecounter and if
387 	 * changing timecounters, a counter value from the new timecounter.
388 	 * Update the offset fields accordingly.
389 	 */
390 	delta = tc_delta(th);
391 	if (th->th_counter != timecounter)
392 		ncount = timecounter->tc_get_timecount(timecounter);
393 	else
394 		ncount = 0;
395 	th->th_offset_count += delta;
396 	th->th_offset_count &= th->th_counter->tc_counter_mask;
397 	bintime_addx(&th->th_offset, th->th_scale * delta);
398 
399 	/*
400 	 * Hardware latching timecounters may not generate interrupts on
401 	 * PPS events, so instead we poll them.  There is a finite risk that
402 	 * the hardware might capture a count which is later than the one we
403 	 * got above, and therefore possibly in the next NTP second which might
404 	 * have a different rate than the current NTP second.  It doesn't
405 	 * matter in practice.
406 	 */
407 	if (tho->th_counter->tc_poll_pps)
408 		tho->th_counter->tc_poll_pps(tho->th_counter);
409 
410 	/*
411 	 * Deal with NTP second processing.  The for loop normally
412 	 * iterates at most once, but in extreme situations it might
413 	 * keep NTP sane if timeouts are not run for several seconds.
414 	 * At boot, the time step can be large when the TOD hardware
415 	 * has been read, so on really large steps, we call
416 	 * ntp_update_second only twice.  We need to call it twice in
417 	 * case we missed a leap second.
418 	 */
419 	bt = th->th_offset;
420 	bintime_add(&bt, &boottimebin);
421 	i = bt.sec - tho->th_microtime.tv_sec;
422 	if (i > LARGE_STEP)
423 		i = 2;
424 	for (; i > 0; i--) {
425 		t = bt.sec;
426 		ntp_update_second(&th->th_adjustment, &bt.sec);
427 		if (bt.sec != t)
428 			boottimebin.sec += bt.sec - t;
429 	}
430 	/* Update the UTC timestamps used by the get*() functions. */
431 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
432 	bintime2timeval(&bt, &th->th_microtime);
433 	bintime2timespec(&bt, &th->th_nanotime);
434 
435 	/* Now is a good time to change timecounters. */
436 	if (th->th_counter != timecounter) {
437 		th->th_counter = timecounter;
438 		th->th_offset_count = ncount;
439 	}
440 
441 	/*-
442 	 * Recalculate the scaling factor.  We want the number of 1/2^64
443 	 * fractions of a second per period of the hardware counter, taking
444 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
445 	 * processing provides us with.
446 	 *
447 	 * The th_adjustment is nanoseconds per second with 32 bit binary
448 	 * fraction and we want 64 bit binary fraction of second:
449 	 *
450 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
451 	 *
452 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
453 	 * we can only multiply by about 850 without overflowing, but that
454 	 * leaves suitably precise fractions for multiply before divide.
455 	 *
456 	 * Divide before multiply with a fraction of 2199/512 results in a
457 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
458 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
459  	 *
460 	 * We happily sacrifice the lowest of the 64 bits of our result
461 	 * to the goddess of code clarity.
462 	 *
463 	 */
464 	scale = (u_int64_t)1 << 63;
465 	scale += (th->th_adjustment / 1024) * 2199;
466 	scale /= th->th_counter->tc_frequency;
467 	th->th_scale = scale * 2;
468 
469 	/*
470 	 * Now that the struct timehands is again consistent, set the new
471 	 * generation number, making sure to not make it zero.
472 	 */
473 	if (++ogen == 0)
474 		ogen = 1;
475 	th->th_generation = ogen;
476 
477 	/* Go live with the new struct timehands. */
478 	time_second = th->th_microtime.tv_sec;
479 	time_uptime = th->th_offset.sec;
480 	timehands = th;
481 }
482 
483 /* Report or change the active timecounter hardware. */
484 static int
485 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
486 {
487 	char newname[32];
488 	struct timecounter *newtc, *tc;
489 	int error;
490 
491 	tc = timecounter;
492 	strlcpy(newname, tc->tc_name, sizeof(newname));
493 
494 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
495 	if (error != 0 || req->newptr == NULL ||
496 	    strcmp(newname, tc->tc_name) == 0)
497 		return (error);
498 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
499 		if (strcmp(newname, newtc->tc_name) != 0)
500 			continue;
501 
502 		/* Warm up new timecounter. */
503 		(void)newtc->tc_get_timecount(newtc);
504 		(void)newtc->tc_get_timecount(newtc);
505 
506 		timecounter = newtc;
507 		return (0);
508 	}
509 	return (EINVAL);
510 }
511 
512 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
513     0, 0, sysctl_kern_timecounter_hardware, "A", "");
514 
515 
516 /* Report or change the active timecounter hardware. */
517 static int
518 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
519 {
520 	char buf[32], *spc;
521 	struct timecounter *tc;
522 	int error;
523 
524 	spc = "";
525 	error = 0;
526 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
527 		sprintf(buf, "%s%s(%d)",
528 		    spc, tc->tc_name, tc->tc_quality);
529 		error = SYSCTL_OUT(req, buf, strlen(buf));
530 		spc = " ";
531 	}
532 	return (error);
533 }
534 
535 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
536     0, 0, sysctl_kern_timecounter_choice, "A", "");
537 
538 /*
539  * RFC 2783 PPS-API implementation.
540  */
541 
542 int
543 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
544 {
545 	pps_params_t *app;
546 	struct pps_fetch_args *fapi;
547 #ifdef PPS_SYNC
548 	struct pps_kcbind_args *kapi;
549 #endif
550 
551 	switch (cmd) {
552 	case PPS_IOC_CREATE:
553 		return (0);
554 	case PPS_IOC_DESTROY:
555 		return (0);
556 	case PPS_IOC_SETPARAMS:
557 		app = (pps_params_t *)data;
558 		if (app->mode & ~pps->ppscap)
559 			return (EINVAL);
560 		pps->ppsparam = *app;
561 		return (0);
562 	case PPS_IOC_GETPARAMS:
563 		app = (pps_params_t *)data;
564 		*app = pps->ppsparam;
565 		app->api_version = PPS_API_VERS_1;
566 		return (0);
567 	case PPS_IOC_GETCAP:
568 		*(int*)data = pps->ppscap;
569 		return (0);
570 	case PPS_IOC_FETCH:
571 		fapi = (struct pps_fetch_args *)data;
572 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
573 			return (EINVAL);
574 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
575 			return (EOPNOTSUPP);
576 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
577 		fapi->pps_info_buf = pps->ppsinfo;
578 		return (0);
579 	case PPS_IOC_KCBIND:
580 #ifdef PPS_SYNC
581 		kapi = (struct pps_kcbind_args *)data;
582 		/* XXX Only root should be able to do this */
583 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
584 			return (EINVAL);
585 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
586 			return (EINVAL);
587 		if (kapi->edge & ~pps->ppscap)
588 			return (EINVAL);
589 		pps->kcmode = kapi->edge;
590 		return (0);
591 #else
592 		return (EOPNOTSUPP);
593 #endif
594 	default:
595 		return (ENOTTY);
596 	}
597 }
598 
599 void
600 pps_init(struct pps_state *pps)
601 {
602 	pps->ppscap |= PPS_TSFMT_TSPEC;
603 	if (pps->ppscap & PPS_CAPTUREASSERT)
604 		pps->ppscap |= PPS_OFFSETASSERT;
605 	if (pps->ppscap & PPS_CAPTURECLEAR)
606 		pps->ppscap |= PPS_OFFSETCLEAR;
607 }
608 
609 void
610 pps_capture(struct pps_state *pps)
611 {
612 	struct timehands *th;
613 
614 	th = timehands;
615 	pps->capgen = th->th_generation;
616 	pps->capth = th;
617 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
618 	if (pps->capgen != th->th_generation)
619 		pps->capgen = 0;
620 }
621 
622 void
623 pps_event(struct pps_state *pps, int event)
624 {
625 	struct bintime bt;
626 	struct timespec ts, *tsp, *osp;
627 	u_int tcount, *pcount;
628 	int foff, fhard;
629 	pps_seq_t *pseq;
630 
631 	/* If the timecounter was wound up underneath us, bail out. */
632 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
633 		return;
634 
635 	/* Things would be easier with arrays. */
636 	if (event == PPS_CAPTUREASSERT) {
637 		tsp = &pps->ppsinfo.assert_timestamp;
638 		osp = &pps->ppsparam.assert_offset;
639 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
640 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
641 		pcount = &pps->ppscount[0];
642 		pseq = &pps->ppsinfo.assert_sequence;
643 	} else {
644 		tsp = &pps->ppsinfo.clear_timestamp;
645 		osp = &pps->ppsparam.clear_offset;
646 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
647 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
648 		pcount = &pps->ppscount[1];
649 		pseq = &pps->ppsinfo.clear_sequence;
650 	}
651 
652 	/*
653 	 * If the timecounter changed, we cannot compare the count values, so
654 	 * we have to drop the rest of the PPS-stuff until the next event.
655 	 */
656 	if (pps->ppstc != pps->capth->th_counter) {
657 		pps->ppstc = pps->capth->th_counter;
658 		*pcount = pps->capcount;
659 		pps->ppscount[2] = pps->capcount;
660 		return;
661 	}
662 
663 	/* Return if nothing really happened. */
664 	if (*pcount == pps->capcount)
665 		return;
666 
667 	/* Convert the count to a timespec. */
668 	tcount = pps->capcount - pps->capth->th_offset_count;
669 	tcount &= pps->capth->th_counter->tc_counter_mask;
670 	bt = pps->capth->th_offset;
671 	bintime_addx(&bt, pps->capth->th_scale * tcount);
672 	bintime_add(&bt, &boottimebin);
673 	bintime2timespec(&bt, &ts);
674 
675 	/* If the timecounter was wound up underneath us, bail out. */
676 	if (pps->capgen != pps->capth->th_generation)
677 		return;
678 
679 	*pcount = pps->capcount;
680 	(*pseq)++;
681 	*tsp = ts;
682 
683 	if (foff) {
684 		timespecadd(tsp, osp);
685 		if (tsp->tv_nsec < 0) {
686 			tsp->tv_nsec += 1000000000;
687 			tsp->tv_sec -= 1;
688 		}
689 	}
690 #ifdef PPS_SYNC
691 	if (fhard) {
692 		u_int64_t scale;
693 
694 		/*
695 		 * Feed the NTP PLL/FLL.
696 		 * The FLL wants to know how many (hardware) nanoseconds
697 		 * elapsed since the previous event.
698 		 */
699 		tcount = pps->capcount - pps->ppscount[2];
700 		pps->ppscount[2] = pps->capcount;
701 		tcount &= pps->capth->th_counter->tc_counter_mask;
702 		scale = (u_int64_t)1 << 63;
703 		scale /= pps->capth->th_counter->tc_frequency;
704 		scale *= 2;
705 		bt.sec = 0;
706 		bt.frac = 0;
707 		bintime_addx(&bt, scale * tcount);
708 		bintime2timespec(&bt, &ts);
709 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
710 	}
711 #endif
712 }
713 
714 /*
715  * Timecounters need to be updated every so often to prevent the hardware
716  * counter from overflowing.  Updating also recalculates the cached values
717  * used by the get*() family of functions, so their precision depends on
718  * the update frequency.
719  */
720 
721 static int tc_tick;
722 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
723 
724 void
725 tc_ticktock(void)
726 {
727 	static int count;
728 
729 	if (++count < tc_tick)
730 		return;
731 	count = 0;
732 	tc_windup();
733 }
734 
735 static void
736 inittimecounter(void *dummy)
737 {
738 	u_int p;
739 
740 	/*
741 	 * Set the initial timeout to
742 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
743 	 * People should probably not use the sysctl to set the timeout
744 	 * to smaller than its inital value, since that value is the
745 	 * smallest reasonable one.  If they want better timestamps they
746 	 * should use the non-"get"* functions.
747 	 */
748 	if (hz > 1000)
749 		tc_tick = (hz + 500) / 1000;
750 	else
751 		tc_tick = 1;
752 	p = (tc_tick * 1000000) / hz;
753 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
754 
755 	/* warm up new timecounter (again) and get rolling. */
756 	(void)timecounter->tc_get_timecount(timecounter);
757 	(void)timecounter->tc_get_timecount(timecounter);
758 }
759 
760 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
761