1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 39 * $Id: kern_clock.c,v 1.41 1997/09/21 22:00:07 gibbs Exp $ 40 */ 41 42 /* Portions of this software are covered by the following: */ 43 /****************************************************************************** 44 * * 45 * Copyright (c) David L. Mills 1993, 1994 * 46 * * 47 * Permission to use, copy, modify, and distribute this software and its * 48 * documentation for any purpose and without fee is hereby granted, provided * 49 * that the above copyright notice appears in all copies and that both the * 50 * copyright notice and this permission notice appear in supporting * 51 * documentation, and that the name University of Delaware not be used in * 52 * advertising or publicity pertaining to distribution of the software * 53 * without specific, written prior permission. The University of Delaware * 54 * makes no representations about the suitability this software for any * 55 * purpose. It is provided "as is" without express or implied warranty. * 56 * * 57 *****************************************************************************/ 58 59 #include "opt_cpu.h" /* XXX */ 60 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/dkstat.h> 64 #include <sys/callout.h> 65 #include <sys/kernel.h> 66 #include <sys/proc.h> 67 #include <sys/resourcevar.h> 68 #include <sys/signalvar.h> 69 #include <sys/timex.h> 70 #include <vm/vm.h> 71 #include <sys/lock.h> 72 #include <vm/pmap.h> 73 #include <vm/vm_map.h> 74 #include <sys/sysctl.h> 75 76 #include <machine/cpu.h> 77 #define CLOCK_HAIR /* XXX */ 78 #include <machine/clock.h> 79 #include <machine/limits.h> 80 81 #ifdef GPROF 82 #include <sys/gmon.h> 83 #endif 84 85 static void initclocks __P((void *dummy)); 86 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 87 88 /* Exported to machdep.c. */ 89 struct callout *callout; 90 struct callout_list callfree; 91 int callwheelsize, callwheelbits, callwheelmask; 92 struct callout_tailq *callwheel; 93 94 95 /* Some of these don't belong here, but it's easiest to concentrate them. */ 96 static long cp_time[CPUSTATES]; 97 long dk_seek[DK_NDRIVE]; 98 static long dk_time[DK_NDRIVE]; /* time busy (in statclock ticks) */ 99 long dk_wds[DK_NDRIVE]; 100 long dk_wpms[DK_NDRIVE]; 101 long dk_xfer[DK_NDRIVE]; 102 103 int dk_busy; 104 int dk_ndrive = 0; 105 char dk_names[DK_NDRIVE][DK_NAMELEN]; 106 107 long tk_cancc; 108 long tk_nin; 109 long tk_nout; 110 long tk_rawcc; 111 112 /* 113 * Clock handling routines. 114 * 115 * This code is written to operate with two timers that run independently of 116 * each other. The main clock, running hz times per second, is used to keep 117 * track of real time. The second timer handles kernel and user profiling, 118 * and does resource use estimation. If the second timer is programmable, 119 * it is randomized to avoid aliasing between the two clocks. For example, 120 * the randomization prevents an adversary from always giving up the cpu 121 * just before its quantum expires. Otherwise, it would never accumulate 122 * cpu ticks. The mean frequency of the second timer is stathz. 123 * 124 * If no second timer exists, stathz will be zero; in this case we drive 125 * profiling and statistics off the main clock. This WILL NOT be accurate; 126 * do not do it unless absolutely necessary. 127 * 128 * The statistics clock may (or may not) be run at a higher rate while 129 * profiling. This profile clock runs at profhz. We require that profhz 130 * be an integral multiple of stathz. 131 * 132 * If the statistics clock is running fast, it must be divided by the ratio 133 * profhz/stathz for statistics. (For profiling, every tick counts.) 134 */ 135 136 /* 137 * TODO: 138 * allocate more timeout table slots when table overflows. 139 */ 140 141 /* 142 * Bump a timeval by a small number of usec's. 143 */ 144 #define BUMPTIME(t, usec) { \ 145 register volatile struct timeval *tp = (t); \ 146 register long us; \ 147 \ 148 tp->tv_usec = us = tp->tv_usec + (usec); \ 149 if (us >= 1000000) { \ 150 tp->tv_usec = us - 1000000; \ 151 tp->tv_sec++; \ 152 } \ 153 } 154 155 int stathz; 156 int profhz; 157 static int profprocs; 158 int ticks; 159 static int softticks; /* Like ticks, but for softclock(). */ 160 static struct callout *nextsoftcheck; /* Next callout to be checked. */ 161 static int psdiv, pscnt; /* prof => stat divider */ 162 int psratio; /* ratio: prof / stat */ 163 164 volatile struct timeval time; 165 volatile struct timeval mono_time; 166 167 /* 168 * Phase/frequency-lock loop (PLL/FLL) definitions 169 * 170 * The following variables are read and set by the ntp_adjtime() system 171 * call. 172 * 173 * time_state shows the state of the system clock, with values defined 174 * in the timex.h header file. 175 * 176 * time_status shows the status of the system clock, with bits defined 177 * in the timex.h header file. 178 * 179 * time_offset is used by the PLL/FLL to adjust the system time in small 180 * increments. 181 * 182 * time_constant determines the bandwidth or "stiffness" of the PLL. 183 * 184 * time_tolerance determines maximum frequency error or tolerance of the 185 * CPU clock oscillator and is a property of the architecture; however, 186 * in principle it could change as result of the presence of external 187 * discipline signals, for instance. 188 * 189 * time_precision is usually equal to the kernel tick variable; however, 190 * in cases where a precision clock counter or external clock is 191 * available, the resolution can be much less than this and depend on 192 * whether the external clock is working or not. 193 * 194 * time_maxerror is initialized by a ntp_adjtime() call and increased by 195 * the kernel once each second to reflect the maximum error 196 * bound growth. 197 * 198 * time_esterror is set and read by the ntp_adjtime() call, but 199 * otherwise not used by the kernel. 200 */ 201 int time_status = STA_UNSYNC; /* clock status bits */ 202 int time_state = TIME_OK; /* clock state */ 203 long time_offset = 0; /* time offset (us) */ 204 long time_constant = 0; /* pll time constant */ 205 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 206 long time_precision = 1; /* clock precision (us) */ 207 long time_maxerror = MAXPHASE; /* maximum error (us) */ 208 long time_esterror = MAXPHASE; /* estimated error (us) */ 209 210 /* 211 * The following variables establish the state of the PLL/FLL and the 212 * residual time and frequency offset of the local clock. The scale 213 * factors are defined in the timex.h header file. 214 * 215 * time_phase and time_freq are the phase increment and the frequency 216 * increment, respectively, of the kernel time variable at each tick of 217 * the clock. 218 * 219 * time_freq is set via ntp_adjtime() from a value stored in a file when 220 * the synchronization daemon is first started. Its value is retrieved 221 * via ntp_adjtime() and written to the file about once per hour by the 222 * daemon. 223 * 224 * time_adj is the adjustment added to the value of tick at each timer 225 * interrupt and is recomputed from time_phase and time_freq at each 226 * seconds rollover. 227 * 228 * time_reftime is the second's portion of the system time on the last 229 * call to ntp_adjtime(). It is used to adjust the time_freq variable 230 * and to increase the time_maxerror as the time since last update 231 * increases. 232 */ 233 static long time_phase = 0; /* phase offset (scaled us) */ 234 long time_freq = 0; /* frequency offset (scaled ppm) */ 235 static long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 236 static long time_reftime = 0; /* time at last adjustment (s) */ 237 238 #ifdef PPS_SYNC 239 /* 240 * The following variables are used only if the kernel PPS discipline 241 * code is configured (PPS_SYNC). The scale factors are defined in the 242 * timex.h header file. 243 * 244 * pps_time contains the time at each calibration interval, as read by 245 * microtime(). pps_count counts the seconds of the calibration 246 * interval, the duration of which is nominally pps_shift in powers of 247 * two. 248 * 249 * pps_offset is the time offset produced by the time median filter 250 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 251 * this filter. 252 * 253 * pps_freq is the frequency offset produced by the frequency median 254 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 255 * by this filter. 256 * 257 * pps_usec is latched from a high resolution counter or external clock 258 * at pps_time. Here we want the hardware counter contents only, not the 259 * contents plus the time_tv.usec as usual. 260 * 261 * pps_valid counts the number of seconds since the last PPS update. It 262 * is used as a watchdog timer to disable the PPS discipline should the 263 * PPS signal be lost. 264 * 265 * pps_glitch counts the number of seconds since the beginning of an 266 * offset burst more than tick/2 from current nominal offset. It is used 267 * mainly to suppress error bursts due to priority conflicts between the 268 * PPS interrupt and timer interrupt. 269 * 270 * pps_intcnt counts the calibration intervals for use in the interval- 271 * adaptation algorithm. It's just too complicated for words. 272 */ 273 struct timeval pps_time; /* kernel time at last interval */ 274 long pps_offset = 0; /* pps time offset (us) */ 275 long pps_jitter = MAXTIME; /* pps time dispersion (jitter) (us) */ 276 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 277 long pps_freq = 0; /* frequency offset (scaled ppm) */ 278 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 279 long pps_ff[] = {0, 0, 0}; /* frequency offset median filter */ 280 long pps_usec = 0; /* microsec counter at last interval */ 281 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 282 int pps_glitch = 0; /* pps signal glitch counter */ 283 int pps_count = 0; /* calibration interval counter (s) */ 284 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 285 int pps_intcnt = 0; /* intervals at current duration */ 286 287 /* 288 * PPS signal quality monitors 289 * 290 * pps_jitcnt counts the seconds that have been discarded because the 291 * jitter measured by the time median filter exceeds the limit MAXTIME 292 * (100 us). 293 * 294 * pps_calcnt counts the frequency calibration intervals, which are 295 * variable from 4 s to 256 s. 296 * 297 * pps_errcnt counts the calibration intervals which have been discarded 298 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 299 * calibration interval jitter exceeds two ticks. 300 * 301 * pps_stbcnt counts the calibration intervals that have been discarded 302 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 303 */ 304 long pps_jitcnt = 0; /* jitter limit exceeded */ 305 long pps_calcnt = 0; /* calibration intervals */ 306 long pps_errcnt = 0; /* calibration errors */ 307 long pps_stbcnt = 0; /* stability limit exceeded */ 308 #endif /* PPS_SYNC */ 309 310 /* XXX none of this stuff works under FreeBSD */ 311 #ifdef EXT_CLOCK 312 /* 313 * External clock definitions 314 * 315 * The following definitions and declarations are used only if an 316 * external clock (HIGHBALL or TPRO) is configured on the system. 317 */ 318 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 319 320 /* 321 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 322 * interrupt and decremented once each second. 323 */ 324 int clock_count = 0; /* CPU clock counter */ 325 326 #ifdef HIGHBALL 327 /* 328 * The clock_offset and clock_cpu variables are used by the HIGHBALL 329 * interface. The clock_offset variable defines the offset between 330 * system time and the HIGBALL counters. The clock_cpu variable contains 331 * the offset between the system clock and the HIGHBALL clock for use in 332 * disciplining the kernel time variable. 333 */ 334 extern struct timeval clock_offset; /* Highball clock offset */ 335 long clock_cpu = 0; /* CPU clock adjust */ 336 #endif /* HIGHBALL */ 337 #endif /* EXT_CLOCK */ 338 339 /* 340 * hardupdate() - local clock update 341 * 342 * This routine is called by ntp_adjtime() to update the local clock 343 * phase and frequency. The implementation is of an adaptive-parameter, 344 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 345 * time and frequency offset estimates for each call. If the kernel PPS 346 * discipline code is configured (PPS_SYNC), the PPS signal itself 347 * determines the new time offset, instead of the calling argument. 348 * Presumably, calls to ntp_adjtime() occur only when the caller 349 * believes the local clock is valid within some bound (+-128 ms with 350 * NTP). If the caller's time is far different than the PPS time, an 351 * argument will ensue, and it's not clear who will lose. 352 * 353 * For uncompensated quartz crystal oscillatores and nominal update 354 * intervals less than 1024 s, operation should be in phase-lock mode 355 * (STA_FLL = 0), where the loop is disciplined to phase. For update 356 * intervals greater than thiss, operation should be in frequency-lock 357 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 358 * 359 * Note: splclock() is in effect. 360 */ 361 void 362 hardupdate(offset) 363 long offset; 364 { 365 long ltemp, mtemp; 366 367 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 368 return; 369 ltemp = offset; 370 #ifdef PPS_SYNC 371 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 372 ltemp = pps_offset; 373 #endif /* PPS_SYNC */ 374 375 /* 376 * Scale the phase adjustment and clamp to the operating range. 377 */ 378 if (ltemp > MAXPHASE) 379 time_offset = MAXPHASE << SHIFT_UPDATE; 380 else if (ltemp < -MAXPHASE) 381 time_offset = -(MAXPHASE << SHIFT_UPDATE); 382 else 383 time_offset = ltemp << SHIFT_UPDATE; 384 385 /* 386 * Select whether the frequency is to be controlled and in which 387 * mode (PLL or FLL). Clamp to the operating range. Ugly 388 * multiply/divide should be replaced someday. 389 */ 390 if (time_status & STA_FREQHOLD || time_reftime == 0) 391 time_reftime = time.tv_sec; 392 mtemp = time.tv_sec - time_reftime; 393 time_reftime = time.tv_sec; 394 if (time_status & STA_FLL) { 395 if (mtemp >= MINSEC) { 396 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 397 SHIFT_UPDATE)); 398 if (ltemp < 0) 399 time_freq -= -ltemp >> SHIFT_KH; 400 else 401 time_freq += ltemp >> SHIFT_KH; 402 } 403 } else { 404 if (mtemp < MAXSEC) { 405 ltemp *= mtemp; 406 if (ltemp < 0) 407 time_freq -= -ltemp >> (time_constant + 408 time_constant + SHIFT_KF - 409 SHIFT_USEC); 410 else 411 time_freq += ltemp >> (time_constant + 412 time_constant + SHIFT_KF - 413 SHIFT_USEC); 414 } 415 } 416 if (time_freq > time_tolerance) 417 time_freq = time_tolerance; 418 else if (time_freq < -time_tolerance) 419 time_freq = -time_tolerance; 420 } 421 422 423 424 /* 425 * Initialize clock frequencies and start both clocks running. 426 */ 427 /* ARGSUSED*/ 428 static void 429 initclocks(dummy) 430 void *dummy; 431 { 432 register int i; 433 434 /* 435 * Set divisors to 1 (normal case) and let the machine-specific 436 * code do its bit. 437 */ 438 psdiv = pscnt = 1; 439 cpu_initclocks(); 440 441 /* 442 * Compute profhz/stathz, and fix profhz if needed. 443 */ 444 i = stathz ? stathz : hz; 445 if (profhz == 0) 446 profhz = i; 447 psratio = profhz / i; 448 } 449 450 /* 451 * The real-time timer, interrupting hz times per second. 452 */ 453 void 454 hardclock(frame) 455 register struct clockframe *frame; 456 { 457 register struct callout *p1; 458 register struct proc *p; 459 460 p = curproc; 461 if (p) { 462 register struct pstats *pstats; 463 464 /* 465 * Run current process's virtual and profile time, as needed. 466 */ 467 pstats = p->p_stats; 468 if (CLKF_USERMODE(frame) && 469 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 470 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 471 psignal(p, SIGVTALRM); 472 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 473 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 474 psignal(p, SIGPROF); 475 } 476 477 /* 478 * If no separate statistics clock is available, run it from here. 479 */ 480 if (stathz == 0) 481 statclock(frame); 482 483 /* 484 * Increment the time-of-day. 485 */ 486 ticks++; 487 { 488 int time_update; 489 struct timeval newtime = time; 490 long ltemp; 491 492 if (timedelta == 0) { 493 time_update = CPU_THISTICKLEN(tick); 494 } else { 495 time_update = CPU_THISTICKLEN(tick) + tickdelta; 496 timedelta -= tickdelta; 497 } 498 BUMPTIME(&mono_time, time_update); 499 500 /* 501 * Compute the phase adjustment. If the low-order bits 502 * (time_phase) of the update overflow, bump the high-order bits 503 * (time_update). 504 */ 505 time_phase += time_adj; 506 if (time_phase <= -FINEUSEC) { 507 ltemp = -time_phase >> SHIFT_SCALE; 508 time_phase += ltemp << SHIFT_SCALE; 509 time_update -= ltemp; 510 } 511 else if (time_phase >= FINEUSEC) { 512 ltemp = time_phase >> SHIFT_SCALE; 513 time_phase -= ltemp << SHIFT_SCALE; 514 time_update += ltemp; 515 } 516 517 newtime.tv_usec += time_update; 518 /* 519 * On rollover of the second the phase adjustment to be used for 520 * the next second is calculated. Also, the maximum error is 521 * increased by the tolerance. If the PPS frequency discipline 522 * code is present, the phase is increased to compensate for the 523 * CPU clock oscillator frequency error. 524 * 525 * On a 32-bit machine and given parameters in the timex.h 526 * header file, the maximum phase adjustment is +-512 ms and 527 * maximum frequency offset is a tad less than) +-512 ppm. On a 528 * 64-bit machine, you shouldn't need to ask. 529 */ 530 if (newtime.tv_usec >= 1000000) { 531 newtime.tv_usec -= 1000000; 532 newtime.tv_sec++; 533 time_maxerror += time_tolerance >> SHIFT_USEC; 534 535 /* 536 * Compute the phase adjustment for the next second. In 537 * PLL mode, the offset is reduced by a fixed factor 538 * times the time constant. In FLL mode the offset is 539 * used directly. In either mode, the maximum phase 540 * adjustment for each second is clamped so as to spread 541 * the adjustment over not more than the number of 542 * seconds between updates. 543 */ 544 if (time_offset < 0) { 545 ltemp = -time_offset; 546 if (!(time_status & STA_FLL)) 547 ltemp >>= SHIFT_KG + time_constant; 548 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 549 ltemp = (MAXPHASE / MINSEC) << 550 SHIFT_UPDATE; 551 time_offset += ltemp; 552 time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - 553 SHIFT_UPDATE); 554 } else { 555 ltemp = time_offset; 556 if (!(time_status & STA_FLL)) 557 ltemp >>= SHIFT_KG + time_constant; 558 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 559 ltemp = (MAXPHASE / MINSEC) << 560 SHIFT_UPDATE; 561 time_offset -= ltemp; 562 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - 563 SHIFT_UPDATE); 564 } 565 566 /* 567 * Compute the frequency estimate and additional phase 568 * adjustment due to frequency error for the next 569 * second. When the PPS signal is engaged, gnaw on the 570 * watchdog counter and update the frequency computed by 571 * the pll and the PPS signal. 572 */ 573 #ifdef PPS_SYNC 574 pps_valid++; 575 if (pps_valid == PPS_VALID) { 576 pps_jitter = MAXTIME; 577 pps_stabil = MAXFREQ; 578 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 579 STA_PPSWANDER | STA_PPSERROR); 580 } 581 ltemp = time_freq + pps_freq; 582 #else 583 ltemp = time_freq; 584 #endif /* PPS_SYNC */ 585 if (ltemp < 0) 586 time_adj -= -ltemp >> 587 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 588 else 589 time_adj += ltemp >> 590 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 591 592 #if SHIFT_HZ == 7 593 /* 594 * When the CPU clock oscillator frequency is not a 595 * power of two in Hz, the SHIFT_HZ is only an 596 * approximate scale factor. In the SunOS kernel, this 597 * results in a PLL gain factor of 1/1.28 = 0.78 what it 598 * should be. In the following code the overall gain is 599 * increased by a factor of 1.25, which results in a 600 * residual error less than 3 percent. 601 */ 602 /* Same thing applies for FreeBSD --GAW */ 603 if (hz == 100) { 604 if (time_adj < 0) 605 time_adj -= -time_adj >> 2; 606 else 607 time_adj += time_adj >> 2; 608 } 609 #endif /* SHIFT_HZ */ 610 611 /* XXX - this is really bogus, but can't be fixed until 612 xntpd's idea of the system clock is fixed to know how 613 the user wants leap seconds handled; in the mean time, 614 we assume that users of NTP are running without proper 615 leap second support (this is now the default anyway) */ 616 /* 617 * Leap second processing. If in leap-insert state at 618 * the end of the day, the system clock is set back one 619 * second; if in leap-delete state, the system clock is 620 * set ahead one second. The microtime() routine or 621 * external clock driver will insure that reported time 622 * is always monotonic. The ugly divides should be 623 * replaced. 624 */ 625 switch (time_state) { 626 627 case TIME_OK: 628 if (time_status & STA_INS) 629 time_state = TIME_INS; 630 else if (time_status & STA_DEL) 631 time_state = TIME_DEL; 632 break; 633 634 case TIME_INS: 635 if (newtime.tv_sec % 86400 == 0) { 636 newtime.tv_sec--; 637 time_state = TIME_OOP; 638 } 639 break; 640 641 case TIME_DEL: 642 if ((newtime.tv_sec + 1) % 86400 == 0) { 643 newtime.tv_sec++; 644 time_state = TIME_WAIT; 645 } 646 break; 647 648 case TIME_OOP: 649 time_state = TIME_WAIT; 650 break; 651 652 case TIME_WAIT: 653 if (!(time_status & (STA_INS | STA_DEL))) 654 time_state = TIME_OK; 655 } 656 } 657 CPU_CLOCKUPDATE(&time, &newtime); 658 } 659 660 /* 661 * Process callouts at a very low cpu priority, so we don't keep the 662 * relatively high clock interrupt priority any longer than necessary. 663 */ 664 if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) { 665 if (CLKF_BASEPRI(frame)) { 666 /* 667 * Save the overhead of a software interrupt; 668 * it will happen as soon as we return, so do it now. 669 */ 670 (void)splsoftclock(); 671 softclock(); 672 } else 673 setsoftclock(); 674 } else if (softticks + 1 == ticks) { 675 ++softticks; 676 } 677 } 678 679 /* 680 * The callout mechanism is based on the work of Adam M. Costello and 681 * George Varghese, published in a technical report entitled "Redesigning 682 * the BSD Callout and Timer Facilities" and modified slightly for inclusion 683 * in FreeBSD by Justin T. Gibbs. The original work on the data structures 684 * used in this implementation was published by G.Varghese and A. Lauck in 685 * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for 686 * the Efficient Implementation of a Timer Facility" in the Proceedings of 687 * the 11th ACM Annual Symposium on Operating Systems Principles, 688 * Austin, Texas Nov 1987. 689 */ 690 /* 691 * Software (low priority) clock interrupt. 692 * Run periodic events from timeout queue. 693 */ 694 /*ARGSUSED*/ 695 void 696 softclock() 697 { 698 register struct callout *c; 699 register struct callout_tailq *bucket; 700 register int s; 701 register int curticks; 702 register int steps; /* 703 * Number of steps taken since 704 * we last allowed interrupts. 705 */ 706 707 #ifndef MAX_SOFTCLOCK_STEPS 708 #define MAX_SOFTCLOCK_STEPS 100 /* Maximum allowed value of steps. */ 709 #endif /* MAX_SOFTCLOCK_STEPS */ 710 711 steps = 0; 712 s = splhigh(); 713 while (softticks != ticks) { 714 softticks++; 715 /* 716 * softticks may be modified by hard clock, so cache 717 * it while we work on a given bucket. 718 */ 719 curticks = softticks; 720 bucket = &callwheel[curticks & callwheelmask]; 721 c = TAILQ_FIRST(bucket); 722 while (c) { 723 if (c->c_time != curticks) { 724 c = TAILQ_NEXT(c, c_links.tqe); 725 ++steps; 726 if (steps >= MAX_SOFTCLOCK_STEPS) { 727 nextsoftcheck = c; 728 /* Give interrupts a chance. */ 729 splx(s); 730 s = splhigh(); 731 c = nextsoftcheck; 732 steps = 0; 733 } 734 } else { 735 void (*c_func)(void *); 736 void *c_arg; 737 738 nextsoftcheck = TAILQ_NEXT(c, c_links.tqe); 739 TAILQ_REMOVE(bucket, c, c_links.tqe); 740 c_func = c->c_func; 741 c_arg = c->c_arg; 742 c->c_func = NULL; 743 SLIST_INSERT_HEAD(&callfree, c, c_links.sle); 744 splx(s); 745 c_func(c_arg); 746 s = splhigh(); 747 steps = 0; 748 c = nextsoftcheck; 749 } 750 } 751 } 752 nextsoftcheck = NULL; 753 splx(s); 754 } 755 756 /* 757 * timeout -- 758 * Execute a function after a specified length of time. 759 * 760 * untimeout -- 761 * Cancel previous timeout function call. 762 * 763 * callout_handle_init -- 764 * Initialize a handle so that using it with untimeout is benign. 765 * 766 * See AT&T BCI Driver Reference Manual for specification. This 767 * implementation differs from that one in that although an 768 * identification value is returned from timeout, the original 769 * arguments to timeout as well as the identifier are used to 770 * identify entries for untimeout. 771 */ 772 struct callout_handle 773 timeout(ftn, arg, to_ticks) 774 timeout_t ftn; 775 void *arg; 776 register int to_ticks; 777 { 778 int s; 779 struct callout *new; 780 struct callout_handle handle; 781 782 if (to_ticks <= 0) 783 to_ticks = 1; 784 785 /* Lock out the clock. */ 786 s = splhigh(); 787 788 /* Fill in the next free callout structure. */ 789 new = SLIST_FIRST(&callfree); 790 if (new == NULL) 791 /* XXX Attempt to malloc first */ 792 panic("timeout table full"); 793 794 SLIST_REMOVE_HEAD(&callfree, c_links.sle); 795 new->c_arg = arg; 796 new->c_func = ftn; 797 new->c_time = ticks + to_ticks; 798 TAILQ_INSERT_TAIL(&callwheel[new->c_time & callwheelmask], 799 new, c_links.tqe); 800 801 splx(s); 802 handle.callout = new; 803 return (handle); 804 } 805 806 void 807 untimeout(ftn, arg, handle) 808 timeout_t ftn; 809 void *arg; 810 struct callout_handle handle; 811 { 812 register struct callout *p, *t; 813 register int s; 814 815 /* 816 * Check for a handle that was initialized 817 * by callout_handle_init, but never used 818 * for a real timeout. 819 */ 820 if (handle.callout == NULL) 821 return; 822 823 s = splhigh(); 824 if ((handle.callout->c_func == ftn) 825 && (handle.callout->c_arg == arg)) { 826 if (nextsoftcheck == handle.callout) { 827 nextsoftcheck = TAILQ_NEXT(handle.callout, c_links.tqe); 828 } 829 TAILQ_REMOVE(&callwheel[handle.callout->c_time & callwheelmask], 830 handle.callout, c_links.tqe); 831 handle.callout->c_func = NULL; 832 SLIST_INSERT_HEAD(&callfree, handle.callout, c_links.sle); 833 } 834 splx(s); 835 } 836 837 void 838 callout_handle_init(struct callout_handle *handle) 839 { 840 handle->callout = NULL; 841 } 842 843 void 844 gettime(struct timeval *tvp) 845 { 846 int s; 847 848 s = splclock(); 849 /* XXX should use microtime() iff tv_usec is used. */ 850 *tvp = time; 851 splx(s); 852 } 853 854 /* 855 * Compute number of hz until specified time. Used to 856 * compute third argument to timeout() from an absolute time. 857 */ 858 int 859 hzto(tv) 860 struct timeval *tv; 861 { 862 register unsigned long ticks; 863 register long sec, usec; 864 int s; 865 866 /* 867 * If the number of usecs in the whole seconds part of the time 868 * difference fits in a long, then the total number of usecs will 869 * fit in an unsigned long. Compute the total and convert it to 870 * ticks, rounding up and adding 1 to allow for the current tick 871 * to expire. Rounding also depends on unsigned long arithmetic 872 * to avoid overflow. 873 * 874 * Otherwise, if the number of ticks in the whole seconds part of 875 * the time difference fits in a long, then convert the parts to 876 * ticks separately and add, using similar rounding methods and 877 * overflow avoidance. This method would work in the previous 878 * case but it is slightly slower and assumes that hz is integral. 879 * 880 * Otherwise, round the time difference down to the maximum 881 * representable value. 882 * 883 * If ints have 32 bits, then the maximum value for any timeout in 884 * 10ms ticks is 248 days. 885 */ 886 s = splclock(); 887 sec = tv->tv_sec - time.tv_sec; 888 usec = tv->tv_usec - time.tv_usec; 889 splx(s); 890 if (usec < 0) { 891 sec--; 892 usec += 1000000; 893 } 894 if (sec < 0) { 895 #ifdef DIAGNOSTIC 896 printf("hzto: negative time difference %ld sec %ld usec\n", 897 sec, usec); 898 #endif 899 ticks = 1; 900 } else if (sec <= LONG_MAX / 1000000) 901 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 902 / tick + 1; 903 else if (sec <= LONG_MAX / hz) 904 ticks = sec * hz 905 + ((unsigned long)usec + (tick - 1)) / tick + 1; 906 else 907 ticks = LONG_MAX; 908 if (ticks > INT_MAX) 909 ticks = INT_MAX; 910 return (ticks); 911 } 912 913 /* 914 * Start profiling on a process. 915 * 916 * Kernel profiling passes proc0 which never exits and hence 917 * keeps the profile clock running constantly. 918 */ 919 void 920 startprofclock(p) 921 register struct proc *p; 922 { 923 int s; 924 925 if ((p->p_flag & P_PROFIL) == 0) { 926 p->p_flag |= P_PROFIL; 927 if (++profprocs == 1 && stathz != 0) { 928 s = splstatclock(); 929 psdiv = pscnt = psratio; 930 setstatclockrate(profhz); 931 splx(s); 932 } 933 } 934 } 935 936 /* 937 * Stop profiling on a process. 938 */ 939 void 940 stopprofclock(p) 941 register struct proc *p; 942 { 943 int s; 944 945 if (p->p_flag & P_PROFIL) { 946 p->p_flag &= ~P_PROFIL; 947 if (--profprocs == 0 && stathz != 0) { 948 s = splstatclock(); 949 psdiv = pscnt = 1; 950 setstatclockrate(stathz); 951 splx(s); 952 } 953 } 954 } 955 956 /* 957 * Statistics clock. Grab profile sample, and if divider reaches 0, 958 * do process and kernel statistics. 959 */ 960 void 961 statclock(frame) 962 register struct clockframe *frame; 963 { 964 #ifdef GPROF 965 register struct gmonparam *g; 966 #endif 967 register struct proc *p; 968 register int i; 969 struct pstats *pstats; 970 long rss; 971 struct rusage *ru; 972 struct vmspace *vm; 973 974 if (CLKF_USERMODE(frame)) { 975 p = curproc; 976 if (p->p_flag & P_PROFIL) 977 addupc_intr(p, CLKF_PC(frame), 1); 978 if (--pscnt > 0) 979 return; 980 /* 981 * Came from user mode; CPU was in user state. 982 * If this process is being profiled record the tick. 983 */ 984 p->p_uticks++; 985 if (p->p_nice > NZERO) 986 cp_time[CP_NICE]++; 987 else 988 cp_time[CP_USER]++; 989 } else { 990 #ifdef GPROF 991 /* 992 * Kernel statistics are just like addupc_intr, only easier. 993 */ 994 g = &_gmonparam; 995 if (g->state == GMON_PROF_ON) { 996 i = CLKF_PC(frame) - g->lowpc; 997 if (i < g->textsize) { 998 i /= HISTFRACTION * sizeof(*g->kcount); 999 g->kcount[i]++; 1000 } 1001 } 1002 #endif 1003 if (--pscnt > 0) 1004 return; 1005 /* 1006 * Came from kernel mode, so we were: 1007 * - handling an interrupt, 1008 * - doing syscall or trap work on behalf of the current 1009 * user process, or 1010 * - spinning in the idle loop. 1011 * Whichever it is, charge the time as appropriate. 1012 * Note that we charge interrupts to the current process, 1013 * regardless of whether they are ``for'' that process, 1014 * so that we know how much of its real time was spent 1015 * in ``non-process'' (i.e., interrupt) work. 1016 */ 1017 p = curproc; 1018 if (CLKF_INTR(frame)) { 1019 if (p != NULL) 1020 p->p_iticks++; 1021 cp_time[CP_INTR]++; 1022 } else if (p != NULL && !(p->p_flag & P_IDLEPROC)) { 1023 p->p_sticks++; 1024 cp_time[CP_SYS]++; 1025 } else 1026 cp_time[CP_IDLE]++; 1027 } 1028 pscnt = psdiv; 1029 1030 /* 1031 * We maintain statistics shown by user-level statistics 1032 * programs: the amount of time in each cpu state, and 1033 * the amount of time each of DK_NDRIVE ``drives'' is busy. 1034 * 1035 * XXX should either run linked list of drives, or (better) 1036 * grab timestamps in the start & done code. 1037 */ 1038 for (i = 0; i < DK_NDRIVE; i++) 1039 if (dk_busy & (1 << i)) 1040 dk_time[i]++; 1041 1042 /* 1043 * We adjust the priority of the current process. The priority of 1044 * a process gets worse as it accumulates CPU time. The cpu usage 1045 * estimator (p_estcpu) is increased here. The formula for computing 1046 * priorities (in kern_synch.c) will compute a different value each 1047 * time p_estcpu increases by 4. The cpu usage estimator ramps up 1048 * quite quickly when the process is running (linearly), and decays 1049 * away exponentially, at a rate which is proportionally slower when 1050 * the system is busy. The basic principal is that the system will 1051 * 90% forget that the process used a lot of CPU time in 5 * loadav 1052 * seconds. This causes the system to favor processes which haven't 1053 * run much recently, and to round-robin among other processes. 1054 */ 1055 if (p != NULL) { 1056 p->p_cpticks++; 1057 if (++p->p_estcpu == 0) 1058 p->p_estcpu--; 1059 if ((p->p_estcpu & 3) == 0) { 1060 resetpriority(p); 1061 if (p->p_priority >= PUSER) 1062 p->p_priority = p->p_usrpri; 1063 } 1064 1065 /* Update resource usage integrals and maximums. */ 1066 if ((pstats = p->p_stats) != NULL && 1067 (ru = &pstats->p_ru) != NULL && 1068 (vm = p->p_vmspace) != NULL) { 1069 ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024; 1070 ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024; 1071 ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024; 1072 rss = vm->vm_pmap.pm_stats.resident_count * 1073 PAGE_SIZE / 1024; 1074 if (ru->ru_maxrss < rss) 1075 ru->ru_maxrss = rss; 1076 } 1077 } 1078 } 1079 1080 /* 1081 * Return information about system clocks. 1082 */ 1083 static int 1084 sysctl_kern_clockrate SYSCTL_HANDLER_ARGS 1085 { 1086 struct clockinfo clkinfo; 1087 /* 1088 * Construct clockinfo structure. 1089 */ 1090 clkinfo.hz = hz; 1091 clkinfo.tick = tick; 1092 clkinfo.tickadj = tickadj; 1093 clkinfo.profhz = profhz; 1094 clkinfo.stathz = stathz ? stathz : hz; 1095 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 1096 } 1097 1098 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 1099 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 1100 1101 #ifdef PPS_SYNC 1102 /* 1103 * hardpps() - discipline CPU clock oscillator to external PPS signal 1104 * 1105 * This routine is called at each PPS interrupt in order to discipline 1106 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1107 * and leaves it in a handy spot for the hardclock() routine. It 1108 * integrates successive PPS phase differences and calculates the 1109 * frequency offset. This is used in hardclock() to discipline the CPU 1110 * clock oscillator so that intrinsic frequency error is cancelled out. 1111 * The code requires the caller to capture the time and hardware counter 1112 * value at the on-time PPS signal transition. 1113 * 1114 * Note that, on some Unix systems, this routine runs at an interrupt 1115 * priority level higher than the timer interrupt routine hardclock(). 1116 * Therefore, the variables used are distinct from the hardclock() 1117 * variables, except for certain exceptions: The PPS frequency pps_freq 1118 * and phase pps_offset variables are determined by this routine and 1119 * updated atomically. The time_tolerance variable can be considered a 1120 * constant, since it is infrequently changed, and then only when the 1121 * PPS signal is disabled. The watchdog counter pps_valid is updated 1122 * once per second by hardclock() and is atomically cleared in this 1123 * routine. 1124 */ 1125 void 1126 hardpps(tvp, usec) 1127 struct timeval *tvp; /* time at PPS */ 1128 long usec; /* hardware counter at PPS */ 1129 { 1130 long u_usec, v_usec, bigtick; 1131 long cal_sec, cal_usec; 1132 1133 /* 1134 * An occasional glitch can be produced when the PPS interrupt 1135 * occurs in the hardclock() routine before the time variable is 1136 * updated. Here the offset is discarded when the difference 1137 * between it and the last one is greater than tick/2, but not 1138 * if the interval since the first discard exceeds 30 s. 1139 */ 1140 time_status |= STA_PPSSIGNAL; 1141 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1142 pps_valid = 0; 1143 u_usec = -tvp->tv_usec; 1144 if (u_usec < -500000) 1145 u_usec += 1000000; 1146 v_usec = pps_offset - u_usec; 1147 if (v_usec < 0) 1148 v_usec = -v_usec; 1149 if (v_usec > (tick >> 1)) { 1150 if (pps_glitch > MAXGLITCH) { 1151 pps_glitch = 0; 1152 pps_tf[2] = u_usec; 1153 pps_tf[1] = u_usec; 1154 } else { 1155 pps_glitch++; 1156 u_usec = pps_offset; 1157 } 1158 } else 1159 pps_glitch = 0; 1160 1161 /* 1162 * A three-stage median filter is used to help deglitch the pps 1163 * time. The median sample becomes the time offset estimate; the 1164 * difference between the other two samples becomes the time 1165 * dispersion (jitter) estimate. 1166 */ 1167 pps_tf[2] = pps_tf[1]; 1168 pps_tf[1] = pps_tf[0]; 1169 pps_tf[0] = u_usec; 1170 if (pps_tf[0] > pps_tf[1]) { 1171 if (pps_tf[1] > pps_tf[2]) { 1172 pps_offset = pps_tf[1]; /* 0 1 2 */ 1173 v_usec = pps_tf[0] - pps_tf[2]; 1174 } else if (pps_tf[2] > pps_tf[0]) { 1175 pps_offset = pps_tf[0]; /* 2 0 1 */ 1176 v_usec = pps_tf[2] - pps_tf[1]; 1177 } else { 1178 pps_offset = pps_tf[2]; /* 0 2 1 */ 1179 v_usec = pps_tf[0] - pps_tf[1]; 1180 } 1181 } else { 1182 if (pps_tf[1] < pps_tf[2]) { 1183 pps_offset = pps_tf[1]; /* 2 1 0 */ 1184 v_usec = pps_tf[2] - pps_tf[0]; 1185 } else if (pps_tf[2] < pps_tf[0]) { 1186 pps_offset = pps_tf[0]; /* 1 0 2 */ 1187 v_usec = pps_tf[1] - pps_tf[2]; 1188 } else { 1189 pps_offset = pps_tf[2]; /* 1 2 0 */ 1190 v_usec = pps_tf[1] - pps_tf[0]; 1191 } 1192 } 1193 if (v_usec > MAXTIME) 1194 pps_jitcnt++; 1195 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1196 if (v_usec < 0) 1197 pps_jitter -= -v_usec >> PPS_AVG; 1198 else 1199 pps_jitter += v_usec >> PPS_AVG; 1200 if (pps_jitter > (MAXTIME >> 1)) 1201 time_status |= STA_PPSJITTER; 1202 1203 /* 1204 * During the calibration interval adjust the starting time when 1205 * the tick overflows. At the end of the interval compute the 1206 * duration of the interval and the difference of the hardware 1207 * counters at the beginning and end of the interval. This code 1208 * is deliciously complicated by the fact valid differences may 1209 * exceed the value of tick when using long calibration 1210 * intervals and small ticks. Note that the counter can be 1211 * greater than tick if caught at just the wrong instant, but 1212 * the values returned and used here are correct. 1213 */ 1214 bigtick = (long)tick << SHIFT_USEC; 1215 pps_usec -= pps_freq; 1216 if (pps_usec >= bigtick) 1217 pps_usec -= bigtick; 1218 if (pps_usec < 0) 1219 pps_usec += bigtick; 1220 pps_time.tv_sec++; 1221 pps_count++; 1222 if (pps_count < (1 << pps_shift)) 1223 return; 1224 pps_count = 0; 1225 pps_calcnt++; 1226 u_usec = usec << SHIFT_USEC; 1227 v_usec = pps_usec - u_usec; 1228 if (v_usec >= bigtick >> 1) 1229 v_usec -= bigtick; 1230 if (v_usec < -(bigtick >> 1)) 1231 v_usec += bigtick; 1232 if (v_usec < 0) 1233 v_usec = -(-v_usec >> pps_shift); 1234 else 1235 v_usec = v_usec >> pps_shift; 1236 pps_usec = u_usec; 1237 cal_sec = tvp->tv_sec; 1238 cal_usec = tvp->tv_usec; 1239 cal_sec -= pps_time.tv_sec; 1240 cal_usec -= pps_time.tv_usec; 1241 if (cal_usec < 0) { 1242 cal_usec += 1000000; 1243 cal_sec--; 1244 } 1245 pps_time = *tvp; 1246 1247 /* 1248 * Check for lost interrupts, noise, excessive jitter and 1249 * excessive frequency error. The number of timer ticks during 1250 * the interval may vary +-1 tick. Add to this a margin of one 1251 * tick for the PPS signal jitter and maximum frequency 1252 * deviation. If the limits are exceeded, the calibration 1253 * interval is reset to the minimum and we start over. 1254 */ 1255 u_usec = (long)tick << 1; 1256 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1257 || (cal_sec == 0 && cal_usec < u_usec)) 1258 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1259 pps_errcnt++; 1260 pps_shift = PPS_SHIFT; 1261 pps_intcnt = 0; 1262 time_status |= STA_PPSERROR; 1263 return; 1264 } 1265 1266 /* 1267 * A three-stage median filter is used to help deglitch the pps 1268 * frequency. The median sample becomes the frequency offset 1269 * estimate; the difference between the other two samples 1270 * becomes the frequency dispersion (stability) estimate. 1271 */ 1272 pps_ff[2] = pps_ff[1]; 1273 pps_ff[1] = pps_ff[0]; 1274 pps_ff[0] = v_usec; 1275 if (pps_ff[0] > pps_ff[1]) { 1276 if (pps_ff[1] > pps_ff[2]) { 1277 u_usec = pps_ff[1]; /* 0 1 2 */ 1278 v_usec = pps_ff[0] - pps_ff[2]; 1279 } else if (pps_ff[2] > pps_ff[0]) { 1280 u_usec = pps_ff[0]; /* 2 0 1 */ 1281 v_usec = pps_ff[2] - pps_ff[1]; 1282 } else { 1283 u_usec = pps_ff[2]; /* 0 2 1 */ 1284 v_usec = pps_ff[0] - pps_ff[1]; 1285 } 1286 } else { 1287 if (pps_ff[1] < pps_ff[2]) { 1288 u_usec = pps_ff[1]; /* 2 1 0 */ 1289 v_usec = pps_ff[2] - pps_ff[0]; 1290 } else if (pps_ff[2] < pps_ff[0]) { 1291 u_usec = pps_ff[0]; /* 1 0 2 */ 1292 v_usec = pps_ff[1] - pps_ff[2]; 1293 } else { 1294 u_usec = pps_ff[2]; /* 1 2 0 */ 1295 v_usec = pps_ff[1] - pps_ff[0]; 1296 } 1297 } 1298 1299 /* 1300 * Here the frequency dispersion (stability) is updated. If it 1301 * is less than one-fourth the maximum (MAXFREQ), the frequency 1302 * offset is updated as well, but clamped to the tolerance. It 1303 * will be processed later by the hardclock() routine. 1304 */ 1305 v_usec = (v_usec >> 1) - pps_stabil; 1306 if (v_usec < 0) 1307 pps_stabil -= -v_usec >> PPS_AVG; 1308 else 1309 pps_stabil += v_usec >> PPS_AVG; 1310 if (pps_stabil > MAXFREQ >> 2) { 1311 pps_stbcnt++; 1312 time_status |= STA_PPSWANDER; 1313 return; 1314 } 1315 if (time_status & STA_PPSFREQ) { 1316 if (u_usec < 0) { 1317 pps_freq -= -u_usec >> PPS_AVG; 1318 if (pps_freq < -time_tolerance) 1319 pps_freq = -time_tolerance; 1320 u_usec = -u_usec; 1321 } else { 1322 pps_freq += u_usec >> PPS_AVG; 1323 if (pps_freq > time_tolerance) 1324 pps_freq = time_tolerance; 1325 } 1326 } 1327 1328 /* 1329 * Here the calibration interval is adjusted. If the maximum 1330 * time difference is greater than tick / 4, reduce the interval 1331 * by half. If this is not the case for four consecutive 1332 * intervals, double the interval. 1333 */ 1334 if (u_usec << pps_shift > bigtick >> 2) { 1335 pps_intcnt = 0; 1336 if (pps_shift > PPS_SHIFT) 1337 pps_shift--; 1338 } else if (pps_intcnt >= 4) { 1339 pps_intcnt = 0; 1340 if (pps_shift < PPS_SHIFTMAX) 1341 pps_shift++; 1342 } else 1343 pps_intcnt++; 1344 } 1345 #endif /* PPS_SYNC */ 1346