139acc78aSPoul-Henning Kamp /*- 264de3fddSPedro F. Giffuni * SPDX-License-Identifier: Beerware 364de3fddSPedro F. Giffuni * 491266b96SPoul-Henning Kamp * ---------------------------------------------------------------------------- 591266b96SPoul-Henning Kamp * "THE BEER-WARE LICENSE" (Revision 42): 691266b96SPoul-Henning Kamp * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you 791266b96SPoul-Henning Kamp * can do whatever you want with this stuff. If we meet some day, and you think 891266b96SPoul-Henning Kamp * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp 991266b96SPoul-Henning Kamp * ---------------------------------------------------------------------------- 10b0fdc837SLawrence Stewart * 1116808549SKonstantin Belousov * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation 12b0fdc837SLawrence Stewart * All rights reserved. 13b0fdc837SLawrence Stewart * 14b0fdc837SLawrence Stewart * Portions of this software were developed by Julien Ridoux at the University 15b0fdc837SLawrence Stewart * of Melbourne under sponsorship from the FreeBSD Foundation. 1616808549SKonstantin Belousov * 1716808549SKonstantin Belousov * Portions of this software were developed by Konstantin Belousov 1816808549SKonstantin Belousov * under sponsorship from the FreeBSD Foundation. 19df8bae1dSRodney W. Grimes */ 20df8bae1dSRodney W. Grimes 21677b542eSDavid E. O'Brien #include <sys/cdefs.h> 22677b542eSDavid E. O'Brien __FBSDID("$FreeBSD$"); 23677b542eSDavid E. O'Brien 2432c20357SPoul-Henning Kamp #include "opt_ntp.h" 25b0fdc837SLawrence Stewart #include "opt_ffclock.h" 2632c20357SPoul-Henning Kamp 27df8bae1dSRodney W. Grimes #include <sys/param.h> 2891266b96SPoul-Henning Kamp #include <sys/kernel.h> 295b999a6bSDavide Italiano #include <sys/limits.h> 30b0fdc837SLawrence Stewart #include <sys/lock.h> 31b0fdc837SLawrence Stewart #include <sys/mutex.h> 329dbdf2a1SEric van Gyzen #include <sys/proc.h> 3391d9eda2SIan Lepore #include <sys/sbuf.h> 349dbdf2a1SEric van Gyzen #include <sys/sleepqueue.h> 3591266b96SPoul-Henning Kamp #include <sys/sysctl.h> 364e74721cSPoul-Henning Kamp #include <sys/syslog.h> 3791266b96SPoul-Henning Kamp #include <sys/systm.h> 38b0fdc837SLawrence Stewart #include <sys/timeffc.h> 3932c20357SPoul-Henning Kamp #include <sys/timepps.h> 4048e5da55SPoul-Henning Kamp #include <sys/timetc.h> 4139acc78aSPoul-Henning Kamp #include <sys/timex.h> 42aea81038SKonstantin Belousov #include <sys/vdso.h> 4339acc78aSPoul-Henning Kamp 443bac064fSPoul-Henning Kamp /* 45c1cccd1eSWarner Losh * A large step happens on boot. This constant detects such steps. 46c1cccd1eSWarner Losh * It is relatively small so that ntp_update_second gets called enough 47c1cccd1eSWarner Losh * in the typical 'missed a couple of seconds' case, but doesn't loop 48c1cccd1eSWarner Losh * forever when the time step is large. 494f2073fbSWarner Losh */ 504f2073fbSWarner Losh #define LARGE_STEP 200 514f2073fbSWarner Losh 524f2073fbSWarner Losh /* 5362efba6aSPoul-Henning Kamp * Implement a dummy timecounter which we can use until we get a real one 5462efba6aSPoul-Henning Kamp * in the air. This allows the console and other early stuff to use 5562efba6aSPoul-Henning Kamp * time services. 563bac064fSPoul-Henning Kamp */ 573bac064fSPoul-Henning Kamp 586b00cf46SPoul-Henning Kamp static u_int 5962efba6aSPoul-Henning Kamp dummy_get_timecount(struct timecounter *tc) 6062efba6aSPoul-Henning Kamp { 616b00cf46SPoul-Henning Kamp static u_int now; 6262efba6aSPoul-Henning Kamp 6362efba6aSPoul-Henning Kamp return (++now); 6462efba6aSPoul-Henning Kamp } 6562efba6aSPoul-Henning Kamp 6662efba6aSPoul-Henning Kamp static struct timecounter dummy_timecounter = { 6778a49a45SPoul-Henning Kamp dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 6862efba6aSPoul-Henning Kamp }; 6962efba6aSPoul-Henning Kamp 7062efba6aSPoul-Henning Kamp struct timehands { 7162efba6aSPoul-Henning Kamp /* These fields must be initialized by the driver. */ 726b00cf46SPoul-Henning Kamp struct timecounter *th_counter; 736b00cf46SPoul-Henning Kamp int64_t th_adjustment; 7460ae52f7SEd Schouten uint64_t th_scale; 756b00cf46SPoul-Henning Kamp u_int th_offset_count; 766b00cf46SPoul-Henning Kamp struct bintime th_offset; 7750c22263SKonstantin Belousov struct bintime th_bintime; 786b00cf46SPoul-Henning Kamp struct timeval th_microtime; 796b00cf46SPoul-Henning Kamp struct timespec th_nanotime; 805760b029SKonstantin Belousov struct bintime th_boottime; 8139acc78aSPoul-Henning Kamp /* Fields not to be copied in tc_windup start with th_generation. */ 822c6946dcSKonstantin Belousov u_int th_generation; 836b00cf46SPoul-Henning Kamp struct timehands *th_next; 8462efba6aSPoul-Henning Kamp }; 8562efba6aSPoul-Henning Kamp 865b1c0294SDavid E. O'Brien static struct timehands th0; 87a83c016fSKonstantin Belousov static struct timehands th1 = { 88a83c016fSKonstantin Belousov .th_next = &th0 89a83c016fSKonstantin Belousov }; 90f5d157fbSPoul-Henning Kamp static struct timehands th0 = { 91a83c016fSKonstantin Belousov .th_counter = &dummy_timecounter, 92a83c016fSKonstantin Belousov .th_scale = (uint64_t)-1 / 1000000, 93a83c016fSKonstantin Belousov .th_offset = { .sec = 1 }, 94a83c016fSKonstantin Belousov .th_generation = 1, 95a83c016fSKonstantin Belousov .th_next = &th1 96f5d157fbSPoul-Henning Kamp }; 9762efba6aSPoul-Henning Kamp 9862efba6aSPoul-Henning Kamp static struct timehands *volatile timehands = &th0; 9962efba6aSPoul-Henning Kamp struct timecounter *timecounter = &dummy_timecounter; 10062efba6aSPoul-Henning Kamp static struct timecounter *timecounters = &dummy_timecounter; 1013bac064fSPoul-Henning Kamp 1020e189873SAlexander Motin int tc_min_ticktock_freq = 1; 1030e189873SAlexander Motin 104a8df530dSJohn Baldwin volatile time_t time_second = 1; 105a8df530dSJohn Baldwin volatile time_t time_uptime = 1; 106227ee8a1SPoul-Henning Kamp 107a7bc3102SPeter Wemm static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS); 108a7bc3102SPeter Wemm SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD, 109a7bc3102SPeter Wemm NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime"); 11037d38777SBruce Evans 11191266b96SPoul-Henning Kamp SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, ""); 1126472ac3dSEd Schouten static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, ""); 11391266b96SPoul-Henning Kamp 1144e74721cSPoul-Henning Kamp static int timestepwarnings; 1154e74721cSPoul-Henning Kamp SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW, 1162baa5cddSRebecca Cran ×tepwarnings, 0, "Log time steps"); 1174e74721cSPoul-Henning Kamp 1185b999a6bSDavide Italiano struct bintime bt_timethreshold; 1195b999a6bSDavide Italiano struct bintime bt_tickthreshold; 1205b999a6bSDavide Italiano sbintime_t sbt_timethreshold; 1215b999a6bSDavide Italiano sbintime_t sbt_tickthreshold; 1225b999a6bSDavide Italiano struct bintime tc_tick_bt; 1235b999a6bSDavide Italiano sbintime_t tc_tick_sbt; 1245b999a6bSDavide Italiano int tc_precexp; 1255b999a6bSDavide Italiano int tc_timepercentage = TC_DEFAULTPERC; 1265b999a6bSDavide Italiano static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS); 1275b999a6bSDavide Italiano SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation, 128af3b2549SHans Petter Selasky CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0, 1295b999a6bSDavide Italiano sysctl_kern_timecounter_adjprecision, "I", 1305b999a6bSDavide Italiano "Allowed time interval deviation in percents"); 1315b999a6bSDavide Italiano 1329dbdf2a1SEric van Gyzen volatile int rtc_generation = 1; 1339dbdf2a1SEric van Gyzen 134e8bac3f2SIan Lepore static int tc_chosen; /* Non-zero if a specific tc was chosen via sysctl. */ 135e8bac3f2SIan Lepore 1365760b029SKonstantin Belousov static void tc_windup(struct bintime *new_boottimebin); 137e8444a7eSPoul-Henning Kamp static void cpu_tick_calibrate(int); 1389e1b5510SPoul-Henning Kamp 13957d025c3SGeorge V. Neville-Neil void dtrace_getnanotime(struct timespec *tsp); 14057d025c3SGeorge V. Neville-Neil 141a7bc3102SPeter Wemm static int 142a7bc3102SPeter Wemm sysctl_kern_boottime(SYSCTL_HANDLER_ARGS) 143a7bc3102SPeter Wemm { 144584b675eSKonstantin Belousov struct timeval boottime; 145584b675eSKonstantin Belousov 146584b675eSKonstantin Belousov getboottime(&boottime); 147584b675eSKonstantin Belousov 148*7045ac43SOlivier Houchard /* i386 is the only arch which uses a 32bits time_t */ 149*7045ac43SOlivier Houchard #ifdef __amd64__ 150a7bc3102SPeter Wemm #ifdef SCTL_MASK32 151a7bc3102SPeter Wemm int tv[2]; 152a7bc3102SPeter Wemm 153a7bc3102SPeter Wemm if (req->flags & SCTL_MASK32) { 154a7bc3102SPeter Wemm tv[0] = boottime.tv_sec; 155a7bc3102SPeter Wemm tv[1] = boottime.tv_usec; 156584b675eSKonstantin Belousov return (SYSCTL_OUT(req, tv, sizeof(tv))); 157584b675eSKonstantin Belousov } 158a7bc3102SPeter Wemm #endif 1599624d947SJuli Mallett #endif 160584b675eSKonstantin Belousov return (SYSCTL_OUT(req, &boottime, sizeof(boottime))); 161a7bc3102SPeter Wemm } 1625b1a8eb3SPoul-Henning Kamp 16393ef14a7SDavid Malone static int 16493ef14a7SDavid Malone sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS) 16593ef14a7SDavid Malone { 16693ef14a7SDavid Malone u_int ncount; 16793ef14a7SDavid Malone struct timecounter *tc = arg1; 16893ef14a7SDavid Malone 16993ef14a7SDavid Malone ncount = tc->tc_get_timecount(tc); 1704d29106eSKonstantin Belousov return (sysctl_handle_int(oidp, &ncount, 0, req)); 17193ef14a7SDavid Malone } 17293ef14a7SDavid Malone 17393ef14a7SDavid Malone static int 17493ef14a7SDavid Malone sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS) 17593ef14a7SDavid Malone { 17660ae52f7SEd Schouten uint64_t freq; 17793ef14a7SDavid Malone struct timecounter *tc = arg1; 17893ef14a7SDavid Malone 17993ef14a7SDavid Malone freq = tc->tc_frequency; 1804d29106eSKonstantin Belousov return (sysctl_handle_64(oidp, &freq, 0, req)); 18193ef14a7SDavid Malone } 18293ef14a7SDavid Malone 18339acc78aSPoul-Henning Kamp /* 18439acc78aSPoul-Henning Kamp * Return the difference between the timehands' counter value now and what 18539acc78aSPoul-Henning Kamp * was when we copied it to the timehands' offset_count. 18639acc78aSPoul-Henning Kamp */ 1876b00cf46SPoul-Henning Kamp static __inline u_int 1886b00cf46SPoul-Henning Kamp tc_delta(struct timehands *th) 189e796e00dSPoul-Henning Kamp { 1906b00cf46SPoul-Henning Kamp struct timecounter *tc; 191e796e00dSPoul-Henning Kamp 1926b00cf46SPoul-Henning Kamp tc = th->th_counter; 1936b00cf46SPoul-Henning Kamp return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 1946b00cf46SPoul-Henning Kamp tc->tc_counter_mask); 195e796e00dSPoul-Henning Kamp } 196a0502b19SPoul-Henning Kamp 19739acc78aSPoul-Henning Kamp /* 1986b00cf46SPoul-Henning Kamp * Functions for reading the time. We have to loop until we are sure that 19939acc78aSPoul-Henning Kamp * the timehands that we operated on was not updated under our feet. See 20039acc78aSPoul-Henning Kamp * the comment in <sys/time.h> for a description of these 12 functions. 2016b00cf46SPoul-Henning Kamp */ 2026b00cf46SPoul-Henning Kamp 2039bce0f05SLawrence Stewart #ifdef FFCLOCK 204e977bac3SLawrence Stewart void 2059bce0f05SLawrence Stewart fbclock_binuptime(struct bintime *bt) 2069bce0f05SLawrence Stewart { 2079bce0f05SLawrence Stewart struct timehands *th; 2089bce0f05SLawrence Stewart unsigned int gen; 2099bce0f05SLawrence Stewart 2109bce0f05SLawrence Stewart do { 2119bce0f05SLawrence Stewart th = timehands; 212f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 2139bce0f05SLawrence Stewart *bt = th->th_offset; 2149bce0f05SLawrence Stewart bintime_addx(bt, th->th_scale * tc_delta(th)); 215f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 216f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 2179bce0f05SLawrence Stewart } 2189bce0f05SLawrence Stewart 219e977bac3SLawrence Stewart void 2209bce0f05SLawrence Stewart fbclock_nanouptime(struct timespec *tsp) 2219bce0f05SLawrence Stewart { 2229bce0f05SLawrence Stewart struct bintime bt; 2239bce0f05SLawrence Stewart 224c2a4ee99SLawrence Stewart fbclock_binuptime(&bt); 2259bce0f05SLawrence Stewart bintime2timespec(&bt, tsp); 2269bce0f05SLawrence Stewart } 2279bce0f05SLawrence Stewart 228e977bac3SLawrence Stewart void 2299bce0f05SLawrence Stewart fbclock_microuptime(struct timeval *tvp) 2309bce0f05SLawrence Stewart { 2319bce0f05SLawrence Stewart struct bintime bt; 2329bce0f05SLawrence Stewart 233c2a4ee99SLawrence Stewart fbclock_binuptime(&bt); 2349bce0f05SLawrence Stewart bintime2timeval(&bt, tvp); 2359bce0f05SLawrence Stewart } 2369bce0f05SLawrence Stewart 237e977bac3SLawrence Stewart void 2389bce0f05SLawrence Stewart fbclock_bintime(struct bintime *bt) 2399bce0f05SLawrence Stewart { 2405760b029SKonstantin Belousov struct timehands *th; 2415760b029SKonstantin Belousov unsigned int gen; 2429bce0f05SLawrence Stewart 2435760b029SKonstantin Belousov do { 2445760b029SKonstantin Belousov th = timehands; 2455760b029SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 24650c22263SKonstantin Belousov *bt = th->th_bintime; 2475760b029SKonstantin Belousov bintime_addx(bt, th->th_scale * tc_delta(th)); 2485760b029SKonstantin Belousov atomic_thread_fence_acq(); 2495760b029SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 2509bce0f05SLawrence Stewart } 2519bce0f05SLawrence Stewart 252e977bac3SLawrence Stewart void 2539bce0f05SLawrence Stewart fbclock_nanotime(struct timespec *tsp) 2549bce0f05SLawrence Stewart { 2559bce0f05SLawrence Stewart struct bintime bt; 2569bce0f05SLawrence Stewart 257c2a4ee99SLawrence Stewart fbclock_bintime(&bt); 2589bce0f05SLawrence Stewart bintime2timespec(&bt, tsp); 2599bce0f05SLawrence Stewart } 2609bce0f05SLawrence Stewart 261e977bac3SLawrence Stewart void 2629bce0f05SLawrence Stewart fbclock_microtime(struct timeval *tvp) 2639bce0f05SLawrence Stewart { 2649bce0f05SLawrence Stewart struct bintime bt; 2659bce0f05SLawrence Stewart 266c2a4ee99SLawrence Stewart fbclock_bintime(&bt); 2679bce0f05SLawrence Stewart bintime2timeval(&bt, tvp); 2689bce0f05SLawrence Stewart } 2699bce0f05SLawrence Stewart 270e977bac3SLawrence Stewart void 2719bce0f05SLawrence Stewart fbclock_getbinuptime(struct bintime *bt) 2729bce0f05SLawrence Stewart { 2739bce0f05SLawrence Stewart struct timehands *th; 2749bce0f05SLawrence Stewart unsigned int gen; 2759bce0f05SLawrence Stewart 2769bce0f05SLawrence Stewart do { 2779bce0f05SLawrence Stewart th = timehands; 278f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 2799bce0f05SLawrence Stewart *bt = th->th_offset; 280f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 281f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 2829bce0f05SLawrence Stewart } 2839bce0f05SLawrence Stewart 284e977bac3SLawrence Stewart void 2859bce0f05SLawrence Stewart fbclock_getnanouptime(struct timespec *tsp) 2869bce0f05SLawrence Stewart { 2879bce0f05SLawrence Stewart struct timehands *th; 2889bce0f05SLawrence Stewart unsigned int gen; 2899bce0f05SLawrence Stewart 2909bce0f05SLawrence Stewart do { 2919bce0f05SLawrence Stewart th = timehands; 292f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 2939bce0f05SLawrence Stewart bintime2timespec(&th->th_offset, tsp); 294f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 295f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 2969bce0f05SLawrence Stewart } 2979bce0f05SLawrence Stewart 298e977bac3SLawrence Stewart void 2999bce0f05SLawrence Stewart fbclock_getmicrouptime(struct timeval *tvp) 3009bce0f05SLawrence Stewart { 3019bce0f05SLawrence Stewart struct timehands *th; 3029bce0f05SLawrence Stewart unsigned int gen; 3039bce0f05SLawrence Stewart 3049bce0f05SLawrence Stewart do { 3059bce0f05SLawrence Stewart th = timehands; 306f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 3079bce0f05SLawrence Stewart bintime2timeval(&th->th_offset, tvp); 308f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 309f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 3109bce0f05SLawrence Stewart } 3119bce0f05SLawrence Stewart 312e977bac3SLawrence Stewart void 3139bce0f05SLawrence Stewart fbclock_getbintime(struct bintime *bt) 3149bce0f05SLawrence Stewart { 3159bce0f05SLawrence Stewart struct timehands *th; 3169bce0f05SLawrence Stewart unsigned int gen; 3179bce0f05SLawrence Stewart 3189bce0f05SLawrence Stewart do { 3199bce0f05SLawrence Stewart th = timehands; 320f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 32150c22263SKonstantin Belousov *bt = th->th_bintime; 322f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 323f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 3249bce0f05SLawrence Stewart } 3259bce0f05SLawrence Stewart 326e977bac3SLawrence Stewart void 3279bce0f05SLawrence Stewart fbclock_getnanotime(struct timespec *tsp) 3289bce0f05SLawrence Stewart { 3299bce0f05SLawrence Stewart struct timehands *th; 3309bce0f05SLawrence Stewart unsigned int gen; 3319bce0f05SLawrence Stewart 3329bce0f05SLawrence Stewart do { 3339bce0f05SLawrence Stewart th = timehands; 334f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 3359bce0f05SLawrence Stewart *tsp = th->th_nanotime; 336f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 337f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 3389bce0f05SLawrence Stewart } 3399bce0f05SLawrence Stewart 340e977bac3SLawrence Stewart void 3419bce0f05SLawrence Stewart fbclock_getmicrotime(struct timeval *tvp) 3429bce0f05SLawrence Stewart { 3439bce0f05SLawrence Stewart struct timehands *th; 3449bce0f05SLawrence Stewart unsigned int gen; 3459bce0f05SLawrence Stewart 3469bce0f05SLawrence Stewart do { 3479bce0f05SLawrence Stewart th = timehands; 348f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 3499bce0f05SLawrence Stewart *tvp = th->th_microtime; 350f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 351f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 3529bce0f05SLawrence Stewart } 3539bce0f05SLawrence Stewart #else /* !FFCLOCK */ 354a0502b19SPoul-Henning Kamp void 3552028c0cdSPoul-Henning Kamp binuptime(struct bintime *bt) 3562028c0cdSPoul-Henning Kamp { 3576b00cf46SPoul-Henning Kamp struct timehands *th; 3586b00cf46SPoul-Henning Kamp u_int gen; 3592028c0cdSPoul-Henning Kamp 3605b7d8efaSPoul-Henning Kamp do { 3616b00cf46SPoul-Henning Kamp th = timehands; 362f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 3636b00cf46SPoul-Henning Kamp *bt = th->th_offset; 3646b00cf46SPoul-Henning Kamp bintime_addx(bt, th->th_scale * tc_delta(th)); 365f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 366f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 3672028c0cdSPoul-Henning Kamp } 3682028c0cdSPoul-Henning Kamp 3692028c0cdSPoul-Henning Kamp void 37039acc78aSPoul-Henning Kamp nanouptime(struct timespec *tsp) 371056abcabSPoul-Henning Kamp { 372056abcabSPoul-Henning Kamp struct bintime bt; 373056abcabSPoul-Henning Kamp 374056abcabSPoul-Henning Kamp binuptime(&bt); 37539acc78aSPoul-Henning Kamp bintime2timespec(&bt, tsp); 376056abcabSPoul-Henning Kamp } 377056abcabSPoul-Henning Kamp 378056abcabSPoul-Henning Kamp void 37939acc78aSPoul-Henning Kamp microuptime(struct timeval *tvp) 380056abcabSPoul-Henning Kamp { 381056abcabSPoul-Henning Kamp struct bintime bt; 382056abcabSPoul-Henning Kamp 383056abcabSPoul-Henning Kamp binuptime(&bt); 38439acc78aSPoul-Henning Kamp bintime2timeval(&bt, tvp); 385056abcabSPoul-Henning Kamp } 386056abcabSPoul-Henning Kamp 387056abcabSPoul-Henning Kamp void 3882028c0cdSPoul-Henning Kamp bintime(struct bintime *bt) 3892028c0cdSPoul-Henning Kamp { 3905760b029SKonstantin Belousov struct timehands *th; 3915760b029SKonstantin Belousov u_int gen; 3922028c0cdSPoul-Henning Kamp 3935760b029SKonstantin Belousov do { 3945760b029SKonstantin Belousov th = timehands; 3955760b029SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 39650c22263SKonstantin Belousov *bt = th->th_bintime; 3975760b029SKonstantin Belousov bintime_addx(bt, th->th_scale * tc_delta(th)); 3985760b029SKonstantin Belousov atomic_thread_fence_acq(); 3995760b029SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 4002028c0cdSPoul-Henning Kamp } 4012028c0cdSPoul-Henning Kamp 4022028c0cdSPoul-Henning Kamp void 40339acc78aSPoul-Henning Kamp nanotime(struct timespec *tsp) 40400af9731SPoul-Henning Kamp { 4052028c0cdSPoul-Henning Kamp struct bintime bt; 40600af9731SPoul-Henning Kamp 4072028c0cdSPoul-Henning Kamp bintime(&bt); 40839acc78aSPoul-Henning Kamp bintime2timespec(&bt, tsp); 40948115288SPoul-Henning Kamp } 41048115288SPoul-Henning Kamp 41148115288SPoul-Henning Kamp void 41239acc78aSPoul-Henning Kamp microtime(struct timeval *tvp) 413056abcabSPoul-Henning Kamp { 414056abcabSPoul-Henning Kamp struct bintime bt; 415056abcabSPoul-Henning Kamp 416056abcabSPoul-Henning Kamp bintime(&bt); 41739acc78aSPoul-Henning Kamp bintime2timeval(&bt, tvp); 418056abcabSPoul-Henning Kamp } 419056abcabSPoul-Henning Kamp 420056abcabSPoul-Henning Kamp void 421056abcabSPoul-Henning Kamp getbinuptime(struct bintime *bt) 42200af9731SPoul-Henning Kamp { 4236b00cf46SPoul-Henning Kamp struct timehands *th; 4246b00cf46SPoul-Henning Kamp u_int gen; 42500af9731SPoul-Henning Kamp 4265b7d8efaSPoul-Henning Kamp do { 4276b00cf46SPoul-Henning Kamp th = timehands; 428f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 4296b00cf46SPoul-Henning Kamp *bt = th->th_offset; 430f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 431f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 432a0502b19SPoul-Henning Kamp } 433a0502b19SPoul-Henning Kamp 434a0502b19SPoul-Henning Kamp void 435c21410e1SPoul-Henning Kamp getnanouptime(struct timespec *tsp) 436a0502b19SPoul-Henning Kamp { 4376b00cf46SPoul-Henning Kamp struct timehands *th; 4386b00cf46SPoul-Henning Kamp u_int gen; 439a0502b19SPoul-Henning Kamp 4405b7d8efaSPoul-Henning Kamp do { 4416b00cf46SPoul-Henning Kamp th = timehands; 442f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 4436b00cf46SPoul-Henning Kamp bintime2timespec(&th->th_offset, tsp); 444f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 445f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 446a0502b19SPoul-Henning Kamp } 447a0502b19SPoul-Henning Kamp 448c7c9a816SPoul-Henning Kamp void 449056abcabSPoul-Henning Kamp getmicrouptime(struct timeval *tvp) 450c7c9a816SPoul-Henning Kamp { 4516b00cf46SPoul-Henning Kamp struct timehands *th; 4526b00cf46SPoul-Henning Kamp u_int gen; 4537ec73f64SPoul-Henning Kamp 454056abcabSPoul-Henning Kamp do { 4556b00cf46SPoul-Henning Kamp th = timehands; 456f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 4576b00cf46SPoul-Henning Kamp bintime2timeval(&th->th_offset, tvp); 458f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 459f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 4607ec73f64SPoul-Henning Kamp } 4617ec73f64SPoul-Henning Kamp 4627ec73f64SPoul-Henning Kamp void 463056abcabSPoul-Henning Kamp getbintime(struct bintime *bt) 4647ec73f64SPoul-Henning Kamp { 4656b00cf46SPoul-Henning Kamp struct timehands *th; 4666b00cf46SPoul-Henning Kamp u_int gen; 4677ec73f64SPoul-Henning Kamp 468056abcabSPoul-Henning Kamp do { 4696b00cf46SPoul-Henning Kamp th = timehands; 470f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 47150c22263SKonstantin Belousov *bt = th->th_bintime; 472f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 473f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 474056abcabSPoul-Henning Kamp } 475056abcabSPoul-Henning Kamp 476056abcabSPoul-Henning Kamp void 477056abcabSPoul-Henning Kamp getnanotime(struct timespec *tsp) 478056abcabSPoul-Henning Kamp { 4796b00cf46SPoul-Henning Kamp struct timehands *th; 4806b00cf46SPoul-Henning Kamp u_int gen; 481056abcabSPoul-Henning Kamp 482056abcabSPoul-Henning Kamp do { 4836b00cf46SPoul-Henning Kamp th = timehands; 484f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 4856b00cf46SPoul-Henning Kamp *tsp = th->th_nanotime; 486f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 487f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 488056abcabSPoul-Henning Kamp } 489056abcabSPoul-Henning Kamp 490056abcabSPoul-Henning Kamp void 491056abcabSPoul-Henning Kamp getmicrotime(struct timeval *tvp) 492056abcabSPoul-Henning Kamp { 4936b00cf46SPoul-Henning Kamp struct timehands *th; 4946b00cf46SPoul-Henning Kamp u_int gen; 495056abcabSPoul-Henning Kamp 496056abcabSPoul-Henning Kamp do { 4976b00cf46SPoul-Henning Kamp th = timehands; 498f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 4996b00cf46SPoul-Henning Kamp *tvp = th->th_microtime; 500f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 501f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 5027ec73f64SPoul-Henning Kamp } 5039bce0f05SLawrence Stewart #endif /* FFCLOCK */ 5047ec73f64SPoul-Henning Kamp 505584b675eSKonstantin Belousov void 506584b675eSKonstantin Belousov getboottime(struct timeval *boottime) 507584b675eSKonstantin Belousov { 5085760b029SKonstantin Belousov struct bintime boottimebin; 509584b675eSKonstantin Belousov 5105760b029SKonstantin Belousov getboottimebin(&boottimebin); 5115760b029SKonstantin Belousov bintime2timeval(&boottimebin, boottime); 512584b675eSKonstantin Belousov } 513584b675eSKonstantin Belousov 514584b675eSKonstantin Belousov void 515584b675eSKonstantin Belousov getboottimebin(struct bintime *boottimebin) 516584b675eSKonstantin Belousov { 5175760b029SKonstantin Belousov struct timehands *th; 5185760b029SKonstantin Belousov u_int gen; 519584b675eSKonstantin Belousov 5205760b029SKonstantin Belousov do { 5215760b029SKonstantin Belousov th = timehands; 5225760b029SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 5235760b029SKonstantin Belousov *boottimebin = th->th_boottime; 5245760b029SKonstantin Belousov atomic_thread_fence_acq(); 5255760b029SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 526584b675eSKonstantin Belousov } 527584b675eSKonstantin Belousov 528b0fdc837SLawrence Stewart #ifdef FFCLOCK 529b0fdc837SLawrence Stewart /* 530b0fdc837SLawrence Stewart * Support for feed-forward synchronization algorithms. This is heavily inspired 531b0fdc837SLawrence Stewart * by the timehands mechanism but kept independent from it. *_windup() functions 532b0fdc837SLawrence Stewart * have some connection to avoid accessing the timecounter hardware more than 533b0fdc837SLawrence Stewart * necessary. 534b0fdc837SLawrence Stewart */ 535b0fdc837SLawrence Stewart 536b0fdc837SLawrence Stewart /* Feed-forward clock estimates kept updated by the synchronization daemon. */ 537b0fdc837SLawrence Stewart struct ffclock_estimate ffclock_estimate; 538b0fdc837SLawrence Stewart struct bintime ffclock_boottime; /* Feed-forward boot time estimate. */ 539b0fdc837SLawrence Stewart uint32_t ffclock_status; /* Feed-forward clock status. */ 540b0fdc837SLawrence Stewart int8_t ffclock_updated; /* New estimates are available. */ 541b0fdc837SLawrence Stewart struct mtx ffclock_mtx; /* Mutex on ffclock_estimate. */ 542b0fdc837SLawrence Stewart 543b0fdc837SLawrence Stewart struct fftimehands { 544b0fdc837SLawrence Stewart struct ffclock_estimate cest; 545b0fdc837SLawrence Stewart struct bintime tick_time; 546b0fdc837SLawrence Stewart struct bintime tick_time_lerp; 547b0fdc837SLawrence Stewart ffcounter tick_ffcount; 548b0fdc837SLawrence Stewart uint64_t period_lerp; 549b0fdc837SLawrence Stewart volatile uint8_t gen; 550b0fdc837SLawrence Stewart struct fftimehands *next; 551b0fdc837SLawrence Stewart }; 552b0fdc837SLawrence Stewart 553b0fdc837SLawrence Stewart #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x)) 554b0fdc837SLawrence Stewart 555b0fdc837SLawrence Stewart static struct fftimehands ffth[10]; 556b0fdc837SLawrence Stewart static struct fftimehands *volatile fftimehands = ffth; 557b0fdc837SLawrence Stewart 558b0fdc837SLawrence Stewart static void 559b0fdc837SLawrence Stewart ffclock_init(void) 560b0fdc837SLawrence Stewart { 561b0fdc837SLawrence Stewart struct fftimehands *cur; 562b0fdc837SLawrence Stewart struct fftimehands *last; 563b0fdc837SLawrence Stewart 564b0fdc837SLawrence Stewart memset(ffth, 0, sizeof(ffth)); 565b0fdc837SLawrence Stewart 566b0fdc837SLawrence Stewart last = ffth + NUM_ELEMENTS(ffth) - 1; 567b0fdc837SLawrence Stewart for (cur = ffth; cur < last; cur++) 568b0fdc837SLawrence Stewart cur->next = cur + 1; 569b0fdc837SLawrence Stewart last->next = ffth; 570b0fdc837SLawrence Stewart 571b0fdc837SLawrence Stewart ffclock_updated = 0; 572b0fdc837SLawrence Stewart ffclock_status = FFCLOCK_STA_UNSYNC; 573b0fdc837SLawrence Stewart mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF); 574b0fdc837SLawrence Stewart } 575b0fdc837SLawrence Stewart 576b0fdc837SLawrence Stewart /* 577b0fdc837SLawrence Stewart * Reset the feed-forward clock estimates. Called from inittodr() to get things 578b0fdc837SLawrence Stewart * kick started and uses the timecounter nominal frequency as a first period 579b0fdc837SLawrence Stewart * estimate. Note: this function may be called several time just after boot. 580b0fdc837SLawrence Stewart * Note: this is the only function that sets the value of boot time for the 581b0fdc837SLawrence Stewart * monotonic (i.e. uptime) version of the feed-forward clock. 582b0fdc837SLawrence Stewart */ 583b0fdc837SLawrence Stewart void 584b0fdc837SLawrence Stewart ffclock_reset_clock(struct timespec *ts) 585b0fdc837SLawrence Stewart { 586b0fdc837SLawrence Stewart struct timecounter *tc; 587b0fdc837SLawrence Stewart struct ffclock_estimate cest; 588b0fdc837SLawrence Stewart 589b0fdc837SLawrence Stewart tc = timehands->th_counter; 590b0fdc837SLawrence Stewart memset(&cest, 0, sizeof(struct ffclock_estimate)); 591b0fdc837SLawrence Stewart 592b0fdc837SLawrence Stewart timespec2bintime(ts, &ffclock_boottime); 593b0fdc837SLawrence Stewart timespec2bintime(ts, &(cest.update_time)); 594b0fdc837SLawrence Stewart ffclock_read_counter(&cest.update_ffcount); 595b0fdc837SLawrence Stewart cest.leapsec_next = 0; 596b0fdc837SLawrence Stewart cest.period = ((1ULL << 63) / tc->tc_frequency) << 1; 597b0fdc837SLawrence Stewart cest.errb_abs = 0; 598b0fdc837SLawrence Stewart cest.errb_rate = 0; 599b0fdc837SLawrence Stewart cest.status = FFCLOCK_STA_UNSYNC; 600b0fdc837SLawrence Stewart cest.leapsec_total = 0; 601b0fdc837SLawrence Stewart cest.leapsec = 0; 602b0fdc837SLawrence Stewart 603b0fdc837SLawrence Stewart mtx_lock(&ffclock_mtx); 604b0fdc837SLawrence Stewart bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); 605b0fdc837SLawrence Stewart ffclock_updated = INT8_MAX; 606b0fdc837SLawrence Stewart mtx_unlock(&ffclock_mtx); 607b0fdc837SLawrence Stewart 608b0fdc837SLawrence Stewart printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name, 609b0fdc837SLawrence Stewart (unsigned long long)tc->tc_frequency, (long)ts->tv_sec, 610b0fdc837SLawrence Stewart (unsigned long)ts->tv_nsec); 611b0fdc837SLawrence Stewart } 612b0fdc837SLawrence Stewart 613b0fdc837SLawrence Stewart /* 614b0fdc837SLawrence Stewart * Sub-routine to convert a time interval measured in RAW counter units to time 615b0fdc837SLawrence Stewart * in seconds stored in bintime format. 616b0fdc837SLawrence Stewart * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be 617b0fdc837SLawrence Stewart * larger than the max value of u_int (on 32 bit architecture). Loop to consume 618b0fdc837SLawrence Stewart * extra cycles. 619b0fdc837SLawrence Stewart */ 620b0fdc837SLawrence Stewart static void 621b0fdc837SLawrence Stewart ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt) 622b0fdc837SLawrence Stewart { 623b0fdc837SLawrence Stewart struct bintime bt2; 624b0fdc837SLawrence Stewart ffcounter delta, delta_max; 625b0fdc837SLawrence Stewart 626b0fdc837SLawrence Stewart delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1; 627b0fdc837SLawrence Stewart bintime_clear(bt); 628b0fdc837SLawrence Stewart do { 629b0fdc837SLawrence Stewart if (ffdelta > delta_max) 630b0fdc837SLawrence Stewart delta = delta_max; 631b0fdc837SLawrence Stewart else 632b0fdc837SLawrence Stewart delta = ffdelta; 633b0fdc837SLawrence Stewart bt2.sec = 0; 634b0fdc837SLawrence Stewart bt2.frac = period; 635b0fdc837SLawrence Stewart bintime_mul(&bt2, (unsigned int)delta); 636b0fdc837SLawrence Stewart bintime_add(bt, &bt2); 637b0fdc837SLawrence Stewart ffdelta -= delta; 638b0fdc837SLawrence Stewart } while (ffdelta > 0); 639b0fdc837SLawrence Stewart } 640b0fdc837SLawrence Stewart 641b0fdc837SLawrence Stewart /* 642b0fdc837SLawrence Stewart * Update the fftimehands. 643b0fdc837SLawrence Stewart * Push the tick ffcount and time(s) forward based on current clock estimate. 644b0fdc837SLawrence Stewart * The conversion from ffcounter to bintime relies on the difference clock 645b0fdc837SLawrence Stewart * principle, whose accuracy relies on computing small time intervals. If a new 646b0fdc837SLawrence Stewart * clock estimate has been passed by the synchronisation daemon, make it 647b0fdc837SLawrence Stewart * current, and compute the linear interpolation for monotonic time if needed. 648b0fdc837SLawrence Stewart */ 649b0fdc837SLawrence Stewart static void 650b0fdc837SLawrence Stewart ffclock_windup(unsigned int delta) 651b0fdc837SLawrence Stewart { 652b0fdc837SLawrence Stewart struct ffclock_estimate *cest; 653b0fdc837SLawrence Stewart struct fftimehands *ffth; 654b0fdc837SLawrence Stewart struct bintime bt, gap_lerp; 655b0fdc837SLawrence Stewart ffcounter ffdelta; 656b0fdc837SLawrence Stewart uint64_t frac; 657b0fdc837SLawrence Stewart unsigned int polling; 658b0fdc837SLawrence Stewart uint8_t forward_jump, ogen; 659b0fdc837SLawrence Stewart 660b0fdc837SLawrence Stewart /* 661b0fdc837SLawrence Stewart * Pick the next timehand, copy current ffclock estimates and move tick 662b0fdc837SLawrence Stewart * times and counter forward. 663b0fdc837SLawrence Stewart */ 664b0fdc837SLawrence Stewart forward_jump = 0; 665b0fdc837SLawrence Stewart ffth = fftimehands->next; 666b0fdc837SLawrence Stewart ogen = ffth->gen; 667b0fdc837SLawrence Stewart ffth->gen = 0; 668b0fdc837SLawrence Stewart cest = &ffth->cest; 669b0fdc837SLawrence Stewart bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate)); 670b0fdc837SLawrence Stewart ffdelta = (ffcounter)delta; 671b0fdc837SLawrence Stewart ffth->period_lerp = fftimehands->period_lerp; 672b0fdc837SLawrence Stewart 673b0fdc837SLawrence Stewart ffth->tick_time = fftimehands->tick_time; 674b0fdc837SLawrence Stewart ffclock_convert_delta(ffdelta, cest->period, &bt); 675b0fdc837SLawrence Stewart bintime_add(&ffth->tick_time, &bt); 676b0fdc837SLawrence Stewart 677b0fdc837SLawrence Stewart ffth->tick_time_lerp = fftimehands->tick_time_lerp; 678b0fdc837SLawrence Stewart ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt); 679b0fdc837SLawrence Stewart bintime_add(&ffth->tick_time_lerp, &bt); 680b0fdc837SLawrence Stewart 681b0fdc837SLawrence Stewart ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta; 682b0fdc837SLawrence Stewart 683b0fdc837SLawrence Stewart /* 684b0fdc837SLawrence Stewart * Assess the status of the clock, if the last update is too old, it is 685b0fdc837SLawrence Stewart * likely the synchronisation daemon is dead and the clock is free 686b0fdc837SLawrence Stewart * running. 687b0fdc837SLawrence Stewart */ 688b0fdc837SLawrence Stewart if (ffclock_updated == 0) { 689b0fdc837SLawrence Stewart ffdelta = ffth->tick_ffcount - cest->update_ffcount; 690b0fdc837SLawrence Stewart ffclock_convert_delta(ffdelta, cest->period, &bt); 691b0fdc837SLawrence Stewart if (bt.sec > 2 * FFCLOCK_SKM_SCALE) 692b0fdc837SLawrence Stewart ffclock_status |= FFCLOCK_STA_UNSYNC; 693b0fdc837SLawrence Stewart } 694b0fdc837SLawrence Stewart 695b0fdc837SLawrence Stewart /* 696b0fdc837SLawrence Stewart * If available, grab updated clock estimates and make them current. 697b0fdc837SLawrence Stewart * Recompute time at this tick using the updated estimates. The clock 698b0fdc837SLawrence Stewart * estimates passed the feed-forward synchronisation daemon may result 699b0fdc837SLawrence Stewart * in time conversion that is not monotonically increasing (just after 700b0fdc837SLawrence Stewart * the update). time_lerp is a particular linear interpolation over the 701b0fdc837SLawrence Stewart * synchronisation algo polling period that ensures monotonicity for the 702b0fdc837SLawrence Stewart * clock ids requesting it. 703b0fdc837SLawrence Stewart */ 704b0fdc837SLawrence Stewart if (ffclock_updated > 0) { 705b0fdc837SLawrence Stewart bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate)); 706b0fdc837SLawrence Stewart ffdelta = ffth->tick_ffcount - cest->update_ffcount; 707b0fdc837SLawrence Stewart ffth->tick_time = cest->update_time; 708b0fdc837SLawrence Stewart ffclock_convert_delta(ffdelta, cest->period, &bt); 709b0fdc837SLawrence Stewart bintime_add(&ffth->tick_time, &bt); 710b0fdc837SLawrence Stewart 711b0fdc837SLawrence Stewart /* ffclock_reset sets ffclock_updated to INT8_MAX */ 712b0fdc837SLawrence Stewart if (ffclock_updated == INT8_MAX) 713b0fdc837SLawrence Stewart ffth->tick_time_lerp = ffth->tick_time; 714b0fdc837SLawrence Stewart 715b0fdc837SLawrence Stewart if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >)) 716b0fdc837SLawrence Stewart forward_jump = 1; 717b0fdc837SLawrence Stewart else 718b0fdc837SLawrence Stewart forward_jump = 0; 719b0fdc837SLawrence Stewart 720b0fdc837SLawrence Stewart bintime_clear(&gap_lerp); 721b0fdc837SLawrence Stewart if (forward_jump) { 722b0fdc837SLawrence Stewart gap_lerp = ffth->tick_time; 723b0fdc837SLawrence Stewart bintime_sub(&gap_lerp, &ffth->tick_time_lerp); 724b0fdc837SLawrence Stewart } else { 725b0fdc837SLawrence Stewart gap_lerp = ffth->tick_time_lerp; 726b0fdc837SLawrence Stewart bintime_sub(&gap_lerp, &ffth->tick_time); 727b0fdc837SLawrence Stewart } 728b0fdc837SLawrence Stewart 729b0fdc837SLawrence Stewart /* 730b0fdc837SLawrence Stewart * The reset from the RTC clock may be far from accurate, and 731b0fdc837SLawrence Stewart * reducing the gap between real time and interpolated time 732b0fdc837SLawrence Stewart * could take a very long time if the interpolated clock insists 733b0fdc837SLawrence Stewart * on strict monotonicity. The clock is reset under very strict 734b0fdc837SLawrence Stewart * conditions (kernel time is known to be wrong and 735b0fdc837SLawrence Stewart * synchronization daemon has been restarted recently. 736b0fdc837SLawrence Stewart * ffclock_boottime absorbs the jump to ensure boot time is 737b0fdc837SLawrence Stewart * correct and uptime functions stay consistent. 738b0fdc837SLawrence Stewart */ 739b0fdc837SLawrence Stewart if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) && 740b0fdc837SLawrence Stewart ((cest->status & FFCLOCK_STA_UNSYNC) == 0) && 741b0fdc837SLawrence Stewart ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) { 742b0fdc837SLawrence Stewart if (forward_jump) 743b0fdc837SLawrence Stewart bintime_add(&ffclock_boottime, &gap_lerp); 744b0fdc837SLawrence Stewart else 745b0fdc837SLawrence Stewart bintime_sub(&ffclock_boottime, &gap_lerp); 746b0fdc837SLawrence Stewart ffth->tick_time_lerp = ffth->tick_time; 747b0fdc837SLawrence Stewart bintime_clear(&gap_lerp); 748b0fdc837SLawrence Stewart } 749b0fdc837SLawrence Stewart 750b0fdc837SLawrence Stewart ffclock_status = cest->status; 751b0fdc837SLawrence Stewart ffth->period_lerp = cest->period; 752b0fdc837SLawrence Stewart 753b0fdc837SLawrence Stewart /* 754b0fdc837SLawrence Stewart * Compute corrected period used for the linear interpolation of 755b0fdc837SLawrence Stewart * time. The rate of linear interpolation is capped to 5000PPM 756b0fdc837SLawrence Stewart * (5ms/s). 757b0fdc837SLawrence Stewart */ 758b0fdc837SLawrence Stewart if (bintime_isset(&gap_lerp)) { 759b0fdc837SLawrence Stewart ffdelta = cest->update_ffcount; 760b0fdc837SLawrence Stewart ffdelta -= fftimehands->cest.update_ffcount; 761b0fdc837SLawrence Stewart ffclock_convert_delta(ffdelta, cest->period, &bt); 762b0fdc837SLawrence Stewart polling = bt.sec; 763b0fdc837SLawrence Stewart bt.sec = 0; 764b0fdc837SLawrence Stewart bt.frac = 5000000 * (uint64_t)18446744073LL; 765b0fdc837SLawrence Stewart bintime_mul(&bt, polling); 766b0fdc837SLawrence Stewart if (bintime_cmp(&gap_lerp, &bt, >)) 767b0fdc837SLawrence Stewart gap_lerp = bt; 768b0fdc837SLawrence Stewart 769b0fdc837SLawrence Stewart /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */ 770b0fdc837SLawrence Stewart frac = 0; 771b0fdc837SLawrence Stewart if (gap_lerp.sec > 0) { 772b0fdc837SLawrence Stewart frac -= 1; 773b0fdc837SLawrence Stewart frac /= ffdelta / gap_lerp.sec; 774b0fdc837SLawrence Stewart } 775b0fdc837SLawrence Stewart frac += gap_lerp.frac / ffdelta; 776b0fdc837SLawrence Stewart 777b0fdc837SLawrence Stewart if (forward_jump) 778b0fdc837SLawrence Stewart ffth->period_lerp += frac; 779b0fdc837SLawrence Stewart else 780b0fdc837SLawrence Stewart ffth->period_lerp -= frac; 781b0fdc837SLawrence Stewart } 782b0fdc837SLawrence Stewart 783b0fdc837SLawrence Stewart ffclock_updated = 0; 784b0fdc837SLawrence Stewart } 785b0fdc837SLawrence Stewart if (++ogen == 0) 786b0fdc837SLawrence Stewart ogen = 1; 787b0fdc837SLawrence Stewart ffth->gen = ogen; 788b0fdc837SLawrence Stewart fftimehands = ffth; 789b0fdc837SLawrence Stewart } 790b0fdc837SLawrence Stewart 791b0fdc837SLawrence Stewart /* 792b0fdc837SLawrence Stewart * Adjust the fftimehands when the timecounter is changed. Stating the obvious, 793b0fdc837SLawrence Stewart * the old and new hardware counter cannot be read simultaneously. tc_windup() 794b0fdc837SLawrence Stewart * does read the two counters 'back to back', but a few cycles are effectively 795b0fdc837SLawrence Stewart * lost, and not accumulated in tick_ffcount. This is a fairly radical 796b0fdc837SLawrence Stewart * operation for a feed-forward synchronization daemon, and it is its job to not 797b0fdc837SLawrence Stewart * pushing irrelevant data to the kernel. Because there is no locking here, 798b0fdc837SLawrence Stewart * simply force to ignore pending or next update to give daemon a chance to 799b0fdc837SLawrence Stewart * realize the counter has changed. 800b0fdc837SLawrence Stewart */ 801b0fdc837SLawrence Stewart static void 802b0fdc837SLawrence Stewart ffclock_change_tc(struct timehands *th) 803b0fdc837SLawrence Stewart { 804b0fdc837SLawrence Stewart struct fftimehands *ffth; 805b0fdc837SLawrence Stewart struct ffclock_estimate *cest; 806b0fdc837SLawrence Stewart struct timecounter *tc; 807b0fdc837SLawrence Stewart uint8_t ogen; 808b0fdc837SLawrence Stewart 809b0fdc837SLawrence Stewart tc = th->th_counter; 810b0fdc837SLawrence Stewart ffth = fftimehands->next; 811b0fdc837SLawrence Stewart ogen = ffth->gen; 812b0fdc837SLawrence Stewart ffth->gen = 0; 813b0fdc837SLawrence Stewart 814b0fdc837SLawrence Stewart cest = &ffth->cest; 815b0fdc837SLawrence Stewart bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate)); 816b0fdc837SLawrence Stewart cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1; 817b0fdc837SLawrence Stewart cest->errb_abs = 0; 818b0fdc837SLawrence Stewart cest->errb_rate = 0; 819b0fdc837SLawrence Stewart cest->status |= FFCLOCK_STA_UNSYNC; 820b0fdc837SLawrence Stewart 821b0fdc837SLawrence Stewart ffth->tick_ffcount = fftimehands->tick_ffcount; 822b0fdc837SLawrence Stewart ffth->tick_time_lerp = fftimehands->tick_time_lerp; 823b0fdc837SLawrence Stewart ffth->tick_time = fftimehands->tick_time; 824b0fdc837SLawrence Stewart ffth->period_lerp = cest->period; 825b0fdc837SLawrence Stewart 826b0fdc837SLawrence Stewart /* Do not lock but ignore next update from synchronization daemon. */ 827b0fdc837SLawrence Stewart ffclock_updated--; 828b0fdc837SLawrence Stewart 829b0fdc837SLawrence Stewart if (++ogen == 0) 830b0fdc837SLawrence Stewart ogen = 1; 831b0fdc837SLawrence Stewart ffth->gen = ogen; 832b0fdc837SLawrence Stewart fftimehands = ffth; 833b0fdc837SLawrence Stewart } 834b0fdc837SLawrence Stewart 835b0fdc837SLawrence Stewart /* 836b0fdc837SLawrence Stewart * Retrieve feed-forward counter and time of last kernel tick. 837b0fdc837SLawrence Stewart */ 838b0fdc837SLawrence Stewart void 839b0fdc837SLawrence Stewart ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags) 840b0fdc837SLawrence Stewart { 841b0fdc837SLawrence Stewart struct fftimehands *ffth; 842b0fdc837SLawrence Stewart uint8_t gen; 843b0fdc837SLawrence Stewart 844b0fdc837SLawrence Stewart /* 845b0fdc837SLawrence Stewart * No locking but check generation has not changed. Also need to make 846b0fdc837SLawrence Stewart * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 847b0fdc837SLawrence Stewart */ 848b0fdc837SLawrence Stewart do { 849b0fdc837SLawrence Stewart ffth = fftimehands; 850b0fdc837SLawrence Stewart gen = ffth->gen; 851b0fdc837SLawrence Stewart if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) 852b0fdc837SLawrence Stewart *bt = ffth->tick_time_lerp; 853b0fdc837SLawrence Stewart else 854b0fdc837SLawrence Stewart *bt = ffth->tick_time; 855b0fdc837SLawrence Stewart *ffcount = ffth->tick_ffcount; 856b0fdc837SLawrence Stewart } while (gen == 0 || gen != ffth->gen); 857b0fdc837SLawrence Stewart } 858b0fdc837SLawrence Stewart 859b0fdc837SLawrence Stewart /* 860b0fdc837SLawrence Stewart * Absolute clock conversion. Low level function to convert ffcounter to 861b0fdc837SLawrence Stewart * bintime. The ffcounter is converted using the current ffclock period estimate 862b0fdc837SLawrence Stewart * or the "interpolated period" to ensure monotonicity. 863b0fdc837SLawrence Stewart * NOTE: this conversion may have been deferred, and the clock updated since the 864b0fdc837SLawrence Stewart * hardware counter has been read. 865b0fdc837SLawrence Stewart */ 866b0fdc837SLawrence Stewart void 867b0fdc837SLawrence Stewart ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags) 868b0fdc837SLawrence Stewart { 869b0fdc837SLawrence Stewart struct fftimehands *ffth; 870b0fdc837SLawrence Stewart struct bintime bt2; 871b0fdc837SLawrence Stewart ffcounter ffdelta; 872b0fdc837SLawrence Stewart uint8_t gen; 873b0fdc837SLawrence Stewart 874b0fdc837SLawrence Stewart /* 875b0fdc837SLawrence Stewart * No locking but check generation has not changed. Also need to make 876b0fdc837SLawrence Stewart * sure ffdelta is positive, i.e. ffcount > tick_ffcount. 877b0fdc837SLawrence Stewart */ 878b0fdc837SLawrence Stewart do { 879b0fdc837SLawrence Stewart ffth = fftimehands; 880b0fdc837SLawrence Stewart gen = ffth->gen; 881b0fdc837SLawrence Stewart if (ffcount > ffth->tick_ffcount) 882b0fdc837SLawrence Stewart ffdelta = ffcount - ffth->tick_ffcount; 883b0fdc837SLawrence Stewart else 884b0fdc837SLawrence Stewart ffdelta = ffth->tick_ffcount - ffcount; 885b0fdc837SLawrence Stewart 886b0fdc837SLawrence Stewart if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) { 887b0fdc837SLawrence Stewart *bt = ffth->tick_time_lerp; 888b0fdc837SLawrence Stewart ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2); 889b0fdc837SLawrence Stewart } else { 890b0fdc837SLawrence Stewart *bt = ffth->tick_time; 891b0fdc837SLawrence Stewart ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2); 892b0fdc837SLawrence Stewart } 893b0fdc837SLawrence Stewart 894b0fdc837SLawrence Stewart if (ffcount > ffth->tick_ffcount) 895b0fdc837SLawrence Stewart bintime_add(bt, &bt2); 896b0fdc837SLawrence Stewart else 897b0fdc837SLawrence Stewart bintime_sub(bt, &bt2); 898b0fdc837SLawrence Stewart } while (gen == 0 || gen != ffth->gen); 899b0fdc837SLawrence Stewart } 900b0fdc837SLawrence Stewart 901b0fdc837SLawrence Stewart /* 902b0fdc837SLawrence Stewart * Difference clock conversion. 903b0fdc837SLawrence Stewart * Low level function to Convert a time interval measured in RAW counter units 904b0fdc837SLawrence Stewart * into bintime. The difference clock allows measuring small intervals much more 905b0fdc837SLawrence Stewart * reliably than the absolute clock. 906b0fdc837SLawrence Stewart */ 907b0fdc837SLawrence Stewart void 908b0fdc837SLawrence Stewart ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt) 909b0fdc837SLawrence Stewart { 910b0fdc837SLawrence Stewart struct fftimehands *ffth; 911b0fdc837SLawrence Stewart uint8_t gen; 912b0fdc837SLawrence Stewart 913b0fdc837SLawrence Stewart /* No locking but check generation has not changed. */ 914b0fdc837SLawrence Stewart do { 915b0fdc837SLawrence Stewart ffth = fftimehands; 916b0fdc837SLawrence Stewart gen = ffth->gen; 917b0fdc837SLawrence Stewart ffclock_convert_delta(ffdelta, ffth->cest.period, bt); 918b0fdc837SLawrence Stewart } while (gen == 0 || gen != ffth->gen); 919b0fdc837SLawrence Stewart } 920b0fdc837SLawrence Stewart 921b0fdc837SLawrence Stewart /* 922b0fdc837SLawrence Stewart * Access to current ffcounter value. 923b0fdc837SLawrence Stewart */ 924b0fdc837SLawrence Stewart void 925b0fdc837SLawrence Stewart ffclock_read_counter(ffcounter *ffcount) 926b0fdc837SLawrence Stewart { 927b0fdc837SLawrence Stewart struct timehands *th; 928b0fdc837SLawrence Stewart struct fftimehands *ffth; 929b0fdc837SLawrence Stewart unsigned int gen, delta; 930b0fdc837SLawrence Stewart 931b0fdc837SLawrence Stewart /* 932b0fdc837SLawrence Stewart * ffclock_windup() called from tc_windup(), safe to rely on 933b0fdc837SLawrence Stewart * th->th_generation only, for correct delta and ffcounter. 934b0fdc837SLawrence Stewart */ 935b0fdc837SLawrence Stewart do { 936b0fdc837SLawrence Stewart th = timehands; 937f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 938b0fdc837SLawrence Stewart ffth = fftimehands; 939b0fdc837SLawrence Stewart delta = tc_delta(th); 940b0fdc837SLawrence Stewart *ffcount = ffth->tick_ffcount; 941f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 942f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 943b0fdc837SLawrence Stewart 944b0fdc837SLawrence Stewart *ffcount += delta; 945b0fdc837SLawrence Stewart } 9469bce0f05SLawrence Stewart 9479bce0f05SLawrence Stewart void 9489bce0f05SLawrence Stewart binuptime(struct bintime *bt) 9499bce0f05SLawrence Stewart { 9509bce0f05SLawrence Stewart 95188394fe4SLawrence Stewart binuptime_fromclock(bt, sysclock_active); 9529bce0f05SLawrence Stewart } 9539bce0f05SLawrence Stewart 9549bce0f05SLawrence Stewart void 9559bce0f05SLawrence Stewart nanouptime(struct timespec *tsp) 9569bce0f05SLawrence Stewart { 9579bce0f05SLawrence Stewart 95888394fe4SLawrence Stewart nanouptime_fromclock(tsp, sysclock_active); 9599bce0f05SLawrence Stewart } 9609bce0f05SLawrence Stewart 9619bce0f05SLawrence Stewart void 9629bce0f05SLawrence Stewart microuptime(struct timeval *tvp) 9639bce0f05SLawrence Stewart { 9649bce0f05SLawrence Stewart 96588394fe4SLawrence Stewart microuptime_fromclock(tvp, sysclock_active); 9669bce0f05SLawrence Stewart } 9679bce0f05SLawrence Stewart 9689bce0f05SLawrence Stewart void 9699bce0f05SLawrence Stewart bintime(struct bintime *bt) 9709bce0f05SLawrence Stewart { 9719bce0f05SLawrence Stewart 97288394fe4SLawrence Stewart bintime_fromclock(bt, sysclock_active); 9739bce0f05SLawrence Stewart } 9749bce0f05SLawrence Stewart 9759bce0f05SLawrence Stewart void 9769bce0f05SLawrence Stewart nanotime(struct timespec *tsp) 9779bce0f05SLawrence Stewart { 9789bce0f05SLawrence Stewart 97988394fe4SLawrence Stewart nanotime_fromclock(tsp, sysclock_active); 9809bce0f05SLawrence Stewart } 9819bce0f05SLawrence Stewart 9829bce0f05SLawrence Stewart void 9839bce0f05SLawrence Stewart microtime(struct timeval *tvp) 9849bce0f05SLawrence Stewart { 9859bce0f05SLawrence Stewart 98688394fe4SLawrence Stewart microtime_fromclock(tvp, sysclock_active); 9879bce0f05SLawrence Stewart } 9889bce0f05SLawrence Stewart 9899bce0f05SLawrence Stewart void 9909bce0f05SLawrence Stewart getbinuptime(struct bintime *bt) 9919bce0f05SLawrence Stewart { 9929bce0f05SLawrence Stewart 99388394fe4SLawrence Stewart getbinuptime_fromclock(bt, sysclock_active); 9949bce0f05SLawrence Stewart } 9959bce0f05SLawrence Stewart 9969bce0f05SLawrence Stewart void 9979bce0f05SLawrence Stewart getnanouptime(struct timespec *tsp) 9989bce0f05SLawrence Stewart { 9999bce0f05SLawrence Stewart 100088394fe4SLawrence Stewart getnanouptime_fromclock(tsp, sysclock_active); 10019bce0f05SLawrence Stewart } 10029bce0f05SLawrence Stewart 10039bce0f05SLawrence Stewart void 10049bce0f05SLawrence Stewart getmicrouptime(struct timeval *tvp) 10059bce0f05SLawrence Stewart { 10069bce0f05SLawrence Stewart 100788394fe4SLawrence Stewart getmicrouptime_fromclock(tvp, sysclock_active); 10089bce0f05SLawrence Stewart } 10099bce0f05SLawrence Stewart 10109bce0f05SLawrence Stewart void 10119bce0f05SLawrence Stewart getbintime(struct bintime *bt) 10129bce0f05SLawrence Stewart { 10139bce0f05SLawrence Stewart 101488394fe4SLawrence Stewart getbintime_fromclock(bt, sysclock_active); 10159bce0f05SLawrence Stewart } 10169bce0f05SLawrence Stewart 10179bce0f05SLawrence Stewart void 10189bce0f05SLawrence Stewart getnanotime(struct timespec *tsp) 10199bce0f05SLawrence Stewart { 10209bce0f05SLawrence Stewart 102188394fe4SLawrence Stewart getnanotime_fromclock(tsp, sysclock_active); 10229bce0f05SLawrence Stewart } 10239bce0f05SLawrence Stewart 10249bce0f05SLawrence Stewart void 10259bce0f05SLawrence Stewart getmicrotime(struct timeval *tvp) 10269bce0f05SLawrence Stewart { 10279bce0f05SLawrence Stewart 102888394fe4SLawrence Stewart getmicrouptime_fromclock(tvp, sysclock_active); 10299bce0f05SLawrence Stewart } 10306cedd609SLawrence Stewart 1031b0fdc837SLawrence Stewart #endif /* FFCLOCK */ 1032b0fdc837SLawrence Stewart 103339acc78aSPoul-Henning Kamp /* 103457d025c3SGeorge V. Neville-Neil * This is a clone of getnanotime and used for walltimestamps. 103557d025c3SGeorge V. Neville-Neil * The dtrace_ prefix prevents fbt from creating probes for 103657d025c3SGeorge V. Neville-Neil * it so walltimestamp can be safely used in all fbt probes. 103757d025c3SGeorge V. Neville-Neil */ 103857d025c3SGeorge V. Neville-Neil void 103957d025c3SGeorge V. Neville-Neil dtrace_getnanotime(struct timespec *tsp) 104057d025c3SGeorge V. Neville-Neil { 104157d025c3SGeorge V. Neville-Neil struct timehands *th; 104257d025c3SGeorge V. Neville-Neil u_int gen; 104357d025c3SGeorge V. Neville-Neil 104457d025c3SGeorge V. Neville-Neil do { 104557d025c3SGeorge V. Neville-Neil th = timehands; 1046f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 104757d025c3SGeorge V. Neville-Neil *tsp = th->th_nanotime; 1048f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 1049f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 105057d025c3SGeorge V. Neville-Neil } 105157d025c3SGeorge V. Neville-Neil 105257d025c3SGeorge V. Neville-Neil /* 10536cedd609SLawrence Stewart * System clock currently providing time to the system. Modifiable via sysctl 10546cedd609SLawrence Stewart * when the FFCLOCK option is defined. 10556cedd609SLawrence Stewart */ 10566cedd609SLawrence Stewart int sysclock_active = SYSCLOCK_FBCK; 10576cedd609SLawrence Stewart 10586cedd609SLawrence Stewart /* Internal NTP status and error estimates. */ 10596cedd609SLawrence Stewart extern int time_status; 10606cedd609SLawrence Stewart extern long time_esterror; 10616cedd609SLawrence Stewart 10626cedd609SLawrence Stewart /* 10636cedd609SLawrence Stewart * Take a snapshot of sysclock data which can be used to compare system clocks 10646cedd609SLawrence Stewart * and generate timestamps after the fact. 10656cedd609SLawrence Stewart */ 10666cedd609SLawrence Stewart void 10676cedd609SLawrence Stewart sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast) 10686cedd609SLawrence Stewart { 10696cedd609SLawrence Stewart struct fbclock_info *fbi; 10706cedd609SLawrence Stewart struct timehands *th; 10716cedd609SLawrence Stewart struct bintime bt; 10726cedd609SLawrence Stewart unsigned int delta, gen; 10736cedd609SLawrence Stewart #ifdef FFCLOCK 10746cedd609SLawrence Stewart ffcounter ffcount; 10756cedd609SLawrence Stewart struct fftimehands *ffth; 10766cedd609SLawrence Stewart struct ffclock_info *ffi; 10776cedd609SLawrence Stewart struct ffclock_estimate cest; 10786cedd609SLawrence Stewart 10796cedd609SLawrence Stewart ffi = &clock_snap->ff_info; 10806cedd609SLawrence Stewart #endif 10816cedd609SLawrence Stewart 10826cedd609SLawrence Stewart fbi = &clock_snap->fb_info; 10836cedd609SLawrence Stewart delta = 0; 10846cedd609SLawrence Stewart 10856cedd609SLawrence Stewart do { 10866cedd609SLawrence Stewart th = timehands; 1087f4b5a972SKonstantin Belousov gen = atomic_load_acq_int(&th->th_generation); 10886cedd609SLawrence Stewart fbi->th_scale = th->th_scale; 10896cedd609SLawrence Stewart fbi->tick_time = th->th_offset; 10906cedd609SLawrence Stewart #ifdef FFCLOCK 10916cedd609SLawrence Stewart ffth = fftimehands; 10926cedd609SLawrence Stewart ffi->tick_time = ffth->tick_time_lerp; 10936cedd609SLawrence Stewart ffi->tick_time_lerp = ffth->tick_time_lerp; 10946cedd609SLawrence Stewart ffi->period = ffth->cest.period; 10956cedd609SLawrence Stewart ffi->period_lerp = ffth->period_lerp; 10966cedd609SLawrence Stewart clock_snap->ffcount = ffth->tick_ffcount; 10976cedd609SLawrence Stewart cest = ffth->cest; 10986cedd609SLawrence Stewart #endif 10996cedd609SLawrence Stewart if (!fast) 11006cedd609SLawrence Stewart delta = tc_delta(th); 1101f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 1102f4b5a972SKonstantin Belousov } while (gen == 0 || gen != th->th_generation); 11036cedd609SLawrence Stewart 11046cedd609SLawrence Stewart clock_snap->delta = delta; 11056cedd609SLawrence Stewart clock_snap->sysclock_active = sysclock_active; 11066cedd609SLawrence Stewart 11076cedd609SLawrence Stewart /* Record feedback clock status and error. */ 11086cedd609SLawrence Stewart clock_snap->fb_info.status = time_status; 11096cedd609SLawrence Stewart /* XXX: Very crude estimate of feedback clock error. */ 11106cedd609SLawrence Stewart bt.sec = time_esterror / 1000000; 11116cedd609SLawrence Stewart bt.frac = ((time_esterror - bt.sec) * 1000000) * 11126cedd609SLawrence Stewart (uint64_t)18446744073709ULL; 11136cedd609SLawrence Stewart clock_snap->fb_info.error = bt; 11146cedd609SLawrence Stewart 11156cedd609SLawrence Stewart #ifdef FFCLOCK 11166cedd609SLawrence Stewart if (!fast) 11176cedd609SLawrence Stewart clock_snap->ffcount += delta; 11186cedd609SLawrence Stewart 11196cedd609SLawrence Stewart /* Record feed-forward clock leap second adjustment. */ 11206cedd609SLawrence Stewart ffi->leapsec_adjustment = cest.leapsec_total; 11216cedd609SLawrence Stewart if (clock_snap->ffcount > cest.leapsec_next) 11226cedd609SLawrence Stewart ffi->leapsec_adjustment -= cest.leapsec; 11236cedd609SLawrence Stewart 11246cedd609SLawrence Stewart /* Record feed-forward clock status and error. */ 11256cedd609SLawrence Stewart clock_snap->ff_info.status = cest.status; 11266cedd609SLawrence Stewart ffcount = clock_snap->ffcount - cest.update_ffcount; 11276cedd609SLawrence Stewart ffclock_convert_delta(ffcount, cest.period, &bt); 11286cedd609SLawrence Stewart /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */ 11296cedd609SLawrence Stewart bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL); 11306cedd609SLawrence Stewart /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */ 11316cedd609SLawrence Stewart bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL); 11326cedd609SLawrence Stewart clock_snap->ff_info.error = bt; 11336cedd609SLawrence Stewart #endif 11346cedd609SLawrence Stewart } 11356cedd609SLawrence Stewart 11366cedd609SLawrence Stewart /* 11376cedd609SLawrence Stewart * Convert a sysclock snapshot into a struct bintime based on the specified 11386cedd609SLawrence Stewart * clock source and flags. 11396cedd609SLawrence Stewart */ 11406cedd609SLawrence Stewart int 11416cedd609SLawrence Stewart sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt, 11426cedd609SLawrence Stewart int whichclock, uint32_t flags) 11436cedd609SLawrence Stewart { 1144584b675eSKonstantin Belousov struct bintime boottimebin; 11456cedd609SLawrence Stewart #ifdef FFCLOCK 11466cedd609SLawrence Stewart struct bintime bt2; 11476cedd609SLawrence Stewart uint64_t period; 11486cedd609SLawrence Stewart #endif 11496cedd609SLawrence Stewart 11506cedd609SLawrence Stewart switch (whichclock) { 11516cedd609SLawrence Stewart case SYSCLOCK_FBCK: 11526cedd609SLawrence Stewart *bt = cs->fb_info.tick_time; 11536cedd609SLawrence Stewart 11546cedd609SLawrence Stewart /* If snapshot was created with !fast, delta will be >0. */ 11556cedd609SLawrence Stewart if (cs->delta > 0) 11566cedd609SLawrence Stewart bintime_addx(bt, cs->fb_info.th_scale * cs->delta); 11576cedd609SLawrence Stewart 1158584b675eSKonstantin Belousov if ((flags & FBCLOCK_UPTIME) == 0) { 1159584b675eSKonstantin Belousov getboottimebin(&boottimebin); 11606cedd609SLawrence Stewart bintime_add(bt, &boottimebin); 1161584b675eSKonstantin Belousov } 11626cedd609SLawrence Stewart break; 11636cedd609SLawrence Stewart #ifdef FFCLOCK 11646cedd609SLawrence Stewart case SYSCLOCK_FFWD: 11656cedd609SLawrence Stewart if (flags & FFCLOCK_LERP) { 11666cedd609SLawrence Stewart *bt = cs->ff_info.tick_time_lerp; 11676cedd609SLawrence Stewart period = cs->ff_info.period_lerp; 11686cedd609SLawrence Stewart } else { 11696cedd609SLawrence Stewart *bt = cs->ff_info.tick_time; 11706cedd609SLawrence Stewart period = cs->ff_info.period; 11716cedd609SLawrence Stewart } 11726cedd609SLawrence Stewart 11736cedd609SLawrence Stewart /* If snapshot was created with !fast, delta will be >0. */ 11746cedd609SLawrence Stewart if (cs->delta > 0) { 11756cedd609SLawrence Stewart ffclock_convert_delta(cs->delta, period, &bt2); 11766cedd609SLawrence Stewart bintime_add(bt, &bt2); 11776cedd609SLawrence Stewart } 11786cedd609SLawrence Stewart 11796cedd609SLawrence Stewart /* Leap second adjustment. */ 11806cedd609SLawrence Stewart if (flags & FFCLOCK_LEAPSEC) 11816cedd609SLawrence Stewart bt->sec -= cs->ff_info.leapsec_adjustment; 11826cedd609SLawrence Stewart 11836cedd609SLawrence Stewart /* Boot time adjustment, for uptime/monotonic clocks. */ 11846cedd609SLawrence Stewart if (flags & FFCLOCK_UPTIME) 11856cedd609SLawrence Stewart bintime_sub(bt, &ffclock_boottime); 1186de02885aSKevin Lo break; 11876cedd609SLawrence Stewart #endif 11886cedd609SLawrence Stewart default: 11896cedd609SLawrence Stewart return (EINVAL); 11906cedd609SLawrence Stewart break; 11916cedd609SLawrence Stewart } 11926cedd609SLawrence Stewart 11936cedd609SLawrence Stewart return (0); 11946cedd609SLawrence Stewart } 11956cedd609SLawrence Stewart 11966cedd609SLawrence Stewart /* 119778a49a45SPoul-Henning Kamp * Initialize a new timecounter and possibly use it. 11984e2befc0SPoul-Henning Kamp */ 11997ec73f64SPoul-Henning Kamp void 120091266b96SPoul-Henning Kamp tc_init(struct timecounter *tc) 12017ec73f64SPoul-Henning Kamp { 1202555a5de2SPoul-Henning Kamp u_int u; 120393ef14a7SDavid Malone struct sysctl_oid *tc_root; 12047ec73f64SPoul-Henning Kamp 1205c679c734SPoul-Henning Kamp u = tc->tc_frequency / tc->tc_counter_mask; 1206555a5de2SPoul-Henning Kamp /* XXX: We need some margin here, 10% is a guess */ 1207555a5de2SPoul-Henning Kamp u *= 11; 1208555a5de2SPoul-Henning Kamp u /= 10; 1209c679c734SPoul-Henning Kamp if (u > hz && tc->tc_quality >= 0) { 1210c679c734SPoul-Henning Kamp tc->tc_quality = -2000; 1211c679c734SPoul-Henning Kamp if (bootverbose) { 1212c679c734SPoul-Henning Kamp printf("Timecounter \"%s\" frequency %ju Hz", 1213555a5de2SPoul-Henning Kamp tc->tc_name, (uintmax_t)tc->tc_frequency); 1214c679c734SPoul-Henning Kamp printf(" -- Insufficient hz, needs at least %u\n", u); 1215c679c734SPoul-Henning Kamp } 1216c679c734SPoul-Henning Kamp } else if (tc->tc_quality >= 0 || bootverbose) { 1217555a5de2SPoul-Henning Kamp printf("Timecounter \"%s\" frequency %ju Hz quality %d\n", 1218555a5de2SPoul-Henning Kamp tc->tc_name, (uintmax_t)tc->tc_frequency, 121978a49a45SPoul-Henning Kamp tc->tc_quality); 1220e46eeb89SPoul-Henning Kamp } 1221c679c734SPoul-Henning Kamp 122262efba6aSPoul-Henning Kamp tc->tc_next = timecounters; 122362efba6aSPoul-Henning Kamp timecounters = tc; 1224555a5de2SPoul-Henning Kamp /* 122593ef14a7SDavid Malone * Set up sysctl tree for this counter. 122693ef14a7SDavid Malone */ 1227fd0f5970SEd Schouten tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL, 122893ef14a7SDavid Malone SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name, 1229fd0f5970SEd Schouten CTLFLAG_RW, 0, "timecounter description", "timecounter"); 123093ef14a7SDavid Malone SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 123193ef14a7SDavid Malone "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0, 123293ef14a7SDavid Malone "mask for implemented bits"); 123393ef14a7SDavid Malone SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 123493ef14a7SDavid Malone "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc), 123593ef14a7SDavid Malone sysctl_kern_timecounter_get, "IU", "current timecounter value"); 123693ef14a7SDavid Malone SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 1237cbc134adSMatthew D Fleming "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc), 1238041b706bSDavid Malone sysctl_kern_timecounter_freq, "QU", "timecounter frequency"); 123993ef14a7SDavid Malone SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO, 124093ef14a7SDavid Malone "quality", CTLFLAG_RD, &(tc->tc_quality), 0, 124193ef14a7SDavid Malone "goodness of time counter"); 124293ef14a7SDavid Malone /* 1243e8bac3f2SIan Lepore * Do not automatically switch if the current tc was specifically 1244e8bac3f2SIan Lepore * chosen. Never automatically use a timecounter with negative quality. 1245555a5de2SPoul-Henning Kamp * Even though we run on the dummy counter, switching here may be 1246e8bac3f2SIan Lepore * worse since this timecounter may not be monotonic. 1247555a5de2SPoul-Henning Kamp */ 1248e8bac3f2SIan Lepore if (tc_chosen) 1249e8bac3f2SIan Lepore return; 125078a49a45SPoul-Henning Kamp if (tc->tc_quality < 0) 125178a49a45SPoul-Henning Kamp return; 125278a49a45SPoul-Henning Kamp if (tc->tc_quality < timecounter->tc_quality) 125378a49a45SPoul-Henning Kamp return; 1254555a5de2SPoul-Henning Kamp if (tc->tc_quality == timecounter->tc_quality && 1255555a5de2SPoul-Henning Kamp tc->tc_frequency < timecounter->tc_frequency) 1256555a5de2SPoul-Henning Kamp return; 1257555a5de2SPoul-Henning Kamp (void)tc->tc_get_timecount(tc); 1258555a5de2SPoul-Henning Kamp (void)tc->tc_get_timecount(tc); 12597ec73f64SPoul-Henning Kamp timecounter = tc; 126062efba6aSPoul-Henning Kamp } 126162efba6aSPoul-Henning Kamp 126239acc78aSPoul-Henning Kamp /* Report the frequency of the current timecounter. */ 126360ae52f7SEd Schouten uint64_t 126462efba6aSPoul-Henning Kamp tc_getfrequency(void) 126562efba6aSPoul-Henning Kamp { 126662efba6aSPoul-Henning Kamp 12676b00cf46SPoul-Henning Kamp return (timehands->th_counter->tc_frequency); 12687ec73f64SPoul-Henning Kamp } 12697ec73f64SPoul-Henning Kamp 12709dbdf2a1SEric van Gyzen static bool 12719dbdf2a1SEric van Gyzen sleeping_on_old_rtc(struct thread *td) 12729dbdf2a1SEric van Gyzen { 12739dbdf2a1SEric van Gyzen 12748addc72bSEric van Gyzen /* 12758addc72bSEric van Gyzen * td_rtcgen is modified by curthread when it is running, 12768addc72bSEric van Gyzen * and by other threads in this function. By finding the thread 12778addc72bSEric van Gyzen * on a sleepqueue and holding the lock on the sleepqueue 12788addc72bSEric van Gyzen * chain, we guarantee that the thread is not running and that 12798addc72bSEric van Gyzen * modifying td_rtcgen is safe. Setting td_rtcgen to zero informs 12808addc72bSEric van Gyzen * the thread that it was woken due to a real-time clock adjustment. 12818addc72bSEric van Gyzen * (The declaration of td_rtcgen refers to this comment.) 12828addc72bSEric van Gyzen */ 12839dbdf2a1SEric van Gyzen if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) { 12849dbdf2a1SEric van Gyzen td->td_rtcgen = 0; 12859dbdf2a1SEric van Gyzen return (true); 12869dbdf2a1SEric van Gyzen } 12879dbdf2a1SEric van Gyzen return (false); 12889dbdf2a1SEric van Gyzen } 12899dbdf2a1SEric van Gyzen 12905760b029SKonstantin Belousov static struct mtx tc_setclock_mtx; 12915760b029SKonstantin Belousov MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN); 12925760b029SKonstantin Belousov 129339acc78aSPoul-Henning Kamp /* 12944e82e5f6SWarner Losh * Step our concept of UTC. This is done by modifying our estimate of 12954e74721cSPoul-Henning Kamp * when we booted. 12966b00cf46SPoul-Henning Kamp */ 12977ec73f64SPoul-Henning Kamp void 129891266b96SPoul-Henning Kamp tc_setclock(struct timespec *ts) 12997ec73f64SPoul-Henning Kamp { 13005b51d1deSPoul-Henning Kamp struct timespec tbef, taft; 13014e74721cSPoul-Henning Kamp struct bintime bt, bt2; 13027ec73f64SPoul-Henning Kamp 13034e74721cSPoul-Henning Kamp timespec2bintime(ts, &bt); 13045760b029SKonstantin Belousov nanotime(&tbef); 13055760b029SKonstantin Belousov mtx_lock_spin(&tc_setclock_mtx); 13065760b029SKonstantin Belousov cpu_tick_calibrate(1); 13075b51d1deSPoul-Henning Kamp binuptime(&bt2); 13084e74721cSPoul-Henning Kamp bintime_sub(&bt, &bt2); 130939acc78aSPoul-Henning Kamp 131039acc78aSPoul-Henning Kamp /* XXX fiddle all the little crinkly bits around the fiords... */ 13115760b029SKonstantin Belousov tc_windup(&bt); 13125760b029SKonstantin Belousov mtx_unlock_spin(&tc_setclock_mtx); 13138addc72bSEric van Gyzen 13149dbdf2a1SEric van Gyzen /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */ 13159dbdf2a1SEric van Gyzen atomic_add_rel_int(&rtc_generation, 2); 13169dbdf2a1SEric van Gyzen sleepq_chains_remove_matching(sleeping_on_old_rtc); 13174e74721cSPoul-Henning Kamp if (timestepwarnings) { 13185760b029SKonstantin Belousov nanotime(&taft); 13195b51d1deSPoul-Henning Kamp log(LOG_INFO, 13205b51d1deSPoul-Henning Kamp "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n", 13215b51d1deSPoul-Henning Kamp (intmax_t)tbef.tv_sec, tbef.tv_nsec, 13225b51d1deSPoul-Henning Kamp (intmax_t)taft.tv_sec, taft.tv_nsec, 1323ee57aeeaSPoul-Henning Kamp (intmax_t)ts->tv_sec, ts->tv_nsec); 13244e74721cSPoul-Henning Kamp } 13257ec73f64SPoul-Henning Kamp } 13267ec73f64SPoul-Henning Kamp 132739acc78aSPoul-Henning Kamp /* 132839acc78aSPoul-Henning Kamp * Initialize the next struct timehands in the ring and make 13296b00cf46SPoul-Henning Kamp * it the active timehands. Along the way we might switch to a different 13306b00cf46SPoul-Henning Kamp * timecounter and/or do seconds processing in NTP. Slightly magic. 13316b00cf46SPoul-Henning Kamp */ 13329e1b5510SPoul-Henning Kamp static void 13335760b029SKonstantin Belousov tc_windup(struct bintime *new_boottimebin) 13347ec73f64SPoul-Henning Kamp { 13352028c0cdSPoul-Henning Kamp struct bintime bt; 133639acc78aSPoul-Henning Kamp struct timehands *th, *tho; 133760ae52f7SEd Schouten uint64_t scale; 133839acc78aSPoul-Henning Kamp u_int delta, ncount, ogen; 133939acc78aSPoul-Henning Kamp int i; 13404f2073fbSWarner Losh time_t t; 13417ec73f64SPoul-Henning Kamp 134239acc78aSPoul-Henning Kamp /* 1343f4b5a972SKonstantin Belousov * Make the next timehands a copy of the current one, but do 1344f4b5a972SKonstantin Belousov * not overwrite the generation or next pointer. While we 1345f4b5a972SKonstantin Belousov * update the contents, the generation must be zero. We need 1346f4b5a972SKonstantin Belousov * to ensure that the zero generation is visible before the 1347f4b5a972SKonstantin Belousov * data updates become visible, which requires release fence. 1348f4b5a972SKonstantin Belousov * For similar reasons, re-reading of the generation after the 1349f4b5a972SKonstantin Belousov * data is read should use acquire fence. 13506b00cf46SPoul-Henning Kamp */ 13516b00cf46SPoul-Henning Kamp tho = timehands; 13526b00cf46SPoul-Henning Kamp th = tho->th_next; 13536b00cf46SPoul-Henning Kamp ogen = th->th_generation; 1354f4b5a972SKonstantin Belousov th->th_generation = 0; 1355f4b5a972SKonstantin Belousov atomic_thread_fence_rel(); 13565ec2c936SMateusz Guzik memcpy(th, tho, offsetof(struct timehands, th_generation)); 13575760b029SKonstantin Belousov if (new_boottimebin != NULL) 13585760b029SKonstantin Belousov th->th_boottime = *new_boottimebin; 13596b00cf46SPoul-Henning Kamp 136039acc78aSPoul-Henning Kamp /* 13616b00cf46SPoul-Henning Kamp * Capture a timecounter delta on the current timecounter and if 13626b00cf46SPoul-Henning Kamp * changing timecounters, a counter value from the new timecounter. 13636b00cf46SPoul-Henning Kamp * Update the offset fields accordingly. 13646b00cf46SPoul-Henning Kamp */ 13656b00cf46SPoul-Henning Kamp delta = tc_delta(th); 13666b00cf46SPoul-Henning Kamp if (th->th_counter != timecounter) 13676b00cf46SPoul-Henning Kamp ncount = timecounter->tc_get_timecount(timecounter); 136839acc78aSPoul-Henning Kamp else 136939acc78aSPoul-Henning Kamp ncount = 0; 1370b0fdc837SLawrence Stewart #ifdef FFCLOCK 1371b0fdc837SLawrence Stewart ffclock_windup(delta); 1372b0fdc837SLawrence Stewart #endif 13736b00cf46SPoul-Henning Kamp th->th_offset_count += delta; 13746b00cf46SPoul-Henning Kamp th->th_offset_count &= th->th_counter->tc_counter_mask; 1375aa519c0aSColin Percival while (delta > th->th_counter->tc_frequency) { 1376aa519c0aSColin Percival /* Eat complete unadjusted seconds. */ 1377aa519c0aSColin Percival delta -= th->th_counter->tc_frequency; 1378aa519c0aSColin Percival th->th_offset.sec++; 1379aa519c0aSColin Percival } 1380aa519c0aSColin Percival if ((delta > th->th_counter->tc_frequency / 2) && 1381772d1e42SColin Percival (th->th_scale * delta < ((uint64_t)1 << 63))) { 1382aa519c0aSColin Percival /* The product th_scale * delta just barely overflows. */ 1383aa519c0aSColin Percival th->th_offset.sec++; 1384aa519c0aSColin Percival } 13856b00cf46SPoul-Henning Kamp bintime_addx(&th->th_offset, th->th_scale * delta); 13866b00cf46SPoul-Henning Kamp 138739acc78aSPoul-Henning Kamp /* 13886b00cf46SPoul-Henning Kamp * Hardware latching timecounters may not generate interrupts on 13896b00cf46SPoul-Henning Kamp * PPS events, so instead we poll them. There is a finite risk that 13906b00cf46SPoul-Henning Kamp * the hardware might capture a count which is later than the one we 13916b00cf46SPoul-Henning Kamp * got above, and therefore possibly in the next NTP second which might 13926b00cf46SPoul-Henning Kamp * have a different rate than the current NTP second. It doesn't 13936b00cf46SPoul-Henning Kamp * matter in practice. 13946b00cf46SPoul-Henning Kamp */ 13956b00cf46SPoul-Henning Kamp if (tho->th_counter->tc_poll_pps) 13966b00cf46SPoul-Henning Kamp tho->th_counter->tc_poll_pps(tho->th_counter); 13976b00cf46SPoul-Henning Kamp 139839acc78aSPoul-Henning Kamp /* 1399c1cccd1eSWarner Losh * Deal with NTP second processing. The for loop normally 1400c1cccd1eSWarner Losh * iterates at most once, but in extreme situations it might 1401c1cccd1eSWarner Losh * keep NTP sane if timeouts are not run for several seconds. 1402c1cccd1eSWarner Losh * At boot, the time step can be large when the TOD hardware 1403c1cccd1eSWarner Losh * has been read, so on really large steps, we call 1404c1cccd1eSWarner Losh * ntp_update_second only twice. We need to call it twice in 1405c1cccd1eSWarner Losh * case we missed a leap second. 14064f2073fbSWarner Losh */ 14074f2073fbSWarner Losh bt = th->th_offset; 14085760b029SKonstantin Belousov bintime_add(&bt, &th->th_boottime); 140945cc9f5fSWarner Losh i = bt.sec - tho->th_microtime.tv_sec; 141045cc9f5fSWarner Losh if (i > LARGE_STEP) 141145cc9f5fSWarner Losh i = 2; 141245cc9f5fSWarner Losh for (; i > 0; i--) { 14134f2073fbSWarner Losh t = bt.sec; 14144f2073fbSWarner Losh ntp_update_second(&th->th_adjustment, &bt.sec); 14154f2073fbSWarner Losh if (bt.sec != t) 14165760b029SKonstantin Belousov th->th_boottime.sec += bt.sec - t; 14174f2073fbSWarner Losh } 1418c1cccd1eSWarner Losh /* Update the UTC timestamps used by the get*() functions. */ 141970e3b262SKonstantin Belousov th->th_bintime = bt; 1420c1cccd1eSWarner Losh bintime2timeval(&bt, &th->th_microtime); 1421c1cccd1eSWarner Losh bintime2timespec(&bt, &th->th_nanotime); 14226b00cf46SPoul-Henning Kamp 14236b00cf46SPoul-Henning Kamp /* Now is a good time to change timecounters. */ 14246b00cf46SPoul-Henning Kamp if (th->th_counter != timecounter) { 142508e1b4f4SJung-uk Kim #ifndef __arm__ 142692597e06SJohn Baldwin if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0) 142792597e06SJohn Baldwin cpu_disable_c2_sleep++; 142892597e06SJohn Baldwin if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0) 142992597e06SJohn Baldwin cpu_disable_c2_sleep--; 143008e1b4f4SJung-uk Kim #endif 14316b00cf46SPoul-Henning Kamp th->th_counter = timecounter; 14326b00cf46SPoul-Henning Kamp th->th_offset_count = ncount; 14330e189873SAlexander Motin tc_min_ticktock_freq = max(1, timecounter->tc_frequency / 14340e189873SAlexander Motin (((uint64_t)timecounter->tc_counter_mask + 1) / 3)); 1435b0fdc837SLawrence Stewart #ifdef FFCLOCK 1436b0fdc837SLawrence Stewart ffclock_change_tc(th); 1437b0fdc837SLawrence Stewart #endif 14387ec73f64SPoul-Henning Kamp } 14397ec73f64SPoul-Henning Kamp 14401a996ed1SEdward Tomasz Napierala /*- 14416b00cf46SPoul-Henning Kamp * Recalculate the scaling factor. We want the number of 1/2^64 14426b00cf46SPoul-Henning Kamp * fractions of a second per period of the hardware counter, taking 14436b00cf46SPoul-Henning Kamp * into account the th_adjustment factor which the NTP PLL/adjtime(2) 14446b00cf46SPoul-Henning Kamp * processing provides us with. 14456b00cf46SPoul-Henning Kamp * 14466b00cf46SPoul-Henning Kamp * The th_adjustment is nanoseconds per second with 32 bit binary 1447d94e3652SPoul-Henning Kamp * fraction and we want 64 bit binary fraction of second: 14486b00cf46SPoul-Henning Kamp * 14496b00cf46SPoul-Henning Kamp * x = a * 2^32 / 10^9 = a * 4.294967296 14506b00cf46SPoul-Henning Kamp * 14516b00cf46SPoul-Henning Kamp * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 1452e8444a7eSPoul-Henning Kamp * we can only multiply by about 850 without overflowing, that 1453e8444a7eSPoul-Henning Kamp * leaves no suitably precise fractions for multiply before divide. 14546b00cf46SPoul-Henning Kamp * 14556b00cf46SPoul-Henning Kamp * Divide before multiply with a fraction of 2199/512 results in a 14566b00cf46SPoul-Henning Kamp * systematic undercompensation of 10PPM of th_adjustment. On a 14576b00cf46SPoul-Henning Kamp * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 14586b00cf46SPoul-Henning Kamp * 14596b00cf46SPoul-Henning Kamp * We happily sacrifice the lowest of the 64 bits of our result 14606b00cf46SPoul-Henning Kamp * to the goddess of code clarity. 146139acc78aSPoul-Henning Kamp * 14626b00cf46SPoul-Henning Kamp */ 146360ae52f7SEd Schouten scale = (uint64_t)1 << 63; 14646b00cf46SPoul-Henning Kamp scale += (th->th_adjustment / 1024) * 2199; 14656b00cf46SPoul-Henning Kamp scale /= th->th_counter->tc_frequency; 14666b00cf46SPoul-Henning Kamp th->th_scale = scale * 2; 14676b00cf46SPoul-Henning Kamp 146839acc78aSPoul-Henning Kamp /* 146939acc78aSPoul-Henning Kamp * Now that the struct timehands is again consistent, set the new 14706b00cf46SPoul-Henning Kamp * generation number, making sure to not make it zero. 14716b00cf46SPoul-Henning Kamp */ 14726b00cf46SPoul-Henning Kamp if (++ogen == 0) 147339acc78aSPoul-Henning Kamp ogen = 1; 1474f4b5a972SKonstantin Belousov atomic_store_rel_int(&th->th_generation, ogen); 14756b00cf46SPoul-Henning Kamp 147639acc78aSPoul-Henning Kamp /* Go live with the new struct timehands. */ 14779bce0f05SLawrence Stewart #ifdef FFCLOCK 14789bce0f05SLawrence Stewart switch (sysclock_active) { 14799bce0f05SLawrence Stewart case SYSCLOCK_FBCK: 14809bce0f05SLawrence Stewart #endif 14816b00cf46SPoul-Henning Kamp time_second = th->th_microtime.tv_sec; 148238b0884cSPoul-Henning Kamp time_uptime = th->th_offset.sec; 14839bce0f05SLawrence Stewart #ifdef FFCLOCK 14849bce0f05SLawrence Stewart break; 14859bce0f05SLawrence Stewart case SYSCLOCK_FFWD: 14869bce0f05SLawrence Stewart time_second = fftimehands->tick_time_lerp.sec; 14879bce0f05SLawrence Stewart time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec; 14889bce0f05SLawrence Stewart break; 14899bce0f05SLawrence Stewart } 14909bce0f05SLawrence Stewart #endif 14919bce0f05SLawrence Stewart 14926b00cf46SPoul-Henning Kamp timehands = th; 149321c295efSKonstantin Belousov timekeep_push_vdso(); 14946b00cf46SPoul-Henning Kamp } 14956b00cf46SPoul-Henning Kamp 149639acc78aSPoul-Henning Kamp /* Report or change the active timecounter hardware. */ 14976b6ef746SBruce Evans static int 149882d9ae4eSPoul-Henning Kamp sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS) 14996b6ef746SBruce Evans { 15006b6ef746SBruce Evans char newname[32]; 15016b6ef746SBruce Evans struct timecounter *newtc, *tc; 15026b6ef746SBruce Evans int error; 15036b6ef746SBruce Evans 150462efba6aSPoul-Henning Kamp tc = timecounter; 1505e80fb434SRobert Drehmel strlcpy(newname, tc->tc_name, sizeof(newname)); 1506e80fb434SRobert Drehmel 15076b6ef746SBruce Evans error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req); 1508e8bac3f2SIan Lepore if (error != 0 || req->newptr == NULL) 150962efba6aSPoul-Henning Kamp return (error); 1510e8bac3f2SIan Lepore /* Record that the tc in use now was specifically chosen. */ 1511e8bac3f2SIan Lepore tc_chosen = 1; 1512e8bac3f2SIan Lepore if (strcmp(newname, tc->tc_name) == 0) 1513e8bac3f2SIan Lepore return (0); 151462efba6aSPoul-Henning Kamp for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 151539acc78aSPoul-Henning Kamp if (strcmp(newname, newtc->tc_name) != 0) 151662efba6aSPoul-Henning Kamp continue; 151739acc78aSPoul-Henning Kamp 15186b6ef746SBruce Evans /* Warm up new timecounter. */ 15196b6ef746SBruce Evans (void)newtc->tc_get_timecount(newtc); 152062efba6aSPoul-Henning Kamp (void)newtc->tc_get_timecount(newtc); 152139acc78aSPoul-Henning Kamp 152262efba6aSPoul-Henning Kamp timecounter = newtc; 1523d1b1b600SNeel Natu 1524d1b1b600SNeel Natu /* 1525d1b1b600SNeel Natu * The vdso timehands update is deferred until the next 1526d1b1b600SNeel Natu * 'tc_windup()'. 1527d1b1b600SNeel Natu * 1528d1b1b600SNeel Natu * This is prudent given that 'timekeep_push_vdso()' does not 1529d1b1b600SNeel Natu * use any locking and that it can be called in hard interrupt 1530d1b1b600SNeel Natu * context via 'tc_windup()'. 1531d1b1b600SNeel Natu */ 15326b6ef746SBruce Evans return (0); 15336b6ef746SBruce Evans } 15346b6ef746SBruce Evans return (EINVAL); 15356b6ef746SBruce Evans } 15366b6ef746SBruce Evans 15376b6ef746SBruce Evans SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW, 1538b389be97SRebecca Cran 0, 0, sysctl_kern_timecounter_hardware, "A", 1539b389be97SRebecca Cran "Timecounter hardware selected"); 15406b6ef746SBruce Evans 154178a49a45SPoul-Henning Kamp 1542e8bac3f2SIan Lepore /* Report the available timecounter hardware. */ 154378a49a45SPoul-Henning Kamp static int 154478a49a45SPoul-Henning Kamp sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS) 154578a49a45SPoul-Henning Kamp { 154691d9eda2SIan Lepore struct sbuf sb; 154778a49a45SPoul-Henning Kamp struct timecounter *tc; 154878a49a45SPoul-Henning Kamp int error; 154978a49a45SPoul-Henning Kamp 155091d9eda2SIan Lepore sbuf_new_for_sysctl(&sb, NULL, 0, req); 155191d9eda2SIan Lepore for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 155291d9eda2SIan Lepore if (tc != timecounters) 155391d9eda2SIan Lepore sbuf_putc(&sb, ' '); 155491d9eda2SIan Lepore sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality); 155578a49a45SPoul-Henning Kamp } 155691d9eda2SIan Lepore error = sbuf_finish(&sb); 155791d9eda2SIan Lepore sbuf_delete(&sb); 155878a49a45SPoul-Henning Kamp return (error); 155978a49a45SPoul-Henning Kamp } 156078a49a45SPoul-Henning Kamp 156178a49a45SPoul-Henning Kamp SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD, 15622baa5cddSRebecca Cran 0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected"); 156378a49a45SPoul-Henning Kamp 156439acc78aSPoul-Henning Kamp /* 15656b00cf46SPoul-Henning Kamp * RFC 2783 PPS-API implementation. 15666b00cf46SPoul-Henning Kamp */ 15677ec73f64SPoul-Henning Kamp 156828315e27SIan Lepore /* 156928315e27SIan Lepore * Return true if the driver is aware of the abi version extensions in the 157028315e27SIan Lepore * pps_state structure, and it supports at least the given abi version number. 157128315e27SIan Lepore */ 157228315e27SIan Lepore static inline int 157328315e27SIan Lepore abi_aware(struct pps_state *pps, int vers) 157428315e27SIan Lepore { 157528315e27SIan Lepore 157628315e27SIan Lepore return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers); 157728315e27SIan Lepore } 157828315e27SIan Lepore 1579a1137de9SIan Lepore static int 1580a1137de9SIan Lepore pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps) 1581a1137de9SIan Lepore { 1582a1137de9SIan Lepore int err, timo; 1583a1137de9SIan Lepore pps_seq_t aseq, cseq; 1584a1137de9SIan Lepore struct timeval tv; 1585a1137de9SIan Lepore 1586a1137de9SIan Lepore if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1587a1137de9SIan Lepore return (EINVAL); 1588a1137de9SIan Lepore 1589a1137de9SIan Lepore /* 1590a1137de9SIan Lepore * If no timeout is requested, immediately return whatever values were 1591a1137de9SIan Lepore * most recently captured. If timeout seconds is -1, that's a request 1592a1137de9SIan Lepore * to block without a timeout. WITNESS won't let us sleep forever 1593a1137de9SIan Lepore * without a lock (we really don't need a lock), so just repeatedly 1594a1137de9SIan Lepore * sleep a long time. 1595a1137de9SIan Lepore */ 1596a1137de9SIan Lepore if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) { 1597a1137de9SIan Lepore if (fapi->timeout.tv_sec == -1) 1598a1137de9SIan Lepore timo = 0x7fffffff; 1599a1137de9SIan Lepore else { 1600a1137de9SIan Lepore tv.tv_sec = fapi->timeout.tv_sec; 1601a1137de9SIan Lepore tv.tv_usec = fapi->timeout.tv_nsec / 1000; 1602a1137de9SIan Lepore timo = tvtohz(&tv); 1603a1137de9SIan Lepore } 16046f697994SKonstantin Belousov aseq = atomic_load_int(&pps->ppsinfo.assert_sequence); 16056f697994SKonstantin Belousov cseq = atomic_load_int(&pps->ppsinfo.clear_sequence); 16066f697994SKonstantin Belousov while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) && 16076f697994SKonstantin Belousov cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) { 160828315e27SIan Lepore if (abi_aware(pps, 1) && pps->driver_mtx != NULL) { 160928315e27SIan Lepore if (pps->flags & PPSFLAG_MTX_SPIN) { 161028315e27SIan Lepore err = msleep_spin(pps, pps->driver_mtx, 161128315e27SIan Lepore "ppsfch", timo); 161228315e27SIan Lepore } else { 161328315e27SIan Lepore err = msleep(pps, pps->driver_mtx, PCATCH, 161428315e27SIan Lepore "ppsfch", timo); 161528315e27SIan Lepore } 161628315e27SIan Lepore } else { 1617a1137de9SIan Lepore err = tsleep(pps, PCATCH, "ppsfch", timo); 161828315e27SIan Lepore } 16196f7a9f7cSIan Lepore if (err == EWOULDBLOCK) { 16206f7a9f7cSIan Lepore if (fapi->timeout.tv_sec == -1) { 1621a1137de9SIan Lepore continue; 16226f7a9f7cSIan Lepore } else { 16236f7a9f7cSIan Lepore return (ETIMEDOUT); 16246f7a9f7cSIan Lepore } 1625a1137de9SIan Lepore } else if (err != 0) { 1626a1137de9SIan Lepore return (err); 1627a1137de9SIan Lepore } 1628a1137de9SIan Lepore } 1629a1137de9SIan Lepore } 1630a1137de9SIan Lepore 1631a1137de9SIan Lepore pps->ppsinfo.current_mode = pps->ppsparam.mode; 1632a1137de9SIan Lepore fapi->pps_info_buf = pps->ppsinfo; 1633a1137de9SIan Lepore 1634a1137de9SIan Lepore return (0); 1635a1137de9SIan Lepore } 1636a1137de9SIan Lepore 163732c20357SPoul-Henning Kamp int 163832c20357SPoul-Henning Kamp pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 163932c20357SPoul-Henning Kamp { 164032c20357SPoul-Henning Kamp pps_params_t *app; 1641b7424f2dSJohn Hay struct pps_fetch_args *fapi; 164265e359a1SLawrence Stewart #ifdef FFCLOCK 164365e359a1SLawrence Stewart struct pps_fetch_ffc_args *fapi_ffc; 164465e359a1SLawrence Stewart #endif 1645de3f8889SPeter Wemm #ifdef PPS_SYNC 1646b7424f2dSJohn Hay struct pps_kcbind_args *kapi; 1647de3f8889SPeter Wemm #endif 164832c20357SPoul-Henning Kamp 1649d8e8b675SPoul-Henning Kamp KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl")); 165032c20357SPoul-Henning Kamp switch (cmd) { 165132c20357SPoul-Henning Kamp case PPS_IOC_CREATE: 165232c20357SPoul-Henning Kamp return (0); 165332c20357SPoul-Henning Kamp case PPS_IOC_DESTROY: 165432c20357SPoul-Henning Kamp return (0); 165532c20357SPoul-Henning Kamp case PPS_IOC_SETPARAMS: 165632c20357SPoul-Henning Kamp app = (pps_params_t *)data; 165732c20357SPoul-Henning Kamp if (app->mode & ~pps->ppscap) 165832c20357SPoul-Henning Kamp return (EINVAL); 165965e359a1SLawrence Stewart #ifdef FFCLOCK 166065e359a1SLawrence Stewart /* Ensure only a single clock is selected for ffc timestamp. */ 166165e359a1SLawrence Stewart if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK) 166265e359a1SLawrence Stewart return (EINVAL); 166365e359a1SLawrence Stewart #endif 166432c20357SPoul-Henning Kamp pps->ppsparam = *app; 166532c20357SPoul-Henning Kamp return (0); 166632c20357SPoul-Henning Kamp case PPS_IOC_GETPARAMS: 166732c20357SPoul-Henning Kamp app = (pps_params_t *)data; 166832c20357SPoul-Henning Kamp *app = pps->ppsparam; 1669b7424f2dSJohn Hay app->api_version = PPS_API_VERS_1; 167032c20357SPoul-Henning Kamp return (0); 167132c20357SPoul-Henning Kamp case PPS_IOC_GETCAP: 167232c20357SPoul-Henning Kamp *(int*)data = pps->ppscap; 167332c20357SPoul-Henning Kamp return (0); 167432c20357SPoul-Henning Kamp case PPS_IOC_FETCH: 1675b7424f2dSJohn Hay fapi = (struct pps_fetch_args *)data; 1676a1137de9SIan Lepore return (pps_fetch(fapi, pps)); 167765e359a1SLawrence Stewart #ifdef FFCLOCK 167865e359a1SLawrence Stewart case PPS_IOC_FETCH_FFCOUNTER: 167965e359a1SLawrence Stewart fapi_ffc = (struct pps_fetch_ffc_args *)data; 168065e359a1SLawrence Stewart if (fapi_ffc->tsformat && fapi_ffc->tsformat != 168165e359a1SLawrence Stewart PPS_TSFMT_TSPEC) 168265e359a1SLawrence Stewart return (EINVAL); 168365e359a1SLawrence Stewart if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec) 168465e359a1SLawrence Stewart return (EOPNOTSUPP); 168565e359a1SLawrence Stewart pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode; 168665e359a1SLawrence Stewart fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc; 168765e359a1SLawrence Stewart /* Overwrite timestamps if feedback clock selected. */ 168865e359a1SLawrence Stewart switch (pps->ppsparam.mode & PPS_TSCLK_MASK) { 168965e359a1SLawrence Stewart case PPS_TSCLK_FBCK: 169065e359a1SLawrence Stewart fapi_ffc->pps_info_buf_ffc.assert_timestamp = 169165e359a1SLawrence Stewart pps->ppsinfo.assert_timestamp; 169265e359a1SLawrence Stewart fapi_ffc->pps_info_buf_ffc.clear_timestamp = 169365e359a1SLawrence Stewart pps->ppsinfo.clear_timestamp; 169465e359a1SLawrence Stewart break; 169565e359a1SLawrence Stewart case PPS_TSCLK_FFWD: 169665e359a1SLawrence Stewart break; 169765e359a1SLawrence Stewart default: 169865e359a1SLawrence Stewart break; 169965e359a1SLawrence Stewart } 170065e359a1SLawrence Stewart return (0); 170165e359a1SLawrence Stewart #endif /* FFCLOCK */ 1702b7424f2dSJohn Hay case PPS_IOC_KCBIND: 1703b7424f2dSJohn Hay #ifdef PPS_SYNC 1704b7424f2dSJohn Hay kapi = (struct pps_kcbind_args *)data; 1705b7424f2dSJohn Hay /* XXX Only root should be able to do this */ 1706b7424f2dSJohn Hay if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1707b7424f2dSJohn Hay return (EINVAL); 1708b7424f2dSJohn Hay if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1709b7424f2dSJohn Hay return (EINVAL); 1710b7424f2dSJohn Hay if (kapi->edge & ~pps->ppscap) 1711b7424f2dSJohn Hay return (EINVAL); 171228315e27SIan Lepore pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) | 171328315e27SIan Lepore (pps->kcmode & KCMODE_ABIFLAG); 1714b7424f2dSJohn Hay return (0); 1715b7424f2dSJohn Hay #else 1716b7424f2dSJohn Hay return (EOPNOTSUPP); 1717b7424f2dSJohn Hay #endif 171832c20357SPoul-Henning Kamp default: 1719f8385624SPoul-Henning Kamp return (ENOIOCTL); 172032c20357SPoul-Henning Kamp } 172132c20357SPoul-Henning Kamp } 172232c20357SPoul-Henning Kamp 172332c20357SPoul-Henning Kamp void 172432c20357SPoul-Henning Kamp pps_init(struct pps_state *pps) 172532c20357SPoul-Henning Kamp { 1726a1137de9SIan Lepore pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 172732c20357SPoul-Henning Kamp if (pps->ppscap & PPS_CAPTUREASSERT) 172832c20357SPoul-Henning Kamp pps->ppscap |= PPS_OFFSETASSERT; 172932c20357SPoul-Henning Kamp if (pps->ppscap & PPS_CAPTURECLEAR) 173032c20357SPoul-Henning Kamp pps->ppscap |= PPS_OFFSETCLEAR; 173165e359a1SLawrence Stewart #ifdef FFCLOCK 173265e359a1SLawrence Stewart pps->ppscap |= PPS_TSCLK_MASK; 173365e359a1SLawrence Stewart #endif 173428315e27SIan Lepore pps->kcmode &= ~KCMODE_ABIFLAG; 173528315e27SIan Lepore } 173628315e27SIan Lepore 173728315e27SIan Lepore void 173828315e27SIan Lepore pps_init_abi(struct pps_state *pps) 173928315e27SIan Lepore { 174028315e27SIan Lepore 174128315e27SIan Lepore pps_init(pps); 174228315e27SIan Lepore if (pps->driver_abi > 0) { 174328315e27SIan Lepore pps->kcmode |= KCMODE_ABIFLAG; 174428315e27SIan Lepore pps->kernel_abi = PPS_ABI_VERSION; 174528315e27SIan Lepore } 174632c20357SPoul-Henning Kamp } 174732c20357SPoul-Henning Kamp 174832c20357SPoul-Henning Kamp void 17497bf758bfSPoul-Henning Kamp pps_capture(struct pps_state *pps) 17507bf758bfSPoul-Henning Kamp { 17516b00cf46SPoul-Henning Kamp struct timehands *th; 17527bf758bfSPoul-Henning Kamp 1753d8e8b675SPoul-Henning Kamp KASSERT(pps != NULL, ("NULL pps pointer in pps_capture")); 17546b00cf46SPoul-Henning Kamp th = timehands; 1755f4b5a972SKonstantin Belousov pps->capgen = atomic_load_acq_int(&th->th_generation); 17566b00cf46SPoul-Henning Kamp pps->capth = th; 175765e359a1SLawrence Stewart #ifdef FFCLOCK 175865e359a1SLawrence Stewart pps->capffth = fftimehands; 175965e359a1SLawrence Stewart #endif 17606b00cf46SPoul-Henning Kamp pps->capcount = th->th_counter->tc_get_timecount(th->th_counter); 1761f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 1762f4b5a972SKonstantin Belousov if (pps->capgen != th->th_generation) 17636b00cf46SPoul-Henning Kamp pps->capgen = 0; 17647bf758bfSPoul-Henning Kamp } 17657bf758bfSPoul-Henning Kamp 17667bf758bfSPoul-Henning Kamp void 17677bf758bfSPoul-Henning Kamp pps_event(struct pps_state *pps, int event) 176832c20357SPoul-Henning Kamp { 176939acc78aSPoul-Henning Kamp struct bintime bt; 177032c20357SPoul-Henning Kamp struct timespec ts, *tsp, *osp; 17716b00cf46SPoul-Henning Kamp u_int tcount, *pcount; 1772aaca7045SEnji Cooper int foff; 177332c20357SPoul-Henning Kamp pps_seq_t *pseq; 177465e359a1SLawrence Stewart #ifdef FFCLOCK 177565e359a1SLawrence Stewart struct timespec *tsp_ffc; 177665e359a1SLawrence Stewart pps_seq_t *pseq_ffc; 177765e359a1SLawrence Stewart ffcounter *ffcount; 177865e359a1SLawrence Stewart #endif 1779aaca7045SEnji Cooper #ifdef PPS_SYNC 1780aaca7045SEnji Cooper int fhard; 1781aaca7045SEnji Cooper #endif 178232c20357SPoul-Henning Kamp 1783d8e8b675SPoul-Henning Kamp KASSERT(pps != NULL, ("NULL pps pointer in pps_event")); 1784721b5817SIan Lepore /* Nothing to do if not currently set to capture this event type. */ 1785721b5817SIan Lepore if ((event & pps->ppsparam.mode) == 0) 1786721b5817SIan Lepore return; 178739acc78aSPoul-Henning Kamp /* If the timecounter was wound up underneath us, bail out. */ 1788f4b5a972SKonstantin Belousov if (pps->capgen == 0 || pps->capgen != 1789f4b5a972SKonstantin Belousov atomic_load_acq_int(&pps->capth->th_generation)) 17907bf758bfSPoul-Henning Kamp return; 17917bf758bfSPoul-Henning Kamp 179239acc78aSPoul-Henning Kamp /* Things would be easier with arrays. */ 179332c20357SPoul-Henning Kamp if (event == PPS_CAPTUREASSERT) { 179432c20357SPoul-Henning Kamp tsp = &pps->ppsinfo.assert_timestamp; 179532c20357SPoul-Henning Kamp osp = &pps->ppsparam.assert_offset; 179632c20357SPoul-Henning Kamp foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1797aaca7045SEnji Cooper #ifdef PPS_SYNC 1798b7424f2dSJohn Hay fhard = pps->kcmode & PPS_CAPTUREASSERT; 1799aaca7045SEnji Cooper #endif 180032c20357SPoul-Henning Kamp pcount = &pps->ppscount[0]; 180132c20357SPoul-Henning Kamp pseq = &pps->ppsinfo.assert_sequence; 180265e359a1SLawrence Stewart #ifdef FFCLOCK 180365e359a1SLawrence Stewart ffcount = &pps->ppsinfo_ffc.assert_ffcount; 180465e359a1SLawrence Stewart tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp; 180565e359a1SLawrence Stewart pseq_ffc = &pps->ppsinfo_ffc.assert_sequence; 180665e359a1SLawrence Stewart #endif 180732c20357SPoul-Henning Kamp } else { 180832c20357SPoul-Henning Kamp tsp = &pps->ppsinfo.clear_timestamp; 180932c20357SPoul-Henning Kamp osp = &pps->ppsparam.clear_offset; 181032c20357SPoul-Henning Kamp foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1811aaca7045SEnji Cooper #ifdef PPS_SYNC 1812b7424f2dSJohn Hay fhard = pps->kcmode & PPS_CAPTURECLEAR; 1813aaca7045SEnji Cooper #endif 181432c20357SPoul-Henning Kamp pcount = &pps->ppscount[1]; 181532c20357SPoul-Henning Kamp pseq = &pps->ppsinfo.clear_sequence; 181665e359a1SLawrence Stewart #ifdef FFCLOCK 181765e359a1SLawrence Stewart ffcount = &pps->ppsinfo_ffc.clear_ffcount; 181865e359a1SLawrence Stewart tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp; 181965e359a1SLawrence Stewart pseq_ffc = &pps->ppsinfo_ffc.clear_sequence; 182065e359a1SLawrence Stewart #endif 182132c20357SPoul-Henning Kamp } 182232c20357SPoul-Henning Kamp 182339acc78aSPoul-Henning Kamp /* 18246b00cf46SPoul-Henning Kamp * If the timecounter changed, we cannot compare the count values, so 18256b00cf46SPoul-Henning Kamp * we have to drop the rest of the PPS-stuff until the next event. 18266b00cf46SPoul-Henning Kamp */ 18276b00cf46SPoul-Henning Kamp if (pps->ppstc != pps->capth->th_counter) { 18286b00cf46SPoul-Henning Kamp pps->ppstc = pps->capth->th_counter; 18297bf758bfSPoul-Henning Kamp *pcount = pps->capcount; 18307bf758bfSPoul-Henning Kamp pps->ppscount[2] = pps->capcount; 183132c20357SPoul-Henning Kamp return; 183232c20357SPoul-Henning Kamp } 183332c20357SPoul-Henning Kamp 183439acc78aSPoul-Henning Kamp /* Convert the count to a timespec. */ 18356b00cf46SPoul-Henning Kamp tcount = pps->capcount - pps->capth->th_offset_count; 18366b00cf46SPoul-Henning Kamp tcount &= pps->capth->th_counter->tc_counter_mask; 183750c22263SKonstantin Belousov bt = pps->capth->th_bintime; 18386b00cf46SPoul-Henning Kamp bintime_addx(&bt, pps->capth->th_scale * tcount); 18392028c0cdSPoul-Henning Kamp bintime2timespec(&bt, &ts); 184032c20357SPoul-Henning Kamp 184139acc78aSPoul-Henning Kamp /* If the timecounter was wound up underneath us, bail out. */ 1842f4b5a972SKonstantin Belousov atomic_thread_fence_acq(); 1843f4b5a972SKonstantin Belousov if (pps->capgen != pps->capth->th_generation) 18447bf758bfSPoul-Henning Kamp return; 18457bf758bfSPoul-Henning Kamp 18467bf758bfSPoul-Henning Kamp *pcount = pps->capcount; 184732c20357SPoul-Henning Kamp (*pseq)++; 184832c20357SPoul-Henning Kamp *tsp = ts; 184932c20357SPoul-Henning Kamp 185032c20357SPoul-Henning Kamp if (foff) { 18516040822cSAlan Somers timespecadd(tsp, osp, tsp); 185232c20357SPoul-Henning Kamp if (tsp->tv_nsec < 0) { 185332c20357SPoul-Henning Kamp tsp->tv_nsec += 1000000000; 185432c20357SPoul-Henning Kamp tsp->tv_sec -= 1; 185532c20357SPoul-Henning Kamp } 185632c20357SPoul-Henning Kamp } 185765e359a1SLawrence Stewart 185865e359a1SLawrence Stewart #ifdef FFCLOCK 185965e359a1SLawrence Stewart *ffcount = pps->capffth->tick_ffcount + tcount; 186065e359a1SLawrence Stewart bt = pps->capffth->tick_time; 186165e359a1SLawrence Stewart ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt); 186265e359a1SLawrence Stewart bintime_add(&bt, &pps->capffth->tick_time); 186365e359a1SLawrence Stewart bintime2timespec(&bt, &ts); 186465e359a1SLawrence Stewart (*pseq_ffc)++; 186565e359a1SLawrence Stewart *tsp_ffc = ts; 186665e359a1SLawrence Stewart #endif 186765e359a1SLawrence Stewart 186832c20357SPoul-Henning Kamp #ifdef PPS_SYNC 186932c20357SPoul-Henning Kamp if (fhard) { 187060ae52f7SEd Schouten uint64_t scale; 1871ce9fac00SPoul-Henning Kamp 187239acc78aSPoul-Henning Kamp /* 18736b00cf46SPoul-Henning Kamp * Feed the NTP PLL/FLL. 1874b1e7e201SJohn Hay * The FLL wants to know how many (hardware) nanoseconds 1875b1e7e201SJohn Hay * elapsed since the previous event. 18766b00cf46SPoul-Henning Kamp */ 18777bf758bfSPoul-Henning Kamp tcount = pps->capcount - pps->ppscount[2]; 18787bf758bfSPoul-Henning Kamp pps->ppscount[2] = pps->capcount; 18796b00cf46SPoul-Henning Kamp tcount &= pps->capth->th_counter->tc_counter_mask; 188060ae52f7SEd Schouten scale = (uint64_t)1 << 63; 1881b1e7e201SJohn Hay scale /= pps->capth->th_counter->tc_frequency; 1882b1e7e201SJohn Hay scale *= 2; 18832028c0cdSPoul-Henning Kamp bt.sec = 0; 18842028c0cdSPoul-Henning Kamp bt.frac = 0; 1885b1e7e201SJohn Hay bintime_addx(&bt, scale * tcount); 18862028c0cdSPoul-Henning Kamp bintime2timespec(&bt, &ts); 18872028c0cdSPoul-Henning Kamp hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec); 188832c20357SPoul-Henning Kamp } 188932c20357SPoul-Henning Kamp #endif 1890a1137de9SIan Lepore 1891a1137de9SIan Lepore /* Wakeup anyone sleeping in pps_fetch(). */ 1892a1137de9SIan Lepore wakeup(pps); 189332c20357SPoul-Henning Kamp } 18949e1b5510SPoul-Henning Kamp 189539acc78aSPoul-Henning Kamp /* 18969e1b5510SPoul-Henning Kamp * Timecounters need to be updated every so often to prevent the hardware 18979e1b5510SPoul-Henning Kamp * counter from overflowing. Updating also recalculates the cached values 18989e1b5510SPoul-Henning Kamp * used by the get*() family of functions, so their precision depends on 18999e1b5510SPoul-Henning Kamp * the update frequency. 19009e1b5510SPoul-Henning Kamp */ 19019e1b5510SPoul-Henning Kamp 19029e1b5510SPoul-Henning Kamp static int tc_tick; 1903b389be97SRebecca Cran SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, 1904b389be97SRebecca Cran "Approximate number of hardclock ticks in a millisecond"); 19059e1b5510SPoul-Henning Kamp 1906e7fa55afSPoul-Henning Kamp void 19070e189873SAlexander Motin tc_ticktock(int cnt) 19089e1b5510SPoul-Henning Kamp { 1909e7fa55afSPoul-Henning Kamp static int count; 19109e1b5510SPoul-Henning Kamp 19115760b029SKonstantin Belousov if (mtx_trylock_spin(&tc_setclock_mtx)) { 19120e189873SAlexander Motin count += cnt; 19135760b029SKonstantin Belousov if (count >= tc_tick) { 1914e7fa55afSPoul-Henning Kamp count = 0; 19155760b029SKonstantin Belousov tc_windup(NULL); 19165760b029SKonstantin Belousov } 19175760b029SKonstantin Belousov mtx_unlock_spin(&tc_setclock_mtx); 19185760b029SKonstantin Belousov } 19199e1b5510SPoul-Henning Kamp } 19209e1b5510SPoul-Henning Kamp 19215b999a6bSDavide Italiano static void __inline 19225b999a6bSDavide Italiano tc_adjprecision(void) 19235b999a6bSDavide Italiano { 19245b999a6bSDavide Italiano int t; 19255b999a6bSDavide Italiano 19265b999a6bSDavide Italiano if (tc_timepercentage > 0) { 19275b999a6bSDavide Italiano t = (99 + tc_timepercentage) / tc_timepercentage; 19285b999a6bSDavide Italiano tc_precexp = fls(t + (t >> 1)) - 1; 19295b999a6bSDavide Italiano FREQ2BT(hz / tc_tick, &bt_timethreshold); 19305b999a6bSDavide Italiano FREQ2BT(hz, &bt_tickthreshold); 19315b999a6bSDavide Italiano bintime_shift(&bt_timethreshold, tc_precexp); 19325b999a6bSDavide Italiano bintime_shift(&bt_tickthreshold, tc_precexp); 19335b999a6bSDavide Italiano } else { 19345b999a6bSDavide Italiano tc_precexp = 31; 19355b999a6bSDavide Italiano bt_timethreshold.sec = INT_MAX; 19365b999a6bSDavide Italiano bt_timethreshold.frac = ~(uint64_t)0; 19375b999a6bSDavide Italiano bt_tickthreshold = bt_timethreshold; 19385b999a6bSDavide Italiano } 19395b999a6bSDavide Italiano sbt_timethreshold = bttosbt(bt_timethreshold); 19405b999a6bSDavide Italiano sbt_tickthreshold = bttosbt(bt_tickthreshold); 19415b999a6bSDavide Italiano } 19425b999a6bSDavide Italiano 19435b999a6bSDavide Italiano static int 19445b999a6bSDavide Italiano sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS) 19455b999a6bSDavide Italiano { 19465b999a6bSDavide Italiano int error, val; 19475b999a6bSDavide Italiano 19485b999a6bSDavide Italiano val = tc_timepercentage; 19495b999a6bSDavide Italiano error = sysctl_handle_int(oidp, &val, 0, req); 19505b999a6bSDavide Italiano if (error != 0 || req->newptr == NULL) 19515b999a6bSDavide Italiano return (error); 19525b999a6bSDavide Italiano tc_timepercentage = val; 1953af3b2549SHans Petter Selasky if (cold) 1954af3b2549SHans Petter Selasky goto done; 19555b999a6bSDavide Italiano tc_adjprecision(); 1956af3b2549SHans Petter Selasky done: 19575b999a6bSDavide Italiano return (0); 19585b999a6bSDavide Italiano } 19595b999a6bSDavide Italiano 19609e1b5510SPoul-Henning Kamp static void 19619e1b5510SPoul-Henning Kamp inittimecounter(void *dummy) 19629e1b5510SPoul-Henning Kamp { 19639e1b5510SPoul-Henning Kamp u_int p; 19645b999a6bSDavide Italiano int tick_rate; 19659e1b5510SPoul-Henning Kamp 196639acc78aSPoul-Henning Kamp /* 196739acc78aSPoul-Henning Kamp * Set the initial timeout to 196839acc78aSPoul-Henning Kamp * max(1, <approx. number of hardclock ticks in a millisecond>). 196939acc78aSPoul-Henning Kamp * People should probably not use the sysctl to set the timeout 1970e3043798SPedro F. Giffuni * to smaller than its initial value, since that value is the 197139acc78aSPoul-Henning Kamp * smallest reasonable one. If they want better timestamps they 197239acc78aSPoul-Henning Kamp * should use the non-"get"* functions. 197339acc78aSPoul-Henning Kamp */ 19749e1b5510SPoul-Henning Kamp if (hz > 1000) 19759e1b5510SPoul-Henning Kamp tc_tick = (hz + 500) / 1000; 19769e1b5510SPoul-Henning Kamp else 19779e1b5510SPoul-Henning Kamp tc_tick = 1; 19785b999a6bSDavide Italiano tc_adjprecision(); 19795b999a6bSDavide Italiano FREQ2BT(hz, &tick_bt); 19805b999a6bSDavide Italiano tick_sbt = bttosbt(tick_bt); 19815b999a6bSDavide Italiano tick_rate = hz / tc_tick; 19825b999a6bSDavide Italiano FREQ2BT(tick_rate, &tc_tick_bt); 19835b999a6bSDavide Italiano tc_tick_sbt = bttosbt(tc_tick_bt); 19849e1b5510SPoul-Henning Kamp p = (tc_tick * 1000000) / hz; 19859e1b5510SPoul-Henning Kamp printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 198639acc78aSPoul-Henning Kamp 1987b0fdc837SLawrence Stewart #ifdef FFCLOCK 1988b0fdc837SLawrence Stewart ffclock_init(); 1989b0fdc837SLawrence Stewart #endif 199048e5da55SPoul-Henning Kamp /* warm up new timecounter (again) and get rolling. */ 199139acc78aSPoul-Henning Kamp (void)timecounter->tc_get_timecount(timecounter); 199239acc78aSPoul-Henning Kamp (void)timecounter->tc_get_timecount(timecounter); 19935760b029SKonstantin Belousov mtx_lock_spin(&tc_setclock_mtx); 19945760b029SKonstantin Belousov tc_windup(NULL); 19955760b029SKonstantin Belousov mtx_unlock_spin(&tc_setclock_mtx); 19969e1b5510SPoul-Henning Kamp } 19979e1b5510SPoul-Henning Kamp 1998237fdd78SRobert Watson SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL); 19995b1a8eb3SPoul-Henning Kamp 2000e8444a7eSPoul-Henning Kamp /* Cpu tick handling -------------------------------------------------*/ 2001e8444a7eSPoul-Henning Kamp 2002e8444a7eSPoul-Henning Kamp static int cpu_tick_variable; 2003e8444a7eSPoul-Henning Kamp static uint64_t cpu_tick_frequency; 2004e8444a7eSPoul-Henning Kamp 20052bf95012SAndrew Turner DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base); 20062bf95012SAndrew Turner DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last); 2007b2557db6SKonstantin Belousov 200888ca07e7SJohn Baldwin static uint64_t 20095b1a8eb3SPoul-Henning Kamp tc_cpu_ticks(void) 20105b1a8eb3SPoul-Henning Kamp { 20115b1a8eb3SPoul-Henning Kamp struct timecounter *tc; 2012b2557db6SKonstantin Belousov uint64_t res, *base; 2013b2557db6SKonstantin Belousov unsigned u, *last; 20145b1a8eb3SPoul-Henning Kamp 2015b2557db6SKonstantin Belousov critical_enter(); 2016b2557db6SKonstantin Belousov base = DPCPU_PTR(tc_cpu_ticks_base); 2017b2557db6SKonstantin Belousov last = DPCPU_PTR(tc_cpu_ticks_last); 20185b1a8eb3SPoul-Henning Kamp tc = timehands->th_counter; 20195b1a8eb3SPoul-Henning Kamp u = tc->tc_get_timecount(tc) & tc->tc_counter_mask; 2020b2557db6SKonstantin Belousov if (u < *last) 2021b2557db6SKonstantin Belousov *base += (uint64_t)tc->tc_counter_mask + 1; 2022b2557db6SKonstantin Belousov *last = u; 2023b2557db6SKonstantin Belousov res = u + *base; 2024b2557db6SKonstantin Belousov critical_exit(); 2025b2557db6SKonstantin Belousov return (res); 20265b1a8eb3SPoul-Henning Kamp } 20275b1a8eb3SPoul-Henning Kamp 2028a157e425SAlexander Motin void 2029a157e425SAlexander Motin cpu_tick_calibration(void) 2030a157e425SAlexander Motin { 2031a157e425SAlexander Motin static time_t last_calib; 2032a157e425SAlexander Motin 2033a157e425SAlexander Motin if (time_uptime != last_calib && !(time_uptime & 0xf)) { 2034a157e425SAlexander Motin cpu_tick_calibrate(0); 2035a157e425SAlexander Motin last_calib = time_uptime; 2036a157e425SAlexander Motin } 2037a157e425SAlexander Motin } 2038a157e425SAlexander Motin 2039e8444a7eSPoul-Henning Kamp /* 20406b4d690cSWarner Losh * This function gets called every 16 seconds on only one designated 2041a157e425SAlexander Motin * CPU in the system from hardclock() via cpu_tick_calibration()(). 2042e8444a7eSPoul-Henning Kamp * 2043e8444a7eSPoul-Henning Kamp * Whenever the real time clock is stepped we get called with reset=1 2044e8444a7eSPoul-Henning Kamp * to make sure we handle suspend/resume and similar events correctly. 2045e8444a7eSPoul-Henning Kamp */ 2046e8444a7eSPoul-Henning Kamp 2047e8444a7eSPoul-Henning Kamp static void 2048e8444a7eSPoul-Henning Kamp cpu_tick_calibrate(int reset) 2049e8444a7eSPoul-Henning Kamp { 2050e8444a7eSPoul-Henning Kamp static uint64_t c_last; 2051e8444a7eSPoul-Henning Kamp uint64_t c_this, c_delta; 2052e8444a7eSPoul-Henning Kamp static struct bintime t_last; 2053e8444a7eSPoul-Henning Kamp struct bintime t_this, t_delta; 2054301af28aSPoul-Henning Kamp uint32_t divi; 2055e8444a7eSPoul-Henning Kamp 2056e8444a7eSPoul-Henning Kamp if (reset) { 2057e8444a7eSPoul-Henning Kamp /* The clock was stepped, abort & reset */ 2058e8444a7eSPoul-Henning Kamp t_last.sec = 0; 2059e8444a7eSPoul-Henning Kamp return; 2060e8444a7eSPoul-Henning Kamp } 2061e8444a7eSPoul-Henning Kamp 2062e8444a7eSPoul-Henning Kamp /* we don't calibrate fixed rate cputicks */ 2063e8444a7eSPoul-Henning Kamp if (!cpu_tick_variable) 2064e8444a7eSPoul-Henning Kamp return; 2065e8444a7eSPoul-Henning Kamp 2066e8444a7eSPoul-Henning Kamp getbinuptime(&t_this); 2067e8444a7eSPoul-Henning Kamp c_this = cpu_ticks(); 2068e8444a7eSPoul-Henning Kamp if (t_last.sec != 0) { 2069e8444a7eSPoul-Henning Kamp c_delta = c_this - c_last; 2070e8444a7eSPoul-Henning Kamp t_delta = t_this; 2071e8444a7eSPoul-Henning Kamp bintime_sub(&t_delta, &t_last); 2072e8444a7eSPoul-Henning Kamp /* 2073301af28aSPoul-Henning Kamp * Headroom: 2074301af28aSPoul-Henning Kamp * 2^(64-20) / 16[s] = 2075301af28aSPoul-Henning Kamp * 2^(44) / 16[s] = 2076301af28aSPoul-Henning Kamp * 17.592.186.044.416 / 16 = 2077301af28aSPoul-Henning Kamp * 1.099.511.627.776 [Hz] 2078301af28aSPoul-Henning Kamp */ 2079301af28aSPoul-Henning Kamp divi = t_delta.sec << 20; 2080301af28aSPoul-Henning Kamp divi |= t_delta.frac >> (64 - 20); 2081301af28aSPoul-Henning Kamp c_delta <<= 20; 2082301af28aSPoul-Henning Kamp c_delta /= divi; 2083e8444a7eSPoul-Henning Kamp if (c_delta > cpu_tick_frequency) { 208459048707SPoul-Henning Kamp if (0 && bootverbose) 2085fef527eeSPoul-Henning Kamp printf("cpu_tick increased to %ju Hz\n", 20866cda760fSPoul-Henning Kamp c_delta); 2087e8444a7eSPoul-Henning Kamp cpu_tick_frequency = c_delta; 2088e8444a7eSPoul-Henning Kamp } 2089e8444a7eSPoul-Henning Kamp } 2090e8444a7eSPoul-Henning Kamp c_last = c_this; 2091e8444a7eSPoul-Henning Kamp t_last = t_this; 2092e8444a7eSPoul-Henning Kamp } 2093e8444a7eSPoul-Henning Kamp 2094e8444a7eSPoul-Henning Kamp void 2095e8444a7eSPoul-Henning Kamp set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var) 2096e8444a7eSPoul-Henning Kamp { 2097e8444a7eSPoul-Henning Kamp 2098e8444a7eSPoul-Henning Kamp if (func == NULL) { 2099e8444a7eSPoul-Henning Kamp cpu_ticks = tc_cpu_ticks; 2100e8444a7eSPoul-Henning Kamp } else { 2101e8444a7eSPoul-Henning Kamp cpu_tick_frequency = freq; 2102e8444a7eSPoul-Henning Kamp cpu_tick_variable = var; 2103e8444a7eSPoul-Henning Kamp cpu_ticks = func; 2104e8444a7eSPoul-Henning Kamp } 2105e8444a7eSPoul-Henning Kamp } 2106e8444a7eSPoul-Henning Kamp 2107e8444a7eSPoul-Henning Kamp uint64_t 2108e8444a7eSPoul-Henning Kamp cpu_tickrate(void) 2109e8444a7eSPoul-Henning Kamp { 2110e8444a7eSPoul-Henning Kamp 2111e8444a7eSPoul-Henning Kamp if (cpu_ticks == tc_cpu_ticks) 2112e8444a7eSPoul-Henning Kamp return (tc_getfrequency()); 2113e8444a7eSPoul-Henning Kamp return (cpu_tick_frequency); 2114e8444a7eSPoul-Henning Kamp } 2115e8444a7eSPoul-Henning Kamp 2116e8444a7eSPoul-Henning Kamp /* 2117e8444a7eSPoul-Henning Kamp * We need to be slightly careful converting cputicks to microseconds. 2118e8444a7eSPoul-Henning Kamp * There is plenty of margin in 64 bits of microseconds (half a million 2119e8444a7eSPoul-Henning Kamp * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply 2120e8444a7eSPoul-Henning Kamp * before divide conversion (to retain precision) we find that the 2121e8444a7eSPoul-Henning Kamp * margin shrinks to 1.5 hours (one millionth of 146y). 2122776fc0e9SYaroslav Tykhiy * With a three prong approach we never lose significant bits, no 2123e8444a7eSPoul-Henning Kamp * matter what the cputick rate and length of timeinterval is. 2124e8444a7eSPoul-Henning Kamp */ 2125e8444a7eSPoul-Henning Kamp 2126e8444a7eSPoul-Henning Kamp uint64_t 2127e8444a7eSPoul-Henning Kamp cputick2usec(uint64_t tick) 2128e8444a7eSPoul-Henning Kamp { 2129e8444a7eSPoul-Henning Kamp 2130e8444a7eSPoul-Henning Kamp if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */ 2131e8444a7eSPoul-Henning Kamp return (tick / (cpu_tickrate() / 1000000LL)); 2132e8444a7eSPoul-Henning Kamp else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */ 2133e8444a7eSPoul-Henning Kamp return ((tick * 1000LL) / (cpu_tickrate() / 1000LL)); 2134e8444a7eSPoul-Henning Kamp else 2135e8444a7eSPoul-Henning Kamp return ((tick * 1000000LL) / cpu_tickrate()); 2136e8444a7eSPoul-Henning Kamp } 2137e8444a7eSPoul-Henning Kamp 2138e8444a7eSPoul-Henning Kamp cpu_tick_f *cpu_ticks = tc_cpu_ticks; 2139aea81038SKonstantin Belousov 2140aea81038SKonstantin Belousov static int vdso_th_enable = 1; 2141aea81038SKonstantin Belousov static int 2142aea81038SKonstantin Belousov sysctl_fast_gettime(SYSCTL_HANDLER_ARGS) 2143aea81038SKonstantin Belousov { 2144aea81038SKonstantin Belousov int old_vdso_th_enable, error; 2145aea81038SKonstantin Belousov 2146aea81038SKonstantin Belousov old_vdso_th_enable = vdso_th_enable; 2147aea81038SKonstantin Belousov error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req); 2148aea81038SKonstantin Belousov if (error != 0) 2149aea81038SKonstantin Belousov return (error); 2150aea81038SKonstantin Belousov vdso_th_enable = old_vdso_th_enable; 2151aea81038SKonstantin Belousov return (0); 2152aea81038SKonstantin Belousov } 2153aea81038SKonstantin Belousov SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime, 2154aea81038SKonstantin Belousov CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 2155aea81038SKonstantin Belousov NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day"); 2156aea81038SKonstantin Belousov 2157aea81038SKonstantin Belousov uint32_t 2158aea81038SKonstantin Belousov tc_fill_vdso_timehands(struct vdso_timehands *vdso_th) 2159aea81038SKonstantin Belousov { 2160aea81038SKonstantin Belousov struct timehands *th; 2161aea81038SKonstantin Belousov uint32_t enabled; 2162aea81038SKonstantin Belousov 2163aea81038SKonstantin Belousov th = timehands; 2164aea81038SKonstantin Belousov vdso_th->th_scale = th->th_scale; 2165aea81038SKonstantin Belousov vdso_th->th_offset_count = th->th_offset_count; 2166aea81038SKonstantin Belousov vdso_th->th_counter_mask = th->th_counter->tc_counter_mask; 2167aea81038SKonstantin Belousov vdso_th->th_offset = th->th_offset; 21685760b029SKonstantin Belousov vdso_th->th_boottime = th->th_boottime; 216916808549SKonstantin Belousov if (th->th_counter->tc_fill_vdso_timehands != NULL) { 217016808549SKonstantin Belousov enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th, 217116808549SKonstantin Belousov th->th_counter); 217216808549SKonstantin Belousov } else 217316808549SKonstantin Belousov enabled = 0; 2174aea81038SKonstantin Belousov if (!vdso_th_enable) 2175aea81038SKonstantin Belousov enabled = 0; 2176aea81038SKonstantin Belousov return (enabled); 2177aea81038SKonstantin Belousov } 2178aea81038SKonstantin Belousov 2179aea81038SKonstantin Belousov #ifdef COMPAT_FREEBSD32 2180aea81038SKonstantin Belousov uint32_t 2181aea81038SKonstantin Belousov tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32) 2182aea81038SKonstantin Belousov { 2183aea81038SKonstantin Belousov struct timehands *th; 2184aea81038SKonstantin Belousov uint32_t enabled; 2185aea81038SKonstantin Belousov 2186aea81038SKonstantin Belousov th = timehands; 2187aea81038SKonstantin Belousov *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale; 2188aea81038SKonstantin Belousov vdso_th32->th_offset_count = th->th_offset_count; 2189aea81038SKonstantin Belousov vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask; 2190aea81038SKonstantin Belousov vdso_th32->th_offset.sec = th->th_offset.sec; 2191aea81038SKonstantin Belousov *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac; 21925760b029SKonstantin Belousov vdso_th32->th_boottime.sec = th->th_boottime.sec; 21935760b029SKonstantin Belousov *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac; 219416808549SKonstantin Belousov if (th->th_counter->tc_fill_vdso_timehands32 != NULL) { 219516808549SKonstantin Belousov enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32, 219616808549SKonstantin Belousov th->th_counter); 219716808549SKonstantin Belousov } else 219816808549SKonstantin Belousov enabled = 0; 2199aea81038SKonstantin Belousov if (!vdso_th_enable) 2200aea81038SKonstantin Belousov enabled = 0; 2201aea81038SKonstantin Belousov return (enabled); 2202aea81038SKonstantin Belousov } 2203aea81038SKonstantin Belousov #endif 2204